
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 29, no. 1, pp. 91–123 (2025)
DOI: 10.7155/jgaa.v29i1.2923

Constrained Planarity in Practice
Engineering the Synchronized Planarity Algorithm

Simon D. Fink 1 Ignaz Rutter 2

1Technische Universität Wien, Algorithms and Complexity Group, Austria
2University of Passau, Faculty of Computer Science and Mathematics, Germany

Submitted: May 2024 Accepted: May 2025 Published: May 2025

Article type: Regular Communicated by: Markus Chimani

Abstract. In the constrained planarity setting, we ask whether a graph admits a
planar drawing that additionally satisfies a given set of constraints. These constraints
are often derived from very natural problems; prominent examples are Level Pla-
narity, where vertices have to lie on given horizontal lines indicating a hierarchy, and
Clustered Planarity, where we in addition to the graph itself draw the boundaries
of clusters which recursively group the vertices in a crossing-free manner. Despite
receiving significant amount of attention and substantial theoretical progress on these
problems, only very few of the found solutions have been put into practice and evaluated
experimentally.
In this paper, we describe our implementation of the recent quadratic-time algorithm
by Bläsius et al. [8] for solving the problem Synchronized Planarity, which can be
seen as a common generalization of several constrained planarity problems, including
the aforementioned ones. Our experimental evaluation on an existing benchmark set
shows that even our baseline implementation outperforms all competitors by at least
an order of magnitude. We systematically investigate the degrees of freedom in the
implementation of the Synchronized Planarity algorithm for larger instances and
propose several modifications that further improve the performance. Altogether, this
allows us to solve instances with up to 100 vertices in milliseconds and instances with
up to 100 000 vertices within a few minutes.

Funded by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) under grant RU-1903/3-1

and by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029].
A preliminary version of this paper has appeared as S. D. Fink, I. Rutter, Constrained Planarity in Practice –

Engineering the Synchronized Planarity Algorithm in Proceedings of the Symposium on Algorithm Engineering and
Experiments (ALENEX 2024), pages 1–14, 2024, doi:10.1137/1.9781611977929.1.

Our source code is available at github.com/N-Coder/syncplan.

E-mail addresses: sfink@ac.tuwien.ac.at (Simon D. Fink) rutter@fim.uni-passau.de (Ignaz Rutter)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v29i1.2923
https://orcid.org/0000-0002-2754-1195
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.1137/1.9781611977929.1
https://github.com/N-Coder/syncplan
mailto:sfink@ac.tuwien.ac.at
mailto:rutter@fim.uni-passau.de
https://creativecommons.org/licenses/by/4.0/

92 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

1 Introduction

In many practical graph drawing applications we not only seek any drawing that maximizes
legibility, but also want to encode additional information via certain aspects of the underlying
layout. Examples are hierarchical drawings like organizational charts, where we encode a hierarchy
among vertices by placing them on predefined levels, clustered drawings, where we group vertices by
enclosing them in a common region, and animated drawings, where changes to a graph are shown in
steps while keeping a static part fixed. In practice, clustered drawings are for example UML diagrams,
where classes are grouped according to the package they are contained in, computer networks,
where devices are grouped according to their subnetwork, and integrated circuits, where certain
components should be placed close to each other. As crossings negatively affect the readability
of drawings [46, 51], we preferably seek planar, i.e. crossing-free, drawings. The combination of
these concepts leads to the field of constrained planarity problems, where we ask whether a graph
admits a planar drawing that satisfies a given set of constraints. This includes the problems Level
Planarity [42, 16], Clustered Planarity [11, 44, 27], and Simultaneous Embedding with
Fixed Edges (SEFE) [15, 9, 49], which respectively model the aforementioned applications; see
Figure 1. Formally, these problems are defined as follows.

Figure 1: Examples of constrained planarity problems: Level Planarity (a), Clustered
Planarity (b), SEFE (c).�

�

	

Problem Level Planarity

Given graph G, leveling function ℓ : V (G)→ N
Question Is there a planar drawing where each vertex v ∈ V (G) has y-coordinate ℓ(v)

and all edges are drawn y-monotone?�

�

	

Problem Clustered Planarity

Given graph G, rooted cluster tree T , cluster assignment function γ : V (G)→ V (T)
Question Is there a planar drawing where, for each cluster c ∈ V (T), we can add a

simple closed region that
1. encloses exactly the vertices mapped to c or one of its descendants in T , and
2. has a border that crosses each edge that connects a vertex within its interior to a

vertex on its outside exactly once, but no other edge or cluster region border?�

�

	

Problem SEFE

Given graphs G 1 , G 2 with a shared graph G = G 1 ∩G 2

Question Are there planar drawings of G 1 and G 2 that induce the same drawing of
their shared part G?

JGAA, 29(1) 91–123 (2025) 93

In the last years, constrained planarity problems, which include the ones above, received a lot
of attention in the field of Graph Drawing. Efficient algorithms were discovered for many of them,
while a few others turned out to be NP-complete; see [50] and [22] for an overview. In contrast to the
extensive theoretical considerations and the direct motivation by applications, only very few of the
found algorithms (many of which have a linear or at most quadratic asymptotic running time) have
been implemented and evaluated in practice. This also contrasts the wide variety of implementations
available for the different linear-time algorithms for ordinary, i.e., unconstrained planarity [45],
which have also been thoroughly assessed in terms of their practical running time [31, 14].

The recently introduced problem Synchronized Planarity [8] not only generalizes many
constrained planarity variants, among them in particular Level and Clustered Planarity as
well as variants of SEFE, but also has a comparatively simple quadratic-time solution. Akin to
the Goldberg and Tarjan push-relabel algorithm [36], it uses few and simple operations that can
be applied in arbitrary order. Through reductions from many other problems (see Figure 3 for an
overview), an implementation would also allow to solve other constrained planarity problems for
which no practical solution is available. This wide area of possible applications and the fact that the
algorithm offers several degrees of freedom make it an ideal starting point for algorithm engineering.

In this paper, we describe our implementation of the Synchronized Planarity algorithm,
which we evaluate by comparing its results and running times to those of two existing implementa-
tions for the Clustered Planarity problem. We complement the previous theoretical running
time analysis by Bläsius et al. [8] with practical measurements, highlighting which parts of the
algorithm take the most time. Based on this, we engineer the algorithm by analyzing how to best
employ the degrees of freedom present in the algorithm and by proposing algorithmic improvements
to overcome performance bottlenecks. Section 3 provides more background on constrained planarity
and Synchronized Planarity in particular, as well as giving an overview of previous practical
approaches to constrained planarity. In Section 4 we describe our implementation of Synchronized
Planarity and evaluate its performance in comparison with the two other available Clustered
Planarity implementations. We tune the running time of our implementation to make it practical
even on large instances in Section 5. We analyze the effects of our engineering in greater detail
in Section 6.

2 Preliminaries

We rely on some well-known concepts from the fields of graph drawing and planar graphs. We
only briefly define the most important terms here and refer to the theoretical description of the
implemented algorithm [8] for more comprehensive definitions. A more gentle introduction to the
concepts can also be found in Chapter 1 of the Handbook of Graph Drawing and Visualization [45].

We consider two planar (i.e., crossing-free) drawings equivalent if they define the same rotation
system, which specifies for each vertex its rotation, i.e., the cyclic order of the edges around the
vertex. An embedding is an equivalence class of planar drawings induced by this relation. An
embedding tree [8] is a PQ-tree [13] that describes all possible rotations of a vertex in a planar
graph; see Figure 2d. Its leaves correspond to the incident edges, while its inner nodes are either
Q-nodes, which dictate a fixed ordering of their incident subtrees that can only be reversed, or are
P-nodes, which allow arbitrary permutation.

A BC-tree describes the decomposition of a connected graph into its biconnected components,
which cannot be disconnected by the removal of a so-called cut-vertex. Each node of a BC-tree
represents either a cut-vertex or a maximal biconnected block. We refer to a vertex that is not
a cut-vertex as block-vertex. An SPQR-tree [24] describes the decomposition of a biconnected

94 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

(a)

(c)
(d)

(b)

Figure 2: A planar graph (a), its SPQR-tree (b) and the corresponding skeletons (c). Rigids are
highlighted in red, parallels in green, and series in blue. The embedding tree of the vertex marked
in blue (d). Small black disks are P-nodes, larger white disks are Q-nodes.

graph into its triconnected components, which cannot be disconnected by the removal of a so-called
split-pair of two vertices. Each inner node represents a skeleton, which is either a triconnected
minor whose planar embedding can only be mirrored (referred to as rigid skeleton), a split-pair of
two pole vertices connected by multiple subgraphs that can be permuted arbitrarily (called parallel
skeleton), or a cycle formed by split-pairs separating a cyclic sequence of subgraphs (called series
skeleton); see Figure 2c.

See also [30] for more details on embedding trees and SPQR-trees and their usage in the context
of Synchronized Planarity. All three kinds of trees can be computed in time linear in the size
of the given graph [12, 45, 38].

3 Related Work

In this section, we first give an overview over the historical development and conceptual relationships
of the main constrained planarity variants we consider in this paper. In addition to explaining the
theoretical framework of these relationships, Section 3.1 gives more background on the problems
SEFE and Clustered Planarity. Section 3.2 is dedicated to the Synchronized Planarity
problem and explains its quadratic solution by Bläsius et al. [8]. Finally, Section 3.3 gives an
overview over previous practical approaches to solving constrained planarity problems.

3.1 Constrained Planarity Problems

Schaefer [50, Figure 2] introduced a hierarchy on the various variants of constrained planarity that
have been studied in the past. Figure 3 shows a subset of this hierarchy, incorporating updates up
to 2015 by Da Lozzo [22, Figure 0.1]. Arrows indicate that the target problem either generalizes
the source problem or solves it via a reduction. In the version of Da Lozzo, the problems Strip,
Clustered and Synchronized Planarity as well as (Connected) SEFE still formed a frontier
of problems with unknown complexity, separating efficiently solvable problems from those that are
NP-hard. Since then many of these problems were settled in P, especially due to the Clustered
Planarity solution from 2019 by Fulek and Tóth [34]. The only problem from this hierarchy that
remains with an unknown complexity is SEFE. In this section, we want to give a short summary of
the history of Clustered Planarity and SEFE, which we see central to the field of constrained
planarity and which also serve as a motivation for Synchronized Planarity. Afterwards, we
will give a short summary of the algorithm we implement for solving the latter problem. We point
the interested reader to the original description [8] for full details.

JGAA, 29(1) 91–123 (2025) 95

ec-planar

Strip

Proper
T -level

Partitioned
2-page

Proper
Clustered
Level

Partial
rotation

Partially
Embedded Row-Column

Independent
NodeTrix

Partially PQ-
constrained

Strip
(Embedded)

Partitioned
T -coherent
2-page

(Con SEFE)

Clustered (c) Synchronized SEFE

Radial
Level

Level

Figure 3: Constrained planarity variants related to Synchronized Planarity, updated selection
from [22]. Problems and reductions marked in blue are used for generating test instances.

Recall that in SEFE, we are given two graphs that share some common part and we want to
embed both graphs individually such that their common parts are embedded the same way [15, 9, 49].
More general SEFE variants are often NP-complete, e.g., the case with three given graphs [35],
even if all share the same common part [3, 50]. In contrast, more restricted variants are often
efficiently solvable, e.g., when the shared graph is biconnected, a star, a set of cycles, or has a fixed
embedding [6, 10, 5]. The case where the shared graph is connected, which is called Connected
SEFE, was shown to be equivalent to the so-called Partitioned T -coherent 2-page Book
Embedding problem [6] and to be reducable to Clustered Planarity [1], all of which were
recently shown to be efficiently solvable [34]. In contrast to these results, the complexity of the
general SEFE problem with two graphs sharing an arbitrary common graph is still unknown.

Recall that in Clustered Planarity, the embedding has to respect a laminar family of
clusters, that is every vertex is assigned to some (hierarchically nested) cluster and an edge may
only cross a the border of a cluster’s region if it connects a vertex from the inside with one from the
outside [11, 44]; see Figure 4a for an example. Lengauer [44] studied and solved this problem as early
as 1989 in the setting where the clusters are connected. Feng et al. [27], who coined the term Clus-
tered Planarity, rediscovered this algorithm and asked the general question where disconnected
clusters are allowed. This question remained open for 25 years. In that time, polynomial-time
algorithms were found for many special-cases [2, 21, 20, 23, 32, 37] before Fulek and Tóth [34]
found an O((n+ d)8) solution in 2019, where d is the number of crossings between a cluster-border
and an edge leaving the cluster. Shortly thereafter, Bläsius et al. [8] gave a solution with running
time in O((n+ d)2) that works via a linear-time reduction to Synchronized Planarity.

3.2 Synchronized Planarity

In Synchronized Planarity, we are given a graph together with a set of pipes, each of which
pairs up two distinct vertices of the graph. Each pipe synchronizes the rotation of its two paired-up
vertices (its endpoints) in the following sense: We seek a planar embedding of the graph where for
each pipe ρ, the rotations of its endpoints u, v line up under the bijection φρ associated with ρ [8].
This ensures that, in any solution, we maintain planarity when we “join” and remove ρ (together with
u and v) by identifying the edges incident to u and v according to φρ. See Figure 4c for an example
instance of Synchronized Planarity, where joining all pipes again yields the graph of Figure 4a
(but in the process looses all clustering information). Formally, this problem is defined as follows.

96 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

(a) (c)

(b)

c

cd
d

a
b

a
be

e

f

f

g

h
g

h

1

1

1

1

2

2

2

2

3

3

3

4

4
5

5

5

6

6
6

6

6

7

7

7

8
8

8

9 9

9

10

10

10

10

11

11

11

11

12

12

Figure 4: A Clustered Planarity instance (a), its cluster tree (b), and its CD-tree representation
(c), which can also be interpreted as an instance of Synchronized Planarity with dashed edges
representing pipes whose bijections map edges with the same label to each other. To obtain the
component containing e, f in (c) from the clustered graph in (a), the complement of the orange
cluster was contracted into the orange vertex. The order of the edges around this orange vertex
now corresponds to the (reversed) order of edges leaving the orange cluster. The component of d, c
was obtained by separately contracting all vertices in the orange cluster into the orange vertex and
all vertices not within the blue cluster into the blue vertex. The component of a, b was obtain by
separately contracting all child clusters of the root cluster.

�

�

	

Problem Synchronized Planaritya

Given graph G and a set P, where each pipe ρ ∈ P consists of two distinct vertices
v1, v2 ∈ V (G) and a bijection φρ between the edges incident to v1 and those incident
to v2, and each vertex is part of at most one pipe

Question Is there a drawing of G where for each pipe ρ = (v1, v2, φρ), applying bijection
φρ to each element of the cyclic order of edges incident to v1 yields the cyclic order
of edges incident to v2?

aNote that we disregard the originally included Q-vertices here, as they can also be modeled using
pipes [8, Section 5].

The motivation for this “synchronization” can best be seen by considering the reduction from
Clustered to Synchronized Planarity. At each cluster boundary, we split the graph into
two halves: one where we contract the inside of the cluster into a single vertex and one where we
contract the outside into a single vertex. In a clustered planar embedding, the order of the edges
“leaving” one cluster (i.e. the rotation of its contracted vertex in the one half) needs to match the
order in which they “enter” the parent cluster (i.e. the the rotation of the corresponding contracted
vertex in the other half). This graph resulting from separately contracting each side of a cluster
boundary is called CD-tree [11]; see Figure 4c and [8, Figure 6] for an example. Using this graph,
the synchronization of rotations can easily be modeled via Synchronized Planarity by pairing
the two contracted vertices corresponding to the same cluster boundary with a pipe. Without this
synchronization, one would effectively embed all clusters separately without a guarantee that the
separate embeddings agree on the cyclic order in which edges cross cluster boundaries, i.e., that the
separate embeddings can be combined to a whole one.

JGAA, 29(1) 91–123 (2025) 97

Figure 5: The operations for solving Synchronized Planarity [8], Figure from [30]. Pipes are
indicated by orange dashed lines, their endpoints are shown as larger disks. Top: Two cut-vertices
paired-up by a pipe (left), the result of encapsulating their incident blocks (middle) and the bipartite
graph resulting from joining both cut-vertices (right). Middle: A block-vertex pipe endpoint (left)
that has a non-trivial embedding tree (middle) that is propagated to replace both the vertex and its
partner (right). Bottom, from left to right: The terminal, transitive, and toroidal case of paired-up
vertices with trivial embedding trees (blue) and how their pipes can be removed or replaced (red).

In the quadratic algorithm for solving Synchronized Planarity, a pipe is feasible if one of
the three following operation can be applied to remove it.

EncapsulateAndJoin If both endpoints of the pipe are cut-vertices, they are “encapsulated”
by collapsing each incident block to a single vertex to obtain two stars with paired-up
centers. Additionally, we split the original components at the two cut-vertices, so that each
of their incident blocks is retained as separate component with its own copy of the cut-vertex.
These copies are synchronized with the respective vertex incident to the original cut-vertex
representing the collapsed block. Now the cut-vertices can be removed by “joining” both
stars at their centers, i.e, by identifying their incident edges according to the given bijection;
see the top row of Figure 5.

PropagatePQ If one endpoint of the pipe is a block-vertex and has an embedding tree that not only
consists of a single P-node (i.e., it is non-trivial), a copy of this embedding tree is inserted
(“propagated”) in place of each respective pipe endpoint. The inner nodes of the embedding
trees are synchronized by pairing corresponding vertices with a pipe; see the middle row of
Figure 5. Note that, as Q-nodes only have a binary embedding decision, they can also easily
be synchronized via a 2-SAT formula instead of using pipes.

SimplifyMatching In the remaining case, at least one of the endpoints of the pipe is a block-vertex
but has a trivial embedding tree. If the vertex (or, more precisely, the parallel skeleton in
the SPQR-tree that completely defines its rotation) can respect arbitrary rotations, we can
simply remove the pipe. We call this the terminal case. When the other pole of the parallel is

98 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

also paired-up and has a trivial embedding tree (the transitive case), we “short-circuit” the
pipe across the parallel; see the bottom row of Figure 5. The only exception is if the pipe
matches the poles of the same parallel (the toroidal case), where we can again remove the
pipe without replacement or directly report a no-instance based on a simple check.

The algorithm then works by simply applying a suitable operation on an arbitrary feasible pipe
each step. Moreover, it can be shown that if a pipe is not feasible, then this is directly caused
by a close-by pipe with endpoints of higher degree [8, Lemma 3.5]. Especially, this means that
maximum-degree pipes are always feasible.

Each of the three operations runs in time linear in the degree of the removed pipe once the
embedding trees it depends on have been computed. This is dominated by the time spent on
computing the embedding tree, which is linear in the size of the considered biconnected component.
Every applied operation removes a pipe, but potentially introduces new pipes of smaller degree.
Bläsius et al. [8] show that the progress made by the removal of a pipe always dominates the
overhead of the newly-introduced pipes and that the number of operations needed to remove all
pipes is limited by the total degree of all paired-up vertices. Furthermore, the resulting instance
without pipes can be solved and embedded in linear time. An embedding of the input graph can
then be obtained by undoing all changes made to the graph in reverse order while maintaining the
found embedding. The algorithm thus runs in the following three simple phases:

1. While pipes are left, choose and remove an arbitrary feasible pipe by applying an operation.

2. Solve and embed the resulting pipe-free (reduced) instance.

3. Undo all applied operations while maintaining the embedding.

To gain more control over the order in which pipes are processed, we use a priority queue-based
approach for the pipe removal of phase (1). This approach is shown in Algorithm 1 and works
along the case distinction showing that there always is a feasible pipe, and thereby that all pipes
can be removed by a sequence of operations [8, Lemma 3.5]. We will use different ways of assigning
priority to pipes, e.g. by descending degree. Note that in Line 4 and Line 5, we detect that the
currently processed pipe is not feasible; see Figure 6. As we cannot process the current pipe in this
case, we instead increase the priority of (or directly process) the pipe ρ′ that blocks the current pipe
ρ from being feasible. Note that, in the former case, we always have deg(ρ′) > deg(ρ) [8, Lemma
3.5], so this cannot introduce infinite loops. This is also why processing pipes by decreasing degree
ensures that the current pipe is always feasible, and thus changing priorities is only needed when
using any other processing order.

3.3 Related Practical Work

Surprisingly, in contrast to their intense theoretical consideration, constrained planarity problems
have only received little practical attention so far. Of all variants, practical approaches to Clus-

ρ x′ ρ′
x

ρ x′ ρ′
x

Figure 6: Pipe ρ′ blocking the current pipe ρ from being feasible in Line 4 (left) and Line 5 (right)
of Algorithm 1.

JGAA, 29(1) 91–123 (2025) 99

Algorithm 1: Priority queue-based algorithm for removing all pipes.

while !pipes.empty() do
ρ← pipes.pop();
if ρ is cut-cut then

1 EncapsulateAndJoin(ρ); continue;

T ← embedding tree of block end x of ρ;
if T non-trivial then

2 PropagatePQ(ρ, T); continue;

x′ ← other pole of P-node of x;
if x′ unpaired then

3 SimplifyMatching(ρ); continue ; // terminal case

ρ′ ← pipe with endpoint x′;
if x′ is cut-vertex then

4 pipes.push(ρ); increasePriority(ρ′); continue;

if embedding tree T ′ of x′ is non-trivial then
5 pipes.push(ρ); PropagatePQ(ρ′, T ′); continue;

if ρ = ρ′ then
6 SimplifyMatching(ρ); // toroidal case

else
7 SimplifyMatching(ρ); // transitive case

tered Planarity were studied the most, although all implementations predate the first polynomial-
time solution and thus either have an exponential worst-case running time or cannot solve all
instances. Chimani et al. [17] studied the problem of finding maximal cluster planar subgraphs in
practice using an Integer Linear Program (ILP) together with a branch-and-cut algorithm, thereby
also obtaining the first ever practical test for c-planarity for general graphs. A later work [19]
strengthened the ILP for the special case of testing Clustered Planarity, further improving the
practical running time. The work by Gutwenger et al. [39] takes a different approach by using a
Hanani-Tutte-style formulation of the problem based on the work by Schaefer [50]. Unfortunately,
their polynomial-time testing algorithm cannot solve all instances and declines to make a decision
for some instances. The Hanani-Tutte-approach solved instances with up to 60 vertices and 8
clusters in up to half a minute, while the ILP approach only solves roughly 90% of these instances
within 10 minutes [39].

The only other constrained planarity variant for which we could find experimental results is
Partitioned 2-page Book Embedding. Angelini et al. [4] describe an implementation of the
SPQR-tree-based linear-time algorithm by Hong and Nagamochi [41], which solves instances with up
to 100 000 vertices and two clusters in up to 40 seconds. Unfortunately, their implementation is not
publicly available. For (Radial) Level Planarity, prototypical implementations were described
in the dissertations by Leipert [43] and Bachmaier [7], although in both cases neither further
information, experimental results, nor source code is available. The lack of an accessible and correct
linear-time implementation may be due to the high complexity of the linear-time algorithms [16].
Simpler algorithms with a super-linear running time have been proposed [40, 48, 33]. For these, we
could only find an implementation by Estrella-Balderrama et al. [26] for the quadratic algorithm by

100 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

Dataset # Vertices Density Components Clusters/Pipes d

C-OLD 1643 ≤59 (17.2) 0.9–2.2 (1.4) =1 ≤19 (4.2) ≤256 (34.0)
C-NCP 13 834 ≤500 (236.8) 0.6–2.9 (1.9) ≤48 (21.7) ≤50 (16.8) ≤5390 (783.3)
C-MED 5171 ≤103 (311.6) 0.9–2.9 (2.3) ≤10 (5.1) ≤53 (16.1) ≤7221 (831.8)

C-LRG 5096 ≤105 (15 214.1) 0.5–3.0 (2.4) ≤100 (29.8) ≤989 (98.8) ≤2 380 013 (44 788.7)
SEFE-LRG 1008 ≤104 (3800.0) 1.1–2.4 (1.7) =1 ≤20 000 (7600.0) ≤113 608 (34 762.4)
SP-LRG 1587 ≤105 (25 496.6) 1.3–2.5 (2.0) ≤100 (34.5) ≤20 000 (1467.4) ≤139 883 (9627.5)
LVL-LRG 1103 ≤105 (25 442.0) 0.9–2.0 (1.4) =1 ≤20 000 (1412.5) ≤103 401 (24 779.5)

Table 1: Statistics for our different Synchronized Planarity datasets, values in parentheses
are averages. Column # shows the number of instances while column d shows the total number of
cluster-border edge crossings or the total degree of all pipes, depending on the underlying instances.

Harrigan and Healy [40]. Unfortunately, this implementation has not been evaluated experimentally
and we were also unable to make it usable independently of its Microsoft Foundation Classes GUI,
with which it is tightly intertwined.

We are not aware of further practical approaches for constrained planarity variants. Note
that while the problems Partitioned 2-page Book Embedding and Level Planarity have
linear-time solutions, they are much more restricted than Synchronized Planarity (see Figure 3)
and have no usable implementations available. We thus focus our comparison on solutions to the
Clustered Planarity problem which, besides being a common generalization of both other
problems, fortunately also has all relevant implementations available.

4 Clustered Planarity in Practice

In this section, we shortly describe our C++ implementation of the Synchronized Planarity
algorithm by Bläsius et al. [8] and compare its running time and results on instances derived from
Clustered Planarity with those of the two existing implementations by Chimani et al. [17, 19]
and by Gutwenger et al. [39]. We base our implementation on the graph data structures provided
by the OGDF [18] and, as the only other dependency, use the PC-tree implementation by Fink et
al. [29] for the embedding trees. The PC-tree is a datastructure that is conceptually equivalent to
the PQ-tree we use as embedding tree, but is faster in practice [29].

The algorithm for Synchronized Planarity makes no restriction on how the next feasible
pipe should be chosen. For now, we will process the pipes by descending degree using Algorithm 1, as
this ensures that the current pipe is always feasible. The operations used for solving Synchronized
Planarity heavily rely on (bi-)connectivity information while also making changes to the graph
that may affect this information. As recomputing the information before each step would pose a
high overhead, we maintain this information in the form of a BC-forest (i.e. a collection of BC-trees).
To generate the embedding trees needed by the PropagatePQ and SimplifyMatching operations,
we implement the Booth-Lueker algorithm for testing planarity [13, 45] using PC-trees. We use
that, after processing all vertices of a biconnected component, the resulting PC-tree corresponds to
the embedding tree of the vertex that was processed last.

4.1 Evaluation Set-Up

We compare our implementation of Synchronized Planarity with the Clustered Planarity
implementations ILP by Chimani et al. [17, 19] and HT by Gutwenger at al. [39]. Both are written
in C++ and are part of the OGDF. The ILP implementation by Chimani et al. [17, 19] uses the

JGAA, 29(1) 91–123 (2025) 101

ABACUS ILP solver [25] provided with the OGDF. We refer to our Synchronized Planarity
implementation processing pipes in descending order of their degree as SP[d]. We use the embedding
it generates for yes-instances as certificate to validate all positive answers. For the Hanani-Tutte
algorithm, we give the running times for the modes with embedding generation and verification (HT)
and the one without (HT-f) separately. Note that HT-f only checks an important necessary, but not
sufficient condition and thus may falsely classify negative instances as positive, see [39, Figure 3]
and [32, Figure 16] for examples where this is the case. Variant HT tries to verify a positive answer
by generating an embedding, which works by incrementally fixing parts of a partial embedding and
subsequently re-running the test. This process may fail at any point, in which case the algorithm
can make no statement about whether the instance is positive or negative [39, Section 3.3]. We
note that, in any of our datasets, we neither found a case of HT-f yielding a false-positive result
nor a case of a HT verification failing. The asymptotic running time of HT-f is bounded by O(n6)
and the additional verification of HT adds a further factor of n [39].

We combine the Clustered Planarity datasets that were previously used for evaluations on
HT and ILP to form the set C-OLD [17, 19, 39]. We apply the preprocessing rules of Gutwenger at
al. [39] to all instances and discard instances that become trivial, non-planar or cluster-connected,
since the latter are easy to solve [23, 21]. This leaves 1643 instances; see Table 1. To create the
larger dataset C-NCP, we used existing methods from the OGDF to generate instances with up to
500 vertices and up to 50 clusters. This yields 15 750 instances, 13 834 out of which are non-trivial
after preprocessing. As this dataset turned out to contain only 10% yes-instances, we implemented
a new clustered-planar instance generator that is guaranteed to yield yes-instances. We use it on
random planar graphs with up to 1000 vertices to generate 6300 clustered-planar instances with up
to 50 clusters. Out of these, 5171 are non-trivial after preprocessing and make up our dataset C-MED.
We provide full details on the generation of our dataset at the end of this section.

We run our experiments on Intel Xeon E5-2690v2 CPUs (3.00 GHz, 10 Cores, 25 MB Cache)
with a memory usage limit of 6 GB. As all implementations are single-threaded, we run mul-
tiple experiments in parallel using one core per experiment. This allows us to test more in-
stances while causing a small overhead which affects all implementations in the same way. The
machines run Debian 11 with a 5.10 Linux Kernel. All binaries are compiled statically us-
ing gcc 10.2.1 with flags -O3 -march=native and link-time optimization enabled. We link
against slightly modified versions of OGDF 2022.02 and the PC-tree implementation by Fink
et al. [29]. The source code of the evaluated version of our implementation and all modifica-
tions are available at github.com/N-Coder/syncplan,1 while our dataset is on Zenodo with DOI
10.5281/zenodo.7896021. Our implementation will also be available as integrated part of the
OGDF starting with the next release following version 2023.09.

Details on Dataset Generation

The dataset C-OLD is comprised of the datasets P-Small, P-Medium, P-Large by Chimani and
Klein [19] together with PlanarSmallR (a version of PlanarSmall [17] with preprocessing applied),
PlanarMediumR and PlanarLargeR by Gutwenger et al. [39]. The preprocessing reduced the dataset
of Chimani and Klein [19] to 64 non-trivial instances, leading to dataset C-OLD containing 1643
instances in total.

The OGDF library can generate an entirely random (and thus usually non-cluster-planar)
clustering by selecting random subsets of vertices. It can also generate a random cluster-connected
clustering on a given graph by running a breadth-first search that is stopped at random vertices,

1It is also archived at Software Heritage with ID swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87.

https://github.com/N-Coder/syncplan
https://doi.org/10.5281/zenodo.7896021
https://doi.org/10.5281/zenodo.7896021
https://github.com/ogdf/ogdf/pull/242
https://archive.softwareheritage.org/swh:1:snp:0dae4960cc1303cc3575cf04924e19d664f8ad87;origin=https://github.com/N-Coder/syncplan

102 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

a

b

c

d

u v

(a) (b)

Figure 7: (a) Converting the subtree {a, b, c, d} with root a (shown in orange) into a cluster
will separate vertices u and v, as the edge bd (dashed) will also be part of the cluster. (b) A
clustered-planar graph with two clusters (in addition to the root cluster) that HT classifies as
“nonCPlanarVerified”.

forming new clusters out of the discovered trees. To also generate non-cluster-connected instances
using the same approach, we temporarily add the edges necessary to make a disconnected input
graph connected. For the underlying graphs of C-NCP, we use the OGDF to generate three
instances for each combination of n ∈ {100, 200, 300, 400, 500} nodes, m ∈ {n, 1.5n, 2n, 2.5n, 3n− 6}
edges, and d ∈ {10, 20, 30, 40, 50} distinct connected components. For each input graph, we
generate six different clusterings, three entirely random and three random clustered-planar, with
c ∈ {3, 5, 10, 20, 30, 40, 50} clusters. This yields 15 750 instances, 13 834 out of which are non-trivial
after preprocessing.

It turns out that still roughly 90% of these instances are not clustered-planar (see Table 2). This
is because the random BFS-subtree used to generate these clusters only ensures that the generated
cluster itself, but not its complement are connected. Thus, if the subgraph induced by the selected
vertices contains a cycle, this cycle may separate the outside of the cluster; see Figure 7a. To reliably
generate yes-instances, we implemented a third method for generating random clusterings as follows.
We first add temporary edges to connect and triangulate the given input graph. Afterwards, we
also generate a random subtree and contract it into a cluster. Each visited vertex is added to the
tree with a probability set according to the desired number of vertices per cluster. To ensure the
non-tree vertices remain connected, we only add vertices to the tree whose contraction leaves the
graph triangulated, i.e., that have at most two neighbors that are already selected for the tree. We
convert the selected random subtrees into clusters and contract them for the next iterations until
all vertices have been added to a cluster.

As we do not need multiple connected components to ensure the instance is not cluster-connected
for our Clustered Planarity instance generator, we used fewer steps for the corresponding
parameter, but extended the number of nodes up to 1000 for C-MED. The underlying graphs are
thus comprised of three instances for each combination of 1 ≤ n ≤ 1000 nodes with 0 ≡ n mod 100
(i.e. n is a multiple of 100), m ∈ {n, 1.5n, 2n, 2.5n, 3n − 6} edges, and d ∈ {1, 10, 25, 50} distinct
connected components. For each input graph, we generate three random clustered-planar clusterings
with an expected number of c ∈ {3, 5, 10, 20, 30, 40, 50} clusters. This yields 6300 instances which
are guaranteed to be clustered-planar, 5171 out of which are non-trivial after preprocessing and
make up our dataset C-MED.

4.2 Results

Table 2 shows the results of running the different algorithms. The dataset C-OLD is split in roughly
equal halves between yes- and no-instances and all algorithms yield the same results, except for
the 111 instances for which the ILP ran into our 5-minute timeout. The narrow inter-quartile

JGAA, 29(1) 91–123 (2025) 103

C-OLD C-NCP C-MED

ILP HT HT-f SP[d] ILP HT HT-f SP[d] ILP HT HT-f SP[d]

Y 732 792 792 792 181 1327 1534 1535 953 762 2696 5170
N 800 851 851 851 946 6465 6463 12 308 0 85 85 0

ERR 0 0 0 0 5214 0 0 0 1263 0 0 0
TO 111 0 0 0 7502 6051 5846 0 2955 4324 2390 1

Table 2: Counts of the results ‘yes’, ‘no’, ‘error’, and ‘timed out’ on C-OLD, C-NCP and C-MED.

0 20 40 60 80 100 120 140 160
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min
Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 8: Median running times on dataset C-OLD (a) together with the underlying scatter plot (b).
For each algorithm, we show running times for yes- and no-instances separately. Markers show
medians of bins each containing 10% of the instances. Shaded regions around each line show
inter-quartile ranges.

0 1000 2000 3000 4000 5000 6000
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 9: Median running times (a) and scatter plot (b) on dataset C-NCP.

104 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

0 1000 2000 3000 4000 5000 6000
Cluster-Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

Mode
ILP
HT
HT-f
SP[d]
Result
Y
N

(a) (b)

Figure 10: Median running times (a) and scatter plot (b) on dataset C-MED.

ranges in Figure 8 show that the running time for HT and SP[d] clearly depends on the number
of crossings between cluster boundaries and edges in the given instance, while it is much more
scattered for ILP. Still, all instances with less than 20 such crossings could be solved by ILP. For
HT, we can see that the verification and embedding of yes-instances has an overhead of at least an
order of magnitude over the non-verifying HT-f. The running times for HT on no-instances as well
as the times for HT-f on any type of instance are the same, showing that the overhead is solely
caused by the verification while the base running time is always the same. For the larger instances
in this test set, SP[d] is an order of magnitude faster than HT-f. For SP[d], we also see a division
between yes- and no-instances, where the latter can be solved faster, but also with more scattered
running times. This is probably due to the fact that the test can fail at any (potentially very early)
reduction step or when solving the reduced instance. Furthermore, we additionally generate an
embedding for positive instances, which may cause the gap between yes- and no-instances.

The running times on dataset C-NCP are shown in Figure 9. The result counts in Table 2 show
that only a small fraction of the instances are positive. With only up to 300 cluster-edge crossings
these instances are also comparatively small. The growth of the running times is similar to the one
already observed for the smaller instances in Figure 8. HT-f now runs into the timeout for almost
all yes-instances of size 200 or larger, and both HT and HT-f time out for all instances of size 1500
and larger. The ILP only manages to solve very few of the instances, often reporting an “undefined
optimization result for c-planarity computation” as error; see Table 2. The algorithms all agree on
the result if they do not run into a timeout or abort with an error, except for one instance that
HT classifies as negative while SP[d] found a (positive) solution and also verified its correctness
using the generated embedding as certificate. This is even though the Hanani-Tutte approach by
Gutwenger et al. [39] should answer “no” only if the instance truly is negative. Figure 7b shows a
minimal minor of the instance for which the results still disagree. We suspect that the issues with
both ILP and HT are implementation bugs and not a conceptual issue of the underlying approaches,
although we were not able to easily find fixes for either bug.

The running times on dataset C-MED with only positive instances shown in Figure 10 are in
accordance with the previous results. We now also see more false-negative answers from the HT

approach, which points to an error in its implementation; see also Table 2. The plots clearly show
that our approach is much faster than all others. As the Synchronized Planarity reduction
fails at an arbitrary step for negative instances, the running times of positive instances form an
upper bound for those of negative instances. As we also see verifying positive instances to obtain
an embedding as far more common use-case, we focus our following engineering on this case.

JGAA, 29(1) 91–123 (2025) 105

5 Engineering Synchronized Planarity

In this section, we study how degrees of freedom in the Synchronized Planarity algorithm
can be used to improve the running times on yes-instances. The algorithm makes little restriction
on the order in which pipes are processed, which gives great freedom to the implementation for
choosing the pipe it should process next. In Section 5.1 we investigate the effects of deliberately
choosing the next pipe depending on its degree and whether removing it requires generation of
an embedding tree. As mentioned by the original description of the Synchronized Planarity
algorithm, there are two further degrees of freedom in the algorithm, both concerning pipes where
both endpoints are block-vertices. The first one is that if both endpoints additionally lie in different
connected components, we may apply either PropagatePQ or (EncapsulateAnd)Join to remove
the pipe. Joining the pipe directly removes it entirely instead of splitting it into multiple smaller
ones, although at the cost of generating larger connected components. The second one is for
which endpoint of the pipe to compute an embedding tree when applying PropagatePQ. Instead
of computing only one embedding tree, we may also compute both at once and then use their
intersection. This preempts multiple following operations propagating back embedding information
individually for each newly-created smaller pipe. We study the effect of these two decisions in
Section 5.2. We investigate an alternative method for computing embedding trees in Section 5.3,
where we employ a more time-consuming algorithm that in return yields embedding trees for all
vertices of a biconnected component simultaneously instead of just for a single vertex. This new
approach is combined with the previously-considered degrees of freedom in Section 5.4. While each
subsection ends with its own short summary, we also restate our main take-aways in Section 5.5.

0 10ms 20ms 30ms 40ms 50ms
Enc.AndJoin Propagate Simplify Emb. Trees Solve Red. Embed

Figure 11: Average time spent on different operations for SP[d] on C-MED.

Initial Considerations

To gain a first overview over which parts could benefit the most from improvements, Figure 11
shows how the running time is distributed across different operations, averaged over all instances in
C-MED. It shows that with more than 20ms, that is roughly 40% of the overall running time, a large
fraction of time is spent on generating embedding trees, while the actual operations contribute only
a minor part of roughly 18% of the overall running time. 27% of time is spent on solving and
embedding the reduced instance and 15% is spent on undoing changes to obtain an embedding
for the input graph. Thus, the biggest gains can probably be made by reducing the time spent on
generating embedding information in the form of embedding trees. We use this as rough guideline
in our engineering process.

Dataset Generation

To tune the running time of our algorithm on larger instances, we increased the size of the generated
instances by a factor of 100 by changing the parameters of our own cluster-planar instance generator
to n ∈ {100, 500, 1000, 5000, 10 000, 50 000, 100 000}, d ∈ {1, 10, 100}, c ∈ {3, 5, 10, 25, 50, 100, 1000}

106 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

102 103 104 105 106

Number of Cluster-Border Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a)
102 103 104 105 106

Number of Cluster-Border Edge Crossings

0%

10%

20%

30%

40%

50%

60%

70%

Ti
m

ed
-o

ut
 In

st
an

ce
s

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]

SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 12: C-LRG median absolute running times (a) and fraction of timeouts (b). Each marker
again corresponds to a bin containing 10% of the instances.

101 102 103 104 105

Number of Cluster-Border Edge Crossings

105

107

109

1011

1013

To
ta

l T
im

e
[n

s]

SP[d] runtime
3.8 x1.3

3.8 x1.54

3.8 x2.0

Figure 13: Scatterplot and estimate for SP[d] running time growth behavior on C-LRG.

102 103 104 105

Number of Cluster-Border Edge Crossings

8
10

9
10

1

1 1
10

1 2
10

Re
la

tiv
e

Ru
nt

im
e

SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]

(a)
102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[d]

(b)

Figure 14: Relative running times when (a) sorting by pipe degree or applicable operation and
(b) when handling pipes between block-vertices via intersection or join. Note the different scales on
the y-axis.

JGAA, 29(1) 91–123 (2025) 107

for dataset C-LRG. This yields 6615 instances, out of which 5096 are non-trivial after preprocessing;
see Table 1. For the test runs on these large instances, we increase the timeout to 1 hour.

Figure 12a shows the result of running our baseline variant SP[d] of the Synchronized
Planarity algorithm (together with selected further variants of the algorithm from subsequent
sections) on dataset C-LRG. Note that, because the dataset spans a wide range of instance sizes
and thus the running times also span a range of different magnitudes, the plot uses a log scale for
both axes. Figure 12b shows the fraction of runs that timed out for each variant. To get a rough
estimate of the practical runtime growth behavior, we fit a polynomial to the runtime data shown
in Figure 13 and thereby find the running time growth behavior to be similar to d1.5, where d is
the number of crossings between edges and cluster borders.

5.1 Pipe Ordering

Recall that, to be able to deliberately choose the next pipe, we use a priority queue of all pipes
in the current instance in Algorithm 1, where the ordering function can be configured. Note that
the topmost pipe from this heap may not be feasible, in which case we will give priority to the
close-by pipe of higher degree that blocks the current pipe from being feasible (see Figure 6).
We compare the baseline variant SP[d] sorting by descending (i.e. largest first) degree with the
variant SP[a] sorting by ascending degree, and SP[r] using a random order. Note that for these
variants, the ordering does not depend on which operation is applicable to a pipe or whether this
operation requires the generation of an embedding tree. To see whether making this distinction
affects the running time, we also compare the variants SP[d+c], which prefers to process pipes on
which EncapsulateAndJoin can be applied, and SP[d-c], which defers such pipes to the very end,
processing pipes requiring the generation of embedding trees first.

To make the variants easier to compare, Figure 14a shows running times relative to that of the
baseline SP[d]. Note that we do not show the median of the last bin, in which up to 70% of the
runs timed out, while this number is far lower for all previous bins; see Figure 12b. Figure 14a shows
that the median running times differ by less than 10% between these variants. The running time
of SP[r] seems to randomly alternate between being slightly slower and slightly faster than SP[d].
SP[d] is slightly slower than SP[a] for all bins except the very first and very last, indicating a slight
advantage of processing small pipes before bigger ones on these instances. Interestingly, SP[d] is also
slower than both SP[d+c] and SP[d-c] for all bins. The fact that these two variants have the same
speed-ups indicates that EncapsulateAndJoin should not be interleaved with the other operations,
while it does not matter whether it is handled first or last. Still, the variance in relative running
times is high and none of the variants is consistently faster on a larger part of the instances. To
summarize, the plots show a slight advantage for not interleaving operation EncapsulateAndJoin

with the others or sorting by ascending degree, but this advantage is not significant in the statistical
sense; see Section 6.2. We keep SP[d] as the baseline for our further analysis.

5.2 Pipes with two Block-Vertex Endpoints

Our baseline always processes pipes where both endpoints are block-vertices by applying Propa-
gatePQ or SimplifyMatching based on the embedding tree of an arbitrary endpoint of the pipe.
Alternatively, if the endpoints lie in different connected components, such pipes can also be joined
directly by identifying their incident edges as in the second step of EncapsulateAndJoin. This
directly removes the pipe entirely instead of splitting into further smaller pipes, although it also
results in larger connected components. We enable this joining in variant SP[d b]. As a second

108 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

alternative, we may also compute the embedding trees of both block-vertices and then propagate
their intersection. This preempts the multiple following operations propagating back embedding
information individually for each newly-created smaller pipe. We enable this intersection in variant
SP[d i]. Variant SP[d bi] combines both variants, preferring the join and only intersecting if the
endpoints are in the same connected component. We compare the effect of differently handling pipes
with two block-vertex endpoints in variants SP[d b], SP[d i] and SP[d bi] with the baseline
SP[d], which computes the embedding tree for an arbitrary endpoint and only joins pipes where
both pipes are cut-vertices.

Figure 14b shows that SP[d b] (and similarly SP[d bi]) is faster by close to 25% on instances
with less than 1000 cluster-border edge crossings, but quickly grows 5 times slower than SP[d] for
larger instances. This effect is also visible in the absolute values of Figure 12a. This is probably
caused by the larger connected components (see the last column of Table 3), which make the
computation of embedding trees more expensive. Only inserting an embedding tree instead of
the whole connected component makes the embedding information of the component directly
available in a compressed form without the need to later process the component in its entirety
again. Figure 14b also shows that SP[d i] is up to a third slower than SP[d], indicating that
computing both embedding trees poses a significant overhead while not yielding sufficiently more
information to make progress faster. The running times of SP[d bi] being very similar to those of
SP[d b] can be explained by most pipes between block vertices having their endpoints in different
connected components. Thus, most of them can directly be joined instead of using a PropagatePQ

that would result in embedding trees being intersected.

We also evaluated combinations of the variants from this section with the different orderings
from the previous section, but observed no notable differences in running time behavior. The effects
of the variants from this section always greatly outweigh the effects from the different orderings. To
summarize, as the plots only show an advantage of differently handling pipes between block-vertices
for small instances, but some strong disadvantages especially for larger instances, we keep SP[d] as
our baseline.

Algorithm 2: Modified algorithm for removing all pipes using SPQR-trees.

while !pipes.empty() do
while !cut-cut-pipes.empty() do

EncapsulateAndJoin (cut-cut-pipes.pop());

B ← biconnected component of one endpoint of pipes.top();
S ← SPQR-tree of B;
for block-block pipe ρ with endpoint x in B do

T ← embedding tree of x derived from S;
apply remainder of Algorithm 1 starting with the if-condition of Line 2;

5.3 Batched Embedding Tree Generation

Our preliminary analysis showed that the computation of embedding trees consumes a large fraction
of the running time (see Figure 11), which cannot be reduced significantly by using the degrees
of freedom of the algorithm studied in the previous two sections. To remedy the overhead of
recomputing embedding trees multiple times we now change the algorithm to no longer process

JGAA, 29(1) 91–123 (2025) 109

102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d]
SP[s]

(a)
102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 15: Relative running times for (a) SPQR-tree batched embedding tree generation and (b)
for different variants thereof.

pipes one-by-one, but to process all pipes of a biconnected component in one batch. This is
facilitated by an alternative approach for generating embedding trees not only for a single vertex,
but for all vertices of a biconnected component. The embedding tree of a vertex v can be derived
from the SPQR-tree using the approach described by Bläsius et al. [12]: Each occurrence of v in a
parallel skeleton of the SPQR-tree corresponds to a (PQ-tree) P-node in the embedding tree of v,
each occurrence in a rigid skeleton to a (PQ-tree) Q-node. This derivation can be done comparatively
quickly, in time linear in the degree of v. Thus, once we have the SPQR-tree of a biconnected
component available, we can apply all currently feasible PropagatePQ and SimplifyMatching

operations in a single batch with little overhead. The SPQR-tree computation takes time linear in
the size of the biconnected component, albeit with a larger linear factor than for the linear-time
planarity test that yields only a single embedding tree. In a direct comparison with the planarity
test, this makes the SPQR-tree the more time-consuming approach.

Our modified procedure for removing all pipes using this batched embedding tree computation
based on SPQR-trees is shown in Algorithm 2. Note that we can also derive the embedding tree T ′

used in Line 5 of the re-used Algorithm 1 from S.
We use Algorithm 2 in variant SP[s]. Figures 12a and 15a show that for small instances, this

yields a slowdown of close to a third. Showing a behavior inverse to SP[d b], SP[s] grows faster for
larger instances and its speed-up even increases to up to 4 times as fast as the baseline SP[d]. This
makes SP[s] the clear champion of all variants considered so far. We will thus use it as baseline for
our further evaluation, where we combine SP[s] with other previously considered flags.

5.4 SPQR-Batch Variations

Figure 15b switches the baseline between the two variants shown in Figure 15a and additionally
contains combinations of the variants from Section 5.2 with the SPQR-batch computation. As in
Figure 14b, the intersection of embedding trees in SP[s i] is consistently slower, albeit with a
slightly smaller margin. The joining of blocks in SP[s b] also shows a similar behavior as before,
starting out 25% faster for small instances and growing up to 100% slower for larger instances.
Again, this is probably because large connected components negatively affect the computation of
SPQR-trees. Still, the median of SP[s b] is consistently faster than SP[d]. Different to before,
SP[s bi] is now faster than SP[s b], making it the best variant for instances with up to 5000
cluster-border edge crossings. This is probably because in the batched mode, there is no relevant
overhead for obtaining a second embedding tree, while the intersection does preempt some following

110 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

operations. To summarize, for instances up to size 5000, SP[s bi] is the fastest variant, which is
outperformed by SP[s] on larger instances. This can also be seen in the absolute running times in
Figure 12a, where SP[s] is more than an order of magnitude faster than SP[d b] on large instances.

5.5 Summary

In this section, we studied how degrees of freedom in the Synchronized Planarity algorithm can
be used to improve the running times on yes-instances. We investigated deliberately choosing the
order in which pipes are processed (Section 5.1), handling block-block pipes through direct joins or
by intersecting their embedding trees (Section 5.2), and combining these with a more costly SPQR-
tree-based approach that yields multiple embedding trees at once (Sections 5.3 and 5.4). Regarding
the first point, we found no major advantage in choosing pipes in a certain order. While joining
block-block pipes yields a small advantage on small instances, this turns into a strong disadvantage
for larger instances. This is probably due to connected components growing larger through the
joins, thus making the embedding tree calculation even more costly. Similarly, computing and
intersecting embedding trees for both endpoints of a pipe noticeably increases the overhead spent
on their generation, while also not making sufficiently more progress to compensate for this.

The biggest improvement can be seen by using SPQR-trees to compute multiple embedding
trees at once. While the more costly computation is still noticeable for small instances, this is
quickly outweighed for larger instances as components have to be processed in their entirety fewer
times. For small instances, we found that the additional overhead can be more than compensated
by using the speed-up of joining block-block pipes only on these instances. In conclusion, for
Synchronized Planarity instances derived from Clustered Planarity, the ordering of pipes
has no relevant effect, embedding trees should clearly always be computed in batches via SPQR-trees,
while block-block pipes can optionally be handled specially on sufficiently small instances.

6 Further Analysis

To strengthen our conclusions drawn from the results in the previous section, we will in this section
provide further in-depth analysis of the runtime behavior of the different variants. Furthermore, we
analyze their performance on three further datasets generated from entirely different problems to
give a more general conclusive judgement. To gain more insights into the runtime behavior, we
measured the time each individual step of the algorithm takes when using the different variants.
An in-depth analysis of this data is given in Section 6.1, where Figure 16 also gives a more detailed
visualization of per-step timings. The per-step data corroborates that the main improvement of
faster variants is greatly reducing the time spent on the generation of embedding trees, at the cost
of slightly increased time spent on the solve and embed phases.

To further verify our ranking of variants’ running times from the previous section, we also use
a statistical test to check whether one variant is significantly faster than another. The results
presented in Section 6.2 underline our previous results, showing that pipe ordering has no significant
effect while the too large connected components and batched processing of pipes using SPQR-trees
significantly change the running time.

The results of the three further datasets SEFE-LRG, SP-LRG, and LVL-LRG are presented in
Section 6.3 and mostly agree with the results on C-LRG, with SP[d b] clearly being the slowest and
SP[s] being the fastest on large instances. The main difference is the magnitude of the overhead
generated by large connected components for variants with flag [b].

JGAA, 29(1) 91–123 (2025) 111

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

1.67min

3.33min

5min

6.7min

8.3min

Ti
m

e

(a) Algorithm Step
Timeouts
Reduce from Cluster
Make Reduced
Solve Red.
Embed
Verify

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

50s

1.67min

2.5min

3.33min

Ti
m

e

(b) Step of Make Reduced
EncapsulateAndJoin
JoinBlocks
Propagate(block)
Propagate(cut)
Simplify(terminal)
Simplify(transitive)
ET: Propagate(block)
ET: Propagate(cut)
ET: Simplify(terminal)
ET: Simplify(transitive)
Batch SPQR

SP[s b]
SP[s bi]

SP[s i]
SP[s]

0

10s

20s

30s

40s

50s

1min

Ti
m

e

(c) Step of Batch SPQR
Compute SPQR
Propagate(block)
Propagate(cut)
Simplify(terminal)
Simplify(transitive)
ET: Propagate(block)
ET: Propagate(cut)
ET: Simplify(terminal)
ET: Simplify(transitive)

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

1s

2s

3s

Ti
m

e

(d) Step of Solve Red.
MakeWheels
Compute SPQR
Derive SAT
Solve SAT
Embed SPQR
Apply Embedding

SP[d bi]

SP[d b]
SP[d i]

SP[r]
SP[a]

SP[d]
SP[d+c]

SP[d-c]
SP[s b]

SP[s bi]

SP[s i]
SP[s]

0

5s

10s

15s

20s

25s

Ti
m

e

(e) Step of Embed
Undo Reduction
Undo ConvertSmall
Undo MakeWheel
Undo Encapsulate
Undo Join(blocks)
Undo Join(cuts)
Undo Join(small)
Undo Propagate
Undo Simplify

Figure 16: The average running time of our different Synchronized Planarity variants.

112 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

M
od
e

To
ta
l T

im
e

M
ak
e

R
ed
uc
ed

So
lv
e

R
ed
uc
ed

E
m
be
d

E
nc
.A
nd
-

Jo
in

P
ro
pa
ga
te

Si
m
pl
ify

C
om

pu
te

E
m
b.
Tr
ee

U
nd
o

Si
m
pl
ify

#
Si
m
pl
ify

O
pe
ra
ti
on
s

M
ax
. B

ic
on
.

Si
ze

SP[d] 142.68 133.08 0.82 8.78 0.25 5.00 13.79 91.34 5.64 1811 2780
SP[d b] 197.17 194.72 0.99 1.46 0.63 1.36 1.53 186.18 0.42 652 13 021
SP[s] 86.57 57.75 1.25 27.56 0.57 9.84 22.38 7.61 18.03 2696 2890
SP[s b] 93.07 79.25 3.55 10.26 2.92 4.29 12.74 46.31 5.46 1421 22 965
SP[s bi] 81.32 68.90 3.09 9.32 2.51 3.79 11.52 41.16 4.84 1448 23 284

Table 3: Average values for different variants of SP on dataset C-LRG. All values, except for the
counts in the last two columns, are running times in seconds. The first data column shows the
average total running time, followed by how this is split across the three phases. The following
four columns show the composition of the running time of the “Make Reduced” step. The last
three columns detail information about the “Undo Simplify” step in the “Embed” phase, and the
maximum size of biconnected components in the reduced instance.

6.1 Detailed Runtime Profiling

Table 3 shows the per-step running time information aggregated for variants studied in the previous
section. Figure 16 in greater detail shows how the running time spent is split on average across the
different steps of the algorithm (Figure 16a) and then also further drills down on the composition
of the individual steps that make the instance reduced (Figure 16b), solve the reduced instance
(Figure 16d), and then derive a solution and an embedding for the input instance by undoing
all changes while maintaining the embedding (Figure 16e). For variants that use the SPQR-tree
for embedding information generation, we also analyze the time spent on the steps of this batch
operation (Figure 16c). Note that we do not have these measurements available for runs that timed
out. To ensure that the bar heights still correspond to the actual overall running times in the
topmost plot, we add a bar corresponding to the time consumed by timed-out runs on top. This
way, ordering the bars by height yields roughly the same order of variants as we already observed
in Figure 12a.

Figure 16b clearly shows that the majority of time during the reduce step is spent on generating
embedding information, either in the form of directly computing embedding trees (bars prefixed
with “ET”) or by computing SPQR trees. This can also be seen by comparing column “Make
Reduced” in Table 3 with column “Compute Emb Tree”. Only for the fastest variants, those with
flag [s] and without [b], the execution of the actual operations of the algorithm becomes more
prominent over the generation of embedding information in Figure 16c. Here, the terminal case
of the SimplifyMatching operation (described in the bottom left part of Figure 5) now takes the
biggest fraction of time, and actually also a bigger absolute amount of time than for the other,
slower variants with flag [b] enabled. This is probably because, instead of being joined as with
flag [b] enabled, here pipes between block-vertices are split by PropagatePQ into multiple smaller
pipes, which then need to be removed by SimplifyMatching. This leads to the variants without [b]
needing, on average, roughly two to three times as many SimplifyMatching applications as those
with [b]; see Table 3.

The larger biconnected components caused by [b] may also be the reason why the insertion of
wheels takes a larger amount of time for variants with [b] in the solving phase shown in Figure 16d.
When replacing a cut-vertex by a wheel, all incident biconnected components with at least two

JGAA, 29(1) 91–123 (2025) 113

edges incident to the cut-vertex get merged. Updating the information stored with the vertices of
the biconnected components is probably consuming the most time here, as undoing the changes by
contracting the wheels is again very fast. Other than the “MakeWheels” part, most time during
the solving phase is spent on computing SPQR trees, although both is negligible in comparison to
the overall running time.

The running times of the embedding phase given in Figure 16e show an interesting behavior
as they increase when the “Make Reduced” phase running time decreases, indicating a potential
trade-off to be made; see also the “Embed” column in Table 3. As the maximum time spent on the
“Make Reduced” phase is still slightly larger, variants where this phase is faster while the embedding
phase is slower are still overall the fastest. The biggest contribution of running time in the latter
phase is the undoing of SimplifyMatching operations, which means copying the embedding of one
endpoint of a removed pipe to the other. The time spent here roughly correlates with the time
spent on applying the SimplifyMatching operations in the first place (see Table 3).

To summarize, the per-step data corroborates that the main improvement of faster variants
is greatly reducing the time spent on the generation of embedding trees, at the cost of slightly
increased time spent on the solve and embed phases. Flags [s] and [b] have the biggest impact on
running times, while flag [i] and even more so the processing order of pipes do not seem to have
a large influence on the overall running time. While the variants with [s] clearly have the fastest
overall running times, there is some trade-off between the amounts of time spent on different phases
of the algorithm when toggling the flag [b].

6.2 Statistical Significance

To test whether one variant is (in the statistical sense) significantly faster than another, we use the
methodology proposed by Radermacher [47, Section 3.2] for comparing the performance of graph
algorithms. For a given graph G and two variants of the algorithm described by their respective
running times fA(G), fB(G) on G, we want to know whether we have a likelihood at least p that
the one variant is faster than the other by at least a factor ∆. To do so, we use the binomial
sign test with advantages as used by Radermacher [47], where we fix two values p ∈ [0, 1] and
∆ ≥ 1, and study the following hypothesis given a random graph G from our dataset: Inequality
fA(G) ·∆ < fB(G) holds with probability π, which is at least p. The respective null hypothesis
is that the inequality holds with probability less than p. Note that this is an experiment with
exactly two outcomes (the inequality holding or not), which we can independently repeat on a
sequence of n graphs and obtain the number of instances k for which the inequality holds. Using
the binomial test, we can check the likelihood of obtaining at most k successes by drawing n times
from a binomial distribution with probability p. If this likelihood is below a given significance level
α ∈ [0, 1], that is the obtained result is unlikely under the null hypothesis, we can reject the null
hypothesis that the inequality only holds with a probability less than p.

Fixing the significance level to the commonly-used value α = 0.05, we still need to fix values for p
and ∆ to apply this methodology in practice. We will use three different values for p ∈ [0.25, 0.5, 0.75],
corresponding to the advantage on a quarter, half, and three quarters of the dataset. To obtain
values for ∆, we will split our datasets evenly into two halves Gtrain and Gverify, using Gtrain to
obtain an estimate for ∆ and Gverify to verify this value. For a given value of p, we set ∆′ to the
largest value such that fA(G) ·∆′ < fB(G) holds for p · |Gtrain| instances. To increase the likelihood
that we can reject the null hypothesis in the verification step on Gverify, we will slightly discount
the obtained value of ∆′, using ∆ = min(1, c ·∆′) instead with c set to 0.75.

Applying this methodology, Figure 17 compares the pairwise advantages of the variants from

114 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.25

SP[d b]

SP[d i]

SP[r]

SP[a]

SP[d]

SP[d+c]

SP[d-c]

3.5

4.8 1.1 1 1 1 1

5.1 1.2 1 1 1 1

4.8 1.2 1 1 1 1

5.1 1.2 1 1 1 1

5.1 1.3 1 1 1 1

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.5

1.8

2.3 1

2.5 1 1 1

2.4 1

2.6 1 1 1

2.7 1 1 1 1 1

SP
[d

 b
]

SP
[d

 i]

SP
[r]

SP
[a

]

SP
[d

]

SP
[d

+c
]

SP
[d

-c
]

p = 0.75

1

1

1.1

1.1 1

1.1 1

1.2 1

Figure 17: Advantages of variants without flag [s] on C-LRG instances of size at least 5000. Blue
cell backgrounds indicate significant values, while in cells with white background, we were not able
to reject the null-hypothesis with significance α = 0.05. Empty cells indicate that the fraction
where one algorithm is better than the other is smaller than p.

Sections 5.1 and 5.2. We see that SP[d i] and especially SP[d b] are significantly slower than the
other variants: for the quarter of the dataset with the most extreme differences, the advantage rises
up to a 5-fold speed-up for other variants, while slight advantages still persist when considering
three quarters of instances. Conversely, not even on a quarter of instances are SP[d i] and SP[d

b] faster than other variants. Comparing the remaining variants with each other, we see that each
variant has at least a quarter of instances where it is slightly faster than the other variants, but
always with no noticeable advantage, that is ∆ = 1. This is not surprising as the relative running
times are scattered evenly above and below the baseline in Figure 14a. For half of the dataset,
SP[d-c] is still slightly faster than other variants, while no variant from Section 5.1 is faster than
another for at least three quarters of instances. To summarize, our results here corroborate the
findings from Sections 5.1 and 5.2, with SP[d i] and SP[d b] as the clearly slowest variants. While
there is no clear winner among the other variants, at least SP[d-c] is slightly faster than the others
on half of the dataset, but still has no noticeable advantage.

Figures 18a and 18b compare the pairwise advantages of the variants from Sections 5.3 and 5.4
(see also Figure 15b) for instances with more and less than 5000 cluster-border edge crossings,
respectively. For the larger instances of Figure 18a, the variants with flag [s] outperform SP[d]

on at least 75% of instances, with advantages as high as a factor of 5 on at least a quarter of
instances. Furthermore, SP[s] outperforms the variants with additional flags [b] and [i] on at least
half of all instances. Considering 75% of all instances, the only significant result is that SP[s bi]

outperforms SP[s b] but with no advantage, i.e. ∆ = 1. For the smaller instances of Figure 18b,
the comparison looks vastly different. Here, SP[s bi] outperforms all other variants on at least
75% of instances, although its advantage is not large, with only up to 1.6 even on the most extreme
quarter of the dataset. Furthermore, variants SP[d] and SP[s b] outperform variants SP[s i] and
SP[s] on half of the dataset, but again with no noticeable advantage, that is ∆ = 1. To summarize,
our results are again in accordance with those from Sections 5.3 and 5.4, where for large instances
variant SP[s] is the fastest, whereas for smaller instances SP[s bi] is superior.

JGAA, 29(1) 91–123 (2025) 115

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.25

SP[d]

SP[s b]

SP[s bi]

SP[s i]

SP[s]

3.5 1

4.4 1.1 1 1

4.5 1.6 1.3

5.3 2 1.6 1.1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]
p = 0.5

1.5

1.8 1

2.3 1.1 1

3 1.4 1.1 1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.75

1

1 1

1.2

1.6 1 1

(a)

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.25

SP[d]

SP[s b]

SP[s bi]

SP[s i]

SP[s]

1 1 1

1.4 1.3 1.2

1.6 1 1.5 1.4

1 1

1 1 1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.5

1 1

1 1 1

1 1 1.2 1

1

SP
[d

]

SP
[s

 b
]

SP
[s

 b
i]

SP
[s

 i]

SP
[s

]

p = 0.75

1

1 1 1 1

(b)

Figure 18: Advantages of variants with flag [s] on C-LRG instances of size at least 5000 (a) and at
most (b) 5000.

116 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

102 103 104 105 106

Number of Cluster-Border Edge Crossings

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a) 102 103 104 105

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 19: Absolute (a) and relative (b) running times with regard to SP[d] for C-LRG.

101 102 103 104 105

Total Pipe Degree

1ms

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a) 101 102 103 104

Total Pipe Degree

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 20: Absolute (a) and relative (b) running times with regard to SP[d] for SP-LRG.

103 104 105

Total Pipe Degree

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a) 103 104

Total Pipe Degree

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 21: Absolute (a) and relative (b) running times with regard to SP[d] for SEFE-LRG.

103 104 105

Number of Cluster-Border Edge Crossings

10ms

100ms

1s

10s

1.67min

16.7min

To
ta

l T
im

e

SP[d b]
SP[d]
SP[s bi]
SP[s]

(a) 103 104

Number of Cluster-Border Edge Crossings

0

¼

½

¾

1

1

2

4

Re
la

tiv
e

Ru
nt

im
e

SP[d bi]
SP[d b]
SP[d i]
SP[r]
SP[a]
SP[d]
SP[d+c]
SP[d-c]
SP[s b]
SP[s bi]
SP[s i]
SP[s]

(b)

Figure 22: Absolute (a) and relative (b) running times with regard to SP[d] for LVL-LRG.

JGAA, 29(1) 91–123 (2025) 117

6.3 Other Problem Instances

In addition to the Clustered Planarity dataset used up to now we also generate three further
datasets from different problems. The first dataset uses the reduction from Connected SEFE
indicated in Figure 3. We do so by generating a random connected and planar embedded graph as
shared graph. Each exclusive graph contains further edges which are obtained by randomly splitting
the faces of the embedded shared graph until we reach a desired density. For the shared graphs, we
generate three instances for each combination of n ∈ {100, 500, 1000, 2500, 5000, 7500, 10 000}
nodes and m ∈ {n, 1.5n, 2n, 2.5n} edges. For b ∈ {0.25, 0.5, 0.75, 1}, we then add (3n− 6−m) · b
edges to each exclusive graph, i.e., the fraction b of the number of edges that can be added until
the graph is maximal planar. We also repeat this process three times with different initial random
states for each pair of shared graph and parameter b. This leads to the dataset SEFE-LRG containing
1008 instances; see Table 1.

We also generate a dataset of Synchronized Planarity instances by taking a random planar
embedded graph and adding pipes between vertices of the same degree, using a bijection that
matches their current rotation. The underlying graphs are comprised of three instances for each
combination of n ∈ {100, 500, 1000, 5000, 10 000, 50 000, 100 000} nodes, m ∈ {1.5n, 2n, 2.5n}
edges, and c ∈ {1, 10, 100} distinct connected components. Note that we do not include graphs
that would have no edges, e.g., those with n = 100 and c = 100. For each input graph, we generate
three random Synchronized Planarity instances with p ∈ {0.05n, 0.1n, 0.2n} pipes. This leads
to the dataset SP-LRG containing 1587 instances; see Table 1.

Finally, we generate a dataset derived from proper (Radial) Level Planarity instances. To
do so, we start with a random, maximal embedded Level Planarity instance (optionally also
adding edges between the first and last vertices of adjacent levels in the radial case), from which
we delete edges until we reach the desired density. We generate six instances (three radial and
three plane) for each combination of n ∈ {100, 500, 1000, 5000, 10 000, 50 000, 100 000} nodes,
m ∈ {n, 1.25n, 1.5n, 1.75n, 2n} edges, and ℓ ∈ {5, 10, 25, 50, 100, 250, 500, 1000} levels. Note that
we do not include instances with n

4 < ℓ, i.e., those with on average less than four nodes per level.
We then use a reduction that turns levels into (concentric nested) clusters such that the number
of cluster-border edge crossings stays linear in the number of edges [28, Section 6.4.4]. This leads
to the dataset LVL-LRG that contains 1103 Clustered Planarity instances after preprocessing.
Altogether, our seven datasets contain 29 442 instances in total; see Table 1.

Results

Running the same evaluation on the datasets SEFE-LRG, SP-LRG, and LVL-LRG yielded absolute
running times with roughly the same orders of magnitude as for C-LRG, see the left plots in Figures 19
to 22 (but note that the plots show slightly different ranges on both axes). The right plots in the
figures again detail the running times relative to SP[d]. For SP-LRG, the relative running time
behavior is similar to the behavior observed on C-LRG. The two major differences concern variants
with flag [b]. Variants SP[d b(i)] (that is both SP[d b] and SP[d bi]) are not faster than SP[d]

on small instances and also sooner grow slower on large instances. Similarly, SP[s b(i)] is not
much faster than SP[d] on small instances, and the speed-up over SP[d] for larger instances has a
dent where it returns to having roughly the same speed as SP[d] around size 1000. On a large
scale, this behavior indicates that the slowdown caused by large connected components is even
worse in dataset SP-LRG.

For SEFE-LRG, the instances are less evenly distributed in terms of their total pipe degree, as
the total pipe degree directly corresponds to the vertex degrees in the SEFE instance. Regarding

118 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

the relative running time behavior, we still see that SP[d bi] is much slower and SP[s (i)]

much faster than SP[d]. For the remaining variants, the difference to SP[d] is smaller than in
the two previous datasets, and especially both SP[d b] and SP[d i] show no major slowdown
over SP[d]. The difference between SP[d b] and SP[d bi] thus being more pronounced could
indicate more block-block pipes with endpoints in the same connected components than in the
previous datasets, leading to more costly intersections instead of joins being performed. In the other
direction, SP[s b(i)] is at no point faster than SP[s (i)], even for small instances, and even has
no noticeable advantage over SP[d]. Interestingly, in comparison the the two previous datasets,
joining block-block pipes thus now completely removes the advantage of the SPQR-tree-based
embedding tree computation, while it also seems to no longer have a major disadvantage without it.
As variants SP[s (i)] are faster than both SP[s b(i)] and SP[d] even for small instances, they
are the fastest for all instances sizes.

The instances distribution varies even more for LVL-LRG, where the total pipe degree (or
equivalently, the number of cluster-border edge crossings) directly corresponds to the number of
edges in the (Radial) Level Planarity instance. While SP[s] and its variations are still clearly
the fastest on large instances, the median slow-down through the optional join of block-block pipes
is far less pronounced both for SP[s b(i)] and SP[d b(i)] here. Note that the interquartile range
shown in Figure 22b still indicates a large possible slow-down for SP[d b(i)], with a large variance
in individual running times.

To summarize, running our algorithm on these three additional datasets still yields results that
mostly agree with the results on C-LRG, with SP[d b(i)] among the slowest and SP[s] being the
fastest on large instances. The main difference is the magnitude of the overhead generated by large
connected components for variants with flag [b], and thus the point at which SP[s (i)] starts
being faster than SP[s b(i)] (see also Section 5.4).

6.4 Summary

In this section, we use three different approaches to strengthen the insights and conclusions which
we summarized at the end of the previous section in Section 5.5. First, still using the same C-LRG
dataset, we analyzed how the overall running times are split across the different parts of the
algorithm, and also linked this to statistics of the instance processed by our algorithm (Section 6.1).
Second, we used a statistical test to validate the significance of the observed advantages of different
variants in this dataset (Section 6.2). Third, we generated three further datasets, using reductions
from further problems and thus also very different instance generators, and thereby verified how
our insights transfer to other classes of instances (Section 6.3).

The runtime profiling information underlines that computing embedding trees takes the by far
largest fraction of running time for almost all variants, while the batched SPQR-tree approach
is able to save big parts of that time. Joining block-block pipes increases the maximum size of
biconnected components by close to an order of magnitude, and thus makes the embedding tree
computation take even longer. Still, joining does preempt many pipes that need to be removed via
SimplifyMatching, although this advantage of needing fewer operations is only noticeable for the
fastest variants.

Out statistical analysis again shows that changing pipe ordering yields no significant advantages,
while joining block-block pipes or intersecting embedding trees can cause significant slowdowns
when computing the trees individually. In contrast, deriving embedding trees in batches from a
SPQR-tree does yield a significant speed-up for large instances. For smaller instances, this is only
true for SP[s bi], i.e., the combination of all variations yields the greatest advantages.

JGAA, 29(1) 91–123 (2025) 119

Running our algorithm on three further datasets from entirely different problems and instance
generators still yields results that mostly agree with the results on C-LRG, although the magnitude
of the overhead generated by large connected components varies for variants with flag [b]. Due
to this, among our fastest variants, the point at which SP[s (i)] starts being faster than SP[s

b(i)] changes depending on the class of instances.

7 Conclusion

In this paper, we described the first practical implementation of Synchronized Planarity, which
generalizes many constrained planarity problems such as Clustered Planarity and Connected
SEFE. We evaluated close to 30 000 instances stemming from different problems. Using the
quadratic algorithm by Bläsius et al. [8], instances with 100 vertices are solved in milliseconds,
while we can still solve most instances with up to 100 000 vertices within minutes. This makes
our implementation at least an order of magnitude faster than all other Clustered Planarity
implementations, which corroborates its theoretical guarantees in practice. Analyzing our running
times in more detail, we find the generation of embedding information in the form of embedding
trees to be by far the most time-consuming, while the actual operations of the algorithm that reduce
and solve the instance are comparatively fast. We apply algorithm engineering and use the various
degrees of freedom of the algorithm to speed up computation times by up to an order of magnitude.
The main result here is that the batched computation of embedding information we devise using
SPQR-trees produces a major speed-up. Tuning some other variables produces a speed-up only in
parts of the algorithm while slowing down others, which shows that further speed-ups may be more
challenging to achieve and that trade-offs may have to be made. One possible approach could be
implementing the dynamically-maintained SPQR-tree described by Fink and Rutter [30], which
also yields a further theoretical speed-up. As contribution towards future work in the field of graph
drawing, we also see that our implementation can be used as reference for the implementation of
more specialized, but potentially faster constrained planarity algorithms, which proved challenging
in the past [16].

References

[1] P. Angelini and G. Da Lozzo. SEFE = C-Planarity? The Computer Journal, 59(12):1831–1838,
2016. doi:10.1093/comjnl/bxw035.

[2] P. Angelini and G. Da Lozzo. Clustered planarity with pipes. Algorithmica, 81(6):2484–2526,
2019. doi:10.1007/s00453-018-00541-w.

[3] P. Angelini, G. Da Lozzo, and D. Neuwirth. Advancements on SEFE and partitioned book
embedding problems. Theoretical Computer Science, 575:71–89, 2015. doi:10.1016/j.tcs.
2014.11.016.

[4] P. Angelini, M. Di Bartolomeo, and G. Di Battista. Implementing a partitioned 2-page book
embedding testing algorithm. In W. Didimo and M. Patrignani, editors, Proceedings of the
20th International Symposium on Graph Drawing (GD’12), volume 7704 of Lecture Notes in
Computer Science, pages 79–89. Springer, 2012. doi:10.1007/978-3-642-36763-2_8.

https://doi.org/10.1093/comjnl/bxw035
https://doi.org/10.1007/s00453-018-00541-w
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1007/978-3-642-36763-2_8

120 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

[5] P. Angelini, G. Di Battista, F. Frati, V. Jeĺınek, J. Kratochv́ıl, M. Patrignani, and I. Rutter.
Testing planarity of partially embedded graphs. ACM Transactions on Algorithms, 11(4):32:1–
32:42, 2015. doi:10.1145/2629341.

[6] P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. Testing the simultaneous
embeddability of two graphs whose intersection is a biconnected or a connected graph. Journal
of Discrete Algorithms, 14:150–172, 2012. doi:10.1016/j.jda.2011.12.015.

[7] C. Bachmaier. Circle planarity of level graphs. PhD thesis, University of Passau, Germany,
2004. URL: https://nbn-resolving.org/urn:nbn:de:bvb:739-opus-385.

[8] T. Bläsius, S. D. Fink, and I. Rutter. Synchronized planarity with applications to constrained
planarity problems. ACM Transactions on Algorithms, 19(4), 2023. doi:10.1145/3607474.

[9] T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of planar graphs. In
R. Tamassia, editor, Handbook of Graph Drawing and Visualization, chapter 11, pages
349–381. 2013. URL: https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/

simultaneous.pdf.

[10] T. Bläsius and I. Rutter. Disconnectivity and relative positions in simultaneous embeddings.
Computational Geometry. Theory and Applications, 48(6):459–478, 2015. doi:10.1016/j.

comgeo.2015.02.002.

[11] T. Bläsius and I. Rutter. A new perspective on clustered planarity as a combinatorial
embedding problem. Theoretical Computer Science, 609:306–315, 2016. arXiv:1506.05673,
doi:10.1016/j.tcs.2015.10.011.

[12] T. Bläsius and I. Rutter. Simultaneous PQ-ordering with applications to constrained embedding
problems. ACM Transactions on Algorithms, 12(2):16:1–16:46, 2016. doi:10.1145/2738054.

[13] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13(3):335–379, 1976. doi:10.1016/S0022-0000(76)80045-1.

[14] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding your p’s and q’s:
Implementing a fast and simple DFS-based planarity testing and embedding algorithm. In
Proceedings of the 11th International Symposium on Graph Drawing (GD’04), pages 25–36.
Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24595-7_3.

[15] P. Braß, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G. Kobourov, A. Lubiw,
and J. S. B. Mitchell. On simultaneous planar graph embeddings. Computational Geometry.
Theory and Applications, 36(2):117–130, 2007. doi:10.1016/j.comgeo.2006.05.006.

[16] G. Brückner. Planarity Variants for Directed Graphs. PhD thesis, Karlsruhe Insti-
tute of Technology, Germany, 2021. URL: https://nbn-resolving.org/urn:nbn:de:101:
1-2021080405022988868936.

[17] M. Chimani, C. Gutwenger, M. Jansen, K. Klein, and P. Mutzel. Computing maximum c-planar
subgraphs. In I. G. Tollis and M. Patrignani, editors, Proceedings of the 16th International
Symposium on Graph Drawing (GD’08), volume 5417 of Lecture Notes in Computer Science,
pages 114–120. Springer, 2008. doi:10.1007/978-3-642-00219-9_12.

https://doi.org/10.1145/2629341
https://doi.org/10.1016/j.jda.2011.12.015
https://nbn-resolving.org/urn:nbn:de:bvb:739-opus-385
https://doi.org/10.1145/3607474
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/simultaneous.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/simultaneous.pdf
https://doi.org/10.1016/j.comgeo.2015.02.002
https://doi.org/10.1016/j.comgeo.2015.02.002
https://arxiv.org/abs/1506.05673
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/978-3-540-24595-7_3
https://doi.org/10.1016/j.comgeo.2006.05.006
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405022988868936
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405022988868936
https://doi.org/10.1007/978-3-642-00219-9_12

JGAA, 29(1) 91–123 (2025) 121

[18] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel. The Open
Graph Drawing Framework (OGDF). In R. Tamassia, editor, Handbook of Graph Drawing
and Visualization, chapter 17, pages 543–569. 2014. URL: https://cs.brown.edu/people/
rtamassi/gdhandbook/chapters/ogdf.pdf.

[19] M. Chimani and K. Klein. Shrinking the search space for clustered planarity. In W. Didimo and
M. Patrignani, editors, Proceedings of the 20th International Symposium on Graph Drawing
(GD’12), volume 7704 of Lecture Notes in Computer Science, pages 90–101. Springer, 2012.
doi:10.1007/978-3-642-36763-2_9.

[20] S. Cornelsen and D. Wagner. Completely connected clustered graphs. Journal of Discrete
Algorithms, 4(2):313–323, 2006. doi:10.1016/J.JDA.2005.06.002.

[21] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-planarity of
c-connected clustered graphs. Journal of Graph Algorithms and Applications, 12(2):225–262,
2008. doi:10.7155/jgaa.00165.

[22] G. Da Lozzo. Planar Graphs with Vertices in Prescribed Regions:models, algorithms, and
complexity. PhD thesis, Roma Tre University, 2015. URL: http://www.dia.uniroma3.it/

~dalozzo/files/phd-thesis-giordano-dalozzo.pdf.

[23] E. Dahlhaus. A linear time algorithm to recognize clustered planar graphs and its parallelization.
In C. L. Lucchesi and A. V. Moura, editors, Proceedings of the 3rd Latin American Symposium
(LATIN’98), pages 239–248. Springer Berlin Heidelberg, 1998. doi:10.1007/bfb0054325.

[24] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/bf01961541.

[25] M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi. Branch-and-cut algorithms for combinatorial
optimization and their implementation in abacus. In M. Jünger and D. Naddef, editors, Compu-
tational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, pages 157–
222. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. doi:10.1007/3-540-45586-8_5.

[26] A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Graphset, a tool for simultaneous
graph drawing. Software: Practice and Experience, 40(10):849–863, 2010. doi:10.1002/spe.
958.

[27] Q.-W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In P. G. Spirakis,
editor, Proceedings of the 3rd Annual European Symposium on Algorithms (ESA’95), volume
979 of LNCS, pages 213–226. Springer, 1995. doi:10.1007/3-540-60313-1_145.

[28] S. D. Fink. Constrained Planarity Algorithms in Theory and Practice. PhD thesis, Universität
Passau, 2024. doi:10.15475/cpatp.2024.

[29] S. D. Fink, M. Pfretzschner, and I. Rutter. Experimental comparison of pc-trees and pq-trees.
ACM Journal of Experimental Algorithmics, 28, 2023. doi:10.1145/3611653.

[30] S. D. Fink and I. Rutter. Maintaining triconnected components under node expansion. Comput-
ing in Geometry and Topology, pages 202–216, 2023. doi:10.1007/978-3-031-30448-4_15.

[31] H. D. Fraysseix, P. O. D. Mendez, and P. Rosenstiehl. Trémaux trees and planarity. In-
ternational Journal of Foundations of Computer Science, 17(05):1017–1029, 2006. doi:

10.1142/S0129054106004248.

https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/ogdf.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/ogdf.pdf
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1016/J.JDA.2005.06.002
https://doi.org/10.7155/jgaa.00165
http://www.dia.uniroma3.it/~dalozzo/files/phd-thesis-giordano-dalozzo.pdf
http://www.dia.uniroma3.it/~dalozzo/files/phd-thesis-giordano-dalozzo.pdf
https://doi.org/10.1007/bfb0054325
https://doi.org/10.1007/bf01961541
https://doi.org/10.1007/3-540-45586-8_5
https://doi.org/10.1002/spe.958
https://doi.org/10.1002/spe.958
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.15475/cpatp.2024
https://doi.org/10.1145/3611653
https://doi.org/10.1007/978-3-031-30448-4_15
https://doi.org/10.1142/S0129054106004248
https://doi.org/10.1142/S0129054106004248

122 Simon D. Fink and Ignaz Rutter Constrained Planarity in Practice

[32] R. Fulek, J. Kynčl, I. Malinović, and D. Pálvölgyi. Clustered planarity testing revisited. The
Electronic Journal of Combinatorics, 22(4), 2015. doi:10.37236/5002.

[33] R. Fulek, M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Hanani–tutte, monotone drawings,
and level-planarity. In Thirty Essays on Geometric Graph Theory, pages 263–287. Springer
New York, 2012. doi:10.1007/978-1-4614-0110-0_14.

[34] R. Fulek and C. D. Tóth. Atomic embeddability, clustered planarity, and thickenability. Journal
of the ACM, 69(2):13:1–13:34, 2022. arXiv:1907.13086v1, doi:10.1145/3502264.

[35] E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. Simultaneous graph embeddings
with fixed edges. In F. V. Fomin, editor, Proceedings of the 32nd Workshop on Graph-Theoretic
Concepts in Computer Science (WG’06), volume 4271 of Lecture Notes in Computer Science,
pages 325–335. Springer, 2006. doi:10.1007/11917496_29.

[36] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of
the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

[37] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. Advances
in c-planarity testing of clustered graphs. In S. G. Kobourov and M. T. Goodrich, editors,
Proceedings of the 10th International Symposium on Graph Drawing (GD’02), volume 2528 of
LNCS, pages 220–235. Springer, 2002. doi:10.1007/3-540-36151-0_21.

[38] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In J. Marks, editor,
Proceedings of the 8th International Symposium on Graph Drawing (GD’00), volume 1984 of
LNCS, pages 77–90. Springer, 2000. doi:10.1007/3-540-44541-2_8.

[39] C. Gutwenger, P. Mutzel, and M. Schaefer. Practical experience with hanani-tutte for testing
c-planarity. In C. C. McGeoch and U. Meyer, editors, Proceedings of the 16th Workshop on
Algorithm Engineering and Experiments (ALENEX’14), pages 86–97. Society for Industrial
and Applied Mathematics, 2014. doi:10.1137/1.9781611973198.9.

[40] M. Harrigan and P. Healy. Practical level planarity testing and layout with embedding con-
straints. In S. Hong, T. Nishizeki, and W. Quan, editors, Proceedings of the 15th International
Symposium on Graph Drawing (GD’07), volume 4875 of Lecture Notes in Computer Science,
pages 62–68. Springer, 2007. doi:10.1007/978-3-540-77537-9_9.

[41] S.-H. Hong and H. Nagamochi. Two-page book embedding and clustered graph planarity.
Technical Report TR[2009-004], 2009. URL: https://citeseerx.ist.psu.edu/doc/10.1.1.
361.1233.

[42] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In S. Whitesides,
editor, Proceedings of the 6th International Symposium on Graph Drawing (GD’98), volume
1547 of Lecture Notes in Computer Science, pages 224–237. Springer, 1998. doi:10.1007/

3-540-37623-2_17.

[43] S. Leipert. Level planarity testing and embedding in linear time. PhD thesis, Universität zu
Köln, 1998.

[44] T. Lengauer. Hierarchical planarity testing algorithms. Journal of the ACM, 36(3):474–509,
1989. doi:10.1145/65950.65952.

https://doi.org/10.37236/5002
https://doi.org/10.1007/978-1-4614-0110-0_14
https://arxiv.org/abs/1907.13086v1
https://doi.org/10.1145/3502264
https://doi.org/10.1007/11917496_29
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1137/1.9781611973198.9
https://doi.org/10.1007/978-3-540-77537-9_9
https://citeseerx.ist.psu.edu/doc/10.1.1.361.1233
https://citeseerx.ist.psu.edu/doc/10.1.1.361.1233
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1145/65950.65952

JGAA, 29(1) 91–123 (2025) 123

[45] M. Patrignani. Planarity testing and embedding. In R. Tamassia, editor, Handbook of Graph
Drawing and Visualization, chapter 1, pages 1–42. 2013. URL: https://cs.brown.edu/
people/rtamassi/gdhandbook/chapters/planarity.pdf.

[46] H. C. Purchase, J.-A. Allder, and D. Carrington. Graph layout aesthetics in UML diagrams:
User preferences. Journal of Graph Algorithms and Applications, 6(3):255–279, 2002. doi:

10.7155/jgaa.00054.

[47] M. Radermacher. Geometric Graph Drawing Algorithms - Theory, Engineering and Experiments.
PhD thesis, Karlsruher Institut für Technologie (KIT), 2020. doi:10.5445/IR/1000117664.

[48] B. Randerath, E. Speckenmeyer, E. Boros, P. L. Hammer, A. Kogan, K. Makino, B. Simeone,
and O. Cepek. A satisfiability formulation of problems on level graphs. Electronic Notes in
Discrete Mathematics, 9:269–277, 2001. doi:10.1016/S1571-0653(04)00327-0.

[49] I. Rutter. Simultaneous embedding. In S.-H. Hong and T. Tokuyama, editors, Be-
yond Planar Graphs, chapter 13, pages 237–265. Springer Singapore, 2020. doi:10.1007/

978-981-15-6533-5_13.

[50] M. Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal of
Graph Algorithms and Applications, 17(4):367–440, 2013. doi:10.7155/jgaa.00298.

[51] C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive measurements of graph aesthetics.
Information Visualization, 1(2):103–110, June 2002. doi:10.1057/palgrave.ivs.9500013.

https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/planarity.pdf
https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/planarity.pdf
https://doi.org/10.7155/jgaa.00054
https://doi.org/10.7155/jgaa.00054
https://doi.org/10.5445/IR/1000117664
https://doi.org/10.1016/S1571-0653(04)00327-0
https://doi.org/10.1007/978-981-15-6533-5_13
https://doi.org/10.1007/978-981-15-6533-5_13
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1057/palgrave.ivs.9500013

	Introduction
	Preliminaries
	Related Work
	Constrained Planarity Problems
	Synchronized Planarity
	Related Practical Work

	Clustered Planarity in Practice
	Evaluation Set-Up
	Results

	Engineering Synchronized Planarity
	Pipe Ordering
	Pipes with two Block-Vertex Endpoints
	Batched Embedding Tree Generation
	SPQR-Batch Variations
	Summary

	Further Analysis
	Detailed Runtime Profiling
	Statistical Significance
	Other Problem Instances
	Summary

	Conclusion

