2-Layer Graph Drawings with Bounded Pathwidth

David R. Wood ${ }^{1}$ (1)					
${ }^{1}$ School of Mathematics, Monash University Melbourne, Australia					
Submitted:	September 2002	Reviewed:	: October 2023	Revised:	November 2023
Accepted:	November 2023	Final: N	November 2023	Published:	December 2023
	ticle type: Concis	paper	Communi	ed by: Ale	exander Wolff

Abstract

This paper determines which properties of 2-layer drawings characterise bipartite graphs of bounded pathwidth.

1 Introduction

Figure 1: A caterpillar drawn on 2-layers with no crossings, and the corresponding path-decompostion with width 1.

A 2-layer drawing of a bipartite graph G with bipartition $\{A, B\}$ positions the vertices in A at distinct points on a horizontal line, and positions the vertices in B at distinct points on a different horizontal line, and draws each edge as a straight line-segment. 2-layer graph drawings are of fundamental importance in graph drawing research and have been widely studied $[2,6,7,10,11,14-$ 17, 19, 21, 22, 24]. As illustrated in Figure 1, the following basic connection between 2-layer graph drawings and graph pathwidth ${ }^{1}$ is folklore:

Research supported by the Australian Research Council.
E-mail address: david.wood@monash.edu (David R. Wood)
${ }^{1}$ A path-decomposition of a graph G is a sequence $\left(B_{1}, \ldots, B_{n}\right)$ of subsets of $V(G)$ (called bags), such that $B_{1} \cup \cdots \cup B_{n}=V(G)$, and for $1 \leqslant i<j<k \leqslant n$ we have $B_{i} \cap B_{k} \subseteq B_{j}$; that is, for each vertex v the bags containing

Observation 1 A connected bipartite graph G has a 2-layer drawing with no crossings if and only if G is a caterpillar if and only if G has pathwidth 1 .

Motivated by this connection, we consider (and answer) the following question: what properties of 2-layer drawings characterise bipartite graphs of bounded pathwidth?

A matching in a graph G is a set of edges in G, no two of which are incident to a common vertex. A k-matching is a matching of size k. In a 2-layer drawing of a graph G, a k-crossing is a set of k pairwise crossing edges (which necessarily is a k-matching). Excluding a k-crossing is not enough to guarantee bounded pathwidth. For example, as illustrated in Figure 2, if T_{h} is the complete binary tree of height h, then T_{h} has a 2-layer drawing with no 3-crossing, but it is well known that T_{h} has pathwidth $\lfloor h / 2\rfloor+1$. Even stronger, if G_{h} is the $h \times h$ square grid graph, then G_{h} has a 2-layer drawing with no 3-crossing, but G_{h} has treewidth and pathwidth h.

Figure 2: 2-layer drawings of a complete binary tree and a 5×5 grid. There is no 3 -crossing since each edge is assigned one of two colours, so that monochromatic edges do not cross.

Angelini, Da Lozzo, Förster, and Schneck [1] showed that every graph that has a 2-layer drawing with at most k crossings on each edge has pathwidth at most $k+1$. However, this property does not characterise bipartite graphs with bounded pathwidth. For example, as illustrated in Figure 3, if S_{n} is the 1-subdivision of the n-leaf star, then S_{n} is bipartite with pathwidth 2 , but in every 2-layer drawing of S_{n}, some edge has at least $(n-1) / 2$ crossings.

Figure 3: Every 2-layer drawing of S_{9} has at least 4 crossings on some edge.

[^0]These examples motivate the following definition. A set S of edges in a 2-layer drawing is non-crossing if no two edges in S cross. In a 2-layer drawing of a graph G, an (s, t)-crossing is a pair (S, T) where S is a non-crossing s-matching, T is a non-crossing t-matching, and every edge in S crosses every edge in T; as illustrated in Figure 4.

Figure 4: Example of a $(3,4)$-crossing.
We show that excluding a k-crossing and an (s, t)-crossing guarantees bounded pathwidth.
Theorem 2 For all $k, s, t \in \mathbb{N}$, every bipartite graph G that has a 2-layer drawing with no $(k+1)$ crossing and no (s, t)-crossing has pathwidth at most $8 k^{2}(t-1)+4 k^{2}(s-1)^{2}(s-2)+5 k+4$.

We prove the following converse to Theorem 2.
Theorem 3 For any $k \in \mathbb{N}$ every bipartite graph G with pathwidth at most k has a 2-layer drawing with no $(k+2)$-crossing and no $(k+1, k+1)$-crossing.

Theorems 2 and 3 together establish the following rough characterisation of bipartite graphs with bounded pathwidth, thus answering the opening question.

Corollary $4 A$ class \mathcal{G} of bipartite graphs has bounded pathwidth if and only if there exists $k, s, t \in \mathbb{N}$ such that every graph in \mathcal{G} has a 2-layer drawing with no k-crossing and no (s, t)-crossing.

2 Proofs

We use the following notation throughout. Consider a 2-layer drawing of a bipartite graph with bipartition $\{A, B\}$. Let \preceq_{A} be the total order of A, where $v \prec_{A} w$ if v is to the left of w in the drawing. Define \preceq_{B} similarly. Let \preceq be the poset on $E(G)$, where $v w \preceq x y$ if $v \preceq_{A} x$ and $w \preceq_{B} y$. Two edges of G are comparable under \preceq if and only if they do not cross. Thus every chain under \preceq is a set of pairwise non-crossing edges, and every antichain under \preceq is a matching of pairwise crossing edges.

Lemma 5 Let G be a bipartite graph with bipartition A, B, where each vertex in A has degree at least 1 and each vertex in B has degree at most d. Assume that G has a 2-layer drawing with no $(k+1)$-crossing and no non-crossing $(\ell+1)$-matching. Then $|A| \leqslant k \ell d$.

Proof: Let X be a set of edges in G with exactly one edge in X incident to each vertex in A. So $|X|=|A|$. Let E_{1}, \ldots, E_{d} be the partition of X, where for each edge $v w \in E_{i}$, if $v \in A$ and $w \in B$, then v is the i-th neighbour of w with respect to \preceq_{A}. So each E_{i} is a matching. Since G has no ($k+1$)-crossing, every antichain in \preceq has size at most k. By Dilworth's Theorem [9] applied to \preceq (restricted to E_{i}), there is a partition $E_{i, 1}, \ldots, E_{i, k}$ of E_{i} such that edges in each $E_{i, j}$ are pairwise non-crossing. By assumption, $\left|E_{i, j}\right| \leqslant \ell$. Thus $|A|=|X| \leqslant k \ell d$.

Proof of Theorem 2: Consider a bipartite graph G with bipartition $\{A, B\}$ and a 2-layer drawing of G with no $(k+1)$-crossing and no (s, t)-crossing. Our goal is to show that $\mathrm{pw}(G) \leqslant$ $8 k^{2}(t-1)+4 k^{2}(s-1)^{2}(s-2)+5 k+4$. (We make no effort to optimise this bound.)

Consider the partial order \preceq defined above. By assumption, every antichain in \preceq has size at most k. By Dilworth's Theorem [9], there is a partition of $E(G)$ into k chains under \preceq. Each chain is a caterpillar forest, which can be oriented with outdegree at most 1 at each vertex. So each vertex has out-degree at most k in G. For each vertex v, let $N_{G}^{+}[v]:=\{w \in V(G): \overrightarrow{v w} \in E(G)\} \cup\{v\}$, which has size at most $k+1$.

As illustrated in Figure 5 , let $X=\left\{e_{1}, \ldots, e_{n}\right\}$ be a maximal non-crossing matching, where $e_{1} \prec e_{2} \prec \cdots \prec e_{n}$. (Here n is not related to $|V(G)|$.) Let Y_{0} be the set of vertices of G strictly to the left of e_{1}. For $i \in\{1,2, \ldots, n-1\}$, let Y_{i} be the set of vertices of G strictly between e_{i} and e_{i+1}. Let Y_{n} be the set of vertices of G strictly to the right of e_{n}. By the maximality of X, each set Y_{i} is independent. For $i \in\{0,1, \ldots, n\}$, arbitrarily enumerate $Y_{i}=\left\{v_{i, 1}, \ldots, v_{i, m_{i}}\right\}$. Note that $v_{i, j}$ is an end-vertex of no edge in X (for all i, j).

Figure 5: A maximal non-crossing matching $\left\{e_{1}, \ldots, e_{n}\right\}$ and associated independent sets Y_{0}, \ldots, Y_{n}.
As illustrated in Figure 6, for each $i \in\{1, \ldots, n\}$, if $e_{i}=x y$ then let $N_{i}=N_{G}^{+}[x] \cup N_{G}^{+}[y]$. Note that $\left|N_{i}\right| \leqslant\left|N_{G}^{+}[x]\right|+\left|N_{G}^{+}[y]\right| \leqslant 2(k+1)$. For each $i \in\{1, \ldots, n\}$, let V_{i} be the set consisting of N_{i} along with every vertex $v \in V(G)$ such that some arc $\overrightarrow{z v} \in E(G)$ crosses e_{i}. For each $i \in\{0,1, \ldots, n\}$ and $j \in\left\{1, \ldots, m_{i}\right\}$, let $V_{i, j}:=\left(V_{i} \cup V_{i+1}\right) \cup N_{G}^{+}\left[v_{i, j}\right]$ where $V_{0}:=V_{n+1}:=\varnothing$.

Figure 6: The set of vertices V_{i} where $e_{i}=x y$ are shown in red and yellow.
We now prove that

$$
\begin{equation*}
\left(V_{0,1}, \ldots, V_{0, m_{0}} ; V_{1} ; V_{1,1}, \ldots, V_{1, m_{1}} ; \ldots ; V_{n} ; V_{n, 1}, \ldots, V_{n, m_{n}}\right) \tag{1}
\end{equation*}
$$

is a path-decomposition of G. We first show that each vertex v is in some bag. If v is an end-vertex of some edge e_{i}, then $v \in V_{i}$. Otherwise $v=v_{i, j}$ for some i, j, implying that $v \in V_{i, j}$, as desired. We now show that each vertex v is in a sequence of consecutive bags. Suppose that $v \in V_{i} \cap V_{p}$ and
$i<j<p$. Thus $e_{i} \prec e_{j} \prec e_{p}$. Our goal is to show that $v \in V_{j}$. If v is an end-vertex of e_{j}, then $v \in V_{j}$. So we may assume that v is not an end-vertex of e_{j}. By symmetry, we may assume that v is to the left of the end-vertex of e_{j} that is in the same layer as v. Thus, v is not an end-vertex of e_{p}. Since $v \in V_{p}$, there is an arc $\overrightarrow{y v}$ that crosses e_{p} or such that y is an end-vertex of e_{p}. Since $e_{j} \prec e_{p}$, this arc $\overrightarrow{y v}$ crosses e_{j}. Thus $v \in V_{j}$, as desired. This shows that v is in a (possibly empty) sequence of consecutive bags $V_{i}, V_{i+1}, \ldots, V_{j}$. If $v \in V_{i}$ then $v \in V_{i, j}$ for all $j \in\left\{1, \ldots, m_{i}\right\}$, and $v \in V_{i-1, j}$ for all $j \in\left\{1, \ldots, m_{i-1}\right\}$. It remains to consider the case in which v is in no set V_{i}. Since the end-vertices of e_{i} are in V_{i}, we have that $v=v_{i, j}$ for some i, j. Since Y_{i} is an independent set, v is adjacent to no other vertex in Y_{i}. Moreover, if there is an $\operatorname{arc} \overrightarrow{z v}$ in G, then either z is an end-vertex of e_{i} or e_{i-1}, or $\overrightarrow{z v}$ crosses e_{i-1} or e_{i}, implying v is in $V_{i-1} \cup V_{i}$, which is not the case. Hence v has indegree 0 , implying $V_{i, j}$ is the only bag containing v. This completes the proof that v is in a sequence of consecutive bags in (1). Finally, we show that the end-vertices of each edge are in some bag. Consider an arc $\overrightarrow{v w}$ in G. If $v=v_{i, j}$ for some i, j, then $v, w \in V_{i, j}$, as desired. Otherwise, v is an end-vertex of some e_{i}, implying $v, w \in V_{i}$, as desired. Hence the sequence in (1) defines a path-decomposition of G.

We now bound the width of this path-decomposition. The goal is to identify certain subgraphs of G to which Lemma 5 is applicable.

As illustrated in Figure 7, for $i, j \in\{0,1, \ldots, n\}$, let $Y_{i, j}$ be the set of vertices $v \in Y_{i}$ such that there is an arc $\overrightarrow{z v}$ in G with $z \in Y_{j}$. Suppose that $\left|Y_{i, j}\right| \geqslant 2 k^{2}|j-i|+1$ for some $i, j \in\{0,1, \ldots, n\}$. Since Y_{i} is an independent set, $i \neq j$. Without loss of generality, $i<j$ and there exists $Z \subseteq Y_{i, j} \cap A$ with $|Z| \geqslant k^{2}(j-i)+1$. Let H_{1} be the subgraph of G consisting of all arcs $\overrightarrow{z v}$ in G with $z \in Y_{j} \cap B$ and $v \in Z$ (and their end-vertices). If H_{1} has a non-crossing ($j-i+1$)-matching M, then $\left(X \backslash\left\{e_{i+1}, \ldots, e_{j}\right\}\right) \cup M$ is a non-crossing matching in G larger than X, thus contradicting the choice of X. Hence H_{1} has no non-crossing $(j-i+1)$-matching. By construction, H_{1} has no $(k+1)$-crossing, every vertex in $V\left(H_{1}\right) \cap A$ has degree at least 1 in H_{1}, and every vertex in $V\left(H_{1}\right) \cap B$ has degree at most k in H_{1}. By Lemma 5 applied to H_{1} with $\ell=j-i$ and $d=k$, we have $|Z|=\left|V\left(H_{1}\right) \cap A\right| \leqslant k^{2}(j-i)$, which is a contradiction. Hence $\left|Y_{i, j}\right| \leqslant 2 k^{2}|j-i|$ for all $i, j \in\{0,1, \ldots, n\}$.

Figure 7: If many vertices in Y_{i} are the head of an arc starting in Y_{j}, then there is a large noncrossing matching amongst these edges, which can replace e_{i+1}, \ldots, e_{j} in M, contradicting the maximality of M.

This bound on $\left|Y_{i, j}\right|$ is useful if $|i-j|$ is 'small', but not useful if $|i-j|$ is 'big'. We now deal with this case.

As illustrated in Figure 8, for $i \in\{1, \ldots, n\}$, let P_{i} be the set of vertices v in G for which there is an arc $\overrightarrow{z v}$ in G that crosses $e_{i-s+1}, e_{i-s+2}, \ldots, e_{i}$ or crosses $e_{i}, e_{i+1}, \ldots, e_{i+s-1}$. Suppose that $P_{i} \geqslant 4 k^{2}(t-1)+1$. Without loss of generality, there exists $Q \subseteq P_{i} \cap A$ with $|Q| \geqslant k^{2}(t-1)+1$ such that for each vertex $v \in Q$ there is an arc $\overrightarrow{z v}$ in G that crosses $e_{i}, e_{i+1}, \ldots, e_{i+s-1}$. Let H_{2}
be the subgraph of G consisting of all such arcs and their end-vertices. So $V\left(H_{2}\right) \cap A=Q$. If H_{2} has a non-crossing t-matching M, then $\left(\left\{e_{i}, e_{i+1}, \ldots, e_{i+s-1}\right\}, M\right)$ is an (s, t)-crossing. Thus H_{2} has no non-crossing t-matching. By construction, H_{2} has no $(k+1)$-crossing, every vertex in $V\left(H_{2}\right) \cap A$ has degree at least 1 in H_{2}, and every vertex in $V\left(H_{2}\right) \cap B$ has degree at most k in H_{2}. By Lemma 5 applied to H_{2} with $\ell=t-1$ and $d=k$, we have $|Q|=\left|V\left(H_{2}\right) \cap A\right| \leqslant k^{2}(t-1)$, which is a contradiction. Hence $\left|P_{i}\right| \leqslant 4 k^{2}(t-1)$ for all $i \in\{1, \ldots, n\}$.

Figure 8: If many vertices are the head of an arc crossing $e_{i}, e_{i+1}, \ldots, e_{i+s-1}$, then amongst these edges there is a non-crossing t-matching, implying that G has an (s, t)-crossing, which is a contradiction.

Consider a bag V_{i}, which consists of N_{i} along with every vertex $v \in V(G)$ such that some arc $\overrightarrow{z v} \in E(G)$ crosses e_{i}. Thus

$$
\begin{aligned}
\left|V_{i}\right| & =\left|N_{i}\right|+\left|P_{i}\right|+\sum_{a, b \in\{0,1, \ldots, s-2\}}\left|Y_{i-a, i+b}\right| \\
& \leqslant 2(k+1)+4 k^{2}(t-1)+\sum_{a, b \in\{0,1, \ldots, s-2\}} 2 k^{2}|(i+b)-(i-a)| \\
& =2(k+1)+4 k^{2}(t-1)+2 k^{2} \sum_{a, b \in\{0,1, \ldots, s-2\}}(a+b) \\
& =2(k+1)+4 k^{2}(t-1)+2 k^{2}\left((s-1)\left(\sum_{a \in\{0,1, \ldots, s-2\}} a\right)+(s-1)\left(\sum_{b \in\{0,1, \ldots, s-2\}} b\right)\right) \\
& =2(k+1)+4 k^{2}(t-1)+2 k^{2}(s-1)^{2}(s-2) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|V_{i, j}\right| \leqslant\left|V_{i}\right|+\left|V_{i+1}\right|+(k+1) & \leqslant 4(k+1)+8 k^{2}(t-1)+4 k^{2}(s-1)^{2}(s-2)+(k+1) \\
& \leqslant 8 k^{2}(t-1)+4 k^{2}(s-1)^{2}(s-2)+5(k+1) .
\end{aligned}
$$

Therefore the path-decomposition of G defined in (1) has width at most $8 k^{2}(t-1)+4 k^{2}(s-1)^{2}(s-$ 2) $+5 k+4$.

Proof of Theorem 3: Let G be a bipartite graph with pathwidth at most k. Our goal is to construct a 2-layer drawing of G with no ($k+2$)-crossing and no ($k+1, k+1$)-crossing. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a path-decomposition of G with width k. Let $\ell(v):=\min \left\{i: v \in X_{i}\right\}$ and $r(v):=\max \left\{i: v \in X_{i}\right\}$ for each $v \in V(G)$. We may assume that $\ell(v) \neq \ell(w)$ for all distinct $v, w \in V(G)$. Let $\{A, B\}$ be a bipartition of G. Consider the 2-layer drawing of G, in which each $v \in A$ is at $(\ell(v), 0)$, each $v \in B$ is at $(\ell(v), 1)$, and each edge is straight.

As illustrated in Figure 9, suppose that $\left\{v_{1} w_{1}, \ldots, v_{k+2} w_{k+2}\right\}$ is a $(k+2)$-crossing in this drawing, where $v_{i} \in A$ and $w_{i} \in B$.

Figure 9: $\mathrm{A}(k+2)$-crossing.
Without loss of generality,

$$
\begin{equation*}
\ell\left(v_{1}\right)<\ell\left(v_{2}\right)<\cdots<\ell\left(v_{k+2}\right) \quad \text { and } \quad \ell\left(w_{k+2}\right)<\ell\left(w_{k+1}\right)<\cdots<\ell\left(w_{1}\right) \tag{2}
\end{equation*}
$$

For each $i \in\{1, \ldots, k+2\}$, if $\ell\left(v_{i}\right)<\ell\left(w_{i}\right)$ then let $I_{i}:=\left\{\ell\left(v_{i}\right), \ldots, \ell\left(w_{i}\right)\right\}$; otherwise let $I_{i}:=\left\{\ell\left(w_{i}\right), \ldots, \ell\left(v_{i}\right)\right\}$. By (2), $I_{i} \cap I_{j} \neq \varnothing$ for distinct $i, j \in\{1, \ldots, k+2\}$. By the Helly property for intervals, there exists $p \in I_{1} \cap \cdots \cap I_{k+2}$. Thus v_{i} or w_{i} is in X_{p} for each $i \in\{1, \ldots, k+2\}$. Hence $\left|X_{p}\right| \geqslant k+2$, which is a contradiction. Therefore there is no ($k+2$)-crossing.

As illustrated in Figure 10, consider an (s, s)-crossing ($\left.\left\{v_{1} w_{1}, \ldots, v_{s} w_{s}\right\},\left\{x_{1} y_{1}, \ldots, x_{s} y_{s}\right\}\right)$ in this drawing, where $v_{i}, x_{i} \in A$ and $w_{i}, y_{i} \in B$.

Figure 10: An (s, s)-crossing.
Without loss of generality,

$$
\begin{aligned}
& \ell\left(v_{1}\right)<\cdots<\ell\left(v_{s}\right)<\ell\left(x_{1}\right)<\cdots<\ell\left(x_{s}\right) \text { and } \\
& \ell\left(y_{1}\right)<\cdots<\ell\left(y_{s}\right)<\ell\left(w_{1}\right)<\cdots<\ell\left(w_{s}\right) .
\end{aligned}
$$

We claim that $s \leqslant k$. If $\ell\left(v_{s}\right)<\ell\left(w_{1}\right)$ then $\ell\left(v_{1}\right)<\cdots<\ell\left(v_{s}\right)<\ell\left(w_{1}\right)<\cdots<\ell\left(w_{s}\right)$, implying $v_{1}, \ldots, v_{s}, w_{1} \in X_{\ell\left(w_{1}\right)}$, and $s+1 \leqslant\left|X_{\ell\left(w_{1}\right)}\right| \leqslant k+1$, as desired. If $\ell\left(y_{s}\right)<\ell\left(x_{1}\right)$ then $\ell\left(y_{1}\right)<\cdots<$ $\ell\left(y_{s}\right)<\ell\left(x_{1}\right)<\cdots<\ell\left(x_{s}\right)$, implying $y_{1}, \ldots, y_{s}, x_{1} \in X_{\ell\left(x_{1}\right)}$, and $s+1 \leqslant\left|X_{\ell\left(x_{1}\right)}\right| \leqslant k+1$, as desired. Now assume that $\ell\left(w_{1}\right)<\ell\left(v_{s}\right)$ and $\ell\left(x_{1}\right)<\ell\left(y_{s}\right)$. Thus $\ell\left(w_{1}\right)<\ell\left(v_{s}\right)<\ell\left(x_{1}\right)<\ell\left(y_{s}\right)$, which is a contradiction since $\ell\left(y_{s}\right)<\ell\left(w_{1}\right)$. Hence $s \leqslant k$ and the drawing of G has no $(k+1, k+1)$-crossing.

References

[1] P. Angelini, G. Da Lozzo, H. Förster, and T. Schneck. 2-layer k-planar graphs - density, crossing lemma, relationships, and pathwidth. In D. Auber and P. Valtr, editors, Graph Drawing and Network Visualization - 28th International Symposium, GD 2020, volume 12590 of Lecture Notes in Computer Science, pages 403-419. Springer, 2020. doi:10.1007/978-3-030-68766-3_32.
[2] M. J. Bannister, W. E. Devanny, V. Dujmović, D. Eppstein, and D. R. Wood. Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 81(4):1561-1583, 2019. doi:10.1007/S00453-018-0487-5.
[3] T. Biedl, M. Chimani, M. Derka, and P. Mutzel. Crossing number for graphs with bounded pathwidth. Algorithmica, 82(2):355-384, 2020. doi:10.1007/S00453-019-00653-X.
[4] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a forest. J. Comb. Theory, Ser. B, 52(2):274-283, 1991. doi:10.1016/0095-8956(91)90068-U.
[5] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. doi:10.1016/S0304-3975(97)00228-4.
[6] S. Cornelsen, T. Schank, and D. Wagner. Drawing graphs on two and three lines. J. Graph Algorithms Appl., 8(2):161-177, 2004. doi:10.7155/JGAA. 00087.
[7] E. Di Giacomo, W. Didimo, P. Eades, and G. Liotta. 2-layer right angle crossing drawings. Algorithmica, 68(4):954-997, 2014. doi:10.1007/S00453-012-9706-7.
[8] R. Diestel. Graph minors 1: A short proof of the path-width theorem. Comb. Probab. Comput., 4:27-30, 1995. doi:10.1017/S0963548300001450.
[9] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161-166, 1950. doi:10.2307/1969503.
[10] V. Dujmović, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R. Wood. A fixedparameter approach to 2-layer planarization. Algorithmica, 45(2):159-182, 2006. doi: 10.1007/S00453-005-1181-Y.
[11] V. Dujmović, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. A. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered graph drawing. Algorithmica, 52(2):267-292, 2008. doi:10.1007/S00453-007-9151-1.
[12] V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded tree-width. SIAM J. Comput., 34(3):553-579, 2005. doi:10.1137/S0097539702416141.
[13] V. Dujmovic, P. Morin, and C. Yelle. Two results on layered pathwidth and linear layouts. J. Graph Algorithms Appl., 25(1):43-57, 2021. doi:10.7155/JGAA. 00549.
[14] V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discret. Math. Theor. Comput. Sci., 6(2):497-522, 2004. doi:10.46298/DMTCS. 315.
[15] V. Dujmović and S. Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15-31, 2004. doi:10.1007/S00453-004-1093-2.
[16] P. Eades and S. Whitesides. Drawing graphs in two layers. Theor. Comput. Sci., 131(2):361-374, 1994. doi:10.1016/0304-3975(94)90179-1.
[17] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. doi:10.1007/BF01187020.
[18] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl., 7(4):363-398, 2003. doi:10.7155/ JGAA. 00075.
[19] F. Harary and A. Schwenk. A new crossing number for bipartite graphs. 1:203-209.
[20] P. Hlinený. Crossing-number critical graphs have bounded path-width. J. Comb. Theory, Ser. B, 88(2):347-367, 2003. doi:10.1016/S0095-8956 (03) 00037-6.
[21] H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered drawings. Discret. Comput. Geom., 33(4):569-591, 2005. doi:10.1007/S00454-005-1168-0.
[22] H. Nagamochi. On the one-sided crossing minimization in a bipartite graph with large degrees. Theor. Comput. Sci., 332(1-3):417-446, 2005. doi:10.1016/J.TCS.2004.10.042.
[23] N. Robertson and P. D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory, Ser. B, 35(1):39-61, 1983. doi:10.1016/0095-8956(83) 90079-5.
[24] M. Suderman. Pathwidth and layered drawings of trees. Int. J. Comput. Geom. Appl., 14(3):203-225, 2004. doi:10.1142/S0218195904001433.

[^0]: v form a non-empty sub-sequence of $\left(B_{1}, \ldots, B_{n}\right)$. The width of a path-decomposition $\left(B_{1}, \ldots, B_{n}\right)$ is $\max _{i}\left|B_{i}\right|-1$. The pathwidth of a graph G is the minimum width of a path-decomposition of G. Pathwidth is a fundamental parameter in graph structure theory $[4,5,8,23]$ with many connections to graph drawing $[2,3,10,12,13,18,20,24]$. A caterpillar is a tree such that deleting the leaves gives a path. It is a straightforward exercise to show that a connected graph has pathwidth 1 if and only if it is a caterpillar.

