

Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 27, no. 9, pp. 843–851 (2023) DOI: 10.7155/jgaa.00647

2-Layer Graph Drawings with Bounded Pathwidth

David R. Wood $1 \square$

¹School of Mathematics, Monash University Melbourne, Australia

Submitted:	September 2002	Reviewed	October 2023	Revised:	November 2023
Accepted:	November 2023	Final: 1	Vovember 2023	Published:	December 2023
Ar	ticle type: Concise	paper	Communicated by: Alexander Wolff		

Abstract. This paper determines which properties of 2-layer drawings characterise bipartite graphs of bounded pathwidth.

1 Introduction

Figure 1: A caterpillar drawn on 2-layers with no crossings, and the corresponding path-decomposition with width 1.

A 2-layer drawing of a bipartite graph G with bipartition $\{A, B\}$ positions the vertices in A at distinct points on a horizontal line, and positions the vertices in B at distinct points on a different horizontal line, and draws each edge as a straight line-segment. 2-layer graph drawings are of fundamental importance in graph drawing research and have been widely studied [2, 6, 7, 10, 11, 14–17, 19, 21, 22, 24]. As illustrated in Figure 1, the following basic connection between 2-layer graph drawings and graph pathwidth¹ is folklore:

Research supported by the Australian Research Council.

E-mail address: david.wood@monash.edu (David R. Wood)

C U This work is licensed under the terms of the CC-BY license.

¹A path-decomposition of a graph G is a sequence (B_1, \ldots, B_n) of subsets of V(G) (called bags), such that $B_1 \cup \cdots \cup B_n = V(G)$, and for $1 \leq i < j < k \leq n$ we have $B_i \cap B_k \subseteq B_j$; that is, for each vertex v the bags containing

Observation 1 A connected bipartite graph G has a 2-layer drawing with no crossings if and only if G is a caterpillar if and only if G has pathwidth 1.

Motivated by this connection, we consider (and answer) the following question: what properties of 2-layer drawings characterise bipartite graphs of bounded pathwidth?

A matching in a graph G is a set of edges in G, no two of which are incident to a common vertex. A *k*-matching is a matching of size k. In a 2-layer drawing of a graph G, a *k*-crossing is a set of k pairwise crossing edges (which necessarily is a k-matching). Excluding a k-crossing is not enough to guarantee bounded pathwidth. For example, as illustrated in Figure 2, if T_h is the complete binary tree of height h, then T_h has a 2-layer drawing with no 3-crossing, but it is well known that T_h has pathwidth $\lfloor h/2 \rfloor + 1$. Even stronger, if G_h is the $h \times h$ square grid graph, then G_h has a 2-layer drawing with no 3-crossing, but f_h has a 2-layer drawing with h.

Figure 2: 2-layer drawings of a complete binary tree and a 5×5 grid. There is no 3-crossing since each edge is assigned one of two colours, so that monochromatic edges do not cross.

Angelini, Da Lozzo, Förster, and Schneck [1] showed that every graph that has a 2-layer drawing with at most k crossings on each edge has pathwidth at most k + 1. However, this property does not characterise bipartite graphs with bounded pathwidth. For example, as illustrated in Figure 3, if S_n is the 1-subdivision of the n-leaf star, then S_n is bipartite with pathwidth 2, but in every 2-layer drawing of S_n , some edge has at least (n - 1)/2 crossings.

Figure 3: Every 2-layer drawing of S_9 has at least 4 crossings on some edge.

v form a non-empty sub-sequence of (B_1, \ldots, B_n) . The *width* of a path-decomposition (B_1, \ldots, B_n) is max_i $|B_i| - 1$. The *pathwidth* of a graph G is the minimum width of a path-decomposition of G. Pathwidth is a fundamental parameter in graph structure theory [4, 5, 8, 23] with many connections to graph drawing [2, 3, 10, 12, 13, 18, 20, 24]. A *caterpillar* is a tree such that deleting the leaves gives a path. It is a straightforward exercise to show that a connected graph has pathwidth 1 if and only if it is a caterpillar.

These examples motivate the following definition. A set S of edges in a 2-layer drawing is *non-crossing* if no two edges in S cross. In a 2-layer drawing of a graph G, an (s,t)-crossing is a pair (S,T) where S is a non-crossing s-matching, T is a non-crossing t-matching, and every edge in S crosses every edge in T; as illustrated in Figure 4.

Figure 4: Example of a (3, 4)-crossing.

We show that excluding a k-crossing and an (s, t)-crossing guarantees bounded pathwidth.

Theorem 2 For all $k, s, t \in \mathbb{N}$, every bipartite graph G that has a 2-layer drawing with no (k + 1)-crossing and no (s, t)-crossing has pathwidth at most $8k^2(t-1) + 4k^2(s-1)^2(s-2) + 5k + 4$.

We prove the following converse to Theorem 2.

Theorem 3 For any $k \in \mathbb{N}$ every bipartite graph G with pathwidth at most k has a 2-layer drawing with no (k + 2)-crossing and no (k + 1, k + 1)-crossing.

Theorems 2 and 3 together establish the following rough characterisation of bipartite graphs with bounded pathwidth, thus answering the opening question.

Corollary 4 A class \mathcal{G} of bipartite graphs has bounded pathwidth if and only if there exists $k, s, t \in \mathbb{N}$ such that every graph in \mathcal{G} has a 2-layer drawing with no k-crossing and no (s, t)-crossing.

2 Proofs

We use the following notation throughout. Consider a 2-layer drawing of a bipartite graph with bipartition $\{A, B\}$. Let \preceq_A be the total order of A, where $v \prec_A w$ if v is to the left of w in the drawing. Define \preceq_B similarly. Let \preceq be the poset on E(G), where $vw \preceq xy$ if $v \preceq_A x$ and $w \preceq_B y$. Two edges of G are comparable under \preceq if and only if they do not cross. Thus every chain under \preceq is a set of pairwise non-crossing edges, and every antichain under \preceq is a matching of pairwise crossing edges.

Lemma 5 Let G be a bipartite graph with bipartition A, B, where each vertex in A has degree at least 1 and each vertex in B has degree at most d. Assume that G has a 2-layer drawing with no (k+1)-crossing and no non-crossing $(\ell+1)$ -matching. Then $|A| \leq k\ell d$.

Proof: Let X be a set of edges in G with exactly one edge in X incident to each vertex in A. So |X| = |A|. Let E_1, \ldots, E_d be the partition of X, where for each edge $vw \in E_i$, if $v \in A$ and $w \in B$, then v is the *i*-th neighbour of w with respect to \preceq_A . So each E_i is a matching. Since G has no (k+1)-crossing, every antichain in \preceq has size at most k. By Dilworth's Theorem [9] applied to \preceq (restricted to E_i), there is a partition $E_{i,1}, \ldots, E_{i,k}$ of E_i such that edges in each $E_{i,j}$ are pairwise non-crossing. By assumption, $|E_{i,j}| \leq \ell$. Thus $|A| = |X| \leq k\ell d$.

Proof of Theorem 2: Consider a bipartite graph G with bipartition $\{A, B\}$ and a 2-layer drawing of G with no (k + 1)-crossing and no (s, t)-crossing. Our goal is to show that $pw(G) \leq 8k^2(t-1) + 4k^2(s-1)^2(s-2) + 5k + 4$. (We make no effort to optimise this bound.)

Consider the partial order \leq defined above. By assumption, every antichain in \leq has size at most k. By Dilworth's Theorem [9], there is a partition of E(G) into k chains under \leq . Each chain is a caterpillar forest, which can be oriented with outdegree at most 1 at each vertex. So each vertex has out-degree at most k in G. For each vertex v, let $N_G^+[v] := \{w \in V(G) : \overline{vw} \in E(G)\} \cup \{v\}$, which has size at most k + 1.

As illustrated in Figure 5, let $X = \{e_1, \ldots, e_n\}$ be a maximal non-crossing matching, where $e_1 \prec e_2 \prec \cdots \prec e_n$. (Here *n* is not related to |V(G)|.) Let Y_0 be the set of vertices of *G* strictly to the left of e_1 . For $i \in \{1, 2, \ldots, n-1\}$, let Y_i be the set of vertices of *G* strictly between e_i and e_{i+1} . Let Y_n be the set of vertices of *G* strictly to the right of e_n . By the maximality of *X*, each set Y_i is independent. For $i \in \{0, 1, \ldots, n\}$, arbitrarily enumerate $Y_i = \{v_{i,1}, \ldots, v_{i,m_i}\}$. Note that $v_{i,j}$ is an end-vertex of no edge in *X* (for all i, j).

Figure 5: A maximal non-crossing matching $\{e_1, \ldots, e_n\}$ and associated independent sets Y_0, \ldots, Y_n .

As illustrated in Figure 6, for each $i \in \{1, \ldots, n\}$, if $e_i = xy$ then let $N_i = N_G^+[x] \cup N_G^+[y]$. Note that $|N_i| \leq |N_G^+[x]| + |N_G^+[y]| \leq 2(k+1)$. For each $i \in \{1, \ldots, n\}$, let V_i be the set consisting of N_i along with every vertex $v \in V(G)$ such that some arc $\overline{zv} \in E(G)$ crosses e_i . For each $i \in \{0, 1, \ldots, n\}$ and $j \in \{1, \ldots, m_i\}$, let $V_{i,j} := (V_i \cup V_{i+1}) \cup N_G^+[v_{i,j}]$ where $V_0 := V_{n+1} := \emptyset$.

Figure 6: The set of vertices V_i where $e_i = xy$ are shown in red and yellow.

We now prove that

$$(V_{0,1},\ldots,V_{0,m_0};V_1;V_{1,1},\ldots,V_{1,m_1};\ldots;V_n;V_{n,1},\ldots,V_{n,m_n})$$
(1)

is a path-decomposition of G. We first show that each vertex v is in some bag. If v is an end-vertex of some edge e_i , then $v \in V_i$. Otherwise $v = v_{i,j}$ for some i, j, implying that $v \in V_{i,j}$, as desired. We now show that each vertex v is in a sequence of consecutive bags. Suppose that $v \in V_i \cap V_p$ and i < j < p. Thus $e_i \prec e_j \prec e_p$. Our goal is to show that $v \in V_j$. If v is an end-vertex of e_j , then $v \in V_j$. So we may assume that v is not an end-vertex of e_j . By symmetry, we may assume that v is to the left of the end-vertex of e_j that is in the same layer as v. Thus, v is not an end-vertex of e_p . Since $v \in V_p$, there is an arc \overline{yv} that crosses e_p or such that y is an end-vertex of e_p . Since $e_j \prec e_p$, this arc \overline{yv} crosses e_j . Thus $v \in V_j$, as desired. This shows that v is in a (possibly empty) sequence of consecutive bags $V_i, V_{i+1}, \ldots, V_j$. If $v \in V_i$ then $v \in V_{i,j}$ for all $j \in \{1, \ldots, m_i\}$, and $v \in V_{i-1,j}$ for all $j \in \{1, \ldots, m_{i-1}\}$. It remains to consider the case in which v is in no set V_i . Since the end-vertices of e_i are in V_i , we have that $v = v_{i,j}$ for some i, j. Since Y_i is an independent set, v is adjacent to no other vertex in Y_i . Moreover, if there is an arc \overline{zv} in G, then either z is an end-vertex of e_i or e_{i-1} , or \overline{zv} crosses e_{i-1} or e_i , implying v is in $V_{i-1} \cup V_i$, which is not the case. Hence v has indegree 0, implying $V_{i,j}$ is the only bag containing v. This completes the proof that v is in a sequence of consecutive bags in (1). Finally, we show that the end-vertices of each edge are in some bag. Consider an arc \overline{vw} in G. If $v = v_{i,j}$ for some i, j, then $v, w \in V_{i,j}$, as desired. Otherwise, v is an end-vertex of some e_i , implying $v, w \in V_i$, as desired. Hence the sequence in (1) defines a path-decomposition of G.

We now bound the width of this path-decomposition. The goal is to identify certain subgraphs of G to which Lemma 5 is applicable.

As illustrated in Figure 7, for $i, j \in \{0, 1, ..., n\}$, let $Y_{i,j}$ be the set of vertices $v \in Y_i$ such that there is an arc \vec{zv} in G with $z \in Y_j$. Suppose that $|Y_{i,j}| \ge 2k^2|j-i|+1$ for some $i, j \in \{0, 1, ..., n\}$. Since Y_i is an independent set, $i \ne j$. Without loss of generality, i < j and there exists $Z \subseteq Y_{i,j} \cap A$ with $|Z| \ge k^2(j-i)+1$. Let H_1 be the subgraph of G consisting of all arcs \vec{zv} in G with $z \in Y_j \cap B$ and $v \in Z$ (and their end-vertices). If H_1 has a non-crossing (j-i+1)-matching M, then $(X \setminus \{e_{i+1}, \ldots, e_j\}) \cup M$ is a non-crossing matching in G larger than X, thus contradicting the choice of X. Hence H_1 has no non-crossing (j-i+1)-matching. By construction, H_1 has no (k+1)-crossing, every vertex in $V(H_1) \cap A$ has degree at least 1 in H_1 , and every vertex in $V(H_1) \cap B$ has degree at most k in H_1 . By Lemma 5 applied to H_1 with $\ell = j - i$ and d = k, we have $|Z| = |V(H_1) \cap A| \le k^2(j-i)$, which is a contradiction. Hence $|Y_{i,j}| \le 2k^2|j-i|$ for all $i, j \in \{0, 1, \ldots, n\}$.

Figure 7: If many vertices in Y_i are the head of an arc starting in Y_j , then there is a large noncrossing matching amongst these edges, which can replace e_{i+1}, \ldots, e_j in M, contradicting the maximality of M.

This bound on $|Y_{i,j}|$ is useful if |i - j| is 'small', but not useful if |i - j| is 'big'. We now deal with this case.

As illustrated in Figure 8, for $i \in \{1, ..., n\}$, let P_i be the set of vertices v in G for which there is an arc \overrightarrow{zv} in G that crosses $e_{i-s+1}, e_{i-s+2}, ..., e_i$ or crosses $e_i, e_{i+1}, ..., e_{i+s-1}$. Suppose that $P_i \ge 4k^2(t-1) + 1$. Without loss of generality, there exists $Q \subseteq P_i \cap A$ with $|Q| \ge k^2(t-1) + 1$ such that for each vertex $v \in Q$ there is an arc \overrightarrow{zv} in G that crosses $e_i, e_{i+1}, ..., e_{i+s-1}$. Let H_2 be the subgraph of G consisting of all such arcs and their end-vertices. So $V(H_2) \cap A = Q$. If H_2 has a non-crossing t-matching M, then $(\{e_i, e_{i+1}, \ldots, e_{i+s-1}\}, M)$ is an (s, t)-crossing. Thus H_2 has no non-crossing t-matching. By construction, H_2 has no (k + 1)-crossing, every vertex in $V(H_2) \cap A$ has degree at least 1 in H_2 , and every vertex in $V(H_2) \cap B$ has degree at most k in H_2 . By Lemma 5 applied to H_2 with $\ell = t - 1$ and d = k, we have $|Q| = |V(H_2) \cap A| \leq k^2(t-1)$, which is a contradiction. Hence $|P_i| \leq 4k^2(t-1)$ for all $i \in \{1, \ldots, n\}$.

Figure 8: If many vertices are the head of an arc crossing $e_i, e_{i+1}, \ldots, e_{i+s-1}$, then amongst these edges there is a non-crossing *t*-matching, implying that *G* has an (s, t)-crossing, which is a contradiction.

Consider a bag V_i , which consists of N_i along with every vertex $v \in V(G)$ such that some arc $\vec{zv} \in E(G)$ crosses e_i . Thus

$$\begin{aligned} |V_i| &= |N_i| + |P_i| + \sum_{a,b \in \{0,1,\dots,s-2\}} |Y_{i-a,i+b}| \\ &\leq 2(k+1) + 4k^2(t-1) + \sum_{a,b \in \{0,1,\dots,s-2\}} 2k^2 |(i+b) - (i-a)| \\ &= 2(k+1) + 4k^2(t-1) + 2k^2 \sum_{a,b \in \{0,1,\dots,s-2\}} (a+b) \\ &= 2(k+1) + 4k^2(t-1) + 2k^2 \left(\left(s-1\right) \left(\sum_{a \in \{0,1,\dots,s-2\}} a\right) + (s-1) \left(\sum_{b \in \{0,1,\dots,s-2\}} b\right) \right) \\ &= 2(k+1) + 4k^2(t-1) + 2k^2(s-1)^2(s-2). \end{aligned}$$

Hence

$$|V_{i,j}| \leq |V_i| + |V_{i+1}| + (k+1) \leq 4(k+1) + 8k^2(t-1) + 4k^2(s-1)^2(s-2) + (k+1)$$
$$\leq 8k^2(t-1) + 4k^2(s-1)^2(s-2) + 5(k+1).$$

Therefore the path-decomposition of G defined in (1) has width at most $8k^2(t-1) + 4k^2(s-1)^2(s-2) + 5k + 4$.

Proof of Theorem 3: Let G be a bipartite graph with pathwidth at most k. Our goal is to construct a 2-layer drawing of G with no (k + 2)-crossing and no (k + 1, k + 1)-crossing. Let (X_1, \ldots, X_n) be a path-decomposition of G with width k. Let $\ell(v) := \min\{i : v \in X_i\}$ and $r(v) := \max\{i : v \in X_i\}$ for each $v \in V(G)$. We may assume that $\ell(v) \neq \ell(w)$ for all distinct $v, w \in V(G)$. Let $\{A, B\}$ be a bipartition of G. Consider the 2-layer drawing of G, in which each $v \in A$ is at $(\ell(v), 0)$, each $v \in B$ is at $(\ell(v), 1)$, and each edge is straight.

As illustrated in Figure 9, suppose that $\{v_1w_1, \ldots, v_{k+2}w_{k+2}\}$ is a (k+2)-crossing in this drawing, where $v_i \in A$ and $w_i \in B$.

Figure 9: A (k+2)-crossing.

Without loss of generality,

$$\ell(v_1) < \ell(v_2) < \dots < \ell(v_{k+2}) \text{ and } \ell(w_{k+2}) < \ell(w_{k+1}) < \dots < \ell(w_1).$$
 (2)

For each $i \in \{1, \ldots, k+2\}$, if $\ell(v_i) < \ell(w_i)$ then let $I_i := \{\ell(v_i), \ldots, \ell(w_i)\}$; otherwise let $I_i := \{\ell(w_i), \ldots, \ell(v_i)\}$. By (2), $I_i \cap I_j \neq \emptyset$ for distinct $i, j \in \{1, \ldots, k+2\}$. By the Helly property for intervals, there exists $p \in I_1 \cap \cdots \cap I_{k+2}$. Thus v_i or w_i is in X_p for each $i \in \{1, \ldots, k+2\}$. Hence $|X_p| \ge k+2$, which is a contradiction. Therefore there is no (k+2)-crossing.

As illustrated in Figure 10, consider an (s, s)-crossing $(\{v_1w_1, \ldots, v_sw_s\}, \{x_1y_1, \ldots, x_sy_s\})$ in this drawing, where $v_i, x_i \in A$ and $w_i, y_i \in B$.

Figure 10: An (s, s)-crossing.

Without loss of generality,

$$\ell(v_1) < \dots < \ell(v_s) < \ell(x_1) < \dots < \ell(x_s) \quad \text{and} \\ \ell(y_1) < \dots < \ell(y_s) < \ell(w_1) < \dots < \ell(w_s).$$

We claim that $s \leq k$. If $\ell(v_s) < \ell(w_1)$ then $\ell(v_1) < \cdots < \ell(v_s) < \ell(w_1) < \cdots < \ell(w_s)$, implying $v_1, \ldots, v_s, w_1 \in X_{\ell(w_1)}$, and $s+1 \leq |X_{\ell(w_1)}| \leq k+1$, as desired. If $\ell(y_s) < \ell(x_1)$ then $\ell(y_1) < \cdots < \ell(y_s) < \ell(x_1) < \cdots < \ell(x_s)$, implying $y_1, \ldots, y_s, x_1 \in X_{\ell(x_1)}$, and $s+1 \leq |X_{\ell(x_1)}| \leq k+1$, as desired. Now assume that $\ell(w_1) < \ell(v_s)$ and $\ell(x_1) < \ell(y_s)$. Thus $\ell(w_1) < \ell(v_s) < \ell(x_1) < \ell(y_s)$, which is a contradiction since $\ell(y_s) < \ell(w_1)$. Hence $s \leq k$ and the drawing of G has no (k+1, k+1)-crossing.

References

- P. Angelini, G. Da Lozzo, H. Förster, and T. Schneck. 2-layer k-planar graphs density, crossing lemma, relationships, and pathwidth. In D. Auber and P. Valtr, editors, *Graph Drawing and Network Visualization - 28th International Symposium, GD 2020*, volume 12590 of *Lecture Notes in Computer Science*, pages 403–419. Springer, 2020. doi:10.1007/978-3-030-68766-3_32.
- [2] M. J. Bannister, W. E. Devanny, V. Dujmović, D. Eppstein, and D. R. Wood. Track layouts, layered path decompositions, and leveled planarity. *Algorithmica*, 81(4):1561–1583, 2019. doi:10.1007/S00453-018-0487-5.
- [3] T. Biedl, M. Chimani, M. Derka, and P. Mutzel. Crossing number for graphs with bounded pathwidth. Algorithmica, 82(2):355–384, 2020. doi:10.1007/S00453-019-00653-X.
- [4] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a forest. J. Comb. Theory, Ser. B, 52(2):274–283, 1991. doi:10.1016/0095-8956(91)90068-U.
- [5] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. doi:10.1016/S0304-3975(97)00228-4.
- [6] S. Cornelsen, T. Schank, and D. Wagner. Drawing graphs on two and three lines. J. Graph Algorithms Appl., 8(2):161–177, 2004. doi:10.7155/JGAA.00087.
- [7] E. Di Giacomo, W. Didimo, P. Eades, and G. Liotta. 2-layer right angle crossing drawings. Algorithmica, 68(4):954–997, 2014. doi:10.1007/S00453-012-9706-7.
- [8] R. Diestel. Graph minors 1: A short proof of the path-width theorem. Comb. Probab. Comput., 4:27-30, 1995. doi:10.1017/S0963548300001450.
- [9] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161-166, 1950. doi:10.2307/1969503.
- [10] V. Dujmović, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R. Wood. A fixedparameter approach to 2-layer planarization. *Algorithmica*, 45(2):159–182, 2006. doi: 10.1007/S00453-005-1181-Y.
- [11] V. Dujmović, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. A. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered graph drawing. *Algorithmica*, 52(2):267–292, 2008. doi:10.1007/S00453-007-9151-1.
- [12] V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded tree-width. SIAM J. Comput., 34(3):553–579, 2005. doi:10.1137/S0097539702416141.
- [13] V. Dujmovic, P. Morin, and C. Yelle. Two results on layered pathwidth and linear layouts. J. Graph Algorithms Appl., 25(1):43-57, 2021. doi:10.7155/JGAA.00549.
- [14] V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discret. Math. Theor. Comput. Sci., 6(2):497–522, 2004. doi:10.46298/DMTCS.315.
- [15] V. Dujmović and S. Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.
- [16] P. Eades and S. Whitesides. Drawing graphs in two layers. Theor. Comput. Sci., 131(2):361–374, 1994. doi:10.1016/0304-3975(94)90179-1.
- [17] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403, 1994. doi:10.1007/BF01187020.
- [18] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl., 7(4):363–398, 2003. doi:10.7155/ JGAA.00075.

- [19] F. Harary and A. Schwenk. A new crossing number for bipartite graphs. 1:203–209.
- [20] P. Hlinený. Crossing-number critical graphs have bounded path-width. J. Comb. Theory, Ser. B, 88(2):347-367, 2003. doi:10.1016/S0095-8956(03)00037-6.
- [21] H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered drawings. Discret. Comput. Geom., 33(4):569–591, 2005. doi:10.1007/S00454-005-1168-0.
- [22] H. Nagamochi. On the one-sided crossing minimization in a bipartite graph with large degrees. Theor. Comput. Sci., 332(1-3):417-446, 2005. doi:10.1016/J.TCS.2004.10.042.
- [23] N. Robertson and P. D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory, Ser. B, 35(1):39-61, 1983. doi:10.1016/0095-8956(83)90079-5.
- [24] M. Suderman. Pathwidth and layered drawings of trees. Int. J. Comput. Geom. Appl., 14(3):203-225, 2004. doi:10.1142/S0218195904001433.