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Abstract.
Orienting the edges of an undirected graph such that the resulting digraph satisfies

some given constraints is a classical problem in graph theory, with multiple algorith-
mic applications. In particular, an st-orientation orients each edge of the input graph
such that the resulting digraph is acyclic, and it contains a single source s and a single
sink t. Computing an st-orientation of a graph can be done efficiently, and it finds
notable applications in graph algorithms and, in particular, in graph drawing. On the
other hand, finding an st-orientation with at most k transitive edges is more challeng-
ing and it was recently proven to be NP-hard already when k = 0. We strengthen
this result for graphs of bounded diameter, and for graphs of bounded vertex degree.
These computational lower bounds naturally raise the question about which structural
parameters can lead to tractable parameterizations of the problem. Our main result is
a fixed-parameter tractable algorithm parameterized by treewidth.

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each edge, turning the
initial graph into a directed graph (or digraph for short). Notable examples of orientations are
acyclic orientations, which guarantee the resulting digraph to be acyclic; transitive orientations,
which make the resulting digraph its own transitive closure; and Eulerian orientations, in which
each vertex has equal in-degree and out-degree. Of particular interest for our research are certain
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Figure 1: (a): An undirected graph G with randomly labeled vertices. (b)-(c): Two polyline drawings of
G computed by using different st-orientations. The drawing in (b) uses an st-orientation without transitive
edges and it has smaller area and number of bends than the drawing in (c).

constrained acyclic orientations, which find applications in several domains, including graph pla-
narity and graph drawing. More specifically, given a graph G = (V,E) and two vertices s, t ∈ V , an
st-orientation of G, also known as bipolar orientation, is an orientation of its edges such that the
corresponding digraph is acyclic and contains a single source s and a single sink t. It is well-known
that G admits an st-orientation if and only if it is biconnected after the addition of the edge st
(if not already present). The computation of an st-numbering (an equivalent concept defined on
the vertices of the graph) is for instance part of the quadratic-time planarity testing algorithm
by Lempel, Even and Cederbaum [19]. Later, Even and Tarjan [13] showed how to compute an
st-numbering in linear time, and used this result to derive a linear-time planarity testing algo-
rithm. In the field of graph drawing, bipolar orientations are a central algorithmic tool to compute
different types of layouts, including visibility representations, polyline drawings, dominance draw-
ings, upward drawings, and orthogonal drawings (see [9, 11, 14, 16] for references). On a similar
note, Gronemann [15] proposed the study of bitonic st-orderings of planar graphs, a total order
of the vertices of the graph that can be extracted from suitable classes of bipolar orientations,
with several applications in graph drawing [1]. Interestingly, non-transitive st-orientations always
admit bitonic st-orderings, while a bitonic st-ordering may be derived from an st-orientation with
transitive edges. Furthermore, a notable result states that a planar digraph admits an upward
planar drawing if and only if it is the subgraph of a planar st-graph, that is, a planar digraph with
a bipolar orientation [10].

Recently, Binucci, Didimo and Patrignani [2, 3] focused on st-orientations with no transitive
edges. We recall that an edge uv is transitive if the digraph contains a path directed from u to v; for
example, the bold (red) edges in Figure 1c are transitive, see also Section 2 for formal definitions.
Besides being of theoretical interest, such orientations, when they exist, can be used to compute
readable and compact drawings of graphs [3]. For example, a classical graph drawing algorithm
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Figure 2: The complexity landscape of the k-Transitive st-Orientation problem. The symbols tw, δ,
and σ denote the treewidth, the maximum vertex degree, and the diameter of the graph, respectively. The
boxes with red boundaries denote the new results presented in this paper.

relies on st-orientations to compute polyline representations of planar graphs. The algorithm is
such that both the height and the number of bends of the representations can be reduced by
computing st-orientations with few transitive edges. See Algorithm Polyline in [9] for details and
Figure 1 for an example.

Unfortunately, while an st-orientation of an n-vertex graph can be computed in O(n) time,
computing one that has the minimum number of transitive edges is much more challenging from a
computational perspective. Namely, Binucci et al. [3] prove that the problem of deciding whether
an st-orientation with no transitive edges exists is NP-complete, and provide an ILP model for
planar graphs.

Contribution. We study the parameterized complexity of finding st-orientations with few transi-
tive edges. More formally, given a graph G and an integer k, the k-Transitive st-Orientation
problem asks for an st-orientation of G with at most k transitive edges (see also Section 2). As al-
ready discussed, k-Transitive st-Orientation is para-NP-hard by the natural parameter k [3].
We strengthen this result by showing that, for k = 0, k-Transitive st-Orientation remains
NP-hard even for graphs of diameter at most six, and for graphs of vertex degree at most four.
In light of these computational lower bounds, we seek for structural parameters that can lead to
tractable parameterizations of the problem. Our main result is a fixed-parameter tractable al-
gorithm for k-Transitive st-Orientation parameterized by treewidth, a central parameter in
parameterized complexity analysis (see [12, 20]). Figure 2 depicts a summary of the computational
complexity results known for the k-Transitive st-Orientation problem. It may be worth not-
ing that the two parameters, k and treewidth, are unrelated, as there exist infinite partial 2-trees
such that any st-orientation contains an unbounded number of transitive edges.

It is worth remarking that by Courcelle’s theorem [7] one can derive an (implicit) FPT algorithm
parameterized by treewidth. However, using this approach yields to a very high and unpractical
dependency of the time complexity on the treewidth. Consequently, Courcelle’s theorem is gener-
ally used as a classification tool, while the design of an explicit ad-hoc algorithm remains a valuable
contribution [8]. Indeed, the main challenge in devising an explicit algorithm based on dynamic
programming over a tree decomposition is that one must know if adding an edge to the graph
may cause previously forgotten non-transitive edges to become transitive, and, if so, how many of
them. To tackle this difficulty, we describe an approach that avoids storing information about all
edges that may potentially become transitive; instead, the algorithm guesses the edges that will
be transitive in a candidate solution and ensures that no other edge will become transitive in the
course of the algorithm. Our technique can be easily adapted to handle more general constraints
on the sought orientation, for instance the presence of multiple sources and sinks. The algorithm
we present takes 2O(ω2) · n time, where ω and n are the treewidth and the number of vertices of
the input graph, respectively.
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Remark. With a simple reduction, one can see that k-Transitive st-Orientation is NP-hard
even when s and t are not part of the input. Namely let ⟨G1, s1, t1⟩, ⟨G2, s2, t2⟩, ⟨G3, s3, t3⟩ be
three instances of k-Transitive st-Orientation when k = 0, and let G be a graph obtained by
identifying t1 with s2, and t2 with s3. Observe that G admits a an st-orientation without transitive
edges, for any choice of s and t, if and only if G2 admits an st-orientation without transitive edges
and with s2 and t2 as source and sink, respectively.

On the positive side, the FPT algorithm we propose can indeed solve this more general problem
by looking for suitable choices of s and t. Plugging the restriction on s and t simply means
introducing additional checks (highlighted in the description of the algorithm).

Paper structure. We begin with preliminary definitions and basic tools, which can be found in
Section 2. In Section 3, we describe our main result, an FPT algorithm for the k-Transitive st-
Orientation problem parameterized by treewidth. Section 4 contains our second contribution,
namely, we adapt the NP-hardness proof in [3] to prove that the result holds also for graphs that
have bounded diameter and for graphs with bounded vertex degree. In the latter case, the graphs
used in the reduction not only have bounded vertex degree (at most four), but are also subdivisions
of triconnected graphs. In Section 5, we list some interesting open problems that stem from our
research.

2 Preliminaries

Edge orientations. Let G = (V,E) be an undirected graph. An orientation O of G is an
assignment of a direction, also called orientation, to each edge of G. We denote by DO(G) the
digraph obtained from G by applying the orientation O. For each undirected pair {u, v} ∈ E, we
write uv if {u, v} is oriented from u to v in DO(G), and we write vu otherwise. A directed path
from a vertex u to a vertex v is denoted by u⇝ v. A vertex of DO(G) is a source (sink) if all its
edges are outgoing (incoming). An edge uv of DO(G) is transitive if DO(G) contains a directed
path u⇝ v distinct from the edge uv. A digraph DO(G) is an st-graph if: (i) it contains a single
source s and a single sink t, and (ii) it is acyclic. An orientation O such that DO(G) is an st-graph
is called an st-orientation.

k-Transitive st-Orientation (kT-st-Orientation)
Input: An undirected graph G = (V,E), two vertices s, t ∈ V , and an integer k ≥ 1.
Output: An st-orientation O of G such that the resulting digraph DO(G) contains at most k
transitive edges.

We recall that kT-st-Orientation is NP-complete already for k = 0 [3], which hinders tractability
in the parameter k. Also, in what follows, we always assume that the input graph G is connected,
otherwise we can immediately reject the instance as any orientation would give rise to at least one
source and one sink for each connected component of G.

Tree-decompositions. Let (X , T ) be a pair such that X = {Xi}i∈[ℓ] is a collection of subsets
of vertices of a graph G = (V,E), called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . When this creates no ambiguity, Xi will denote both a
bag of X and the node of T whose corresponding bag is Xi. The pair (X , T ) is a tree-decomposition
of G if: 1.

⋃
i∈[ℓ] Xi = V , 2. For every edge uv of G, there exists a bag Xi that contains both

u and v, and 3. For every vertex v of G, the set of nodes of T whose bags contain v induces a
non-empty connected subtree of T . The width of (X , T ) is maxℓi=1 |Xi| − 1, while the treewidth
of G, denoted by tw(G), is the minimum width over all tree-decompositions of G. The problem
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of computing a tree-decomposition of width tw(G) is fixed-parameter tractable in tw(G) [5]. A
tree-decomposition (X , T ) of a graph G is nice if T is a rooted binary tree with the following
additional properties [6]: 1. If a node Xi of T has two children whose bags are Xj and Xj′ , then
Xi = Xj = Xj′ . In this case, Xi is a join bag. 2. If a node Xi of T has only one child Xj , then
Xi ̸= Xj and there exists a vertex v ∈ G such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj . In the
former case Xi is an introduce bag, while in the latter case Xi is a forget bag. 3. If a node Xi is
the root or a leaf of T , then Xi = ∅. In this case, Xi is a leaf bag. Given a tree-decomposition of
width ω of G, a nice tree-decomposition of G with the same width can be computed in O(ω · n)
time [17].

3 The k-Transitive st-Orientation Problem Parameterized
by Treewidth

In this section, we describe a fixed-parameter tractable algorithm for kT-st-Orientation param-
eterized by treewidth. In fact, the algorithm we propose can solve a slightly more general problem.
Namely, it does not assume that s and t are part of the input, but it looks for an st-orientation in
which the source and the sink can be any pair of vertices of the input graph. However, if s and t
are prescribed, a simple check can be added to the algorithm (we will highlight the crucial point
in which the check is needed) to ensure this property.

Let G = (V,E) be an undirected graph. A solution of kT-st-Orientation is an orientation
O of G such that DO(G) is an st-graph with at most k transitive edges. Let (X , T ) be a tree-
decomposition of G of width ω. For a bag Xi ∈ X , we denote by G[Xi] the subgraph of G induced
by the vertices of Xi, and by Ti the subtree of T rooted at Xi. Also, we denote by Gi the subgraph
of G induced by all the vertices in the bags of Ti. We adopt a dynamic-programming approach
performing a bottom-up traversal of T . The solution space is encoded into records associated with
the bags of T , which we describe in the next section.

3.1 Encoding solutions

Before describing the records stored for each bag, we highlight the main challenges about how to
encode the partial solutions computed throughout the course of the algorithm. Let v be a vertex
introduced in a bag Xi. Adding v and its incident edges to a partial solution may either turn
many (possibly linearly many) forgotten edges into transitive edges and/or it may make the same
forgotten edge transitive with respect to arbitrarily many different paths. This is schematically
illustrated in Figure 3, where Xi and its child bag Xj are highlighted by shaded regions. In
Figure 3a, e1, . . . , es are forgotten edges, i.e., edges in Gi but not in G[Xi]; if we orient edge {u, v}
from v to u and edge {v, w} from w to v all edges e1, . . . , es become transitive. In Figure 3b, e
is a forgotten edge, while u1, . . . , us and w1, . . . , wh are vertices of bag Xj ; orienting the edges
{wp, v} from wp to v (1 ≤ p ≤ h) and the edges {v, uq} from v to uq (1 ≤ q ≤ s), turns e into
a transitive edge with respect to h× s different paths. In case of Figure 3a the algorithm cannot
afford reconsidering the forgotten edges as they can be arbitrarily many. In case of Figure 3b the
algorithm should avoid counting e multiple times (for each newly created path). To overcome these
issues, the algorithm guesses the edges that are transitive in a candidate solution and verifies that
no other edge can become transitive during the bottom-up visit of T . This is done by suitable
records, described below.

Let O be a solution and consider a bag Xi ∈ X . The record Ri of Xi that encodes O represents
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Figure 3: (a) The directed edges wv and vu make all edges e1, ..., es transitive. (b) Each pair of directed
edges wpv and vqu, for p ∈ [1, h] and q ∈ [1, s], makes e transitive. Note that hybrid situations that include
both cases (a) and (b) are possible.

the interface of the solution O with respect to Xi. For ease of notation, the restriction of DO(G) to
Gi is denoted by Di, and similarly the restriction to G[Xi] is D[Xi]. Record Ri stores the following
information (see Figure 4 for an example).

• Oi which is the orientation of D[Xi].

• Ai which is the subset of the edges of D[Xi] that are transitive in DO(G). We call such edges
admissible transitive edges or simply admissible edges. The edges of Gi not in Ai are called
non-admissible. We remark that an edge of Ai may not be transitive in Di.

• Pi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii) Di

contains the path a⇝ b.

• Fi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii) connecting
a to b with a directed path makes a non-admissible edge of Di become transitive.

• ci which is the cost of Ri, that is, the number of transitive edges in Di. Note that ci ≥ |Ai|.

• Si which maps each vertex v ∈ Xi to a Boolean value Si(v) that is true if and only if v is a
source in Di.

• Ti maps each vertex v ∈ Xi to a Boolean value Ti(v) that is true if and only if v is a sink in
Di.

• σi which is a flag that indicates whether DO(G) contains a source that belongs to Gi but not
to Xi.

• τi is a flag that indicates whether DO(G) contains a sink that belongs to Gi but not to Xi.

Observe that, for a bag Xi, different solutions O and O′ of G may be encoded by the same
record Ri. In this case, O and O′ are equivalent for bag Xi. Clearly, this defines an equivalence
relation on the set of solutions for G, and each record represents an equivalence class within its
bag. The goal of the algorithm is to incrementally construct the set of records (i.e., the quotient
set) for each bag rather than the whole set of solutions. More formally, for each bag Xi ∈ X , we
associate a set of records Ri = {R1

i , ..., R
h
i }. We further observe that if more records are equal
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Figure 4: Two possible solutions for k-Transitive st-Orientation described by the same record
Ri of Xi. The record is composed by the following sets: Oi = {v4v6, v6v5}; Ai = {v6v5}, where the
edge is transitive due to the directed path with edges v6v8 and v8v5 in (a) and v6v9 and v9v5 in (b);
Pi = {(v4, v6), (v6, v5), (v4, v5), (v7, v6), (v7, v5)}, Fi = {(v4, v6)}; ci = 2, where the transitive edges
are {v6v5, v2v3} in (a) and {v6v5, v3v1} in (b); Si(v7) = true and Ti(v5) = true (the other values
are false); σi = true, where the source is v2 in (a) and v3 in (b); τi = false.

except for their costs, it suffices to keep in Ri the one whose cost is no larger than any other record.
The next lemma easily follows.

Lemma 1 For a bag Xi, the cardinality of Ri is 2O(ω2). Also, each record of Ri has size O(ω2).

Proof: Recall that G[Xi] contains at most ω vertices and ω2 edges. Observe that the number of

possible orientations of the edges of G[Xi] is O(2ω
2

). Similarly, the number of possible pairs of

vertices (and hence of subsets of edges) of Xi is O(2ω
2

). The possible mappings to Boolean values
of the vertices in Xi are O(2ω). Hence, a set of distinct records in which there are no two of them

that differ only by their cost has size 2O(ω2). Finally, the fact that each record has size O(ω2)
follows directly from the definition. □

3.2 Description of the algorithm

We are now ready to describe our dynamic-programming algorithm over a nice tree-decomposition
(X , T ) of the input graph G. Let Xi be the current bag visited by the algorithm. We compute
the records of Xi based on the records computed for its child or children (if any). If the set of
records of a bag is empty, the algorithm halts and returns a negative answer. We distinguish four
cases based on the type of the bag Xi. Observe that, to index the records within Ri, we added a
superscript q ∈ [h] to each record, and we will do the same for all the record’s elements.

Xi is a leaf bag. We have that Xi is the empty set and Ri consists of only one record, i.e.,
Ri = {R1

i = ⟨∅, ∅, ∅, ∅, 0, ∅, ∅, false, false⟩}.
Xi is an introduce bag. Let Xj = Xi \ {v} be the child of Xi. Initially, Ri = ∅. Next, the
algorithm exhaustively extends each record Rp

j ∈ Rj to a set of records of Ri as follows. Let Ov
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be the set of all the possible orientations of the edges incident to v in G[Xi], and similarly let Av

be the set of all the possible subsets of the edges incident to v in G[Xi]. The algorithm considers
all possible pairs (o, t) such that o ∈ Ov and t ∈ Av. For each pair of sets (o, t), we proceed as
follows.

1. Let q = |Ri|+ 1, the algorithm computes a candidate orientation Oq
i of G[Xi] starting from

Op
j and orienting the edges of v according to o.

2. Similarly, it computes the candidate set of admissible edges Aq
i starting from Ap

j and adding
to it the edges in t.

3. Next, it sets the candidate cost cqi = cpj + |t|.

4. Let the extension ⟨Oq
i ,A

q
i , c

q
i ⟩ be valid if: (a) cqi ≤ k; (b) there is no pair (a, b) ∈ Pp

j so
that bv, va ∈ DOq

i
[Xi]; (c) there is no pair (a, b) ∈ Fp

j so that av, vb ∈ DOq
i
[Xi]. Clearly,

if an extension is not valid, the corresponding record cannot encode any solution; namely,
condition (a) ensures that the candidate cost does not exceed k, condition (b) guarantees the
absence of cycles, condition (c) guarantees that no non-admissible edge becomes transitive.
Hence, if an extension is not valid, the algorithm discards it and continues with the next pair
(o, t).

5. Instead, if the extension is valid, the algorithm computes the record Rq
i = ⟨Oq

i ,A
q
i ,P

q
i ,F

q
i ,

cqi ,S
q
i , T

q
i , σ

q
i , τ

q
i ⟩ of Ri, where σq

i = σp
j , τ

q
i = τpj (recall that Xj ⊂ Xi). To complete the

record Rq
i , it remains to compute Sqi , T

q
i , P

q
i and Fq

i .

(a) For each vertex w ∈ Xj , we set Sqi (w) = true if and only if Spj (w) = true and there is no
edge of v oriented from v to w in DOq

i
[Xi] (which would make w not a source anymore).

Similarly, for each vertex w ∈ Xj , we set T q
i (w) = true if and only if T p

j (w) = true and
there is no edge of v oriented from w to v in DOq

i
[Xi]. Finally, we set Sqi (v) = true if

and only if v is a source in DOq
i
[Xi] (as by the definition), and we set T q

i (v) = true if

and only if v is a sink in DOi
[Xq

i ].

(b) We initially set Pq
i = ∅. We recompute the paths from scratch as follows. We build

an auxiliary digraph D∗ which we initialize with DOq
i
[Xi]. We then add to D∗ the

information about paths in Pp
j . Namely, for each (a, b) ∈ Pp

j , we add an edge ab to D∗

(if it does not already exist). Once this is done, for each pair u,w ∈ Xi ×Xi for which
there is a path u⇝ w in D∗, we add the pair (u,w) to Pq

i .

(c) Consider now Fq
i . We initially set Fq

i = Fp
j . Observe that the addition of v might

have created new pairs of vertices that should belong to Fq
i . Namely, for each pair

(a, b) ∈ Fp
j , we verify what are the vertices c such that DOq

i
[Xi] contains a path a⇝ c

while DOp
j
[Xj ] does not (observe that a ⇝ c contains v, possibly c = v); for each such

vertex, we add (c, b) to Fq
i . See Figure 5a for an illustration. Similarly, we verify what

are the vertices d such that DOq
i
[Xi] contains a path d ⇝ b while DOp

j
[Xj ] does not

(again d ⇝ b contains v, possibly d = v); for each such vertex, we add (a, d) to Fq
i .

Finally, we consider all the edges incident to v and that are not in Aq
i . These edges

are not admissible and we should further update Fq
i accordingly. This can be done as

follows. We consider each edge e /∈ Aq
i incident to v. For each such an edge e, we verify

what are the ordered pairs (u,w) of vertices in Xi (including e’s endpoints) such that
connecting them with a path u ⇝ w makes e transitive. To do that, for each ordered



JGAA, 29(1) 247–266 (2025) 255

v

Xi

Xj

e a

b

(a, b) ∈ Fp
i

c e ̸∈ Aq
i

(c, b) ∈ Fq
i

(a)

v

Xi

Xj
(u,w) ∈ Fq

i

e ̸∈ Aq
i

e

u

w

(b)

Figure 5: Illustration of Step 5c of the algorithm when Xi is an introduce bag.

pair (u,w) we add a directed edge uw and we test if e is transitive after the addition of
uw. We add to Fq

i every pair for which this is true, if not already present. See Figure 5b
for an illustration.

Xi is a forget bag. Let Xj = Xi ∪ {v} be the child of Xi. The algorithm computes Ri by
exhaustively merging records of Rj as follows.

1. For each Rp
j ∈ Rj , we remove from Op

j and Ap
j all the edges incident to v and from Pp

j and
Fp

j all the pairs where one of the vertices is v. Observe that due to this operation, there
might now be records that are identical except possibly for their costs. Among them, we
only keep one record whose cost is no larger than any other record.

2. Let Rp
j be a record of Rj that was not discarded by the procedure above. If Spj (v) ∧ σp

j ,
we discard Rp

j (because the encoded orientation would contain two sources), else we set
σp
i = Spj (v) ∨ σp

j . Similarly, if T p
j (v) ∧ τpj , we discard Rp

j , else we set τpi = T p
j (v) ∨ τpj . At

this point, if the record has not been discarded yet and vertices s and t are prescribed, we
can add the following check. If Spj (v) ∧ σp

j , then v is a source, hence if v ̸= s, we discard the
record. Analogously, if T p

j (v) ∧ τpj , then v is a sink, hence if v ̸= t, we discard the record.

3. Finally, we remove from Spj and T p
j the values Spj (v) and T

p
j (v).

4. All the records that have not been discarded and have been updated according to the above
procedure are added to Ri.

Xi is a join bag. Let Xj = Xj′ be the two children of Xi. The algorithm computes Ri by
exhaustively checking if a pair of records, one from Xj and one from Xj′ , can be merged together.

For each pair Rp
j and Rp′

j′ , we proceed as follows.

1. We initially set Ri = ∅. The two records Rp
j and Rp′

j′ are mergeable if:

(a) Op
j = Op′

j′ ;

(b) Ap
j = Ap′

j′ ;

(c) cpj + cp
′

j′ − |A
p
j | ≤ k;
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(d) D∗ has no cycle, where D∗ is the auxiliary graph initialized with DOp
j
[Xj ] and having

an additional edge ab if (a, b) ∈ Pp
j ∪ P

p′

j′ ;

(e) there is no pair (a, b) ∈ Fp
j such that a⇝ b exists in D∗;

(f) there is no pair (a, b) ∈ Fp′

j′ such that a⇝ b exists in D∗;

(g) ¬(σp
j ∧ σp′

j′ );

(h) ¬(τpj ∧ τp
′

j′ ).

Conditions a-b are obviously necessary to merge the records. Condition c guarantees that
the number of transitive edges (avoiding double counting the admissible edges in Xi) is at
most k. Condition d guarantees the absence of cycles. Conditions e-f guarantee that no non-
admissible edge becomes transitive. Conditions g-h guarantee that the resulting orientation
contains at most one source and one sink. If the two records are not mergeable, we discard the
pair and proceed with the next one. Otherwise we create a new record Rq

i , with q = |Ri|+1,
and continue to the next step.

2. Based on the previous discussion, we can now compute Rq
i as follows:

(a) Oq
i = Op

j ;

(b) Aq
i = Ap

j ;

(c) cqi = cpj + cp
′

j′ − |A
p
j |;

(d) For each pair u,w ∈ Xi × Xi so that there is a path u ⇝ w in D∗, we add the pair
(u,w) to Pq

i .

(e) For each pair (a, b) of vertices of Xi, we first add it to Fq
i if Fp

j (a, b) ∨ F
p′

j′ (a, b). For

each pair (a, b) ∈ Fp
j and for each c ∈ Xi such that the path a⇝ c exists in D∗, we add

(c, b) to Fq
i . We symmetrically do the same for every pair (a, b) ∈ Fp′

j′ .

(f) For each vertex v of Xi, we set Sqi (v) = S
p
j (v) ∧ S

p′

j′ (v);

(g) For each vertex v of Xi, we set T q
i (v) = T

p
j (v) ∧ T p′

j′ (v);

(h) σq
i = σp

j ∨ σp′

j′ ;

(i) τ qi = τpj ∨ τp
′

j′ .

The next lemma establishes the correctness of the algorithm.

Lemma 2 Graph G admits a solution for kT-st-Orientation if and only if the algorithm ter-
minates after visiting the root of T . Also, the algorithm outputs a solution, if any.

Proof: (→) Suppose that the algorithm terminates after visiting the root bag Xρ of T . If this
is the case, the root record Rρ is such that Oρ = ∅, Aρ = ∅, Pρ = ∅, Fρ = ∅, cρ ≤ k, Sρ = ∅,
σρ = τρ = true. We reconstruct a solution O of G as follows. We can assume that our algorithm
stores additional pointers for each record, a common practice in dynamic programming. Each
record has at most one outgoing pointer towards the record it generates in the parent bag. Also,
each record has as many incoming pointers as the number of records in child bags that contributed
to its generation. More specifically, consider a record Rq

i of a bag Xi. If Xi is an introduce bag,
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there is only one record Rp
j of the child bag Xj from which Rq

i was generated and the pointer links
Rq

i and Rp
j . If Xi is forget bag, there might be multiple records that have been merged into Rq

i

and in this case the pointer link Rq
i with one of these records with minimum cost. If Xi is a join

bag, there are two mergeable records Rp
j and Rp′

j′ that have been merged together, and the pointer

links Rq
i to Rp

j and Rp′

j′ . With these pointers at hand, we can apply a top-down traversal of T ,
starting from the single record of the root bag Xρ and reconstruct the corresponding orientation
O. Namely, when visiting an introduce bag and the corresponding record, we orient the edges of
the introduced vertex v according to the orientation Ov defined by the record.

We now claim that DO(G) is an st-graph with at most k transitive edges. Suppose first, for a
contradiction, that DO(G) contains more than one source. Let s and s′ be two sources of DO(G).
Then Sqi (s) = false in the bag Xi in which s has been forgotten, and similarly for Sqi (s′). This is
however not possible by construction of Sqi . Thus, either the record Rq

i has been discarded because
Sp
j (v)∧σ

p
j (see Item 2 whenXi is a forget bag) or σ

p
j = false. The first case contradicts the fact that

Rq
i is a record used to reconstruct O. The second case implies that s′ has not been encountered;

however, in this latter case the algorithm sets σp
j = true, hence some descendant record will be

discarded as soon as s′ is forgotten, again contradicting the fact that we are considering records
with pointers up to the root bag. A symmetric argument shows that DO(G) contains a single sink.
We next argue that DO(G) is acyclic. Suppose, again for a contradiction, that DO(G) contains
a cycle. In particular, the cycle was created either in an introduce bag or in a join bag. In the
former case, let v be the last vertex of this cycle that has been introduced in a bag Xi. Let
a, b be the neighbors of v that are part of the cycle, and w.l.o.g. assume that the edges are va
and bv. It must be Pq

i does not contain the pair (a, b), otherwise we would have discarded this
particular orientation for the edges incident to v (see Item 4.b when Xi is an introduce bag). On
the other hand, one easily verifies that when introducing a vertex v, all the new paths involving
v are computed from scratch (see Item 5.b when Xi is an introduce bag), and, similarly, when
joining two bags, the existence of a path in one of the two bags is correctly reported in the new
record (see Item 2.d when Xi is a join bag). If the cycle was created in a join bag the argument is
analogous, in particular, observe that we verify that there is no path contained in the record of one
of the child bags such that the same path with reversed direction exists in the record of the other
child bag (see Item 1.d when Xi is a join bag). We conclude this direction of the proof by showing
that DO(G) contains at most k transitive edges. Observe first that the cost of the record ensures
that at most k edges of G are part of some set of admissible edges. Suppose, for a contradiction,
that DO(G) contains more than k transitive edges. Then there is a bag Xi and a record Rq

i in
which a non-admissible edge became transitive. Also, Xi is either an introduce or a join bag. If
Xi introduced a vertex v, observe that all the newly introduced edges are incident to v. On the
other hand, the algorithm discarded the orientations of the edges of v for which there is a pair
(a, b) ∈ Fp

j (with Xj being the child of Xi) so that av, vb ∈ DOq
i
[Xi] (see Item 4.c when Xi is an

introduce bag). Then either the orientation was discarded, which contradicts the fact that we are
considering a record used to build the solution, or Fp

j missed the pair (a, b). Again one verifies
this second case is not possible, because the new pairs that are formed in an introduce bag are
correctly identified (see Item 5.c when Xi is an introduce bag) by the algorithm and similarly for
join bags (see Item 2.e when Xi is a join bag). If Xi is a join bag, the argument is analogous, in
particular, we verified that there is no path in one of the two child records that makes transitive a
non-admissible edge in the other child record (see Items 1.e and 1.f when Xi is a join bag). This
concludes the first part of the proof.

(←) It remains to prove that, if G admits a solution O, then the algorithm terminates after visiting
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the root Xρ of T . If this were not the case, there would be a bag Xi of T and a candidate record
that encodes O, such that the record has been incorrectly discarded by the algorithm; we show
that this is not possible. Suppose first that Xi is an introduce bag. Then a candidate record
is discarded if the cost exceeds k, or if a cycle is created, or if a non-admissible edge becomes
transitive (see the conditions of Item 4 when Xi is an introduce bag). In all cases the candidate
record does not encode a solution. If Xi is a forget bag, we may discard a candidate record if it
is identical to another but has a non-smaller cost (see Item 1 when Xi is a forget bag). Hence we
always keep a record that either encodes the solution at hand or a solution with fewer transitive
edges but with exactly the same interface at Xi. Also, we may discard a record if the forgotten
vertex v is a source and Gi already contains a source (see Item 2 when Xi is a forget bag). This
is correct because no further edge can be added to v after it is forgotten. A symmetric argument
holds for the case in which a record is discarded due to v being a sink. Finally, if Xi is a join bag,
pairs of records of its child bags are discarded if not mergeable (see the conditions of Item 1 when
Xi is a join bag). One easily verifies that failing one of the conditions for mergeability implies that
the record does not encode a solution (see also the discussion after Item 1). □

The next theorem summarizes this section.

Theorem 1 Given an input graph G = (V,E) of treewidth ω and an integer k ≥ 0, there is an

algorithm that either finds a solution of kT-st-Orientation or rejects the input in time 2O(ω2) ·n.

Proof: The correctness of the algorithm has been proven in Lemma 2. Concerning the time
complexity, we begin by using a recent result by Korhonen [18], which provides a single-exponential
algorithm for computing a 2-approximation of the treewidth tw(G) = ω − 1 of G. Given a tree-
decomposition of width O(ω) of G, a nice tree-decomposition of G with the same width can be
computed in O(ω · n) time [17].

We now analyze the time complexity of our algorithm for each type of bag. Leaf bags are
trivially processed in O(1) time. For an introduce bag, we iterate over the 2O(ω2) records of the
child bag (see Lemma 1), and for each of them we consider all possible extensions, which are again

2O(ω2). For each valid extension, creating a single record from it takes ωO(1) time. For a forget
bag, we update the 2O(ω2) records of its child bag, and then we iteratively look for pairs of records
that can be merged. This takes again 2O(ω2) time. Also, updating each merged record takes ωO(1)

time. For join bags we iteratively look for pairs of records (one for each of the two child bags)

that are mergeable. Since there are 2O(ω2) pairs and checking the mergeability takes ωO(1) time
(as well as eventually computing the merged record), the procedure takes again 2O(ω2) time. Since
T contains O(n) nodes, the statement follows. □

4 The Complexity of the NT-st-Orientation Problem for
Graphs of Bounded Diameter and Bounded Degree

We begin by recalling the special case of kT-st-Orientation considered in [3]. An st-orientation
O of a graph G is non-transitive if DO(G) does not contain transitive edges.

Non-Transitive st-Orientation (NT-st-Orientation)
Input: An undirected graph G = (V,E), and two vertices s, t ∈ V .
Output: An non-transitive st-orientation O of G such that vertices s and t are the source and
sink of DO(G), respectively.
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The hardness proof of NT-st-Orientation in [3] exploits a reduction from Not-all-equal 3-
Sat (NAE-3-Sat) [21]. Recall that the input of NAE-3-Sat is a pair ⟨X,φ⟩ where X is a set
of boolean variables and φ is a set of clauses, each composed of three literals out of X, and the
problem asks for an assignment of the variables in X so that each clause in φ is composed of at
least one true variable and at least one false variable.

In this section, we consider NT-st-Orientation when the input graph has bounded diameter,
see Section 4.2, or it has bounded vertex degree and it is a subdivision of a triconnected graph,
see Section 4.3. To prove our results, we first summarize the construction used in [3].

4.1 A Glimpse into the Hardness Proof of NT-st-Orientation

The construction in [3] adopts three types of gadgets, which we recall below. Given an edge e of
a digraph D such that e has an end-vertex v of degree 1, we say that e enters D if it is outgoing
with respect to v, and we say that e exits D otherwise. Similarly, given a directed edge e = uv,
we say that e exits u and that e enters v.

• The fork gadget F is depicted in Figure 6a. Lemma 1 of [3] states that, if F does not contain
s or t (the source and sink prescribed in the input), then in any non-transitive orientation
O of a graph G containing F , either e1 enters F and e9, e10 exit F , or vice versa. Figure 6a
depicts F , DO1(F ) and DO2(F ), where O1 and O2 are the two st-orientations admitted by F .

• The variable gadget Gx associated to a variable x ∈ X is shown in Figure 6b; observe it
contains the designated vertices s and t. Lemma 2 of [3] states that, in any non-transitive
st-orientation O of a graph G containing Gx, either x exits Gx and x enters Gx, or vice-
versa (the two fork gadgets are shaded with different color to better distinguish the one one
associated to the true value of the variable from the one associated to the false value).

• The split gadget Sk is shown in Figure 6c; it consists of k− 1 fork gadgets chained together,
for some fixed k > 0. Lemma 3 of [3] states that, in any non-transitive st-orientation O of a
graph G containing Sk, either x (the input edge of Sk) enters Sk and the edges e9 and e10 of
the fork gadgets F1, ..., Fk−1 incident to one degree-1 vertex (the outgoing edges of Sk) exit
Sk, or vice-versa.

Given an instance ⟨X,φ⟩ of NAE-3-Sat, the instance ⟨Gφ, s, t⟩ of NT-st-Orientation is
constructed as follows. For each x ∈ X we add Gx and two split gadgets Sk and Sk, where k (resp.

k) is the number of clauses where x appears in its non-negated (resp. negated) form (edges x and
x are the input edges of Sk and Sk, respectively). Finally, for each clause c = (x1, x2, x3) ∈ φ, we
add a vertex c that is incident to an output edge of the split gadget of each of its variables. See
Figure 7b, where the non-dashed edges and all the vertices with the exception of g define Gφ. It
can be shown that ⟨X,φ⟩ is a yes-instance of NAE-3-Sat if and only if ⟨Gφ, s, t⟩ is a yes-instance
of NT-st-Orientation [3].

4.2 Hardness for Graphs of Bounded Diameter

Given an undirected graph G, the distance between two vertices of G is the length of any shortest
path connecting them. The diameter of G is the maximum distance over all pairs of vertices of
the graph.

We begin by observing that the diameter of the graph Gφ describe in Section 4.1 is given by the
distance between two vertices in two split gadgets of two variables that do not appear in a shared
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Figure 6: (a) The fork gadget F and its two possible non-transitive st-orientations. (b) The variable
gadget DO(Gx) associated to x ∈ X, where O is one of its two possible orientations. (c) The split gadget
DO(Sk) associated to x, where O is one of its two possible orientations.

clause. On the other hand, it is known that NAE-3-Sat is NP-complete even in the case where
each variable appears at most three times. It follows that the split gadgets of the construction
described above have bounded size, and the diameter of Gφ is at most 18. This already implies
that NT-st-Orientation remains NP-hard also for graphs of bounded diameter. We now modify
the construction in Section 4.1 to further reduce the diameter to six. To this aim, we define the
extended fork gadget by adding an edge e11 to the fork gadget (see Figure 7a).

Construction of Hφ. Given an instance ⟨X,φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩ of
NT-st-Orientation computed as described in Section 4.1, we define ⟨Hφ, s, t⟩ as follows. We
first set Hφ = Gφ. We add three vertices g, gs and gt to Hφ. We then add an edge {g, f} for
each vertex f belonging to a fork F of Hφ and incident to the corresponding edges e3, e6, and e7.
Finally, we add edges (s, gs), (gs, g), (g, gt), and (gt, t). See Figure 7b (the non-dashed edges and
all the vertices incident to at least a non-dashed edge define Gφ).

We prove the following technical lemma, in which we use the same notation depicted in Fig-
ure 7a.

Lemma 3 Let G be an undirected graph containing an extended fork gadget F that does not contain
s and t. In any non-transitive st-orientation O of G, either e3 enters f and e6, e7 exit f or vice
versa.

Proof: Suppose, by contradiction, that e3 and e6 enter (resp. exit) f . Since F does not contain
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Figure 7: (a) A fork gadget F extended with edge e11. (b) Graphs DO′(Gφ), defined by the non-dashed
edges, and graph DO(Hφ), obtained from G by adding g and the dashed edges. O′ and O are non-transitive
st-orientations of Gφ and Hφ, respectively. O is obtained by extending O′.

s and t, either the directed path consisting of the edges e2 and e5 exists, or the directed path
consisting of e5 and e2 exists. In the former case, e3 (resp. e6) is a transitive edge. In the latter
case, e6 (resp. e3) is a transitive edge. In both cases we contradict the fact that the orientation
is non-transitive. Hence, either e3 enters f and e6 exits f or vice versa. By using a symmetric
argument, the same property can be proven with respect to e3 and e7. □

Theorem 2 NT-st-Orientation is NP-hard for graphs of diameter at most 6.

Proof: We construct Hφ as described above. Observe that any vertex of G is at distance at most
3 to g, hence Hφ has diameter at most 6. We show that a non-transitive st-orientation of Gφ

corresponds to a non-transitive st-orientation of Hφ (→) and vice versa (←).

(→) Given a non-transitive st-orientation O′ of Gφ, we construct an st-orientation O of Hφ by
extending O′ as follows. We orient the four edges of Hφ \Gφ connecting s to t such that we obtain
a path oriented from s to t via g. For each other edge e, which is incident to g, we orient it so that e
enters g if and only if e is the edge incident to an extended fork gadget whose corresponding edge e1
is an entering edge. See Figure 7b. Given this orientation, for each two vertices a, b ∈ DO(Hφ) so
that there is a directed path b⇝ a in DO′(Gφ), there is no path a⇝ b so that ag, gb ∈ DO(Hφ).
Hence, since DO′(Gφ) has no cycle, also DO(Hφ) has no cycle. Consequently, O is an acyclic
orientation with s and t being its single source and sink, respectively. We now show that it does
not contain transitive edges. Let e = ab be any edge of DO(Hφ). We have that any path from
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Figure 8: (a) Schematic representation of graph J ′
φ. (b-c) How vertex ti is connected to its neighbourhood

in (b) J ′
φ and (c) Jφ.

s ⇝ t containing g either contains edges incident to degree-2 vertices or edges e1, e3, and e11 of
an extended fork gadget. All these edges have endpoints which are not adjacent by construction.
Hence, there is no path a ⇝ b containing g and, since O′ is non-transitive, e is not transitive in
DO(Hφ).

(←) It remains to prove the second direction of the proof (←). Namely, let O be a non-transitive
st-orientation of Hφ. Let O′ ⊂ O be the restriction to the edges of Gφ. Since the absence of
cycles and of transitive edges are hereditary properties, DO′(Gφ) has no cycles and no transitive
edges. We have to show that s and t are the only source and sink of DO′(Gφ), respectively. Let
v ∈ Gφ \ {s, t}. We have that if v does not correspond to the vertex denoted by f of a fork gadget,
then its neighbourhood in Gφ and Hφ coincide and, since DO(Hφ) is an st-graph, then v is a
source or a sink in neither Hφ nor Gφ. Otherwise, by Lemma 3 we have that v is incident to at
least an edge e ∈ Gφ that enters v and to at least an edge e′ ∈ Gφ that exits v. Then v is again
neither a source nor a sink of Gφ. □

4.3 Hardness for Subdivisions of Triconnected Graphs with Bounded
Degree

We prove now that NT-st-Orientation is NP-hard even if G is a 4-graph, i.e., the degree of each
vertex is at most 4, and, in addition, it is a subdivision of a triconnected graph.

Construction of Jφ. Given an instance ⟨X,φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩ of
NT-st-Orientation computed as described in Section 4.1, we compute ⟨Jφ, s, t⟩ as follows. We
remove s and t from J ′′

φ = Gφ. We obtain a disconnected graph whose connected components are
Jφ,1, ..., Jφ,h. We add a vertex si and a vertex ti to each Jφ,i (which will play the role of local
sources and sinks for each component). Next, for each i ∈ [1, h− 1]: (i) We add the edge (si, si+1)
and (ti+1, ti); (ii) We add an edge ei+1,i incident to a vertex identified as the f -vertex of a fork
gadget of Jφ,i+1 and to a vertex identified as the f -vertex of a fork gadget of Jφ,j . We denote
by J ′

φ the obtained graph; see Figure 8a for a schematic illustration. For each Jφ,i (i ∈ [1, h]) of
J ′
φ, the only vertices having degree higher than 4 are si and ti. For each i ∈ [1, h], we proceed as
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follows. We first consider ti. If ti has degree p ≤ 4, we do nothing. Otherwise, if p ≥ 5, we proceed
as follows: (i) We consider p− 1 edges incident to ti and to vertices of Jφ,i and we remove them;
(ii) We connect the endpoints vi1, ..., v

i
p of the removed edges that are not ti to a split gadget Sp−1

and ti to the input edge of Sp−1. Figure 8b depicts ti (i ∈ [1, h]) and its neighborhood {vi1, ..., vip}
in J ′

φ and Figure 8c depicts how ti is connected to the vertices vi1, ..., v
i
p after the above operation.

We perform a symmetric operation on si. The resulting graph is denoted by Jφ, and it has vertex
degree at most four by construction.

In order to prove Theorem 3, we first prove the next lemma.

Lemma 4 Graph Jϕ is a subdivision of a triconnected graph.

Proof: We use the same notation as in Figure 8a. Let Ĵφ be the graph obtained from Jφ by
replacing any two edges xy and yz such that y is a degree-2 vertex with edge xz and removing y
from the vertex set. Let u, v be two vertices of Ĵφ. We show that there always exist three edge
disjoint paths π1, π2, and π3 connecting u ∈ Jφ,i to v ∈ Jφ,j for i, j ∈ [1, h]. Suppose i = j. We
show that Jφ,i (i ∈ [1, h]) is triconnected. Suppose, by contradiction, that Jφ,i has a separation
pair {a, b}. Observe that no two vertices of any fork gadget form a separation pair. Also note
that any vertex of a variable gadget is connected to si and ti by paths that do not include any
clause-vertex (i.e. a vertex representing a clause of the Not-all-equal 3-Sat) or any degree
3-vertex of a variable gadget. It follows that neither a nor b can be vertices of variable gadgets nor
they can be clause-vertices. Finally, since the pair {si, ti} is not a separation pair, a and b cannot
be the source and sink of Jφ,i. It follows that Jφ,i is triconnected. Suppose i < j. We define
the following disjoint paths: π1

1 and π1
2 connect u to si and u to ti, respectively; π

2
1 is defined by

the ordered sequence of directed edges (sisi+1, ..., sj−1sj) and similarly π2
2 = (titi+1, ..., tj−1, tj);

π3
1 and π3

2 connect v to sj and tj , respectively. We set π1 = π1
1 ∪ π2

1 ∪ π3
1 and π2 = π1

2 ∪ π2
2 ∪ π3

2

(with a slight abuse of notation). Observe that Ĵφ \π1 ∪π2 is connected, since, as observed above,
each Jφ,q is triconnected and since each eq,q+1 ̸∈ π1 ∪ π2 (q ∈ [1, h]). Hence, π3 can be any path

connecting u to v in Ĵφ \ π1 ∪ π2. □

Theorem 3 NT-st-Orientation is NP-hard for 4-graphs that are subdivisions of triconnected
graphs.

Proof: Graph Jφ is a 4-graph by construction and it is triconnected by Lemma 4. We show that
a non-transitive st-orientation of Gφ can be turned into a non-transitive st-orientation of Jφ (→)
and vice versa (←).

(→) Given a non-transitive st-orientationO′ ofGφ, we compute an orientationO of Jφ by extending
O′ as follows. For any i ∈ [1, h]:

• We orient the input edge incident to ti and si of the split gadget that we added in the
construction of Jφ so that it enters ti and exits si, respectively. The orientation of all the
other edges is given by the properties of the split gadget.

• We orient titi+1 from ti to ti+1 and sisi+1 from si to si+1. Also, we orient ei,i+1 from its
endpoint in Jφ,i to its endpoint in Jφ,i+1.

We have that DO(Jφ) has one source s1 and one sink th. Also, observe that for each orientation
of the input edge of the split gadget, the split gadget has no cycle. Since there is no edge directed
from a vertex in Jφ,i to a vertex in Jφ,j for any i, j ∈ [1, h] so that i > j, and since DO′(Gφ) had
no cycle, we have that O is an st-orientation. It remains to show that DO(Jφ) has no transitive
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edge. Let uv be an edge of DO(Jφ), where u ∈ Jφ,i to v ∈ Jφ,j (i, j ∈ [1, h]). If i = j, observe
that there is a path u⇝ v in DO′(Gφ) if and only if the same holds in DO(Jφ). Hence, only edges
of the split gadgets can be transitive in G, which is not possible, and thus uv is not transitive.
Otherwise, either uv = titi+1 or uv = sisi+1 or uv = ei,i+1. In the first two cases uv is not
transitive because there is no path connecting ti to ti+1 or si to si+1 different from edge uv.
Suppose uv = ei,i+1. If there exists a directed path u ⇝ v, then it must pass through sisi+1 or
titi+1. The first case is impossible, because there is no directed path connecting u to si. The
second case is also impossible, because there is no directed path connecting ti to v. Hence, uv is
not transitive and O is a non-transitive st-orientation of Jφ.

(←) Given a non-transitive st-orientation O of Jφ, we compute an orientation O′ of Gφ as follows.
We direct each edge in Gφ, which are all the edges with the exception of the ones incident to s and
t, as in O. We direct all the other edges entering t or exiting s. By Lemma 3 DO′(Gφ) has only
one source s and only one sink t. Let Gφ,i = Gφ ∩ Jφ,i. Since DO(Jφ) is non-transitive, each edge
e ∈ Gφ,i (i ∈ [1, h]) is not transitive. Also, since every edge incident to s or t has an end-vertex of
degree 2, these edges (which are the only ones not in Jφ) are not transitive. It follows that O′ is
a non-transitive st-orientation of Gφ. □

5 Conclusion and Open Problems

We studied the problem of finding st-orientations with at most k transitive edges. While this
problem was known to be para-NP-hard in the natural parameter k, we have shown that it remains
para-NP-hard also parameterized by k plus the diameter of the graph, and for k plus the maximum
vertex degree of the graph. On the positive side, we have described a fixed-parameter tractable
algorithm by treewidth. The algorithm may be easily adapted to handle other sets of constraints
in the sought orientation, for example, a prescribed number of sources and/or sinks. Several
interesting open problems stem from our research. Among them:

• Is there an FPT-algorithm for the kT-st-Orientation problem parameterized by treewidth
running in 2o(ω

2) · poly(n) time?

• Does kT-st-Orientation parameterized by treedepth admit a polynomial kernel?

• We have shown that finding non-transitive st-orientations is NP-hard for graphs of vertex
degree at most four. On the other hand, the problem is trivial for graphs of vertex degree at
most two. What is the complexity of the problem for vertex degree at most three? Similarly,
one can observe that the problem is easy for graphs of diameter at most two, while it remains
open the complexity for diameter in the interval [3, 5].

Finally, we find it interesting to further explore graph drawing scenarios in which the absence
of transitive edges can be exploited to compute effective visualizations of digraphs.
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