
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 9, pp. 759–767 (2023)
DOI: 10.7155/jgaa.00643

The Computational Complexity of the ChordLink Model

Philipp Kindermann 1 Jan Sauer 2 Alexander Wolff 2

1Universität Trier, Trier, Germany
2Universität Würzburg, Würzburg, Germany

Submitted: June 2023 Accepted: October 2023 Final: November 2023

Published: November 2023

Article type: Concise paper Communicated by: Giuseppe Liotta

Abstract. In order to visualize well-clustered graphs with many intra-cluster
but few inter-cluster edges, hybrid approaches have been proposed. For example,
ChordLink draws the clusters as chord diagrams and embeds these into a node-link
diagram that represents the overall structure of the clustered graph. The ChordLink
approach consists of four steps; node replication, node permutation, node merging, and
chord insertion. In this paper, we focus on the optimization problems defined by two of
these steps. We show that the decision version of the problem defined by node permu-
tation is NP-complete and present an efficient algorithm for a special case. For chord
insertion, we show that it is NP-complete to decide whether a crossing-free placement
of the chords exists. Moreover, it is APX-hard to minimize the number of crossings
among the chords. Our results answer an open question posed by Angori, Didimo,
Montecchiani, Pagliuca, and Tappini, who introduced ChordLink [TVCG 2021].

1 Introduction

Node-link diagrams represent an intuitive tool for visualizing graphs. For dense graphs, however,
node-link diagrams tend to degenerate into unintelligible hairballs. Less intuitive, but more robust
visualization paradigms such as adjacency matrices can be a remedy. In practice, however, large
graphs are often “globally sparse” and just “locally dense” [3]. This is the case, for example, in
social networks such as collaboration and financial networks [4], but also in biological networks [9].
For visualizing such graphs, hybrid representations have been invented. In intersection-link repre-
sentations, for example, each vertex is represented by a geometric object and each edge is either
represented by a curve connecting the two objects or, if it belongs to a dense subgraph, by a
non-empty intersection of the two objects [1, 2]. Another example of a hybrid representation is
NodeTrix [7], which uses matrices for dense subgraphs and links between the matrices for the global

An earlier version of this article appeared in Proc. 38th Europ. Workshop Comput. Geom. (EuroCG 2022).

E-mail addresses: kindermann@uni-trier.de (Philipp Kindermann)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00643
https://orcid.org/0000-0001-5764-7719
https://orcid.org/0000-0001-5872-718X
mailto:kindermann@uni-trier.de
https://creativecommons.org/licenses/by/4.0/

760 P. Kindermann et al. The Computational Complexity of the ChordLink Model

graph structure. ChordLink, recently introduced by Angori, Didimo, Montecchiani, Pagliuca, and
Tappini [3], combines very effectively so-called chord diagrams [8] for dense subgraphs, again with
links between them for the overall graph structure. In a chord diagram, each vertex is represented
by one or several circular arcs, and each edge is a chord between any two arcs that represent the
endpoints of the edge. Turning a given node-link diagram into a ChordLink visualization can,
for example, be triggered by a user in an interactive system. We now formalize the ChordLink
model and the four steps that are performed in order to compute a ChordLink visualization from
a node-link diagram. To this end, for a graph G, let V (G) be its vertex set and let E(G) be its
edge set. For a positive integer k, let [k] = {1, 2, . . . , k}.

The ChordLink Model. Given a node-link diagram Γ of a graph G, a cluster C ⊆ V (G), and
a circle R that contains only the vertices in C (at their positions in Γ), a ChordLink visualization
of G locally modifies Γ such that G[C] is drawn as a chord diagram with the vertices of C on R.
There are four steps; see Figure 1.

NodeReplication: For each node w ∈ C connected to a node u /∈ C, create a copy wu of w on
the intersection of the edge (w, u) with R, and add the edge (wu, u); see Figure 1b. For each
node v ∈ C whose complete neighborhood is contained in C (as the orange square node in
Figure 1a), place a copy of v at an arbitrary position on R.

NodePermutation: Copies vu and wu of different nodes v and w that are connected to the same
node u /∈ C can be exchanged in the order of the node copies on R. This step naturally defines
the optimization problem NodePermutation, where the aim is to find a permutation of the
node copies on R that exchanges only copies connected to the same node outside of R and
maximizes the total number of pairs of consecutive copies of the same node; see Figure 1c.
(The number of such pairs increases by two when going from Figure 1b to Figure 1c.)

NodeMerging: Replace each maximal subsequence of consecutive copies of a node w along R by
a circular arc cw; see Figure 1d.

ChordInsertion: For each edge (v, w) ∈ G[C], select an arc cv representing v and an arc cw rep-
resenting w, and insert a chord that connects cv and cw in the interior of R; see Figure 1e.
Angori et al. [3] suggest to minimize the total number of crossings among the chords. (They
also suggest maximizing the smallest angle formed by any pair of crossing chords, but we do
not consider this here.) This defines the optimization problem CrossingMinimal Chord-
Insertion.

Known Results. For NodePermutation, Angori et al. [3] describe a dynamic program that
yields optimal solutions if the node copies that are adjacent to the same external node form intervals
along R. If this condition does not hold (as in Figure 1b), then they simply split R into maximal
pieces where the condition does hold and treat each piece seperately, which yields a heuristic overall
solution for the whole instance. Their algorithm takes O(|E(G)|3) time.

For CrossingMinimal ChordInsertion, Angori et al. suggest a greedy algorithm that first
draws the chords whose endpoints are both represented by unique arcs. Then it adds the other
chords one by one, making the currently best choice in terms of crossings (and, with lower weight,
in terms of crossing angles). It draws chords as Bézier curves; see Figure 1e.

JGAA, 27(9) 759–767 (2023) 761

(a) Initial Drawing (b) NodeReplication

(c) NodePermutation (d) NodeMerging

(e) ChordInsertion (f) Final Drawing

Figure 1: The steps of the ChordLink approach illustrated on the left cluster.

Contribution. We focus on the steps NodePermutation and ChordInsertion of the Chord-
Link model. First, we prove that NodePermutation is NP-complete; see Section 2. We reduce
from VertexCover in cubic graphs. Then, we give an efficient algorithm for NodePermutation
for the special case that the neighborhood of C contains only two vertices; see Section 3. Finally, we
show that (even a rather special case of) CrossingMinimal ChordInsertion is APX-hard, even
if there are only two possible choices for every edge; see Section 4. We reduce from Max-2-SAT.

2 NP-Completeness of NodePermutation

Above, we have stated NodePermutation as an optimization problem. We now formally define
the corresponding decision problem. In the ChordLink model, for every vertex c in the cluster C
and each neighbor g ̸∈ C of c, a copy of c is placed on the circle R. Since G is simple, each copy
can be described as a unique pair (c, g). Abstracting from the original problem, we call c the color
and g the group of the pair (c, g). This leads to the following formulation of the problem, where
we associate every vertex of C with a distinct color.

Let C be a set of colors, let G be a set of groups, and let L = (L1, . . . , Ln, L1) be a circular

762 P. Kindermann et al. The Computational Complexity of the ChordLink Model

list of distinct pairs where, for i ∈ [n], Li = (ci, gi) ∈ C × G. Define G(L) = (g1, . . . , gn, g1),
C(L) = (c1, . . . , cn, c1), and let N(L) be the number of pairs of consecutive equal entries of C(L).
Given C, G, L, and an integer K > 0, find a permutation π of L such that (i) G(π(L)) = G(L) and
(ii) N(π(L)) ≥ K. Note that requirement (i) ensures that we can permute only elements of L that
belong to the same group.

Theorem 1 NodePermutation is NP-complete.

Proof: The problem is in NP since we can verify a permutation easily.
To show hardness, we reduce from 3SetCover. This problem generalizes VertexCover in

cubic graphs, which is NP-hard [5]. In the decision version of 3SetCover, given a finite universe U
(the edge set of the cubic graph), a family S of size-3 subsets of U (for each vertex, its three incident
edges), and an integer k > 0, the task is to find a subfamily S ′ (corresponding to a vertex cover)
of S of size at most k that covers U . (In the special case of VertexCover, each element of the
universe appears in exactly two elements of S.)

Given an instance (U,S, k) of 3SetCover, we construct an instance (G, C, L,K) of Node-
Permutation such that one is a yes-instance if and only if the other is a yes-instance. Let
U = {u1, . . . , un}, S = {S1, . . . , Sm}, and, for i ∈ [m], let Si = {ui1 , ui2 , ui3} with i1, i2, i3 ∈ [n].
To construct an instance of NodePermutation, we use only a single color c⋆ that appears in
more than one entry; all other entries have a unique color. Furthermore, we have one group for
every ui ∈ U , and there is exactly one entry (c⋆, ui), and we have one additional group z such that
there is no entry (c⋆, z); the entries with group z basically serve as blockers between the gadgets.
The full reduction is as follows:

K = n− k,

G = U ∪ {z},where z /∈ U , and

C = {c⋆} ∪ {c1, . . . , cn} ∪
⋃m

i=1{ci,1, ci,2, ci,3, ci,4, ci,5}, and
L0 =

(
(c⋆, u1), (c1, z), (c

⋆, u2), (c2, z), . . . , (c
⋆, un), (cn, z)

)
Li =

(
(ci,1, ui1), (ci,2, ui2), (ci,3, ui3), (ci,4, ui1), (ci,5, z)

)
for each i ∈ [m]

L = L0 ⊕ L1 ⊕ · · · ⊕ Lm,where ⊕ concatenates lists.

Clearly, this reduction can be performed in polynomial time. Intuitively, every sublist Li that
contains a color-c⋆ entry corresponds to a set Si in a solution S ′ of S. If these sublists contain
K consecutive color-c⋆ entries, then there are 2K elements that are covered by K sets in S ′, so
|S ′| ≤ n−K = k.

First, we assume that (U,S, k) is a yes-instance of 3SetCover, that is, there is a size-k
subfamily S ′ of S that covers U . We need to construct a permutation π of L such that (i) G(π(L)) =
G(L) and (ii) N(π(L)) ≥ K.

For each j ∈ [n], let i be the index of an arbitrary set in S ′ that contains uj . Swap (c⋆, uj)
in L0 with an entry in Li with group uj . There is a choice only if uj = ui1 . If (ci,2, ui2) has been
or will be swapped with another entry, too, then swap (c⋆, uj) with (ci,1, ui1); otherwise, swap
(c⋆, uj) with (ci,4, ui1). This makes sure that all swapped entries in Li are consecutive. In total,
we make n swaps. In the resulting permutation of L, the elements of color u form at most k groups
of consecutive entries (as S ′ might contain “unnecessary” sets in the decision version). Hence, the
number of pairs of consecutive entries with the same color c⋆ is at least n− k = K.

Now assume that (G, C, L,K) is a yes-instance of NodePermutation, that is, there is a
permutation π of L such that (i) G(π(L)) = G(L) and (ii) N(π(L)) ≥ K. We have to show that

JGAA, 27(9) 759–767 (2023) 763

L0 ︸︷︷︸

︸
︷︷

︸

L1

︸ ︷︷ ︸
L2

︸
︷︷

︸

L3

group z

color c⋆

colors
unique

U = {△,□,3,D}

S1 = {D,3,□}

S2 = {□,D,3}

S3 = {△,D,□}

k = 2

Figure 2: Here, the reduction from 3SetCover to NodePermutation yields the cover {S2, S3}.
Color c⋆ is drawn in blue; all other list entries have their own unique color. List elements of group z
are indicated by a ◦.

then (U,S) admits a set cover of size k = n−K. Without loss of generality, we can assume that π
swaps each color-c⋆ element of L0 with a color-c⋆ element of L1 ⊕ · · · ⊕ Lm (because such a swap
does not decrease N(π(L))) and that π does not swap any other entries of L (because swapping
group-z elements does not change N(π(L))). Consider the family S ′ of those sets Si ∈ S such that
π modifies Li. We claim that (i) S ′ covers U and (ii) |S ′| ≤ k.

Property (i) holds due to our assumption that π swaps all color-c⋆ entries of L0 with a sublist
Li with i ∈ [m]. Thus, every element of U is contained in an element of S ′. For property (ii), note
that the only pairs of consecutive entries with equal color in π(L) are pairs of color-c⋆ entries in
sublists Li. Among the n color-c⋆ entries, at least K pairs are consecutive. Let K1, K2 and K3

be the number of sublists Li that contain one, two and three color-c⋆ entries, respectively. Then
we have K2 + 2K3 ≥ K and K1 = n − 2K2 − 3K3. Hence, the total number of sublists Li that
contain at least one color-c⋆ entry is K1 +K2 +K3 = n−K2 − 2K3 ≤ n−K = k, so |S ′| ≤ k. 2

3 An Algorithm for a Special Case of NodePermutation

In this section, we describe a linear-time algorithm to solve the optimization version of NodePer-
mutation for the special case that there are only two groups (but an arbitrary number of colors).
In the ChordLink model, this corresponds to an arbitrarily large cluster C where the neighborhood
of C in V (G) \ C has size 2.

Theorem 2 NodePermutation can be solved in O(n) time for two groups.

Proof: Let G = {x, y}. The goal is to find a permutation π of L that maximizes N(π(L)).
Consider any three consecutive indices i, i+1, i+2. Recall that the elements of L are pairwise

disjoint. Thus, cπ−1(i) = cπ−1(i+1) implies that gi ̸= gi+1. Since there are only two groups, we have
either gi+2 = gi or gi+2 = gi+1, so cπ−1(i+2) ̸= cπ−1(i+1). Hence, for any permutation π of L, we
cannot have cπ−1(i) = cπ−1(i+1) = cπ−1(i+2).

For ◦ ∈ {x, y}, let C◦ be the set of colors ci such that there exists some list element (ci, ◦), and
let S = Cx ∩ Cy. We say that the color cj is assigned to index i if cπ−1(i) = cj .

We can formulate this problem as a maximum independent set problem on a graph G′. The
graph contains a vertex v′i for every pair of consecutive indices i, i+1 with gi ̸= gi+1, and a vertex
v′n if gn ̸= g1. If v

′
i, v

′
i+1 ∈ V (G′), then E(G′) contains the edge (v′i, v

′
i+1). Any assignment of colors

764 P. Kindermann et al. The Computational Complexity of the ChordLink Model

to K pairs of consecutive indices (i1, i1 + 1), . . . , (iK , iK + 1) with gi1 ̸= gi1+1, . . . , giK ̸= giK+1

induces an independent set v′i1 , . . . , v
′
iK

in G′.
Hence, if we find an independent set (v′i1 , . . . , v

′
ik
) of size k in G′, then we can find an assignment

of K = min{|S|, k} colors in S to consecutive pairs of indices (i1, i1 + 1), . . . , (iK , iK + 1). By
construction, G′ is either a cycle or a linear forest, so we can find a maximum independent set of G′

in linear time with a simple greedy algorithm. To obtain a permutation π of L with N(π(L)) = K,
we arbitrarily assign the remaining colors of Cx and Cy to the remaining list elements of types
(ci, x) and (ci, y), respectively. 2

4 APX-Hardness of CrossingMinimal ChordInsertion

In this section, we focus on the optimization problem CrossingMinimal ChordInsertion:
Given a graph G with at least one copy of each of its vertices placed on a circle R, insert ev-
ery edge between a copy of each of its endvertices such that the total number of crossings between
the edges is minimized. Since the number of crossings only depends on the order of the vertex
copies along R, we can also assume them to be drawn as points (rather than circular arcs) on R.
We first prove that finding a crossing-free solution for ChordInsertion is NP-complete.

Theorem 3 It is NP-complete to decide whether a given graph G (with node copies on R) admits
a crossing-free solution for ChordInsertion, even if G is a matching and there are at most three
copies per vertex.

Proof: Membership in NP is obvious since we can verify an assignment easily.
To show hardness, we reduce from 3-SAT. Let (X , C) be a 3-SAT instance with variables

X = X0, . . . , Xn and clauses C = C0, . . . , Cm. We create a graph G as follows. The vertex set
V (G) contains, for each i ∈ [m], two clause vertices ci and di; and, for each j ∈ [n], two variable
vertices xj and yj . The edge set E(G) contains for each i ∈ [m], a clause edge (ci, di); and for each
j ∈ [n], a variable edge (xj , yj) and a separator edge (zj , z

′
j). For each j ∈ [n], let Tj be the set of

clauses that contain the literal Xj , and let Fj be the set of clauses that contain the literal ¬Xj .
To create an instance I of ChordInsertion, we place copies of the vertices of V (G) along R

as follows; see Figure 3. For every variable Xj , we place, in the given order,

1. the vertex zj ;

2. for every clause Ci ∈ Tj , a copy dji of di, in decreasing order of i;

3. one copy yFj of yj ;

4. for every clause Ci ∈ Tj , a copy cji of ci, in increasing order of i;

5. the vertex xj ;

6. for every clause Ci ∈ Fj , a copy cji of ci, in increasing order of i;

7. a second copy yTj of yj ;

8. for every clause Ci ∈ Fj , a copy dji of di, in decreasing order of i.

9. the vertex z′j ;

Assume that I is a yes-instance, i.e., it admits a crossing-free drawing Γ. Then, for each i ∈ [n],
the drawing Γ must contain either the chord (xi, y

F
i) or the chord (xi, y

T
i), simply because xi is

unique and yi has exactly two copies; see Figure 4.

JGAA, 27(9) 759–767 (2023) 765

zj

z′j

zj

z′j

Xj = false Xj = true

yF
j

xj

cjℓ

djℓ

yT
j

dji

cji

cjk

djk

yF
j

xj

cjℓ

djℓ

yT
j

dji

cji

cjk

djk

yF
j

xj

cjℓ

djℓ

yT
j

dji

cji

cjk

djk

zj

z′j

Figure 3: Illustration for the part corresponding to variable Xj in the reduction from 3-SAT to
ChordInsertion for the formula ci ∧ ck ∧ cℓ ∧ . . . = (Xj ∨ . . .) ∧ (Xj ∨ . . .) ∧ (Xj ∨ . . .) ∧

Let i ∈ [m]. Then Γ must contain a chord between a copy of ci and a copy of di. Because of
the seperator edges, whose positions are fixed, this chord cannot connect copies cji and dki with
j ̸= k. Next, consider any literal Xj contained in Ci. Then, the clause edge (ci, di) can be drawn

as the chord (cji , d
j
i) only if Γ contains the chord (xi, y

T
i); otherwise, there would be a crossing

between (cji , d
j
i) and (xi, y

F
i). Conversely, for any literal ¬Xj contained in Ci, the edge (ci, di) can

be drawn as the chord (cji , d
j
i) only if Γ contains the chord (xi, y

F
i). Hence, for the edge (ci, dj) to

be drawn in Γ, for at least one of its positive literals Xj , there must be the chord (xj , y
T
j), or for

at least one of its negated literals ¬Xj , there must be the chord (xj , y
F
j).

Thus, we obtain a feasible solution for the 3-SAT instance (X , C) as follows: for each j ∈ [n],
if Γ contains the chord (xj , y

T
j), then set Xj = true, otherwise (Γ contains the chord (xj , y

F
j)), set

Xj = false. Since, for each i ∈ [m], the edge (ci, di) must be drawn as a chord in Γ, at least one
literal in the clause Ci must be true, so the solution is feasible.

Now assume that (X , C) is a yes-instance, i.e., there exists an assignment ϕ : X → {true, false}
such that, for each i ∈ [m], at least one literal of the clause Ci is satisfied. We obtain a crossing-free
drawing Γ for the corresponding instance I of ChordInsertion as follows. For each separator
edge, both its end vertices are unique, so we draw a chord between them. For each j ∈ [n], if
ϕ(Xj) = true, we draw the variable edge (xj , yj) as the chord (xj , y

T
j), otherwise as (xj , y

F
j). For

every i ∈ [m], we choose a satisfied literal Xj (or ¬Xj) of the clause Ci and draw the clause edge

(ci, di) as the chord (cji , d
j
i). By construction, this chord cannot intersect the edge (xj , yj), and,

as observed above, it does not cross any other chord. Hence, we obtain a crossing-free drawing Γ
for I. 2

In the above proof we reduced from 3-SAT. If we instead reduce from Max-2-SAT, which is
APX-hard [6], we can show that our problem is even APX-hard.

Theorem 4 CrossingMinimal ChordInsertion is APX-hard even for matchings with at most
two copies per vertex.

Proof: By reducing from Max-2-SAT, the construction in the proof of Theorem 3 can be used
to show that CrossingMinimal ChordInsertion is APX-hard even if there are at most two

766 P. Kindermann et al. The Computational Complexity of the ChordLink Model

yF3

x4yT4

x5

yT5

x3

yF2 x2

c11

C1 = X1 ∨X2 ∨X3

C2 = X1 ∨X3 ∨X4

C3 = X2 ∨X4 ∨X5

C4 = X2 ∨X3 ∨X5

d11

x1

yT1

yF1

c34

d34

c42

d42

c53

d53

yF5

yF4

yT3

yT2

c21

d21

d31

c31

c12

d12

c32

d32

c23

d23

c43
d43

c24d24

c54

d54

z1

z′5

z′1
z2

z′2

z3

z′3
z4

z′4
z5

X1

X2

X3

X4

X5

Figure 4: Example of the reduction from 3-SAT to ChordInsertion

possible choices for every edge. It is known that Max-2-SAT is inapproximable within any factor
greater than 21/22 > 0.954 [6]. For the proof, observe that in the construction above a clause
is unsatisfied if and only if its corresponding clause edge has a crossing with the variable edge of
one of its unsatisfied literals. (In particular, it is never worth for a clause edge to cross separation
edges.) Hence, the number of crossings in the optimum solution for the corresponding Crossing-
Minimal ChordInsertion instance is exactly the number of unsatisfied clauses in an optimum
solution for Max-2-SAT. 2

5 Conclusion

The dynamic program of Angori et al. [3] for NodePermutation insists that all node copies
with the same group are consecutive along R. We have described an algorithm that assumes
that there are just two groups. Are there other restrictions that render NodePermutation
easy and are acceptable in practice? We have shown that CrossingMinimal ChordInsertion
is inapproximable within any factor greater than 21/22 > 0.954, but what about a, say, 1/2-
approximation?

JGAA, 27(9) 759–767 (2023) 767

References

[1] Patrizio Angelini and Giordano Da Lozzo. Beyond clustered planar graphs. In Seok-Hee
Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs: Communications of NII Shonan
Meetings, pages 211–235. Springer, 2020. doi:10.1007/978-981-15-6533-5_12.

[2] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl.,
21:731–755, 2017. doi:10.7155/jgaa.00437.

[3] Lorenzo Angori, Walter Didimo, Fabrizio Montecchiani, Daniele Pagliuca, and Alessandra
Tappini. Hybrid graph visualizations with ChordLink: Algorithms, experiments, and appli-
cations. IEEE Trans. Vis. Comput. Graphics, 28(2):1288–1300, 2020. doi:10.1109/TVCG.

2020.3016055.

[4] Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov., 6(3):115–135, 2016. doi:10.1002/widm.1178.

[5] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
problems. In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, and Michael A.
Harrison, editors, Proc. 6th Ann. ACM Symp. Theory Comput. (STOC), pages 47–63, 1974.
doi:10.1145/800119.803884.

[6] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. doi:

10.1145/502090.502098.

[7] Nathalie Henry Riche, Jean-Daniel Fekete, and Michael McGuffin. NodeTrix: A hybrid vi-
sualization of social networks. IEEE Trans. Vis. Comput. Graphics, 13(6):1302–1309, 2007.
doi:10.1109/TVCG.2007.70582.

[8] Martin Krzywinski, Jacqueline Schein, Inanç Birol, Joseph Connors, Randy Gascoyne, Doug
Horsman, Steven J. Jones, and Marco A. Marra. Circos: An information aesthetic for compar-
ative genomics. Genome Res., 19(9):1639–1645, 2009. doi:10.1101/gr.092759.109.

[9] Hassan Mahmoud, Francesco Masulli, Stefano Rovetta, and Giuseppe Russo. Community
detection in protein-protein interaction networks using spectral and graph approaches. In
Enrico Formenti, Roberto Tagliaferri, and Ernst Wit, editors, Proc. 10th Int. Meeting Comput.
Intell. Methods for Bioinf. Biostat. (CIBB), volume 8452 of Lect. Notes Comput. Sci., pages
62–75. Springer, 2013. doi:10.1007/978-3-319-09042-9_5.

https://doi.org/10.1007/978-981-15-6533-5_12
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1002/widm.1178
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1007/978-3-319-09042-9_5

	1 Introduction
	2 NP-Completeness of NodePermutation
	3 An Algorithm for a Special Case of NodePermutation
	4 APX-Hardness of CrossingMinimal ChordInsertion
	5 Conclusion

