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Abstract. For the telephone broadcast model, an O(n log n)-time algorithm for
constructing an optimal broadcasting scheme in a star of cliques with a total of n
vertices was recently presented by Ambashankar and Harutyunyan at IWOCA 2024.
In the present note we give a considerably shorter and puri�ed algorithm description
and correctness proof. Moreover, we improve the time complexity to O(n).

1 Introduction and Contribution

The Telephone Broadcast problem can be described as follows. Time is divided into discrete
slots. We are given an undirected graph with informed and uninformed vertices. In every slot,
every informed vertex can choose at most one uninformed neighbor and inform it. The goal is to
inform all vertices after a minimum number of slots. Initially, only one vertex called the originator
is informed.

The problem is NP-complete [11], even in 3-regular planar graphs, as �rst shown in [10], and
for graphs with a feedback vertex set of size 1, that is, forests plus one vertex [12]. For polynomial
algorithms in several special graph classes, see e.g. [7] and some later papers including [9, 8, 2]
and more recent works such as [5]. Besides [7], further surveys can be found in [4, 6]. Further
complexity results deal with the parameterized complexity and with lower bounds. For instance,
the problem is FPT when parameterized by the size of a feedback edge set or a vertex cover [3], and
in general graphs, computing an optimal broadcast needs double exponential time in the number
of rounds under the ETH [12]. Amazingly, this bound means that a trivial algorithm is already
the best one.

An O(n log n)-time algorithm for constructing an optimal broadcasting strategy in a star of
cliques was given in [1], however, with an algorithm description and proof of ca. eight technical
pages of text. In the present note we streamline the derivation of this result, and as a byproduct we
improve the time bound. The simpli�cation is achieved by realizing that the binary representations

E-mail address: ptr@chalmers.se (Peter Damaschke)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i1.2981
mailto:ptr@chalmers.se
https://creativecommons.org/licenses/by/4.0/


386 Damaschke A Linear-Time Optimal Broadcasting Algorithm in Stars of Cliques

of the clique sizes are �all what matters� for the problem, and by thoroughly working with them
right from the beginning, without using other notations and taking detours. Reducing the proof
to its essentials makes it more transparent, and this should also make it easier to generalize the
result, e.g., to appropriately de�ned trees of cliques. In the light of the mentioned FPT results
it might also be interesting to study the complexity of Telephone Broadcast parameterized
by the vertex deletion distance to cluster graphs. However, this note only aims at improving the
result from [1].

A star of cliques is a graph with n = n1 + . . . + nk + 1 vertices, consisting of a disjoint union
of k cliques Q1, . . . , Qk on n1, . . . , nk vertices, respectively, and a center vertex c which is adjacent
to all other vertices. Although stars of cliques form a seemingly simple graphs class, optimal
broadcasting turned out to be subtle [1]. We will show:

Theorem 1. An optimal strategy for Telephone Broadcast in a star of cliques with a total
of n vertices can be computed in O(n) time.

2 The Proof

If the originator u is not c, then let S be any broadcasting strategy where u informs some vertex
v ̸= c in the �rst slot. We construct a modi�ed strategy S′: First, S′ uses u to inform c rather
than v. Then, as long as S leaves c uninformed, S′ behaves as S, and when S uses v to inform
any vertex, S′ uses c to inform the same vertex. As soon as S uses some vertex w to inform c, we
use w in S′ to inform v instead. In fact, wv is an edge, since all vertices informed by S so far are
in one clique. From now on, S′ behaves as S again. Hence S′ does not work longer than S. Thus,
we can pretend that c is the originator but must inform some vertex in some distinguished clique
�rst.

We �rst provide an algorithm ALG that, for given sizes n1, . . . , nk and given b, constructs a
broadcasting strategy using at most b slots, or reports that b slots are not enough. We index the
slots from right to left, in reverse temporal order: . . . , 3, 2, 1, 0. Let ni =

∑
t n(i, t) · 2t, where the

n(i, t) are the uniquely determined binary digits 1 or 0.
In every slot, the number of informed vertices in every clique is doubled. We set h(i, t) = 1 if

c informs another vertex of Qi in slot t, and h(i, t) = 0 otherwise. Let hi =
∑

t h(i, t) · 2t. The
number of informed vertices in Qi in the end is min{hi, ni}. Hence, the strategy speci�ed by the
hi succeeds if and only if ∀i : hi ≥ ni.

It remains to construct the hi from the ni. We �rst suppose that no clique is distinguished,
that is, some freely chosen vertex may be informed in the �rst slot. The ordering (2),(1),(0) of the
following cases is intended.

(2) n(i, b − 1) = 1 holds for two or more indices i. Then, no matter which j we choose to set
h(j, b− 1) = 1, we violate some constraint hi ≥ ni. Hence no solution exists.

(1) n(i, b − 1) = 1 holds for exactly one index i. Then we must set h(i, b − 1) = 1 to satisfy
hi ≥ ni. Now we can simply delete the leading 1 of ni to obtain a problem instance with one slot
less. Note that ni becomes ni modulo 2b−1.

(0) n(i, b− 1) = 1 holds nowhere. If we set any h(i, b− 1) = 1, we get already hi > ni. Now we
can delete ni to obtain a problem instance with one slot and one clique less. It is safe to choose some
i with maximum ni. To see the correctness, assume by re-indexing that n1 ≥ . . . ≥ nk, and assume
that some successful strategy S deletes ni for some i > 1. Then S retains n1 . . . , ni−1, ni+1, . . . nk

whereas we retain n2 . . . , ni, ni+1, . . . nk. The remainder of S still succeeds on our residual instance,
since no clique is larger than in S.
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Suppose that some distinguished clique Ci must be chosen �rst. If n(j, b − 1) = 1 for some
j ̸= i, we behave as in case (2). If n(j, b − 1) = 1 holds for j = i only, we behave as in case (1).
If n(j, b− 1) = 1 holds nowhere, we behave as in case (0), but for the prescribed i (rather than a
maximum ni). Correctness is evident.

Now we can proceed inductively with the smaller instance in the same way. Moreover, the
special case of a distinguished clique disappears after the �rst slot. If we never get case (2), the hi

specify a successful strategy. This concludes the description of ALG.

An important remark is that, in every slot, ALG deletes at most one leading 1: In case (1),
only one digit 1 is deleted, and in case (0), one complete number is deleted.

Next, we determine the smallest b for which ALG succeeds. First suppose that no clique is
distinguished. Then we index the cliques such that n1 ≥ . . . ≥ nk.

Let li be the largest t with n(i, t) = 1. Note that l1 ≥ . . . ≥ lk. Let b be minimal with the
property b− i > li for all i. If we run ALG with slots b− 1, . . . , 0, then we are always in case (0),
hence this instance has a solution. By the minimality of b, there exists some i with b−i−1 = li. Let
i be the smallest such index. By monotonicity of the li, the numbers n1, . . . , ni have their leading
1s in the slots columns b− 2, . . . , b− i− 1. By the minimality of i, we even have: Either i = 1 and
l1 = b− 2, or i > 1 and the i mentioned leading 1s are in the i− 1 columns b− 3, . . . , b− i− 1.

Now, let us run ALG with columns b− 3, . . . , 0. In the former case with l1 = b− 2 we violate
h1 ≥ n1. In the latter case, i leading 1s occur in the �rst i− 1 slots, but ALG deletes at most one
in every slot. By the pigeonhole principle, it runs into case (2).

If some clique is distinguished, we call it Q1 and index the other cliques such that n2 ≥ . . . ≥ nk.
We de�ne b as above. ALG starting in slot b − 1 succeeds by the same reasoning as above. ALG
starting in slot b − 3 must �rst inform some vertex of Q1. If l2 = b − 3, then it violates h2 ≥ n2.
If b− 3 > l2, then the i− 2 slots b− 4, . . . , b− i− 1 contain i− 1 leading 1s, hence ALG runs into
case (2).

Altogether, this shows that b− 2 slots are not enough. Hence we run ALG only twice, to �nd
some strategy with b slots for sure, and to check whether b− 1 slots are enough.

The binary representation of ni is straightforwardly computed in O(ni) time, hence in O(n)
time for all i. Since log2 is a concave function, the total number of binary digits is O(n). By
radix sort we can produce a pre�x tree in O(n) time. Its edges are labeled 1 and 0, the root-leaf
paths display the binary representations of the ni, and the leaves from left to right correspond to
the numbers n1 ≥ . . . ≥ nk. Its depth is l1 = O(log n). Notice that b = mini(i + li + 1). Using
l1 ≥ . . . ≥ lk and

∑
i li = O(n), we can easily compute b incrementally in O(n) time. As observed

above, ALG with b slots is always in case (0), hence it just successively deletes n1, . . . , nk. ALG
with b − 1 slots sometimes encounters also case (1), but only in the last l1 slots. Whenever ALG
is in case (1), we delete the a�ected number ni from the pre�x tree and insert the remainder of
ni, to restore the sorted order. Each of the O(l1) deletions and insertions needs O(l1) time. Thus,
case (1) causes only O(log2 n) ⊂ O(n) extra time.
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