
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 29, no. 2, pp. 3–47 (2025)
DOI: 10.7155/jgaa.v29i2.3039

Quantum Graph Drawing

Susanna Caroppo Giordano Da Lozzo Giuseppe Di Battista

Department of Engineering, Roma Tre University, Rome, Italy

Submitted: May 2024 Accepted: April 2025 Published: May 2025

Article type: Regular
Communicated by: R. Uehara,

K. Yamanaka, and H.-C. Yen

Abstract. In this paper, we initiate the study of quantum algorithms in the Graph
Drawing research area. We focus on two foundational drawing standards: 2-level
drawings and book layouts. Concerning 2-level drawings, we consider the problems of
obtaining drawings with the minimum number of crossings, k-planar drawings, quasi-
planar drawings, and the problem of removing the minimum number of edges to obtain
a 2-level planar graph. Concerning book layouts, we consider the problems of obtaining
1-page book layouts with the minimum number of crossings, book embeddings with
the minimum number of pages, and the problem of removing the minimum number
of edges to obtain an outerplanar graph. We explore both the quantum circuit and
the quantum annealing models of computation. In the quantum circuit model, we
provide an algorithmic framework based on Grover’s quantum search, which allows us
to obtain, ignoring polynomial terms, a quadratic speedup on the best known classical
exact algorithms for all the considered problems. In the quantum annealing model, we
perform experiments on the quantum processing unit provided by D-Wave, focusing
on the classical 2-level crossing minimization problem, demonstrating that quantum
annealing is competitive with respect to classical algorithms.

Keywords: Quantum complexity, Grover’s algorithm, QUBO, Quantum anneal-
ing, 2-Level drawings, Book layouts

Research partially funded by the European Union, Next Generation EU, Mission 4, Component 1, CUP

C53D23003680006 PRIN project no. 2022TS4Y3N “EXPAND: scalable algorithms for EXPloratory Analyses
of heterogeneous and dynamic Networked Data”, and CUP J53D23007130006 PRIN project no. 2022ME9Z78
“NextGRAAL: Next-generation algorithms for constrained GRAph visuALization”. We acknowledge the CINECA
award under the ISCRA initiative, for the availability of high-performance computing resources and support. A
preliminary version of this research appeared in [13].

E-mail addresses: susanna.caroppo@uniroma3.it (Susanna Caroppo) giordano.dalozzo@uniroma3.it (Giordano Da
Lozzo) giuseppe.dibattista@uniroma3.it (Giuseppe Di Battista)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v29i2.3039
https://orcid.org/0009-0001-4538-8198
https://orcid.org/0000-0003-2396-5174
https://orcid.org/0000-0003-4224-1550
mailto:susanna.caroppo@uniroma3.it
mailto:giordano.dalozzo@uniroma3.it
mailto:giuseppe.dibattista@uniroma3.it
https://creativecommons.org/licenses/by/4.0/

4 Caroppo et. al Quantum Graph Drawing

1 Introduction

We initiate the study of quantum algorithms in the Graph Drawing research area1. The exploration
of quantum approaches to address graph-drawing problems that are computationally challenging for
classical methods is appealing from both theoretical and practical perspectives. On the one hand,
leveraging quantum speedups, such as those provided by Grover’s search, could enable the analysis
of larger and more complex graphs within reasonable timeframes. On the other hand, the Graph
Drawing area offers new opportunities to apply emerging and practical quantum technologies, such
as Quantum Annealing, to combinatorial optimization problems in both geometric and topological
graph theory.

The problems. We focus on two foundational graph drawing standards: 2-level drawings and
book layouts. In a 2-level drawing, the graph is bipartite, the vertices are placed on two horizontal
lines, and the edges are drawn as y-monotone curves; see Fig. 1a. In this drawing standard, we
consider the search version of the Two-Level Crossing Minimization (TLCM) problem, where
given an integer ρ we seek a 2-level drawing with at most ρ crossings, and of the Two-Level
Skewness (TLS) problem, where given an integer σ we seek to determine a set of σ edges whose
removal yields a 2-level planar graph, i.e., a forest of caterpillars [19]. The minimum value of σ is
the 2-level skewness of the considered graph. We also consider the Two-Level Quasi Planarity
(TLQP) problem, where we seek a drawing in which no three edges pairwise cross, i.e., a quasi-planar
drawing, and the Two-Level k-Planarity (TLKP) problem, where we seek a drawing in which
each edge participates in at most k crossings, i.e., a k-planar drawing. In a book layout, the drawing
is constructed using a collection of half-planes, called pages, all having the same line, called spine,
as their boundary; see Fig. 1b. The vertices lie on the spine and each edge is drawn on a page. In
this drawing standard, we consider the search version of the One-Page Crossing Minimization
(OPCM) problem, where given an integer ρ we seek a 1-page layout with at most ρ crossings; the
Book Thickness (BT) problem, where we search a τ -page layout where the edges in the same page
do not cross, i.e., a τ -page book embedding; and the Book Skewness (BS) problem, where given an
integer σ we seek a set of σ edges whose removal yields a graph admitting a 1-page book embedding,
i.e., it is outerplanar [9]. The minimum value of σ is the book skewness of the considered graph.

copyright © 2021 G. Da Lozzo

(a)

copyright © 2021 G. Da Lozzo

(b)

Figure 1: Examples of graph drawing standards: (a) a 2-level drawing and (b) a 3-page book
embedding.

1Simultaneously to this research [13], Fukuzawa, Goodrich, and Irani [21] have formulated a model for quantum
graph drawing in the circuit model of computation, showing how to use Harrow’s quantum algorithm [26] for solving
systems of linear equations to compute a so-called Tutte embedding of a 3-connected planar graph.

JGAA, 29(2) 3–47 (2025) 5

The models. We delve into both the quantum circuit [35, 37] and the quantum annealing [33]
models of computation. In the former, quantum gates are used to compose a circuit that transforms
an input superposition of qubits into an output superposition. The circuit design depends on both
the problem and the specific instance being processed. The output superposition is eventually
measured, obtaining the solution with a certain probability. The quality of the circuit is measured
in terms of its circuit complexity, i.e., the number of elementary gates it contains, of its depth, i.e.,
the maximum length of a chain of elementary gates from the input to the output, and of its width,
i.e., the maximum number of elementary gates “along a cut” separating the input from the output.
It is natural to upper bound the time complexity of the execution of a quantum circuit either by its
depth, assuming the gates at each layer can be executed in parallel, or by its circuit complexity,
assuming the gates are executed sequentially. The width estimates the desired level of parallelism.
In the quantum annealing model of computation, the quantum annealing processors, in general quite
different from those designed for the quantum circuit model, consist of a fixed-topology network,
whose vertices correspond to qubits and whose edges correspond to possible interactions between
qubits. A problem is mapped to an embedding on such a topology. During the computation, the
solution space of a problem is explored, searching for minimum-energy states, which correspond to,
in general approximate, solutions.

Our contributions. In the quantum circuit model, we first show that the above graph drawing
problems can be described by means of quantum circuits. The first problem that we have to solve
is choosing an effective representation for inputs and outputs. Since all problems we tackle require
the selection of a permutation of n vertices, a tempting idea is to have as inputs-outputs binary
variables explicitly representing the precedence between pairs of vertices. However, this requires to
represent the superposition of a quadratic, in n, number of qubits. Hence, we use as inputs-outputs
the vertex coordinates, which implicitly represent a permutation and require just n log n qubits. On
the other hand, to solve the above problems, we have to transform the coordinates into orderings.
Thus, the first contribution of the paper is a set of efficient quantum methods, that can be of general
usage in Quantum Graph Drawing, that allow to transform coordinates of vertices into precedence
between vertices and vice versa. These methods use a small number of “ancilla” qubits. Second, we
present an algorithmic framework based on Grover’s quantum search [23]. This framework enables
us to achieve, ignoring polynomial terms, a quadratic speedup compared to the best known2 exact
classical algorithms for all the problems under consideration. Table 1 summarizes our complexity
results and compares them with classical algorithms. Within this framework we introduce quantum
phase inversion methods composed by building blocks suitable to be combined to solve several
types of graph drawing problems.

In the quantum annealing model, we focus on the actual processing unit provided by D-Wave,
which allows us to perform hybrid computations, which are partly classical and partly quantum.
We first show that it is relatively easy to use D-Wave for implementing heuristics for the above
problems. Second, we focus on the classical TLCM problem. Through experiments, we demonstrate
that quantum annealing exhibits competitiveness when compared to current classical algorithms.
Table 3 and Fig. 30 show our experimental findings. To ensure reproducibility, the codebase and
datasets used in the conducted experiments have been made available at [14].

2We compare our running time with a classical algorithm that enumerates and checks all possible candidate
solution, which is, to the best of our knowledge, the current state of the art for all of the considered problems.

6 Caroppo et. al Quantum Graph Drawing

Table 1: Results presented in this paper and comparison with exact algorithms. FPT algorithms are
mentioned, if any, only with respect to the natural parameter. CC stands for Circuit Complexity.
M denotes the number of solutions3.

Problem

Classic
Algorithm

Running Time

Upperbound
for m

FPT
Time

Quantum Oracle
Calls

Oracles (Lemma 4)

CC Depth Width

TLCM 2n lognO(n2) O(3
√
ρ · n2) [3, 4] 2O(ρ) + nO(1) [31] π

4

√
2n log n

M O(m2) O(n2) O(m2)

TLKP 2n lognO(n2) O(
√
k · n) [3, 4] - π

4

√
2n log n

M O(m2) O(m log2m) O(m)

TLQP 2n lognO(n) O(n) [4] Para-NP-hard [2] π
4

√
2n log n

M O(m6) O(m4) O(m2)

TLS O(mσn) O(n+ σ) 2O(σ3)n [18] π
4

√
2n log n+σ log m

M O(m2) O(m) O(m)

OPCM 2n lognO(n2) O(3
√
ρ · n2) [38] Courcelle’s Th. [6, 7] π

4

√
2n log n

M O(n8) O(n6) O(m2)

BT 2n logn+m log τO(τn) O(τ · n) Para-NP-hard [32] π
4

√
2n log n+m log τ

M O(n8) O(n6) O(m)

BS O(mσn) O(n+ σ) Courcelle’s Th. [15, 16] π
4

√
2n log n+σ log m

M O(n8) O(n6) O(m)

State of the art. We now provide an overview of the complexity status of each of the considered
problems, together with the existence of FPT algorithms with respect to the corresponding natural
parameter (total number of crossings ρ, number of crossings per edge k, maximum number of
allowed mutually crossing edges, number of pages τ , and number of edges to be removed σ), density
bounds, and exact algorithms. Let n and m denote the number of vertices and edges of an input
graph, respectively.

TLCM is probably the most studied among the above problems (see, e.g., [18, 28]). It is
NP-complete [22], and it remains NP-complete even when the order on one level is prescribed [20].
Kobayashi and Tamaki [31] combined the kernelization result in [30] and an enumeration technique
to devise a fixed-parameter tractable (FPT) algorithm with running time in 2O(ρ) + nO(1). Since
the number of crossings may be quadratic in m, such an FPT result yields an algorithm whose
running time is 2O(m2). On the other hand, a trivial 2n lognO(n2)-time exact algorithm for TLCM
can be obtained by iteratively considering each of the possible n! ∈ Θ(2n logn) vertex orderings, and
by verifying whether the considered ordering yields less than ρ crossings (which can be done in
O(n2) time [34]). To the best of our knowledge, however, no faster exact algorithm is known for
this problem that performs asymptotically better than the simple one mentioned above. Note that

for positive instances of TLCM, m is upper bounded by 3

√
15625·ρ·n2

4608 [4].

TLKP has not been proved to be NP-complete, and no FPT algorithm parameterized by k is
known for this problem. A trivial 2n lognO(n2)-time exact algorithm for TLKP can be devised
analogously to the one for TLCM. Observe that for positive instances of TLKP and for k > 5, m is
upper bounded by 125

96

√
k · n [4].

TLQP is NP-complete [2]. If we assume that its natural parameter is the maximum number
of allowed mutually crossing edges, then no FPT algorithm exists for it parameterized by this
parameter (unless P=NP). A trivial 2n lognO(n)-time exact algorithm for TLQP can be obtained

3A solution for TLCM (resp. OPCM) consists of a permutation of the vertices of the input graph that yield a
2-level drawing (resp. 1-page book layout) with at most ρ crossings. A solution for TLS (resp. BS) is a subset of the
edges of size at most σ whose removal results in a caterpillar (resp. outerplanar graph). A solution for TLQP (resp.
TLKP) consists of a permutation of the vertices of the input graph that yields a 2-level quasi-planar drawing (resp. a
2-level k-planar drawing). Finally, a solution for BT consists of a permutation of the vertices and a partition of the
edges of the input graph in τ pages that yield a τ -page book embedding.

JGAA, 29(2) 3–47 (2025) 7

by iteratively considering each of the possible n! ∈ Θ(2n logn) vertex orderings, and by verifying
whether the considered ordering yields three pairwise crossings edges. The latter test can be
performed in O(n) time, since it reduces to testing planarity of the graph obtained by augmenting
the input level graph with a cycle that first traverses all the vertices of the first level and then
traverses all the vertices in the second level, according to the considered vertex ordering. Observe
that for positive instances of TLQP, m is upper bounded by 2n− 4 [4].

TLS is NP-complete [40]. Dujmovic et al. gave an FPT algortihm for TLS with 2O(σ3)n running
time [18]. A trivial O(mσn)-time exact algorithm for TLS performs a guess of σ edges to be
removed. This yields

(
m
σ

)
∈ O(mσ) possible choices. For each of them, a linear-time algorithm to

test if the input is a forest of caterpillars (and, thus, it admits a 2-level planar drawing [19]) is
invoked. Since caterpillars have at most n− 1 edges, we have that for positive instances of TLS, m
is upper bounded by n− 1 + σ.

OPCM is NP-complete [32]. However, the optimum value of crossings can be approximated
with an approximation ratio of O(log2 n) [38]. Bannister and Eppstein [6, 7] showed that OPCM is
fixed-parameter tractable parameterized by ρ. To this aim, they exploit Courcelle’s Theorem [15, 16],
which provides a super-exponential dependency of the running time in this parameter. A trivial
2n lognO(n2)-time exact algorithm for OPCM can be devised analogous to the one for TLCM. For

positive instances of OPCM, m is upper bounded by 3
√

37 · ρ · n2 [38].
BT is NP-complete, even when τ = 2 [41], in which case it coincides with the problem of testing

whether the input graph is sub-Hamiltonian. This negative result implies that the problem does
not admit FPT algorithms parameterized by τ (unless P=NP). A trivial 2n logn+m log τO(τn)-time
exact algorithm for BT can be obtained by iteratively considering each of the possible choices of a
permutation for the vertex order and of an assignment of the edges to the τ pages. This yields
n! · τm ∈ Θ(2n logn+m log τ) possible choices. For each of these choices, τ calls to a linear-time
algorithm to test whether a graph can be laid out outerplanar with a prescribed vertex order [24, 25],
one for each of the graphs induced by the τ pages, are performed to decide whether the considered
choice defines a τ -page book embedding. Since outerplanar graphs have at most 2n−3 edges and by
the definition of BT, we have that for positive instances of BT, m is upper bounded by τ(2n− 3).

BS is NP-complete [42]. Since the treewidth of a YES-instance of BS is at most 2+σ and since the
existence of σ edges whose removal makes the input graph outerplanar can be expressed as an MSO2

formula whose length depends on σ, Courcelle’s Theorem implies that BS is FPT parameterized by
σ [15, 16]. A trivial O(mσn)-time exact algorithm for BS can be devised analogously to the one for
TLS. By the density of outerplanar graphs and by the definition of BS, we have that for positive
instances of BS, m is upper bounded by 2n− 3 + σ.

2 Preliminaries

For basic concepts related to graphs and their drawings, we refer the reader, e.g., to [17, 39]. For
the standard notation we adopt to represent quantum gates and circuits, and for basic concepts
about quantum computation, we refer the reader, e.g., to [35, 37].

Notation. Let k and h be a positive integers. To ease the description, we will denote the value
⌈log2 k⌉ simply as log k, the value ⌈ kh⌉ simply as k

h , and the set {0, . . . , k − 1} as [k]. We refer to
any of the permutations of the integers in [k] as a k-permutation. A k-set is a set of size k.

We denote the set of binary values {0, 1} by B. Consider a binary string s of length a · b, for
some a, b ∈ N, i.e., s ∈ Ba·b. We often regard s as a sequence of a integers, each represented with

8 Caroppo et. al Quantum Graph Drawing

b bits (where the specific a and b will always be clarified in the considered context). For i ∈ [a],
the i-th number in s, which we denote by s[i], is given by the substring of s formed by the bits
s[b · i][b · i + 1] . . . s[b · i + b − 1]. Moreover, for j ∈ [b], we denote by s[i][j] the j-th digit of s[i],
where s[i][0] is the least significant bit of s[i]. We use the binary operator = to compare binary
strings; when applied to two binary strings s′ and s′′ the resulting expression evaluates to 1 if s′

and s′′ coincide, and to 0 otherwise.

Graph drawings. A drawing of a graph maps each vertex to a point in the plane and each edge
to a Jordan arc connecting its end-vertices, such that the arc does not contain the image of any
other vertex. In this paper, we only consider graph drawings that are simple, i.e., every two edges
cross at most once and no edge crosses itself. A graph is planar if it can be drawn in the plane
such that no two edges cross, i.e., it admits a planar drawing. A drawing of a graph is k-planar
(with k ≥ 0) if it contains no edge crossed more than k times, and it is quasi-planar if it contains
no three edges that pairwise cross.

Let G be a graph. A τ -page book layout of G consists of a linear ordering ≺ of the vertices of G
along a line, called the spine, and of a partition {E1, . . . , Eτ} of the edges of G into τ sets, called
pages. A τ -page book embedding of G is a τ -page book layout such that no two edges of the same
page cross. That is, there exist no two edges (u, v) and (w, z) in the same page Ei such that u ≺ v,
v ≺ w, u ≺ z, and z ≺ v. The book thickness of G is the minimum integer τ for which G has a
τ -page book embedding. The book skewness of G is the minimum number of edges that need to be
removed from G so that the resulting graph has book thickness 1, that is, it is outerplanar [9].

Let G = (U, V,E) be a bipartite graph, where U and V denote the two subsets of the vertex set
of G, and E denotes the edge set of G. A 2-level drawing of G maps each vertex u ∈ U to a point
on a horizontal line ℓu, which we call the u-layer, each vertex v ∈ V to a point on a horizontal
line ℓv (distinct from ℓu), which we call the v-layer, and each edge in E to a y-monotone curve
between its endpoints. Observe that, from a combinatorial standpoint, a 2-level drawing Γ of G is
completely specified by the linear ordering in which the vertices in U and the vertices in V appear
along ℓu and ℓv, respectively. The 2-level skewness of G is the minimum number of edges that need
to be removed from G so that the resulting graph admits a 2-level planar drawing, that is, it is a
forest of caterpillars [19].

Next, we provide the definitions of the search problems we study concerning 2-level drawings of
graphs.

Input: A bipartite graph G and a positive integer ρ.
Output: A 2-level drawing of G with at most ρ crossings, if one exists.

Two-level Crossing Minimization (TLCM)

Input: A bipartite graph G and a positive integer k.
Output: A 2-level k-planar drawing of G, if one exists.

Two-level k-planarity (TLKP)

Input: A bipartite graph G.
Output: A 2-level quasi-planar drawing of G, if one exists.

Two-level Quasi Planarity (TLQP)

JGAA, 29(2) 3–47 (2025) 9

Input: A bipartite graph G and an integer σ.
Output: A set S ⊆ E(G) such that |S| ≤ σ and the graph G′ = (V,E(G) \ S) is a

forest of caterpillars, if one exists.

Two-level Skewness (TLS)

Finally, we provide the definitions of the search problems we study concerning book embeddings of
graphs.

Input: A graph G and a positive integer ρ.
Output: A 1-page book layout of G with at most ρ crossings, if one exists.

One-Page Crossing Minimization (OPCM)

Input: A graph G and an integer τ .
Output: A τ -page book embedding of G, if one exists.

Book Thickness (BT)

Input: A graph G and an integer σ.
Output: A set S ⊆ E(G) such that |S| ≤ σ and the graph G′ = (V,E(G) \ S) is

outerplanar, if one exists.

Book Skewness (BS)

Partitions. A k-subset of a ground set W is a subset of W fo size k. Baranyai’s Theorem [8]
states the following.

Theorem 1 (Baranyai’s Theorem). Let W be a set and let k be an integer that divides |W |. Then,

the set of all k-subsets of W may be partitioned into
(|W |−1
k−1

)
disjoint classes each of size |W |

k .

In order to prove the depth bounds of our circuits we will exploit the following, which can easily
be derived from Theorem 1.

Corollary 1.1. Let X be a set and let k be an integer. Then, the set of all k-subsets of X may be

partitioned into at most
(|X|+k−2

k−1

)
classes each of size at most |X|+k−1

k .

Proof:
We extend X to a set U by adding a dummy elements, where a =

(
(⌊ |X|

k ⌋+1) ·k−|X|
)

mod k,
so that |U | is a multiple of k. By Theorem 1, the set CU of all k-subsets of U can be partitioned into(|U |−1
k−1

)
=

(|X|+a−1
k−1

)
disjoint classes, each of size |U |

k = |X|+a
k . Let CX be the set of all k-subsets of

X. By removing, from the partition of CU into
(|X|+a−1

k−1

)
disjoint classes of size |X|+a

k , all k-subsets

in CU \ CX , we obtain a partition of CX into at most
(|X|+a−1

k−1

)
disjoint classes each of size at

most |X|+a
k . Since a < k, such a partition of CX has at most

(|X|+k−2
k−1

)
classes, each of size at most

|X|+k−1
k . 2

We remark that, in our subsequent uses of Corollary 1.1 to partition the set of all k-subsets of a
ground set X into disjoint classes, we will always have that k ≪ |X|. Therefore, the number of

classes and their size will be in O(|X|k−1) and O(|X|
k), respectively.

10 Caroppo et. al Quantum Graph Drawing

Mathematical formulations. We introduce the mathematical formulations used in the D-Wave4

quantum annealing platform.
A constrained binary optimization (CBO) is a mathematical formulation of an optimization

problem, in which the variables are binary. Note that, both the objective function and the constraints
may have an arbitrary degree. In some cases, we focus on CBO formulations in which the objective
function is not defined, and we aim at verifying whether a problem instance satisfies the given
constraints.

A quadratic unconstrained binary optimization (QUBO) is a mathematical formulation of an
optimization problem, in which the variables are binary, the optimization function is quadratic,
and there are no constraints. Specifically, let Q be an upper triangular matrix Q ∈ Rk×k. Using
Q, we can define a quadratic function fQ : Bk → R that assigns a real value to a k-length binary

vector. Namely, we let fQ(x) = xTQx =
∑k
i=1

∑k
j=1Qijxixj . The QUBO formulation for fQ asks

for a binary vector x∗ that minimizes fQ, i.e., x
∗ = argmin

x∈Bk

fQ(x).

Quantum circuits. Quantum circuits are obtained by composing quantum gates, which receive
and output quantum states on the same number of qubits. A quantum gate implements a linear
transformation of the input quantum state, and thus a state that is a superposition of other states is
mapped to the superposition of the images of such states. In particular, any such a transformation
U must be unitary, that is, a linear transformation such that I = U†U = UU†. Any quantum
computation is reversible in the following sense. As long as no measurement is performed on the
output quantum state |ϕ⟩ obtained by applying U to an initial quantum state |ψ⟩, such an initial
quantum state can be recovered by applying U−1 = U† to |ϕ⟩.

In Dirac’s notation, a ket such as |v⟩, where v is an arbitrary label, refers to a vector in the
complex Hilbert space representing a state of a quantum system. We denote by |0k⟩ the quantum
basis state composed of k qubits set to |0⟩.

A reversible version of any classical circuit can be obtained by composing reversible gates,
known as Toffoli gates. The Toffoli gate has k input and output qubits; refer to Fig. 2a. The
first k − 1 qubits |x1, . . . , xk−1⟩ are control qubits, whereas the last qubit is the target qubit |xk⟩.
When provided with the input superposition |x1, . . . , xk⟩, the Toffoli gate produces the output

superposition
∣∣∣x1, . . . , xk−1, xk ⊕

∧k−1
i=1 xi

〉
. We will exploit a more general version of the Toffoli

gate, which is defined with respect to a binary length-k − 1 string s; Fig. 2b. Such a Toffoli
gate, when provided with the input superposition |x1, . . . , xk⟩, produces the output superposition∣∣∣x1, . . . , xk−1, xk ⊕

∧k−1
i=1 (xi = si)

〉
. Observe that a standard Toffoli gate corresponds to the general

version we adopt, defined with respect to the binary string s consisting of k − 1 bits with value 1.
Following a common standard, we mark with a black-filled (resp. white-filled) dot the control qubit
corresponding to the bits of s with value 1 (resp. 0). In the remainder, we will refer to the general
version of this gate as a Toffoli gate.

We make extensive use of the Hadamard gate H, whose unitary transformation matrix is
1√
2

(
1 1
1 −1

)
. In particular, we will exploit the Hadamard gate to create an equal superposition of the

states |0⟩ and |1⟩, when provided with the input state |0⟩.
Let D be a vertex-weighted directed acyclic graph (DAG). The depth of D is the number of

vertices in a longest path of D. Two vertices u and v of D are incomparable if there exists no
directed path from u to v, or vice versa. An anti-chain of D is a maximal set of incomparable
vertices. The weight of an anti-chain is the sum of its vertex weights. The width of D is the

4D-Wave quantum annealing platform system documentation (https://docs.dwavesys.com/docs/latest/index.html)

https://docs.dwavesys.com/docs/latest/index.html

JGAA, 29(2) 3–47 (2025) 11

|x1⟩

|x2⟩

|xk−1⟩

|xk⟩

|x1⟩

|x2⟩

|xk−1⟩∣∣∣xk ⊕
∧k−1

i=1 xi

〉
(a) Standard Toffoli gate.

∣∣∣xk ⊕
∧k−1

i=1 (xi = si)
〉

|x1⟩

|x2⟩

|xk−1⟩

|xk⟩

|x1⟩

|x2⟩

|xk−1⟩

(b) General Toffoli gate.

Figure 2: The circuit representation of a Toffoli gate.

maximum weight of an anti-chain of D. A quantum circuit Q can be modeled as a vertex-weighted
directed acyclic graph DQ, whose vertices correspond to the gates of Q and whose directed edges
represent qubit input-output dependencies. Moreover, the weight of a vertex representing a gate U
corresponds to the number of elementary gates [35, 37] needed to build U .

Note that the size of a circuit corresponds to the total number of operations that must be
performed to execute the circuit, the depth of a circuit corresponds to the number of distinct time
steps at which gates are applied, and the width of a circuit corresponds to the maximum number of
operations that can be performed “in parallel”. Therefore, it is natural to upper bound the time
complexity of executing the circuit either by its depth, assuming the gates at each layer can be
executed in parallel, or by its circuit complexity, assuming the gates are executed sequentially.

Next, we provide lemmas that describe the input-output behaviour of some gates that will
be used in the following sections and present their circuit complexity, depth and width. These
gates can be obtained by combining elementary quantum circuits such as Toffoli, Half-Adder, and
Full-Adder Gates. In [5, 10, 29], implementations of the simple quantum circuits we will use, or
slightly-similar ones, can be found. Let ϕ[i] and ϕ[j] be binary strings of length log t, which we
interpret as binary integers represented with log t bits. Also, let |ϕ[i]⟩ and |ϕ[j]⟩ be the basis states
corresponding to ϕ[i] and ϕ[j], respectively.

First, we focus on gate U= that, given integers ϕ[i] and ϕ[j], verifies if ϕ[i] is equal to ϕ[j].

Lemma 1 ([5]). There exists a gate U= that, when provided with the input superposition
|ϕ[i]⟩ |ϕ[j]⟩ |0log t⟩ |0⟩, produces the output superposition |ϕ[i]⟩ |ϕ[j]⟩ |0log t⟩ |ϕ[i] = ϕ[j]⟩. Gate U=

has O(log t) circuit complexity, depth, and width.

Second, we focus on gate U< that, given integers ϕ[i] and ϕ[j] represented with log t bits, verifies
if ϕ[i] is less than ϕ[j].

Lemma 2 ([5]). There exists a gate U< that, when provided with the input superposition
|ϕ[i]⟩ |ϕ[j]⟩ |0log t⟩ |0⟩, produces the output superposition |ϕ[i]⟩ |ϕ[j]⟩ |0log t⟩ |ϕ[i] < ϕ[j]⟩. Gate U<
has O(log t) circuit complexity, depth, and width.

Third, we focus on gate U1s that, given a binary string b of length t, counts how many bits set
to 1 are in it, that is, the Hamming weight of b. For simplicity, we assume that t is a power of 2. If
not, we can always append to b the smallest number of 0s such that this property holds. Observe
that, in the worst case, the length of the string may double, which does not alter the asymptotic
bounds of the next lemma.

Lemma 3 ([5, 10, 29]). There exists a gate U1s that, when provided with the input superposition
|b0 . . . bt−1⟩ |0h⟩ |0k⟩, where t is a power of 2, k = 1 + log t, and h = 4t− 2 log t− 4, produces the

12 Caroppo et. al Quantum Graph Drawing

H

H

UI U−1
IUS

Phase Inversion

Inversion About

the

Mean

|0⟩

|0⟩

|−⟩

Repeat ≈ π
4

√
2ℓ

M
times

ℓ

|0⟩
α

|0⟩
|−⟩

|0⟩
α

|0⟩

1√
2ℓ

∑
γ∈Bℓ |γ⟩

(−1)f(γ) |−⟩

Figure 3: Overview of the quantum graph drawing framework based on Grover’s approach.

output superposition |b0 . . . bt−1⟩ |0h⟩ |s⟩, where s is the binary representation, in log t+ 1 bits, of

the total number
∑t−1
i=0 bi of qubits set to 1 in b. Gate U1s has O(t) circuit complexity, O(log2 t)

depth, and O(t) width.

3 A Quantum Framework for Graph Drawing Problems

In this section, we establish a framework for dealing with several NP-complete graph drawing search
problems based on linear orderings; refer to Fig. 3. A search problem P is defined by a binary
relation R ⊆ I × S. The elements of I are the instances of P , whereas the elements of S are the
solutions of P . For every instance Λ ∈ I, the set SolP (Λ) = {s ∈ S : (Λ, s) ∈ R} is the set of
solutions of P for Λ. The number of solution of P for Λ is |SolP (Λ)|. The framework is based on
the Grover’s approach for quantum search [23], which builds upon three circuits. The first circuit
consist of multiple Hadamard gates that, when provided with a collection of qubits set to |0⟩, builds
a uniform superposition of all basis states of a collection of qubits. Such a superposition includes
basis states that correspond to encodings of all the candidate solutions to the problem, as well as
basis states that may not correspond to well-formed encodings (according to the selected encoding
scheme) of candidate solutions to the problem. The second circuit exploits an oracle to perform
the so-called Phase Inversion. The third circuit executes the so-called Inversion about the
Mean. The second and the third circuit are executed a number of times which guarantees that a
final measure outputs a solution, if any exists, with high probability.

Theorem 2 (Grover’s search [1, 23]). Let P be a search problem whose solutions can be encoded using
ℓ bits and suppose that there exists a Phase Inversion circuit for P with c(ℓ) circuit complexity
and d(ℓ) depth. Assume that c(ℓ) and d(ℓ) are Ω(log ℓ). Then, there exists a quantum circuit that,

given an instance Λ of P , outputs a solution of P for Λ, if any exists, with π
4

√
2ℓ

M ·O(c(ℓ)) circuit

complexity and π
4

√
2ℓ

M ·O(d(ℓ)) depth, where M is the number of solutions of P for Λ.

Let n and m be the number of vertices and edges of an input graph G, respectively. Observe
that, in all the problems we consider, G admits the sought layout if and only if each of its
connected components does. Hence, in the following, we assume that G is connected, and therefore

JGAA, 29(2) 3–47 (2025) 13

m ≥ n− 1. During the computation, we will manage a superposition |Γ⟩ = |Φ⟩ |Ψ⟩ |Θ⟩, where |Φ⟩ is
a superposition of n log n qubits, |Ψ⟩ is a superposition of m log τ qubits, and |Θ⟩ is a superposition
of σ logm qubits. In particular, for some of the problems, |Ψ⟩ and/or |Θ⟩ might not be present.
We denote by ℓ the value (n log n) + (m log τ) + (σ logm), where the second and/or third terms
might be missing.

The superposition |Φ⟩ =
∑
ϕ∈Bn log n cϕ |ϕ⟩ represents the superposition of all sequences of n

natural numbers with values in [n], each represented by a binary string ϕ of length n log n (according
to notation defined in Sect. 2 to represent sequences of integers). The digits corresponding to
each natural number contained in ϕ form a consecutive sequence of length log n. In particular,
we denote by ϕ[i] the i-th natural number contained in ϕ. The purpose of |ϕ⟩ is to represent the
position of each vertex of G in a total order. To this aim, observe that, within the superposition
|Φ⟩, all possible states corresponding to assignments of positions from 0 to n− 1 for each vertex in
G are included.

The superposition |Ψ⟩ =
∑
ψ∈Bm log τ cψ |ψ⟩ represents the superposition of all sequences of m

natural numbers with values in [τ], each represented by a binary string ψ of length m log τ . The
digits corresponding to each natural number contained in ψ form a consecutive sequence of length
log τ . In particular, we denote by ψ[i] the i-th natural number contained in ψ. The purpose of |ψ⟩
is to represent a coloring of the edges of G with color in [τ]. To this aim, observe that, within the
superposition |Ψ⟩, all possible states corresponding to an assignment of integers from 0 to τ − 1 for
each edge in G are included.

The superposition |Θ⟩ =
∑
θ∈Bσ log m cθ |θ⟩ represents the superposition of all sequences of σ

natural numbers with values in [m], each represented by a binary string θ of length σ logm. The
digits corresponding to each natural number contained in θ form a consecutive sequence of length
logm. In particular, we denote by θ[i] the i-th natural number contained in θ. The purpose of |θ⟩
is to represent a subset of the edges of G of size at most σ, each labeled with an integer in [m]. To
this aim, observe that, within the superposition |Θ⟩, all possible states corresponding to a selection
of σ edges of G, where each edge is indexed with an integer from 0 to m− 1, are included.

For problems TLCM, TLKP, TLQP, and OPCM, we have that |Γ⟩ = |Φ⟩. For problem BT,
we have that |Γ⟩ = |Φ⟩ |Ψ⟩. Finally, for problems TLS and BS, we have that |Γ⟩ = |Φ⟩ |Θ⟩.

Next, we present an overview of how the superposition |Γ⟩ evolves within the three main circuits
of the framework; refer to Fig. 3.

First, in all problems we study, ℓ qubits set to |0⟩ enter a Hadamard gate that outputs the uniform
superposition |Γ⟩ = H⊗ℓ |0ℓ⟩ = 1√

2ℓ

∑
γ∈Bℓ |γ⟩. Observe that, such a superposition, corresponds to

the tensor product of the uniform superpositions |Φ⟩ = H⊗n logn |0n logn⟩, |Ψ⟩ = H⊗m log τ |0m log τ ⟩,
and |Θ⟩ = H⊗σ logm |0σ logm⟩, where possibly Ψ and/or Θ might be not present. Also, observe that,
within |Γ⟩, all possible encodings of solutions of the considered problems are included, if any exist.

Second, we focus on the Phase Inversion circuit. In the first iteration, it receives as input
(i) the uniform superposition |Γ⟩ = H⊗ℓ |0ℓ⟩, (ii) α ancilla qubits set to |0⟩, whose number depends

on the type of problem we are addressing, and (iii) a qubit set to |−⟩ = |0⟩−|1⟩√
2

. Namely, it receives

as input the superposition |Γ⟩ |0α⟩ |−⟩, where |Γ⟩ = 1√
2ℓ

∑
γ∈Bℓ |γ⟩. It outputs the superposition

1√
2ℓ

∑
γ∈Bℓ(−1)f(γ) |γ⟩ |0α⟩ |−⟩, where f(γ) = 1 if and only if γ represents a solution to the

considered problem. In general, the Phase Inversion circuit receives in input the superposition
|Γ⟩ |0α⟩ |−⟩, where |Γ⟩ =

∑
γ∈Bℓ cγ |γ⟩. It outputs the superposition

∑
γ∈Bℓ(−1)f(γ)cγ |γ⟩ |0α⟩ |−⟩.

To implement this phase inversion transformation, we exploit the following property of the |−⟩ state.
Applying the NOT gate (also called the X gate) to |−⟩ = 1√

2
(|0⟩ − |1⟩) yields X |−⟩ = 1√

2
(− |0⟩+

|1⟩) = − |−⟩. This means that flipping the |−⟩ state introduces a global phase of −1 to the entire state.

14 Caroppo et. al Quantum Graph Drawing

We use this property to implement the phase inversion in the Grover framework. Mathematically,
the transformation can be written as

∑
γ∈Bℓ cγ |γ⟩ |0α⟩ (−1)f(γ) |−⟩ =

∑
γ∈Bℓ(−1)f(γ)cγ |γ⟩ |0α⟩ |−⟩.

We remark that the values of the complex coefficients cγ depend on the iteration. Third, in
Grover’s approach, the Inversion about the Mean circuit does not depend on the specific
problem, but it is standard gate common to all applications of the Grover’s framework. The aim of
this circuit is to adjust the amplitudes of the quantum states in the superposition by reflecting
them around their average value. This reflection increases the amplitudes of states with values
below the mean while decreasing those above it, thereby redistributing amplitude to enhance the
probability of measuring the solution state, whose amplitudes have been placed below the mean by
the phase inversion circuit. Therefore, the main challenge in exploiting Grover’s framework is to
provide a specific phase inversion circuit that can efficiently evaluate the function f(γ).

For each problem we consider, we provide a specific Phase Inversion circuit. All such circuits
consist of three circuits (see Fig. 3), the first is called Input Transducer and is denoted by UI ,
the second is called Solution Detector and is denoted by US , and the third is the inverse U−1

I

of the Input Transducer. The purpose of the Input Transducer circuits is to “filter out” the
states of |Γ⟩ that do not correspond to well-formed encodings of candidate solutions. The purpose
of the Solution Detector circuits is to invert the amplitude of the states of |Γ⟩ that correspond
to encodings of solutions, if any. The purpose of U−1

I is to restore the state of the ancilla qubits
to |0⟩ so that they may be employed in the subsequent iterations of the amplitude-amplification
process.

The Input Transducer circuits are described in Sect. 4. The Solution Detector circuits
are described in Sect. 5. In that section, we also combine the Input Transducer circuits and the
Solution Detector circuits to prove the following lemma; refer also to Table 1.

Lemma 4. The TLCM, TLKP, TLQP, TLS, OPCM, BT, and BS problems admit Phase Inver-
sion circuits whose circuit complexity, depth, and width are bounded as follows:

TLCM Circuit complexity: O(m2). Depth: O(n2). Width O(m2).

TLKP Circuit complexity: O(m2). Depth: O(m log2m). Width O(m).

TLQP Circuit complexity: O(m6). Depth: O(m4). Width O(m2).

TLS Circuit complexity: O(m2). Depth: O(m). Width O(m).

OPCM Circuit complexity: O(n8). Depth: O(n6). Width O(m2).

BT Circuit complexity: O(n8). Depth: O(n6). Width O(m).

BS Circuit complexity: O(n8). Depth: O(n6). Width O(m).

Theorem 2 and Lemma 4 imply the following.

Theorem 3. In the quantum circuit model of computation, the TLCM, TLKP, TLQP, TLS,
OPCM, BT, and BS problems can be solved with the following sequential and parallel time bounds
(where M denotes the number of solutions to the problem):

TLCM Sequential:
√

2n log n

M ·O(m2). Parallel:
√

2n log n

M ·O(n2).

TLKP Sequential:
√

2n log n

M ·O(m2). Parallel:
√

2n log n

M ·O(m log2m).

JGAA, 29(2) 3–47 (2025) 15

TLQP Sequential:
√

2n log n

M ·O(m6). Parallel:
√

2n log n

M ·O(m4).

TLS Sequential:
√

2n log n+σ log m

M ·O(m2). Parallel:
√

2n log n+σ log m

M ·O(m).

OPCM Sequential:
√

2n log n

M ·O(n8). Parallel:
√

2n log n

M ·O(n6).

BT Sequential:
√

2n log n+m log τ

M ·O(n8). Parallel:
√

2n log n+m log τ

M ·O(n6).

BS Sequential:
√

2n log n+σ log m

M ·O(n8). Parallel:
√

2n log n+σ log m

M ·O(n6).

4 Input Transducer Circuits

We use two different versions of circuit UI , depending on the considered problem. Namely, for all
problems but TLS and BS, circuit UI consists of just one circuit UOT , called Order-Transducer
(refer to Fig. 4). For problems TLS and BS, circuit UI executes, in parallel to UOT , another circuit
UST , called Skewness-Transducer (refer to Fig. 7).

4.1 Order Transducer

Let ϕ be a binary string of length n log n, which we interpret as a sequence of n binary integers,
each consisting of log n bits. Recall that we denote by ϕ[i] the i-th binary integer contained in
ϕ. Also, let |ϕ⟩ be the basis state corresponding to ϕ. This subsection is devoted to proving the
following lemma.

Lemma 5. There exists a gate UOT that, when provided with the input superposition |ϕ⟩ |0α⟩, where
α = n

2 (n− 1 + log n) + 1, produces the output superposition

|ϕ⟩ |f(ϕ)⟩ |x0,1⟩ . . . |x0,n−1⟩ . . . |xi,j⟩ . . . |xn−2,n−1⟩
∣∣0n

2 logn

〉
,

such that |xi,j⟩ = 1 if and only if ϕ[i] < ϕ[j] and f(ϕ) = 1 if and only if ϕ represents an
n-permutation. UOT has O(n2 log n) circuit complexity, and O(n log n) depth and width.

Proof of Lemma 5. The input of UOT is composed of n log n+ α qubits, the first ℓ = n log n
form a superposition |ϕ⟩ and the rest are set to |0⟩. First, |ϕ⟩ and n

2 (log n+ 3) + 1 qubits set to |0⟩
enter a gate UC , called Collision Detector. The purpose of UC is to compute the superposition

|ϕ⟩ |f(ϕ)⟩
∣∣∣0n

2 (logn+3)

〉
, where f(ϕ) = 1 if and only if ϕ[i] ̸= ϕ[j] for each i ≠ j. It has O(n2 log n)

circuit complexity, and it has O(n log n) depth and width. Second, |ϕ⟩ and n
2 log n+ n(n−1)

2 qubits
set to |0⟩ enter a gate UP called Precedence Constructor. The purpose of UP is to compute a
superposition |ϕ⟩ |x⟩

∣∣0n
2 logn

〉
, where |x⟩ = |x0,1⟩ . . . |x0,n−1⟩ . . . |xi,j⟩ . . . |xn−2,n−1⟩ and xi,j = 1 if

and only if ϕ[i] < ϕ[j]. It has circuit complexity O(n2 log n), and it has O(n log n) depth and width.
Gate UOT has O(n2 log n) circuit complexity, and it has O(n log n) depth and width.

16 Caroppo et. al Quantum Graph Drawing

|ϕ⟩n log n

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

n
2 log n+ 3

2n

UC |f(ϕ)⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

n(n−1)
2 − 3

2n

UP

|x⟩

|0⟩
|0⟩
|0⟩

n(n−1)
2

answer bit

|ϕ⟩|ϕ⟩

|0⟩

|f(ϕ)⟩

Figure 4: The Order Transducer gate UOT .

n
2
(logn+ 1)

r

|0⟩

f(ϕr)

f(ϕ1)

f(ϕi)

|f(ϕ)⟩

|0⟩

|0⟩

|0⟩

U=

set S1

U=

µC

|0⟩

|0⟩

|0⟩

µ−1
C

U=

U=

U=

set Si

U=

U=

U=

U=

set Sr

U=

U=

U=

Figure 5: The gate UC .

Collision-detector. Gate UC works as follows. Refer to Fig. 5.

It executes two gates µC and µ−1
C and in between such gates it executes a Toffoli gate. The input

of µC is the superposition |ϕ[0]⟩ . . . |ϕ[n− 1]⟩
∣∣∣0n

2 (logn+1)

〉
|0n⟩. The output of µC is the superpo-

sition |ϕ[0]⟩ . . . |ϕ[n− 1]⟩
∣∣∣0n

2 (logn+1)

〉
|f(ϕ0)⟩ . . . |f(ϕi)⟩ . . . |f(ϕn−1)⟩. In gate µC , we compare the

unordered pairs of numbers ϕ[i] and ϕ[j] in parallel as follows. Consider that if two numbers are
compared, none of the two can be compared with another number at the same time. Hence, we
partition the pairs using Corollary 1.1 (with k = 2 and |X| = n) into r = O(n) classes S1, . . . , Sr
each containing at most n

2 disjoint pairs.

For each pair (i, j) of S1 (refer to Fig. 5) we use a U= gate to compare ϕ[i] and ϕ[j]. Recall
that the gate U= outputs a superposition |ϕ[i]⟩ |ϕ[j]⟩ |0⟩ . . . |0⟩ |ϕ[i] == ϕ[j]⟩. All the last output
qubits of the U= gates for S1 enter a Toffoli gate with |Si|+ 1 inputs and outputs, which computes
the qubit |f(ϕ0)⟩ such that ϕ0 = 1 if and only if all of the first |Si| input qubits are equal to |0⟩,
i.e., all pairs correspond to different numbers.

JGAA, 29(2) 3–47 (2025) 17

n
2
logn

n(n−1)
2

|x0,1⟩

|xi,k⟩

|xi,j⟩

|x0,j⟩

|0⟩

U<

set S1 set Si set Sr

U<

|xi,n−1⟩
|xj,k⟩|0⟩

U<

U<

U<

U<

Figure 6: The gate UP .

After dealing with S1, we deal with S2 with the same technique and keep on dealing with the
Si sets until Sr is reached.

All the last output qubits of the U= gates for Si enter a Toffoli gate that outputs a qubit |f(ϕi)⟩
such that f(ϕ1) = 1 if and only if all of them are equal to |0⟩, i.e., if does not exist pair (j, k) of Si
where ϕ[j] = ϕ[k]. In order to allow the reuse of the ancilla qubits, except for the qubit |f(ϕi)⟩,
gate UC executes in parallel a gate U−1

= for each pair in Si.

All the qubits |f(ϕi)⟩ and the qubit |ϕ⟩ enter a Toffoli gate with r + 1 inputs and outputs. The
first r qubits are control qubits, the target qubit is |f(ϕ)⟩, which is initialized to |0⟩. The target
qubit is set to |

∧r
i=1 ϕi⟩. In order to allow the reuse of the ancilla qubits, we apply to the entire

circuit preceding the Toffoli gate its inverse gate. Recall that by Lemma 1, gate U= has O(log n)
circuit complexity, depth, and width. Therefore, gate UC has O(n2 log n) circuit complexity, and it
has O(n log n) depth and width.

Precedence Constructor. Gate UP works as follows. Refer to Fig. 6.

For each pair i, j (i, j ∈ [n] and i ̸= j) UP exploits U< that outputs a qubit |xi,j⟩ such that
xi,j = ϕ[i] < ϕ[j]. Using several gates U<, we compare the ordered pairs of numbers ϕ[i] and ϕ[j] in
parallel as follows. As for gate UC , if two numbers are compared, none of the two can be compared
with another number at the same time. Hence, we partition the pairs using Corollary 1.1 (with
k = 2 and |X| = n) into r ∈ O(n) classes S1, . . . , Sr each containing at most n

2 disjoint pairs.

For each pair (i, j) of S1 (refer to Fig. 6) we use a U< gate to compare ϕ[i] and ϕ[j]. Recall
that the gate U< outputs a superposition |ϕ[i]⟩ |ϕ[j]⟩ |0⟩ . . . |0⟩ |ϕ[i] < ϕ[j]⟩. In order to allow the
reuse of the ancilla qubit different from |xi,j⟩ for each pair (i, j) ∈ S1, we use a symmetric circuit
that transforms the ancilla output qubits into a sequence of |0⟩ qubits, that will be re-used in the
following step.

After dealing with S1, we deal with S2 with the same technique and keep on dealing with the
Si sets until Sr is reached.

Recall that by Lemma 2, gate U< has O(log n) circuit complexity, depth, and width. Therefore,
gate UP has O(n2 log n) circuit complexity, and it has O(n log n) depth and width.

18 Caroppo et. al Quantum Graph Drawing

|θ⟩σ logm

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

m

UC |f(θ)⟩

|0⟩
|0⟩
|0⟩

UE |e1⟩
answer bit

|θ⟩|θ⟩

|0⟩

|f(θ)⟩

|ei⟩

|em⟩

Figure 7: The Skewness Transducer gate UST .

4.2 Skewness Transducer

Let θ be a binary string of length σ logm, which we interpret as a sequence of σ binary integers,
each consisting of logm bits. Recall that we denote by θ[i] the i-th binary integer contained in θ.
Also, let |θ⟩ be the basis state corresponding to θ. This subsection is devoted to proving the
following lemma.

Lemma 6. There exists a gate UST that, when provided with the input superposition |θ⟩ |0⟩ |0m⟩,
produces the output superposition |θ⟩ |f(θ)⟩ |e0⟩ . . . |ei⟩ . . . |em−1⟩, such that f(θ) = 1 if and only if
θ represents a subset of size σ of the set [m], and when f(θ) = 1 it holds that ei = 1 if and only if
there exists j ∈ [σ] such that θ[j] coincides with (the binary representation of) the integer i. Gate
UST has O(σm logm) circuit complexity and depth, and O(σ logm) width.

Proof of Lemma 6. The input of UST is composed of σ logm+1+m qubits, the first ℓ = σ logm
qubits form a superposition θ and the rest are set to |0⟩. First, |θ⟩, |0⟩, and h = σ

2 (logm + 3)
qubits set to |0⟩ enter an instance of the Collision Detector gate UC used in the proof
of Lemma 5, where the qubits of the superposition |θ⟩ |0⟩ |0h⟩ play the role of the qubits of the

superposition |ϕ⟩ |0⟩
∣∣∣0n

2 (logn+3)

〉
. The purpose of this instance of UC is to compute the superposition

|θ⟩ |f(θ)⟩ |0h⟩, where f(θ) = 1 if and only if θ[a] ̸= θ[b] for each 0 ≤ a < b ≤ σ−1. It has O(σ2 logm)
circuit complexity and it has O(σ log(m)) depth and width. Second, the superpositions |θ⟩ and |0m⟩
enter a gate UE , called Edge Constructor; refer to Fig. 8a. The purpose of UE is to compute
the superposition |θ⟩ |e⟩, where |e⟩ = |e0⟩ . . . |ei⟩ . . . |em−1⟩ and, when f(θ) = 1, it holds that ei = 1
if and only if there exists a j ∈ [σ] such that θ[j] coincides with (the binary representation of)
the integer i. It has O(σm logm) circuit complexity, O(σm) depth, and O(logm) width. Recall
that σ < m. Thus, we have that gate UST has O(σm logm) circuit complexity, O(σm) depth, and
O(σ logm) width.

JGAA, 29(2) 3–47 (2025) 19

Edge Constructor. The gate UE exploits instances of the auxiliary gate Uei , defined for each
edge ei ∈ E as follows. Refer to Fig. 8b. When provided with the input superposition |θ⟩ |0⟩, the
gate Uei produces the output superposition |θ⟩ |ei⟩, where – provided that θ represents a subset
of size σ of the set [m], i.e., f(θ) = 1 – it holds that ei = 1 if and only if there exists j ∈ [σ] such
that θ[j] coincides with the integer i. The gate Uei contains σ Toffoli gates, each with log(m) + 1
inputs and outputs. All such Toffoli gates share the same target qubit. The control qubits of the
first Toffoli gate T0 are |θ[0][0]⟩ . . . |θ[0][log(m)− 1]⟩ and its target qubit is initialized to |0⟩. It
turns the target qubit into |1⟩ if and only if θ[0][0] . . . θ[0][log(m)− 1] coincides with the integer
i. For j = 1, . . . , σ − 1, gate Uei contains a Toffoli gate Tj that takes in input the superposition
|θ[j][0]⟩ . . . |θ[j][log(m)− 1]⟩ and the target qubit that has been output by Tj−1. It flips the value
of the target qubit if and only if θ[j][0] . . . θ[j][log(m)− 1] coincides with (the binary representation
of) the integer i. Thus, if at most one of the j integers composing θ coincides with the integer i,
then ei = 1 if and only if there exists j ∈ [σ] such that θ[j] coincides with (the binary representation
of) the integer i. Gate Uei has O(σ logm) circuit complexity, O(σ) depth, and O(logm) width.

The gate UE computes |e⟩ = |e0⟩ . . . |ei⟩ . . . |em−1⟩ as follows. For i ∈ [m], it computes |ei⟩ by
applying the gate Uei to the superposition |θ⟩ |0⟩, where the last qubit is the i-th qubit of the m
qubits compositing the superposition |0m⟩, which is provided in input to the gate UE . Gate UE
has circuit complexity O(σm logm), depth O(σm), and width O(logm).

σ logm

m

|0⟩

|0⟩

|0⟩

Ue1

|e0⟩

|ei⟩

|em−1⟩

Ue1

Uei

Uei

Uem

Uem

(a) Gate UE

|θ[0]⟩

Uei

|θ[0]⟩

|θ[j]⟩ |θ[j]⟩

|θ[σ − 1]⟩ |θ[σ − 1]⟩

|0⟩ |ei⟩

σ logm

(b) Gate Uei

Figure 8: Illustration for the construction of gate UE .

5 Solution Detector Circuits

In this section, we present the details of the Solution Detector circuits US for the problems we
consider.

Recall that the Order Transducer circuit produces the output superposition

|ϕ⟩ |f(ϕ)⟩ |x0,1⟩ . . . |x0,n−1⟩ . . . |xi,j⟩ . . . |xn−2,n−1⟩
∣∣0n

2 logn

〉
,

such that xi,j = 1 if and only if ϕ[i] < ϕ[j], and f(ϕ) = 1 if and only if ϕ represents an n-permutation.
In the following, for simplicity, we denote the superposition |x0,1⟩ . . . |x0,n−1⟩ . . . |xi,j⟩ . . . |xn−2,n−1⟩
as |x⟩. We interpret the values x0,1, . . . , x0,n−1, . . . , xi,j , . . . , xn−2,n−1 as the entries above the main
diagonal of a square binary matrix X, where X[i][j] = xi,j , and whose entries along and below the
main diagonal are undefined. We use such entries to represent the precedence between vertices in a
graph drawing. Let x be the string obtained by concatenating x0,1, . . . , x0,n−1, . . . , xi,j , . . . , xn−2,n−1.
We will use x both for book layouts and for 2-level drawings as follows.

20 Caroppo et. al Quantum Graph Drawing

Consider book layouts of a graph G = (V,E). We denote by Π(x) the vertex order along the
spine of a book layout of G defined as follows. We have that, if xi,j = 1, then vertex vi precedes
vertex vj in Π(x). Conversely, if xi,j = 0, then vertex vj precedes vertex vi in Π(x). Consider
now a 2-level drawing of a graph G = (U, V,E). We assume that the vertices in U are labeled
as u0, . . . , u|U |−1, and the vertices of V are labeled as v|U |, . . . , v|U |+|V |−1. We denote by D(x)
the 2-level drawing of G defined as follows. Let wi and wj be two vertices of G. Suppose that
wi, wj ∈ U . If xi,j = 1, then wi ≺ wj along the horizontal line ℓu, otherwise, wj ≺ wi along ℓu.
Suppose that wi, wj ∈ V . If xi,j = 1, then wi ≺ wj along the horizontal line ℓv, otherwise, wj ≺ wi
along ℓv. Suppose now that wi ∈ U and wj ∈ V . Then, we assume that xi,j = 0, which we interpret
as the absence of a precedence relation between such vertices.

We remark that, if ϕ is not an n-permutation, then Π(x) and D(x) do not correspond to actual
spine orders and 2-level drawings, respectively. In this case, we say that they are degenerate.

We will exploit |x⟩ to compute a superposition |χ0,1⟩ . . . |χ0,m−1⟩ . . . |χi,j⟩ . . . |χm−2,m−1⟩, which
we will denote for simplicity by |χ⟩. We interpret the values χ0,1, . . . , χ0,m−1, . . . , χi,j , . . . , χm−2,m−1

as the entries of a square binary matrix C, where C[i][j] = χi,j and whose entries along and below
the main diagonal are undefined. We use such entries to represent the existence of crossings between
pairs of edges in a graph drawing. Namely, χi,j = 1 if ei and ej belong to E and cross, and χi,j = 0
if either ei and ej belong to E and do not cross or at least one of ei and ej does not belong to
E. Let χ be the string obtained by concatenating χ0,1, . . . , χ0,m−1, . . . , χi,j , . . . , χm−2,m−1. The
values of χ are completely determined by x and by whether the considered layout is a book layout
or a 2-level drawing. For every 0 ≤ a < b ≤ m − 1, consider the value χa,b, where ea = (vi, vk)
and eb = (vj , vℓ). In a book layout of G in which the vertex order is Π(x), we have that χa,b = 1
if ea and eb belong to E and cross (refer to the conditions in Fig. 29), and χa,b = 0 if either ea
and eb belong to E and do not cross or at least one of ea and eb does not belong to E. If D(x)
corresponds to a 2-level drawing of G, then we have that χa,b = 1 if ea and eb belong to E and cross
(i.e., xi,j ̸= xk,ℓ), and χa,b = 0 if either ea and eb belong to E and do not cross (i.e., xi,j = xk,ℓ) or
at least one of ea and eb does not belong to E.

Recall that the output of the Skewness Transducer circuit is the superposition
|θ⟩ |f(θ)⟩ |e0⟩ . . . |ei⟩ . . . |em−1⟩ such that, when f(θ) = 1, it holds that ei = 1 if and only if
there exists a j ∈ [σ] such that θ[j] coincides with (the binary representation of) the integer i. In the
following, for simplicity, we denote the superposition |e0⟩ . . . |ei⟩ . . . |em−1⟩ as |e⟩. Observe that, dur-
ing the computation for problems TLS and BS, we manage the superposition |Θ⟩ =

∑
θ∈Bσ log m cθ |θ⟩,

which includes all possible states corresponding to a selection of σ edges of G. Specifically, consider
any basis state θ that appears in |Θ⟩, which represents a (multi)subset N(θ) of size σ of the set
[m]. Recall that the integers contained in θ are the labels of the edges of G. We denote by K(θ)
the subset of the edges of G whose indices appear in N(θ). Observe that, if N(θ) does not contain
repeated entries, then K(θ) is a subset of σ edges of G (with no repeated edges); this occurs exactly
when f(θ) = 1. If N(θ) contains repeated entries, then we say that it is degenerate.

5.1 Problem TLCM

We call TLCM the Solution Detector circuit for problem TLCM. Recall that for the TLCM
problem, we denote by ρ the maximum number of crossings allowed in the sought 2-level drawing of G.

Lemma 7. There exists a gate TLCM that, when provided with the input superposition

|f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where h = 5m(m−1)
2 − logm − log(m − 1) − 2, produces the output superpo-

sition (−1)g(x)f(ϕ) |f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where g(x) = 1 if D(x) is not degenerate and the 2-level

JGAA, 29(2) 3–47 (2025) 21

|f(ϕ)⟩

Uχ Ucc Uc< Ufc

|0⟩

|0⟩
|−⟩

(−1)g(x)f(ϕ) |f(ϕ)⟩

|0⟩

|0⟩
|−⟩

U−1
cc U−1

χU−1
c<

|x⟩ |x⟩

h

Figure 9: TLCM Oracle Pipeline.

drawing D(x) of G has at most ρ crossings. TLCM has O(m2) circuit complexity, O(n2) depth,
and O(m2) width.

Proof of Lemma 7. Gate TLCM uses four gates: tl-Cross Finder Uχ, Cross Counter Ucc,
Cross Comparator Uc<, and Final Check Ufc, followed by the inverse gates U−1

c< , U−1
cc , and

U−1
χ . Refer to Fig. 9.

xi,j

xk,ℓ

|0⟩ χa,b

xi,j

xk,ℓ

(a) Gate Ucr

k

n(n−1)
2

|χ0,1⟩

χi,j

χ0,2

χi,m−1

|0⟩

Ucr

set S1 set Si set Sr

χj,m−1
χm−2,m−1|0⟩

Ucr

Ucr

Ucr

Ucr

Ucr

(b) Gate Uχ

Figure 10: The gate Ucr (a) and gate Uχ (b). In (b), it holds k = m(m−1)
2 .

tl-cross finder. The purpose of Uχ is to compute the crossings in D(x) (under the assumption
that D(x) is not degenerate), determined by the vertex order corresponding to x; refer to Fig. 10b.

When provided with the input superposition |x⟩ |0k⟩, where k = m(m−1)
2 , the gate Uχ produces the

output superposition |x⟩ |χ⟩.
The gate Uχ exploits the auxiliary gate Ucr, whose purpose is to check if two edges cross; refer

to Fig. 10a. When provided with the input superposition |xi,j⟩ |xk,ℓ⟩ |0⟩, the gate produces the
output superposition |xi,j⟩ |xk,ℓ⟩ |χa,b⟩, where ea = (ui, vk), eb = (uj , vℓ), and χa,b = xi,j ⊕ xk,ℓ
(which is 1 if and only if ea and eb cross in D(x)). It is implemented using two Toffoli gates with
three inputs and outputs. The first one is activated when the qubit |xi,j⟩ is equal to |1⟩ and the
qubit |xk,ℓ⟩ is equal to |0⟩. The second one is activated when the qubit |xi,j⟩ is equal to |0⟩ and the
qubit |xk,ℓ⟩ is equal to |1⟩. Ucr has O(1) circuit complexity, depth, and width.

22 Caroppo et. al Quantum Graph Drawing

The gate Uχ works as follows. Consider that if two variables xi,j and xk,ℓ are compared to
determine whether the edges (ui, vk) and (uj , vℓ) cross, none of these variables can be compared
with another variable at the same time. Therefore, we partition the pairs of such variables using

Corollary 1.1 (with k = 2 and |X| = n(n−1)
2) into r ∈ O(n2) classes S1, . . . , Sr each containing at

most n(n−1)
4 disjoint pairs. For i = 1, . . . , r, the gate Uχ executes in parallel a Ucr gate, for each

pair (xi,j , xk,ℓ) in Si (refer to Fig. 10b), in order to output the qubit |χa,b⟩. Uχ has O(n4) circuit
complexity, O(n2) depth, and O(n2) width.

cross counter. The purpose of gate Ucc is to count the total number of crossings in the
drawing D(x). When provided with the input superposition |χ⟩ |0h⟩ |0k⟩, where h = logm +
log(m − 1) and k = 2m(m − 1) − 2(logm + log(m − 1)) − 2, the gate Ucc produces the output
superposition |χ⟩ |σ(x)⟩ |0h⟩, where σ(x) =

∑
ei,ej∈E χi,j is a binary integer of length logm+log(m−

1) representing the total number of crossings. The gate Ucc is an instance of the gate U1s (refer to
Lemma 3), where the qubits of the superposition |χ⟩ = |χ0,1⟩ . . . |χ0,m−1⟩ . . . |χi,j⟩ . . . |χm−2,m−1⟩
play the role of the qubits of the superposition |b0 . . . bt−1⟩, where t = m, which forms part of the

input of U1s. Observe that the number of crossings inD(x) is at most m(m−1)
2 . Therefore, the number

σ(x) of crossings in D(x) can be represented by a binary string of length h ≤ logm+log(m−1). By

Lemma 3, replacing t = m(m−1)
2 , we get that the parameter k = 2m(m−1)−2(logm+log(m−1))−2.

By Lemma 3, gate Ucc has O(m2) circuit complexity, O(log2m) depth, and O(m2) width.

cross comparator. The purpose of gate Uc< is to verify if the total number of crossings σ(x)
in D(x) computed by gate Ucc is less than the allowed number of crossings ρ. When provided with
the input superposition |σ(x)⟩ |ρ⟩ |0h⟩ |0⟩, where h = logm+ log(m− 1), the gate Uc< produces the
output superposition |σ(x)⟩ |ρ⟩ |0h⟩ |g(x)⟩, where g(x) = 1 if D(x) is not degenerate and σ(x) < ρ.
The gate Uc< is an instance of the gate U< (refer to Lemma 2), where the h = logm+ log(m− 1)
qubits of the superposition |σ(x)⟩ play the role of the qubits of the superposition |ϕ[i]⟩ and where
h qubits initialized to the binary representation of ρ play the role of |ϕ[j]⟩. By Lemma 2, gate Uc<
has O(logm) circuit complexity, depth, and width.

final check. The purpose of gate Ufc is to check whether the current basis state is the encoding
of an admissible solution, i.e., whether the 2-level drawing D(x) of G is not degenerate and it has
at most ρ crossings. Refer to Fig. 11. When provided with the input superposition |f(ϕ)⟩ |g(x)⟩ |−⟩,
the gate Ufc produces the outputs superposition |f(ϕ)⟩ |g(x)⟩ (−1)g(x)f(ϕ) |−⟩. Ufc exploits a Toffoli
gate with three inputs and outputs. The control qubits are |f(ϕ)⟩ and |g(x)⟩, and the target qubit
is |−⟩. When f(ϕ) = g(x) = 1, the target qubit is transformed into the qubit − |−⟩. Otherwise it
leaves unchanged. Gate Ufc has O(1) circuit complexity, depth, and width.

|f(ϕ)⟩

|−⟩

|g(x)⟩

|f(ϕ)⟩

(−1)g(x)f(ϕ) |−⟩

|g(x)⟩

Figure 11: Gate Ufc.

JGAA, 29(2) 3–47 (2025) 23

|f(ϕ)⟩

Uχ Uecc U<k Ufc

|0⟩

|0⟩
|−⟩

|x⟩
|0⟩

|0⟩
|−⟩

U−1
χU−1

eccU−1
<k

|x⟩

h

(−1)g(x)f(ϕ) |f(ϕ)⟩

Figure 12: TLKP Oracle Pipeline.

The inverse circuits. The purpose of circuits U−1
c< , U−1

cc , and U−1
χ is to restore the h ancilla

qubit to |0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 7, observe that the gates Uχ, Ucc,
Uc<, and Ufc verify all the necessary conditions for which D(x) has at most ρ crossings, under
the assumption that D(x) is not degenerate. Therefore, the sign of the output superposition of
gate TLCM, which is determined by the expression (−1)g(x)f(ϕ), is positive when either D(x) is
degenerate or D(x) is not degenerate and the number of crossings σ(x) in D(x) is larger than ρ,
and it is negative when D(x) is not degenerate and the number of crossings σ(x) in D(x) is smaller
than ρ. The bound on the circuit complexity descends from the circuit complexity of the gate Ucc,
the bound on the depth descends from the depth of the gate Uχ, and the bound on the width
descends from the width of Ucc. 2

5.2 Problem TLKP

We call TLKP the Solution Detector circuit for problem TLKP. Recall that for TLKP problem,
we denote by k the maximum number of crossings allowed for each edge in the sought 2-level
drawing of G.

Lemma 8. There exists a gate TLKP that, when provided with the input superposition

|f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where h = m(m−1)
2 + 4m − 2 logm − 4 + m(logm + 1), outputs the superpo-

sition (−1)g(x)f(ϕ) |f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where g(x) = 1 if D(x) is not degenerate and each edge of
the 2-level drawing D(x) of G has at most k crossings. TLKP has O(m2) circuit complexity,
O(m log2m) depth and O(m) width.

Proof of Lemma 8. Gate TLKP uses four gates: tl-cross finder Uχ, edge cross counter
Uecc, edge cross comparator U<k, and final check Ufc, followed by the inverse gates U−1

χ ,

U−1
ecc , and U

−1
<k . Refer to Fig. 12.

tl-cross finder. For the definition of gate Uχ, refer to the proof of Lemma 7. Recall that
the purpose of Uχ is to compute the crossings in D(x) (under the assumption that D(x) is not
degenerate), determined by the vertex order corresponding to x. Also Recall that when provided
with the input superposition |x⟩ |0k⟩, the gate Uχ produces the output superposition |x⟩ |χ⟩.

24 Caroppo et. al Quantum Graph Drawing

l

|0⟩

|0⟩

|0⟩

Ucc(e0)

χ0,1

χm−2,m−1

1 + logm

1 + logm

1 + logm

∑
a<i χa,i +

∑
b>i χi,b∑

a<m−1 χa,m−1

|0⟩

|0⟩
|0⟩

|0⟩

χ0,1

χm−2,m−1

|0⟩

|0⟩
|0⟩

|0⟩
h

Ucc(ei)
Ucc(em−1) ∑

0<a χ0,a

Figure 13: The gate Uecc.

edge cross counter. The purpose of gate Uecc is to count, for each edge ei ∈ E, the total num-
ber of crossings of each edge ei in the drawing D(x). When provided with the input superposition
|χ⟩ |0h⟩ |0l⟩, where h = 4m−2 logm−4 and l = m(1+logm), the gate Uecc produces the output super-
position |χ⟩ |0h⟩ |σe0(x)⟩ . . . |σei(x)⟩ . . .

∣∣σem−1
(x)

〉
, where σei(x) =

∑
a<i χa,i+

∑
b>i χi,b is a binary

integer of length 1+logm representing the total number of crossings of the edge ei in D(x). The gate
Uecc exploits the auxiliary gate Ucc(ei), whose purpose, for each edge ei, is to compute the binary inte-
ger σei(x). When provided with the input superposition |χ0,i⟩ . . . |χi,i+1⟩ . . . |χi,m−1⟩ |0h⟩ |01+logm⟩,
the gate Ucc(ei) produces the output superposition |χ0,i⟩ . . . |χi,i+1⟩ . . . |χi,m−1⟩ |0h⟩ |σei(x)⟩. The
gate Ucc(ei) is an instance of the gate U1s (refer to Lemma 3), where the qubits of the superposition
|χ0,i⟩ . . . |χi,i+1⟩ . . . |χi,m−1⟩ play the role of the qubits of the superposition |b0 . . . bt−1⟩, with t = m,
which forms part of the input of U1s. Observe that, for each edge ei, the number of crossings of
ei in D(x) is at most m − 1. Therefore, σei(x) can be represented by a binary string of length
1 + logm. By Lemma 3, gate Ucc(ei) has O(m) circuit complexity, O(log2m) depth , and O(m)
width . Gate Uecc works as follows; refer to Fig. 13. Gate Uecc executes in sequence gates Ucc(e0),

Ucc(e1), . . . , Ucc(em−1). Gate Uecc has circuit complexity O(m2), depth O(m log2m), and width
O(m).

edge cross comparator. The purpose of U<k is to verify, for each edge ei ∈ E, if the total
number of crossings σei(x) of ei in D(x) computed by Uecc is less than the allowed number
of crossings for each edge k; refer to Fig. 14. When provided with the input superposition
|σE(x)⟩ |k⟩ |0h⟩ |0m⟩ |0⟩, where σE(x) = σe0(x) . . . σei(x) . . . σem−1

(x) and h = logm+ 1, the gate
U<k produces the output superposition |σE(x)⟩ |k⟩ |0h⟩ |0m⟩ |g(x)⟩, where g(x) = 1 if D(x) is not
degenerate and σei(x) < k for each ei ∈ E. The gate U<k exploits m instances of gate U< (refer
to Lemma 2), where the qubits of the superposition |σei(x)⟩ play the role of the qubits of the
superposition |ϕ[i]⟩ and the qubits initialized to the binary representation of k play the role of
|ϕ[j]⟩. Recall that by Lemma 2, gate U< has O(logm) circuit complexity, depth, and width. Each
of the m gates U< provides an answer qubit (|κi⟩), which is equal to 1 if and only if σei(x) < k
for the considered edge ei. At the end of the m-th computation a Toffoli gate with m+ 1 inputs
and outputs is applied to check if, for each ei ∈ E, σei(x) < k. Gate U<k has O(m logm) circuit
complexity, O(m logm) depth, and O(m) width.

JGAA, 29(2) 3–47 (2025) 25

(m+ 2)(logm+ 1)

m

|0⟩

κm

κ1

κi|0⟩

|0⟩

|0⟩

U<

set S1

U< U<

set Si set Sm

µ<k

µ−1
<k

g(x)

|0⟩

|0⟩

|0⟩

Figure 14: U<k.

final check. The purpose of gate Ufc is to check wether the current basis state is the encoding
of an admissible solution, i.e., whether the 2-level drawing D(x) of G is not degenerate and each
edge has at most k crossings. Refer to Fig. 11. When provided with the input superposition
|f(ϕ)⟩ |g(x)⟩ |−⟩, the gate Ufc produces the outputs superposition |f(ϕ)⟩ |g(x)⟩ (−1)f(ϕ)g(x) |−⟩.
Ufc exploits a Toffoli gate with three inputs and outputs. The control qubits are |f(ϕ)⟩ and |g(x)⟩,
and the target qubit is |−⟩. When at least one of f(ϕ) and g(x) are equal to 0, the target qubit
leaves unchanged. On the other hand, when f(ϕ) = g(x) = 1, the target qubits is transformed into
the qubit − |−⟩. Gate Ufc has O(1) circuit complexity, depth and width.

The inverse circuits. The purpose of circuits U−1
<k , U

−1
cc(E), and U

−1
χ is to restore the h ancilla

qubit to |0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 8, observe that the gates Uχ,
Ucc(E), U<k, and Ufc verify all the necessary conditions for which D(x), for each edge of G, has at
most k crossings, under the assumption that D(x) is not degenerate. Therefore, the sign of the
output superposition of gate TLKP, which is determined by the expression (−1)g(x)f(ϕ), is positive
when either D(x) is degenerate or D(x) is not degenerate and the number of crossings σei(x) in
D(x) is larger than k, for some edge ei ∈ E, and it is negative when D(x) is not degenerate and
the number of crossings σei(x) in D(x) is smaller than k, for each edge ei ∈ E. The bounds on the
circuit complexity, depth, and width descend from the circuit complexity, depth, and width of the
gate Ucc(E). 2

5.3 Problem TLQP

We call TLQP the Solution Detector circuit for problem TLQP.

Lemma 9. There exists a gate TLQP that, when provided with the input superposition
|f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where h ∈ O(m4), produces the output superposition (−1)f(ϕ)g(x) |f(ϕ)⟩ |x⟩ |0h⟩ |−⟩,
and g(x) = 1 if D(x) is not degenerate and the 2-level drawing D(x) of G is quasi-planar. TLQP
has O(m6) circuit complexity, O(m4) depth, and O(m2) width.

26 Caroppo et. al Quantum Graph Drawing

|f(ϕ)⟩

UQ Ufc
|0⟩

|0⟩
|−⟩

(−1)g(x)f(ϕ) |f(ϕ)⟩
|x⟩

|0⟩

|0⟩
|−⟩

U−1
Q

|x⟩

h
Uχ U−1

χ

Figure 15: TLQP Oracle Pipeline.

Proof of Lemma 9. Gate TLQP executes three gates: TL-cross finder Uχ, quasi-planarity
tester UQ, and final check Ufc, followed by their inverse gates U−1

Q and U−1
χ . Refer to Fig. 15.

tl-cross finder. For the definition of gate Uχ, refer to the proof of Lemma 7. Recall that
the purpose of Uχ is to compute the crossings in D(x) (under the assumption that D(x) is not
degenerate), determined by the vertex order corresponding to x. Also Recall that when provided
with the input superposition |x⟩ |0k⟩, the gate Uχ produces the output superposition |x⟩ |χ⟩.

quasi-planarity tester. The purpose of gate UQ is to verify the absence of any three edges
that pairwise cross in D(x); refer to Fig. 17. When provided with the input the superposition
|χ⟩ |0h⟩ |0⟩, where h ∈ O(m4), the gate UQ produces the output superposition |χ⟩ |0h⟩ |g(x)⟩, where
g(x) = 1 if D(x) is not degenerate and there are not three edges that pairwise cross in D(x).

The gate UQ exploits the auxiliary gate Uqχ, whose purpose is to check if three edges pairwise
cross; refer to Fig. 16. When provided with the input superposition |χi,j⟩ |χi,k⟩ |χj,k⟩ |0⟩, the gate
provide the output superposition |χi,j⟩ |χi,k⟩ |χj,k⟩ |qχi,j,k⟩, where qχi,j,k = χi,j ∧χi,k ∧χj,k (which
is 1 if and only if ei, ej , and ek pairwise cross in D(x)). It is implemented using a Toffoli gate with
four inputs and outputs, which is activated when χi,j = χi,k = χj,k = 1. The circuit complexity,
depth, and width of Uqχ is O(1).

The gate UQ works as follows. Consider that if three variables χi,j , χi,k, and χj,k are compared
to determine whether the edges ei, ej , and ek pairwise cross, none of these variables can be compared
with another variable at the same time. Therefore, we partition the pairs of such variables using

Corollary 1.1 (with k = 3 and |X| = m(m−1)
2) into p ∈ O(m4) classes S1, . . . , Sp each containing at

most m(m−1)
6 unordered disjoint triples. For i = 1, . . . , p, the gate UQ executes in parallel a gate

Uqχ for each triple {χi,j , χi,k, χj,k} in Si (refer to Fig. 17). All the last output qubits of the Uqχ
gates in Si enter a Toffoli gate that outputs a qubit |qi⟩ such that qi = 1 if and only if all of such
qubits are equal to |0⟩, i.e., it does not exist a triple of edges that pairwise cross. In order to allow
the reuse of the ancilla qubit, except for the qubit |qi⟩, gate UQ executes in parallel a gate U−1

qχ for
each triple in Si. All the qubits |qi⟩, with i = 1, . . . , p, enter in cascade a Toffoli gate, with three
inputs and outputs, that checks that all of them are equal to |1⟩, i.e., there exist not three edges
that pairwise cross. The output qubit of the last Toffoli gate is the qubit |g(x)⟩. The gate UQ has
circuit complexity O(m6), O(m4) depth, and O(m2) width.

final check. We use a gate Ufc to check whether the current basis state is the encoding of
an admissible solution, i.e., whether the 2-level drawing D(x) of G is not degenerate and the
2-level drawing D(x) of G is quasi-planar. Refer to Fig. 11 and to Lemma 7. When provided
with the input superposition |f(ϕ)⟩ |g(x)⟩ |−⟩, the gate Ufc produces the outputs superposition

JGAA, 29(2) 3–47 (2025) 27

χi,j

χi,k

χj,k

|0⟩ qχi,j,k

χi,j

χi,k

χj,k

Figure 16: Gate Uqχ

p

Uqχ

|0⟩

|0⟩

|0⟩

|0⟩

µQ

µ−1
Q

|0⟩

|0⟩
|0⟩

set S1

Uqχ

U−1
qχ

U−1
qχ

q1
q2
q1,2

q1,i−1

qi
q1,i

q1,p−1

qp

g(x)

|0⟩

|0⟩

|0⟩

|0⟩
|0⟩

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

set S2 set Si set Sp2
3m(m− 1)

Figure 17: Gate UQ

|f(ϕ)⟩ |g(x)⟩ (−1)f(ϕ)g(x) |−⟩. Ufc exploits a Toffoli gate with three inputs and outputs. The control
qubits are |f(ϕ)⟩ and |g(x)⟩, and the target qubit is |−⟩. When at least one of f(ϕ) and g(x) are
equal to 0, the target qubit leaves unchanged. On the other hand, when f(ϕ) = g(x) = 1, the target
qubits is transformed into the qubit − |−⟩. Gate Ufc has O(1) circuit complexity, depth and width.

The inverse circuits. The purpose of circuits U−1
Q and U−1

χ is to restore the h ancilla qubit to
|0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 9, observe that the gates Uχ, UQ,
and Ufc verify all the necessary conditions for which D(x) is a quasi-planar drawing of G, under
the assumption that D(x) is not degenerate. Therefore, the sign of the output superposition of gate
TLQP, which is determined by the expression (−1)g(x)f(ϕ), is positive when either D(x) is degenerate
or D(x) is not degenerate and it is not a quasi-planar drawing of G, and it is negative when D(x)
is not degenerate and D(x) is a quasi-planar drawing of G. The bounds on the circuit complexity,
depth, and width descend from the circuit complexity, depth, and width of the gate UQ. 2

28 Caroppo et. al Quantum Graph Drawing

|e⟩
Usk Ufc|0⟩

|0⟩
|−⟩

|e⟩
|x⟩

|0⟩

|0⟩
|−⟩

|f(θ)⟩

U−1
sk

|x⟩
|f(θ)⟩

|f(ϕ)⟩ (−1)g(x)f(ϕ)f(θ) |f(ϕ)⟩

h

Uχ U−1
χ

Figure 18: TLS Oracle Pipeline.

5.4 Problem TLS

Recall that the purpose of the basis state |θ⟩ is to represent a subset K(θ) of the edges of G of size
at most σ, each labeled with an integer in [m], and that we denote by N(θ) the set of indices of
the edges in K(θ). Also, recall that we denote by D(x) the 2-level drawing of G associated with
the vertex order corresponding to x. In the following, for a subgraph G′ of G, we use the notation
D(x,G′) to denote the 2-level drawing of G′ induced by D(x).

We call TLS the Solution Detector circuit for problem TLS.

Lemma 10. There exists a gate TLS that, provided with the input superposition
|f(ϕ)⟩ |f(θ)⟩ |x⟩ |e⟩ |0h⟩ |−⟩, where h ∈ O(m2), produces the output superposition
(−1)g(x)f(ϕ)f(θ) |f(ϕ)⟩ |f(θ)⟩ |x⟩ |e⟩ |0h⟩ |−⟩, such that, if D(x) and N(θ) are not degenerate, then
g(x) = 1 if and only if D(x,G′) is planar, where G′ = (V,E \K(θ)). Gate TLS has O(m2) circuit
complexity, O(m) depth, and O(m) width.

Proof of Lemma 10. Gate TLS uses three gates: TL-cross finder Uχ, skewness cross
tester Usk, and final check Ufc, followed by the inverse gates U−1

sk and U−1
χ . Fig. 18

TL-cross Finder. For the definition of gate Uχ, refer to the proof of Lemma 7. Recall that
the purpose of Uχ is to compute the crossings in D(x) (under the assumption that D(x) is not
degenerate), determined by the vertex order corresponding to x. Also Recall that when provided
with the input superposition |x⟩ |0k⟩, the gate Uχ produces the output superposition |x⟩ |χ⟩.

skewness cross tester. Consider the subgraph G′ of G obtained by removing from G all the
edges in K(θ). The purpose of gate Usk is to determine which of the crossings stored in |χ⟩ involve
pairs of edges that are both absent from |e⟩. In fact, all the edges not in |e⟩ form the edge set of G′.
Therefore, Usk verifies whether the 2-layer drawing D(x,G′) of G′ is planar; refer to Fig. 19. When
provided with the input superposition |χ⟩ |e⟩

∣∣0m
2 +p

〉
|0⟩, where p ∈ O(m), the gate Usk produces

the output superposition |χ⟩ |e⟩
∣∣0m

2 +p

〉
|g(x)⟩, such that, if D(x) and N(θ) are not degenerate, then

g(x) = 1 if and only if D(x,G′) is planar.
The gate Usk exploits the auxiliary gate Uk, whose purpose is to check if any two edges in G′

cross; refer to Fig. 20. When provided with the input superposition |ea⟩ |eb⟩ |χa,b⟩ |0⟩, the gate Uk
provides the output superposition |ea⟩ |eb⟩ |χa,b⟩ |sa,b⟩, where sa,b = ¬ea ∧ ¬eb ∧ χa,b (which is 1 if
and only if ea and eb cross in D(x,G′)). The gate Uk is implemented using a Toffoli gate with four

JGAA, 29(2) 3–47 (2025) 29

p

Uk
m(m−1)

2 +m+ m
2

|0⟩

|0⟩

|0⟩

|0⟩

µsk

µ−1
sk

|0⟩

|0⟩
|0⟩

set S1

Uk

U−1
k

U−1
k

sk1
sk2
sk1,2

sk1,i−1

ski
sk1,i

sk1,p−1

skp

g(x)

|0⟩

|0⟩

|0⟩

|0⟩
|0⟩

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩

set S2 set Si set Sp

Figure 19: Gate Usk.

inputs and outputs. The control qubits are |ea⟩, |eb⟩, and |χa,b⟩. The target qubit is set to |0⟩.
The gate is activated when ea = eb = 0 and χa,b = 1. The circuit complexity, depth, and width
of Uk is O(1).

|χa,b⟩

|0⟩ |sa,b⟩

|eb⟩

|ea⟩

|χa,b⟩

|eb⟩

|ea⟩

Figure 20: Gate Uk

The gate Usk works as follows. Consider that if two variables ea and eb are compared to
determine whether the corresponding edges cross in D(x,G′), none of these variables can be
compared with another variable at the same time. Therefore, we partition the pairs of such variables
using Corollary 1.1 (with k = 2 and |X| = m) into p ∈ O(m) classes S1, . . . , Sp each containing at
most m

2 disjoint pairs. For i = 1, . . . , p, the gate Usk executes in parallel a gate Uk, for each pair
of variables ea, eb in Si (together with the corresponding qubit χa,b), in order to output the qubit
|¬ea ∧ ¬eb ∧ χa,b⟩. All the last output qubits of the Uk gates in Si enter a Toffoli gate that outputs
a qubit |ski⟩ such that ski = 1 if and only if all of them are equal to |0⟩, i.e., there exist no two
crossing edges among the pairs in Si. In order to allow the reuse of the ancilla qubit, except for
the qubit |ski⟩, gate Usk executes in parallel a gate U−1

k for each pair in Si. To check if all qubits
|ski⟩ are equal to |1⟩, for i = 1, . . . , p, we use a series of Toffoli gates Ti, each with three inputs and
outputs. The first Toffoli gate T1 receives in input the qubits |sk1⟩, |sk2⟩, and a qubit set to |0⟩,
and outputs the qubit |sk1,2⟩ = |sk1 ∧ sk2⟩. For i = 2, . . . , p, the Toffoli gate Ti receives in input
the qubits |sk1,i−1⟩, |ski⟩, and a qubit set to |0⟩, and outputs the qubit |sk1,i⟩ = |sk1,i−1 ∧ ski⟩.
The output qubit |sk1,p⟩ of the last Toffoli gate Tp is the qubit |g(x)⟩. The gate Usk has circuit
complexity O(m2), depth O(m), and width O(m).

30 Caroppo et. al Quantum Graph Drawing

|f(ϕ)⟩

|−⟩

|g(x)⟩

|f(ϕ)⟩

(−1)g(x)f(ϕ)f(θ) |−⟩

|g(x)⟩

|f(θ)⟩ |f(θ)⟩

Figure 21: Gate Ufc.

final check. The purpose of gate Ufc is to check whether the current basis state is the encoding
of an admissible solution, i.e., whether the 2-level drawing D(x) and the set of indices N(θ)
are both not degenerate and the 2-level drawing D(x,G′) of G′ is planar. See Fig. 21. When
provided with the input superposition |f(ϕ)⟩ |f(θ)⟩ |g(x)⟩ |−⟩, the gate Ufc produces the outputs
superposition |f(ϕ)⟩ |f(θ)⟩ |g(x)⟩ (−1)g(x)f(ϕ)f(θ) |−⟩. Gate Ufc exploits a Toffoli gate with four
inputs and outputs. The control qubits are |f(ϕ)⟩, |f(θ)⟩, and |g(x)⟩, and the target qubit is |−⟩.
When at least one of f(ϕ), f(θ), and g(x) are equal to 0, the target qubit leaves unchanged. On
the other hand, when f(ϕ) = f(θ) = g(x) = 1, the target qubit is transformed into the qubit − |−⟩.
Gate Ufc has O(1) circuit complexity, depth, and width.

The inverse circuits. The purpose of circuits U−1
sk and U−1

χ is to restore the h ancilla qubit to
|0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 10, observe that the gates Uχ, Usk,
and Ufc verify all the necessary conditions for which D(x,G′) is a 2-level planar drawing of G′,
under the assumption that D(x) and N(θ) are not degenerate. Therefore, the sign of the output
superposition of gate TLS, which is determined by the expression (−1)g(x)f(ϕ)f(θ), is defined as
follows. It is positive when either D(x) or N(θ) are degenerate or D(x) and N(θ) are not degenerate
and the drawing D(x,G′) of G′ is not planar. It is negative when D(x) and N(θ) are not degenerate
and the 2-level drawing D(x,G′) of G′ is planar. The bounds on the circuit complexity, depth, and
width of gate TLS descend from those of gate Usk. 2

5.5 Problem OPCM

We call OPCM the Solution Detector circuit for problem OPCM. Recall that for the OPCM
problem, we denote by ρ the maximum number of crossings allowed in the sought 1-page layout
of G. Also, recall that we denote by Π(x) the vertex order along the spine of a book layout of G
defined by the vertex order corresponding to x.

Lemma 11. There exists a gate OPCM that, when provided with the input superposition
|f(ϕ)⟩ |x⟩ |0h⟩ |−⟩, where h ∈ O(m2), produces the output superposition (−1)g(x,f(ϕ)) |f(ϕ)⟩ |x⟩ |0h⟩ |−⟩,
where g(x) = 1 if Π(x) is not degenerate and the 1-page layout of G defined by Π(x) has at most ρ
crossings. OPCM has O(n8) circuit complexity, O(n6) depth, and O(m2) width.

Proof of Lemma 11. Gate OPCM executes four gates: OP-cross finder Uχp
, cross counter

Ucc, cross comparator Uc<, and final check Ufc, followed by the inverse gate U−1
cc , U−1

c< , and
U−1
χp

. Refer to Fig. 22.

JGAA, 29(2) 3–47 (2025) 31

op-cross finder. The purpose of Uχp
is to compute the crossings in the 1-page layout of G

defined by Π(x), determined by the vertex order corresponding to x; refer to Fig. 23. When

provided with the input superposition |x⟩ |0k⟩, where k = m(m−1)
2 , the gate Upχ produces the

output superposition |x⟩ |χ⟩.
The gate Uχp exploits the auxiliary gate Uλ, whose purpose is to check if two edges cross in

the 1-page layout ofG defined by Π(x); refer to Fig. 23a. When provided with the input superposition
|xi,k⟩ |xk,j⟩ |xj,n⟩ |xi,n⟩ |0⟩, the gate Uλ produces the output superposition |xi,k⟩ |xk,j⟩ |xj,n⟩ |xi,n⟩ |χa,b⟩,
where ea = (vi, vj), eb = (vk, vn), and χa,b equals 1 if and only if ea and eb cross in the 1-page layout
of G defined by Π(x); refer to Fig. 29 and to the expression χa,b in Sect. 6.2. It is implemented
using eight Toffoli gates, each with four inputs and outputs. In the following, we assume that
i < k < j < ℓ. As an example, the first gate is activated when xi,ℓ = xj,k = 1 and xj,ℓ = 0 (see
Fig. 29, top row, first column). The remaining Toffoli gates operate similarly, with each being
activated under specific conditions involving the variables xi,k, xi,ℓ, xj,k and xj,ℓ. For a detailed
illustration of all cases, refer to Fig. 29.

The gate Uχp
works as follows. Consider that if four variables xi,k, xk,j , xj,n and xi,n are

compared to determine whether the edges (vi, vj) and (vk, vn) cross, none of these variables can
be compared with another variable at the same time. Therefore, we partition the pairs of such

variables using Corollary 1.1 (with k = 4 and |X| = n(n−1)
2) into r ∈ O(n6) classes S1, . . . , Sr each

containing at most n(n−1)
8 disjoint pairs. For i = 1, . . . , r, the gate Uχp

executes in parallel a Uλ
gate, for each quartet (xi,k, xk,j , xj,n,xi,n) in Si (refer to Fig. 23b), in order to outputs the qubit
|χa,b⟩. Uχp has circuit complexity O(n8), depth complexity O(n6) and width complexity O(n2).

cross counter. The purpose of gate Ucc, as mention earlier, is count the total number of crossings
in the 1-page layout ofG defined by Π(x); refer to Lemma 3. Recall that when provided with the input
superposition |χ⟩ |0h⟩ |0k⟩, where h = logm+log(m−1) and k = 2m(m−1)−2(logm+log(m−1))−1,
the gate Ucc produces the output superposition |χ⟩ |σ(x)⟩ |0h⟩.

cross comparator. The purpose of gate Uc<, as mention earlier, is to verify if the total number
of crossings σ(x) in the 1-page layout of G defined by Π(x) compute by the gate Ucc is less than
the allowed number of crossings ρ; refer to Lemma 2. Recall that when provided with the input
superposition |σ(x)⟩ |ρ⟩ |0h⟩ |0⟩, where h = logm+ log(m− 1), the gate Uc< produces the output
superposition |σ(x)⟩ |ρ⟩ |0h⟩ |g(x)⟩, where g(x) = 1 if Π(x) is not degenerate and σ(x) < ρ.

|f(ϕ)⟩

Uχp Ucc Uc< Ufc

|0⟩

|0⟩
|−⟩

(−1)g(x)f(ϕ) |f(ϕ)⟩

|0⟩

|0⟩
|−⟩

U−1
cc

U−1
χpU−1

c<

|x⟩ |x⟩

h

Figure 22: Oracle OPCM.

32 Caroppo et. al Quantum Graph Drawing

xi,ℓ

xj,ℓ

|0⟩

xj,k

xi,k

χa,b

(a) Gate Uλ

m(m−1)
2

n(n−1)
2

|0⟩

Uλ

set S1 set Si set Sr

Uλ

|0⟩

Uλ

Uλ

Uλ

Uλ

χ0,1

χi,j

χ0,1

χi,m−1

χj,m−1
χm−2,m−1

(b) Gate Uχp

Figure 23: The gate Uλ (left) and gate Uχp (right).

final check. The purpose of gate Ufc is to check whether the current basis state is the encoding
of an admissible solution, i.e., whether Π(x) is not degenerate and the 1-page layout of G defined
by Π(x) has at most ρ crossings. Refer to Fig. 11. When provided with the input superposition
|f(ϕ)⟩ |g(x)⟩ |−⟩, the gate Ufc produces the outputs superposition |f(ϕ)⟩ |g(x)⟩ (−1)g(x)f(ϕ) |−⟩.
Ufc exploits a Toffoli gate with three inputs and outputs. The control qubits are |f(ϕ)⟩ and |g(x)⟩,
and the target qubit is |−⟩. When at least one of f(ϕ) and g(x) are equal to 0, the target qubit
leaves unchanged. On the other hand, when f(ϕ) = g(x) = 1, the target qubit is transformed into
the qubit − |−⟩. Gate Ufc has O(1) circuit complexity, depth, and width.

The inverse circuits. The purpose of circuits U−1
c< , U−1

cc , and U−1
χ is to restore the h ancilla

qubit to |0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 11, observe that the gates Uχ, Ucc,
Uc<, and Ufc verify all the necessary conditions for which the 1-page layout of G defined by Π(x)
has at most ρ crossings, under the assumption that Π(x) is not degenerate. Therefore, the sign of
the output superposition of gate OPCM, which is determined by the expression (−1)g(x)f(ϕ), is
positive when either Π(x) is degenerate or Π(x) is not degenerate and the number of crossings σ(x)
in the 1-page layout of G defined by Π(x) is larger than ρ, and it is negative only if Π(x) is not
degenerate and the number of crossings σ(x) in the 1-page layout of G defined by Π(x) is smaller
than ρ. The bound on the circuit complexity descends from the circuit complexity of the gate Uχp ,
the bound on the depth descends from the depth of the gate Uχp

, and the bound on the width
descends from the width of Ucc. 2

5.6 Problem BT

We call BT the Solution Detector circuit for problem BT. Recall that for the BT problem, we
denote by τ the number of pages allowed in the sought book layout drawing of G.

Recall that during the computation, we manage the superposition |Ψ⟩ =
∑
ψ∈Bm log τ cψ |ψ⟩

whose purpose is to represent a coloring of the edges of G with colors in the set [τ]. Specifically,
consider any basis state ψ that appears in |Ψ⟩. We denote by P (ψ) the page assignment of the
edges of G to τ pages in which, for i = 0, . . . ,m− 1, the edge ei is assigned to the page ψ[i].

JGAA, 29(2) 3–47 (2025) 33

|f(ϕ)⟩

Uβ Ufc
|0⟩

|0⟩
|−⟩

(−1)g(x)f(ϕ) |f(ϕ)⟩
|x⟩

|0⟩

|0⟩
|−⟩

|ψ⟩
U−1
β

|x⟩
|ψ⟩

h

Uχp U−1
χp

Figure 24: BT Oracle Pipeline.

Lemma 12. There exists a gate BT that, when provided with the input superposition
|f(ϕ)⟩ |ψ⟩ |x⟩ |0h⟩ |−⟩, where h ∈ O(m2), produces the output superposition
(−1)g(x,ψ)f(ϕ) |f(ϕ)⟩ |ψ⟩ |x⟩ |0h⟩ |−⟩, where g(x, ψ) = 1 if Π(x) is not degenerate and there ex-
ists a τ -page book embedding of G in which the vertex order is Π(x) and the page assignment is
P (ψ). Gate BT has O(n8) circuit complexity, O(n6) depth, and O(m) width.

Proof of Lemma 12. Gate BT uses two gates: OP-cross finder Uχp , color tester Uβ , and

final check Ufc, followed by the inverse gates U−1
β and U−1

χp
. Refer to Fig. 24.

op-cross finder. For the definition of gate Uχp
, refer to the proof of Lemma 11. Recall that the

purpose of Uχp
is to compute the crossings in the 1-page layout of G defined by Π(x), determined by

the vertex order corresponding to x. Also Recall that when provided with the input superposition
|x⟩ |0k⟩, the gate Upχ produces the output superposition |x⟩ |χ⟩.

color tester. Consider the book layout D(x, ψ) of G defined by the vertex order Π(x) and the
page assignment is P (ψ). The purpose of gate Uβ is to verify if D(x, ψ) is a book embedding of G
on τ pages, provided that Π(x) is not degenerate; refer to Fig. 26. When provided with the input
superposition |ψ⟩ |χ⟩ |0b⟩ |0r⟩ |0⟩, where b = m

2 (2 + log τ) and r = m − 1, the gate Uβ produces
the output superposition |ψ⟩ |χ⟩ |0b⟩ |0r⟩ |g(x, ψ)⟩, where g(x, ψ) = 1 if Π(x) is not degenerate and
D(x, ψ) is a book embedding of G on τ pages.

The gate Uβ exploits the auxiliary gate U=λ, whose purpose is to check if two edges that cross
have the same color; refer to Fig. 25. When provided with the input superposition

|ψ[a][0]⟩ . . . |ψ[a][log(τ)− 1]⟩ |ψ[b][0]⟩ . . . |ψ[a][log(τ)− 1]⟩ |0log τ ⟩ |0⟩ |χa,b⟩ |0⟩ ,

the gate produces the output superposition

|ψ[a][0]⟩ . . . |ψ[a][log(τ)− 1]⟩ |ψ[b][0]⟩ . . . |ψ[a][log(τ)− 1]⟩ |0log τ ⟩ |ψ[a] = ψ[b]⟩ |χa,b⟩ |χa,b ∧ (ψ[a] = ψ[b])⟩ .

Gate U=λ exploits the auxiliary gates U= to compare ψ[a] and ψ[b], and a Toffoli gate with two
inputs and outputs to verify if edges ea and eb cross and have the same color. By Lemma 1, gate
U=λ has O(log τ) circuit complexity, depth, and width.

The gate Uβ works as follows. Consider that if two variables ψ[a] and ψ[b] are compared to
determine whether ea and eb have been assigned the same color, none of these variables can be
compared with another variable at the same time. Therefore, we partition the pairs of such variables
using Corollary 1.1 (with k = 2 and |X| = m) into r ∈ O(m) classes S1, . . . , Sr each containing at

34 Caroppo et. al Quantum Graph Drawing

|ψ[a][0]⟩

U=

|ψ[a][log(τ)− 1]⟩

|0⟩

|0⟩
log τ

|0⟩

|0⟩ |χa,b ∧ (ψ[a] = ψ[b])⟩
|χa,b⟩

|ψ[b][0]⟩

|ψ[b][log(τ)− 1]⟩

|χa,b⟩
|ψ[a] = ψ[b]⟩

|0⟩

|0⟩

|ψ[a][0]⟩

|ψ[a][log(τ)− 1]⟩

|ψ[b][0]⟩

|ψ[b][log(τ)− 1]⟩

Figure 25: Gate U=λ.

r

U=λ

|ψ⟩+ |χ⟩+ b

|0⟩

|0⟩

|0⟩

|0⟩

µβ

µ−1
β |0⟩

|0⟩

|0⟩

g(x, ψ)

res1

resi

resr

set S1 set Si set Sr

U=λ

U−1
=λ U=λ

U=λ

U=λ

U=λU−1
=λ

U−1
=λ

U−1
=λ

U−1
=λ

U−1
=λ

Figure 26: Gate Uβ .

most m
2 disjoint pairs. For i = 1, . . . , r, the gate Uβ executes in parallel a gate U=λ, for each pair

of variables {ψ[a], ψ[b]} ∈ Si (together with their corresponding qubit χa,b), in order to output the
qubit |χa,b ∧ (ψ[a] = ψ[b])⟩. All the last output qubits of the U=λ gates for Si enter a Toffoli gate
that outputs a qubit |resi⟩ such that resi = 1 if and only if all of them are equal to |0⟩, i.e., it does
not exist two crossing edges with the same color (among the pairs in Si). In order to allow the
reuse of the ancilla qubits, except for the qubit |resi⟩, gate Uβ executes in parallel a gate U−1

=λ for
each pair in Si. All the qubits |resi⟩ enter a Toffoli gate that outputs a qubit |g(x, ψ)⟩ such that
g(x, ψ) = 1 if and only if all of them are equal to |1⟩, i.e., there exist no two edges of G with the
same color that cross in D(x, ψ). Gate Uβ has circuit complexity O(m2 log τ), depth O(m log τ),
and width O(m).

final check. The purpose of gate Ufc is to check whether the current basis state is the encoding
of an admissible solution, i.e., whether D(x, ψ) is a book embedding of G on τ pages. Refer to
Fig. 27. When provided with the input superposition |f(ϕ)⟩ |g(x, ψ)⟩ |−⟩, the gate Ufc produces
the output superposition |f(ϕ)⟩ |g(x, ψ)⟩ (−1)g(x,ψ)f(ϕ) |−⟩. Gate Ufc exploits a Toffoli gate with
three inputs and outputs. The control qubits are |f(ϕ)⟩ and |g(x, ψ)⟩, and the target qubit is |−⟩.
When at least one of f(ϕ) and g(x, ψ) are equal to 0, the target qubit leaves unchanged. On the
other hand, when f(ϕ) = g(x, ψ) = 1, the target qubit is transformed into the qubit − |−⟩. Gate

JGAA, 29(2) 3–47 (2025) 35

Ufc has O(1) circuit complexity, depth, and width.

|f(ϕ)⟩

|−⟩

|g(x, ψ)⟩

|f(ϕ)⟩

(−1)g(x,ψ)f(ϕ) |−⟩

|g(x, ψ)⟩

Figure 27: Gate Ufc.

The inverse circuits. The purpose of circuits U−1
β , and U−1

χp
is to restore the h ancilla qubit to

|0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 12, observe that the gates Uχp
and

Uβ verify all the necessary conditions for which D(x, ψ) is a book embedding of G with τ pages,
under the assumption that Π(x) is not degenerate. Therefore, the sign of the output superposition
of gate BT, which is determined by the expression (−1)g(x,ψ)f(ϕ), is positive when either Π(x) is
degenerate or Π(x) is not degenerate and the book layout D(x, ψ) is not a book embedding of G
with τ pages, and it is negative only if Π(x) is not degenerate and D(x, ψ) is a book embedding of
G with τ pages. The bound on the circuit complexity descends from the circuit complexity of gate
Uχp

, the bound on the depth descends from the depth of gate Uχp
, and the bound on the width

descends from the width of gate Uβ . 2

5.7 Problem BS

We call BS the Solution Detector circuit for problem BS.

Lemma 13. There exists a gate BS that, provided with the input superposition
|f(ϕ)⟩ |f(θ)⟩ |x⟩ |e⟩ |0h⟩ |−⟩, where h ∈ O(m2), produces the output superposition
(−1)g(x)f(ϕ)f(θ) |f(ϕ)⟩ |f(θ)⟩ |x⟩ |e⟩ |0h⟩ |−⟩, such that, if Π(x) and N(θ) are not degenerate, then
g(x) = 1 if and only if the 1-page layout of G′ determined by Π(x) is a 1-page book embedding,
where G′ = (V,E \K(θ)). Gate BS has O(n8) circuit complexity, O(n6) depth, and O(m) width.

Proof of Lemma 13. Gate BS uses three gates: OP-cross finder Uχp
, Skewness cross

tester Usk, and Final check Ufc, followed by the inverse gates U−1
sk and U−1

χp
. Refer to Fig. 28.

OP-cross finder. For the definition of gate Uχp
, refer to the proof of Lemma 11. Recall that the

purpose of Uχp
is to compute the crossings in the 1-page layout of G defined by Π(x), determined by

the vertex order corresponding to x. Also Recall that when provided with the input superposition
|x⟩ |0k⟩, the gate Uχp produces the output superposition |x⟩ |χ⟩.

Skewness cross tester. For the definition of Usk, refer to the proof of Lemma 10. Consider
the subgraph G′ of G obtained by removing from G all the edges in K(θ). The purpose of gate Usk
is to determine which of the crossings stored in |χ⟩ involve pairs of edges that are both absent from
|e⟩. In fact, all the edges not in |e⟩ form the edge set of G′. Therefore, Usk verifies whether the
1-page layout of G′ determined by Π(x) is a 1-page book embedding. When provided with the input

36 Caroppo et. al Quantum Graph Drawing

|e⟩
Usk Ufc|0⟩

|0⟩
|−⟩

|e⟩
|x⟩

|0⟩

|0⟩
|−⟩

|f(ϕ)⟩

U−1
sk

|x⟩

(−1)g(x)f(ϕ)f(θ) |f(ϕ)⟩
|f(θ)⟩ |f(θ)⟩

h

Uχp U−1
χp

Figure 28: Oracle BS.

superposition |χ⟩ |e⟩
∣∣0m

2 +p

〉
|0⟩, where p ∈ O(m), the gate Usk produces the output superposition

|χ⟩ |e⟩
∣∣0m

2 +p

〉
|g(x)⟩, such that, if Π(x) and N(θ) are not degenerate, then g(x) = 1 if and only the

1-page layout of G′ determined by Π(x) is a 1-page book embedding.

Final check. For the definition of Ufc, refer to the proof of Lemma 10. The purpose of gate Ufc
is to check whether the current basis state is the encoding of an admissible solution, i.e., whether
the 1-page layout of G determined by Π(x) and the set of indices N(θ) are both not degenerate
and the 1-page layout of G′ determined by Π(x) is a 1-page book embedding. See Fig. 21. When
provided with the input superposition |f(ϕ)⟩ |f(θ)⟩ |g(x)⟩ |−⟩, the gate Ufc produces the outputs
superposition |f(ϕ)⟩ |f(θ)⟩ |g(x)⟩ (−1)g(x)f(ϕ)f(θ) |−⟩.

The inverse circuits. The purpose of circuits U−1
sk , and U−1

χp
is to restore the h ancilla qubit to

|0⟩ so that they can be used in the subsequent steps of Grover’s approach.

Correctness and complexity. For the correctness of Lemma 13, observe that the gates Uχp
,

Usk, and Ufc verify all the necessary conditions for which the 1-page layout of G′ determined by
Π(x) is a 1-page book embedding, under the assumption that Π(x) and N(θ) are not degenerate.
Therefore, the sign of the output superposition of gate BS, which is determined by the expression
(−1)g(x)f(ϕ)f(θ), is defined as follows. It is positive when either Π(x) or N(θ) are degenerate or
Π(x) and N(θ) are not degenerate and the 1-page layout of G′ determined by Π(x) is a 1-page book
embedding. It is negative when Π(x) and N(θ) are not degenerate and the 1-page layout of G′

determined by Π(x) is a 1-page book embedding. The bounds on the circuit complexity and depth
of gate BS descend from those of Uχp , whereas the bound on the width of BS descends from Usk.2

6 Exploiting Quantum Annealing for Graph Drawing

In this section, we explore the 2-level problems and the book layout problems, that we have
addressed so far from the quantum circuit model perspective, in the context of the quantum
annealing model of computation. We pragmatically concentrate on the D-Wave platform, which
offers quantum annealing services based on large-scale quantum annealing solver. To utilize the
hybrid facility of D-Wave for solving an optimization problem, there are essentially two ways: Either
the problem is provided with its QUBO formulation or it is provided with a CBO formulation

JGAA, 29(2) 3–47 (2025) 37

with constraints that are at most quadratic. Also, given a CBO formulation, it is quite simple to
construct a QUBO formulation. Hence, in Sects. 6.1 and 6.2, we first provide CBO formulations
for the problems introduced in the previous section. Second, we overview (Sect. 6.3) a standard
method for transforming a CBO formulation into a QUBO formulation. Third, in Sect. 6.4, we
discuss a detailed experiment conducted on the quantum annealing services provided by D-Wave,
specifically focusing on TLCM, which has extensive experimental literature compared to other
problems considered in this paper. These experiments evaluate the efficiency of D-Wave with
respect to well-known classical approaches to the TLCM problem.

6.1 CBO Formulations for Two-Level Problems

Let G = (U, V,E) be a bipartite graph. We denote by ui, for i = 1, . . . , |U |, and vj , for j =
|U |+ 1, . . . , |U |+ |V |, the vertices in U and V , respectively. We start by describing the variables
and the constraints needed to model the vertex ordering in a 2-level drawing, which are common to
the formulations of TLCM, TLKP, TLQP, and TLS.

Ordering variables. To model the order of the vertices in U and V in a 2-level drawing Γ of G, we
use |U | · (|U | − 1) binary variables ui,j for each ordered pair of vertices ui, uj ∈ U and |V | · (|V | − 1)
binary variables vi,j for each ordered pair of vertices vi, vj ∈ V . The variable xi,j is equal to 1 if
and only if xi precedes xj in Γ, with x ∈ {u, v}.
Ordering constraints. We define the following constraints. As in [28], to model the fact that an
assignment of values to the variables xi,j , with x ∈ {u, v}, correctly models a linear ordering of the
vertices in U and in V , we exploit two types of constraints:

Consistency: For each ordered pair of vertices ui, uj ∈ U , we have the constraint (CU) ui,j+uj,i =
1. Similarly, for each ordered pair of vertices vi, vj ∈ V , we have the constraint (CV)
vi,j + vj,i = 1. Clearly, there exist O(|U |2) and O(|V |2) constraints of type (CU) and (CV),
respectively.

Transitivity: For each ordered triple of vertices ui, uj , uk ∈ U , we have the constraints (TU)
ui,j + uj,k − ui,k ≥ 0 and ui,j + uj,k − ui,k ≤ 1. The constraint (TV) for each ordered
triple of vertices of V is defined analogously. Clearly, there exist O(|U |3) and O(|V |3)
constraints of type (TU) and (TV), respectively. Constraints (TU) and (TV) are linear.
We also consider alternative quadratic constraints for transitivity: for each ordered triple
of vertices ui, uj , uk ∈ U , we have the constraints (TQU) 1 − (ui,j · uj,k) + ui,k ≥ 1.
The constraints (TQV) for each ordered triple of vertices of V are defined analogously.
Clearly, the number of (TQU) and (TQV) constraints is half the number of (TU) and
(TV) constraints. It is possible to further reduce the number of transitivity constraints by
substituting constraints (TQU) with the constraints (U-TQU) described below. To define
constraint (U-TQU) observe that the transitivity constraints between variables uij , uik, and
ujk can be modeled by means of the Boolean formula (uij ∧¬ujk)∨ (¬uij ∧¬uik)∨ (uik ∧ujk);
refer to Table 2. For each such Boolean formula, we introduce a constraint (U-TQU) given by
(uij · (1−ujk))+((1−uij) · (1−uik))+(uik ·ujk) = 1. Observe that this constraint is satisfied
if and only if the corresponding Boolean formula is true. The constraints (U-TQV) for each
ordered triple of vertices of V are defined analogously. Clearly, the number of (U-TQU) and
(U-TQV) constraints is half the number of (TQU) and (TQV) constraints.

Next, we provide specific variables and constraints that allow us to correctly model the problems
TLCM, TLKP, TLQP, and TLS. To this aim, for each pair of independent edges ea = (ui, vk) and

38 Caroppo et. al Quantum Graph Drawing

uij uik ujk (uij ∧ ¬ujk) ∨ (¬uij ∧ ¬uik) ∨ (uik ∧ ujk) Transitivity
0 0 0 1 V alid
0 0 1 1 V alid
0 1 0 0 Not− V alid
0 1 1 1 V alid
1 0 0 1 V alid
1 0 1 0 Not− V alid
1 1 0 1 V alid
1 1 1 1 V alid

Table 2: Transitivity truth table.

eb = (uj , vℓ), we define the expression χa,b = ui,j · vℓ,k + uj,i · vk,ℓ, which is equal to 1 if and only if
ea and eb cross. For each edge e ∈ E, we denote by I(e) the set of edges in E that do not share an
endpoint with e.

Two-level Crossing Minimization (TLCM). We consider the minimization version of the
problem. In order to minimize the total number of crossings in the sought 2-level drawing of G, we
define the objective function (OF)

min
∑
ea∈E

∑
eb∈I(ea)

χa,b.

Two-level k-planarity (TLKP). We show how to model the fact that on each edge at most k
crossings are allowed. Hence, for each edge ea, we have the constraint (KP)∑

eb∈I(ea) χa,b ≤ k.

Clearly, over all the edges of G, there are |E| constraints of type (KP).

Two-level Quasi Planarity (TLQP). We show how to model the fact that no three edges are
allowed to pairwise cross. For each ordered triple (ea, eb, ec) of edges of E such that eb ∈ I(ea) and
ec ∈ I(ea) ∩ I(eb), we have the constraint (QP)

χa,b + χb,c + χa,c < 3.

Clearly, over all the edges of G, there are O(|E|3) constraints of type (QP).

Two-level Skewness (TLS). To model the membership of the edges to a subset S such that
|S| ≤ σ, whose removal from G yields a forest of caterpillars, we use |E| binary variables si,j for
each edge (ui, vj). The variable si,j is equal to 1 if and only if (ui, vj) belongs to S. First, to
enforce that |S| ≤ σ, we use the constraint (CS)∑

(ui,vj)∈E

si,j ≤ σ.

Second, we show how to model the fact that no two edges in E \ S are allowed to cross. For
each edge ea = (ui, vj) ∈ E and for each edge eb = (uℓ, vk) ∈ I(ea), we have the constraint (S)

JGAA, 29(2) 3–47 (2025) 39

vi uℓ vj uk

xi,ℓ ∧ xℓ,j ∧ xj,k xi,k ∧ xk,j ∧ xj,ℓ xj,ℓ ∧ xℓ,i ∧ xi,k xj,k ∧ xk,i ∧ xi,ℓ

xk,j ∧ xj,ℓ ∧ xℓ,ixk,i ∧ xi,ℓ ∧ xℓ,jxℓ,j ∧ xj,k ∧ xk,ixℓ,i ∧ xi,k ∧ xk,j

vi uℓvjuk viuℓvj uk vi uℓvj uk

viuℓvjukvi uℓ vjukviuℓ vj ukviuℓ vjuk

Figure 29: (top) The four possible crossing configurations of the edges ea = (vi, vj) and eb = (vℓ, vk),
in which an end-vertex of ea precedes both endpoints of eb. (bottom) The four possible crossing
configurations of the edges ea and eb, in which an end-vertex of eb precedes both endpoints of ea.

χa,b − si,j − sℓ,k < 1.

Over all the edges of G there are O(|E|2) constraints of type (S).

6.2 CBO Formulations for Book-layout Problems

Let G = (V,E) be a graph. We denote by vi, for i = 1, . . . , |V |, the vertices in V . As in Sect. 6.1,
we use the variable xi,j to encode the precedence between the ordered pair of vertices vi, vj ∈ V .
Moreover, in order for an assignment of values in B to such variables to correctly model a linear
ordering of V , we use the consistency and transitivity constraints described in Sect. 6.1.

Next, we provide the specific variables and constraints that allow us to correctly model the
problems OPCM, BT, and BS. Two edges are independent if they do not share an end-vertex. To
this aim, for each ordered pair of independent edges ea = (vi, vj) and eb = (vℓ, vk), we define the
expression χa,b = xi,ℓ · xℓ,j · xj,k + xi,k · xk,j · xj,ℓ + xj,ℓ · xℓ,i · xi,k + xj,k · xk,i · xi,ℓ, which is equal to
1 if and only if ea and eb cross and (exactly) one of the endpoints of ea precedes both the endpoints
of eb; refer to Fig. 29(top). More specifically, let xα,β · xβ,γ · xγ,δ be any of the four terms that
define χa,b. We have that such a term evaluates to 1 if and only if the vertices vα, vβ , vγ , and vδ
appear in this left-to-right order along the spine.

One-Page Crossing Minimization (OPCM). We consider the minimization version of the
problem. In order to minimize the total number of crossings in the sought 1-page layout of G, we
define the objective function (OF)

min
∑
ea∈E

∑
eb∈I(ea)

χa,b.

Book Thickness (BT). To model the membership of the edges to one of the τ pages, we use
τ |E| binary variables ei,j,c, for each edge (vi, vj) and for each page c ∈ [τ]. The variable ei,j,c is
equal to 1 if and only if (vi, vj) is assigned to page c. First, in order to enforce that each edge
belongs exactly to one page, for each edge (vi, vj) ∈ E, we use the constraint (BC)

40 Caroppo et. al Quantum Graph Drawing

∑
c∈[τ]

ei,j,c = 1.

Second, we show how to model the fact that no two edges assigned to the same page are allowed
to cross. For each edge ea = (vi, vj) ∈ E, for each edge eb = (vl, vk) ∈ I(ea), and for each page
c ∈ [τ], we have the constraint (CC)

χa,b + ei,j,c + el,k,c < 3.

Book Skewness (BS). For this problem, we adopt the same constraints (CS) as for the TLS
problem. Moreover, we adopt the constraints (S) as for the TLS problem.

6.3 From CBO to QUBO

The formulations presented in Sects. 6.1 and 6.2 contain quadratic and even cubic constraints. Such
constraints, however, only involve binary variables. Hence, they can be easily linearized, by means
of standard operations research techniques, to be exploited to define a QUBO formulation suitable
for quantum annealing.

Specifically, let µ = Πki=1xi be a (not necessarily quadratic) monomial of total degree k, such
that each variable xi is a binary variable. We obtain an equivalent constraint by replacing each
occurrence of µ in all the constraints of our formulation with a new binary variable zµ and by
adding the following k + 1 constraints:{

zµ ≤ xi i = 1, . . . , k

zµ ≥ 1− k +
∑k
i=1 xi

In our formulation for the 2-level problems, the maximum degree of all monomials is 2 and these
monomials arise from the expressions χa,b, for each pair of independent edges ea = (ui, vi) and
eb = (uℓ, vk). Thus, there exist at most |E(G)|2 distinct degree-2 monomials in these formulations.
Therefore, by applying the replacement described above, we introduce at most |E(G)|2 new variables
and 3|E(G)|2 new constraints. Similarly, in our formulation for the book layout problems, the
maximum degree of all monomials is 3 and these monomials arise from the expressions χa,b, for each
pair of independent edges ea = (ui, vi) and eb = (uℓ, vk). Thus, there exist at most |E(G)|2 distinct
degree-3 monomials in these formulations. Therefore, by applying the replacement described above,
we introduce at most |E(G)|2 new variables and 4|E(G)|2 new constraints.

Once the constraints are linearized, a QUBO formulation is obtained by inserting all constraints
in the objective function. Note that if the problem is not an optimization problem an objective
function is anyway created such that its optimum value is equal to zero. Constraints are first
transformed so that their right member is equal to zero. For inequalities an extra variable is inserted
so to transform the inequality into an equality. Then left member is squared and the result is
inserted into the objective function.

6.4 D-Wave Experimentation

We performed our experiments on TLCM using the hybrid solver of D-Wave, which suitably mixes
quantum computations with classic tabu-search and simulated annealing heuristics. The obtained
results are not guaranteed to be optimal.

JGAA, 29(2) 3–47 (2025) 41

(1
0,

 1
0)

(1
0,

 2
0)

(1
0,

 3
0)

(1
0,

 4
0)

(1
0,

 5
0)

(1
0,

 6
0)

(1
0,

 7
0)

(1
0,

 8
0)

(1
0,

 9
0)

(1
2,

 1
0)

(1
2,

 2
0)

(1
2,

 3
0)

(1
2,

 4
0)

(1
2,

 5
0)

(1
2,

 6
0)

(1
2,

 7
0)

(1
2,

 8
0)

(1
2,

 9
0)

(1
4,

 1
0)

(1
4,

 2
0)

(1
4,

 3
0)

(1
4,

 4
0)

(1
4,

 5
0)

(1
4,

 6
0)

(1
4,

 7
0)

(1
4,

 8
0)

(1
4,

 9
0)

(1
6,

 1
0)

(1
6,

 2
0)

(1
6,

 3
0)

(1
6,

 4
0)

(1
6,

 5
0)

(1
6,

 6
0)

(1
6,

 7
0)

(1
6,

 8
0)

(1
6,

 9
0)

(1
8,

 1
0)

(1
8,

 2
0)

(2
0,

 1
0)

(2
0,

 2
0)

(2
2,

 1
0)

(2
2,

 2
0)

(2
4,

 1
0)

(n, d)

10 2

10 1

100

101

102

103

to
ta

l t
im

e
(s

ec
on

ds
)

Quantum Linear
Quantum Quadratic
Best Classic

(a) Time comparison.

(1
0,

 1
0)

(1
0,

 2
0)

(1
0,

 3
0)

(1
0,

 4
0)

(1
0,

 5
0)

(1
0,

 6
0)

(1
0,

 7
0)

(1
0,

 8
0)

(1
0,

 9
0)

(1
2,

 1
0)

(1
2,

 2
0)

(1
2,

 3
0)

(1
2,

 4
0)

(1
2,

 5
0)

(1
2,

 6
0)

(1
2,

 7
0)

(1
2,

 8
0)

(1
2,

 9
0)

(1
4,

 1
0)

(1
4,

 2
0)

(1
4,

 3
0)

(1
4,

 4
0)

(1
4,

 5
0)

(1
4,

 6
0)

(1
4,

 7
0)

(1
4,

 8
0)

(1
4,

 9
0)

(1
6,

 1
0)

(1
6,

 2
0)

(1
6,

 3
0)

(1
6,

 4
0)

(1
6,

 5
0)

(1
6,

 6
0)

(1
6,

 7
0)

(1
6,

 8
0)

(1
6,

 9
0)

(1
8,

 1
0)

(1
8,

 2
0)

(2
0,

 1
0)

(2
0,

 2
0)

(2
2,

 1
0)

(2
2,

 2
0)

(2
4,

 1
0)

(n, d)

0

2

4

6

8

%
 e

rro
r

Quantum Linear
Quantum Quadratic

(b) Percentage difference with respect to the optimum
number of crossings.

Figure 30: D-Wave experimentation results: (a) comparison of times and (b) quality of the solutions.

The D-Wave hybrid solver receives as input either a CBO or a QUBO formulation of a problem.
We used it with a linear CBO formulation (with (TU) and (TV) constraints) and with a quadratic
CBO formulation (with (TQU) and (TQV) constraints). Roughly, the D-Wave hybrid solver
works as follows. First, it decomposes the problem into parts that fit the quantum processor.
The decomposition aims at selecting subsets of variables, and hence sub-problems, maximally
contributing to the problem energy. Second, it solves such sub-problems with the quantum
processor. Third, it injects the obtained results into the original overall problem that is solved with
traditional heuristics. These steps can be repeated several times, since an intermediate solution
can re-determine the set of variables that contribute the most to the energy of the problem. An
interesting description of the behaviour and of the limitations of D-Wave is presented in [27],
although it refers to the quantum processor called Chimera5 that has been replaced by the new
processors called Pegasus5 and Zephyr5.

We compare our results with the figures proposed in [11]. Namely, the authors compare three
exact algorithms for TLCM: LIN, which is the standard linearization approach; JM, which is the
algorithm in [28]; and SDP, which is the branch-and-bound in [36]. Their experiments were carried
out on an Intel Xeon processor with 2.33 GHZ.

Fig. 30 and Table 3 illustrate the results of the experimentation we conducted on the D-Wave
platform. We used the code and seed provided by the authors of [11] to generate the same set of
graphs as in [11]. Following their approach, for each pair (n, d), where n is the number of vertices on
each layer and d is the density of the graph, we performed 10 experiments on the first 10 generated
distinct graph instances. As in [11], the number of the edges of the graphs generated for a pair (n, d)
is ⌊dn2/100⌋. Fig. 30a reports for each pair n, d, consisting of number of vertices n and density d:
(1) the time spent to find the optimum by the fastest classical algorithm between LIN, JM, and SDP,
(2) the time spent by our implementation using linear constraints, and (3) the time spent by our
implementation using quadratic constraints. All the values are the average computed on the cited
10 instances. The columns of Table 3 report what follows. Best [11] Time: the best performance

5D-Wave QPU architecture: Chimera, Pegasus, and Zephyr topology.

https://docs.dwavesys.com/docs/latest/c_gs_4.html#topology-concepts-and-the-chimera-topology
https://docs.dwavesys.com/docs/latest/c_gs_4.html#pegasus-graph
https://docs.dwavesys.com/docs/latest/c_gs_4.html#zephyr-graph

42 Caroppo et. al Quantum Graph Drawing

among the exact algorithms for TLCM known so far (time measured by [11]). Best [11] Approach:
the fastest among LIN, JM, and SDP. The double slash indicates that an optimal solution has
not been found. D-Wave Time (Linear): time of our experiments, using the linear formulation.
Constrains (Linear): number of constraints of our linear formulation. Crossings (Linear): number of
crossings obtained with our linear formulation. D-Wave Time (Quadratic): time of our experiments,
using the quadratic formulation. Constrains (Quadratic): number of constraints of our quadratic
formulation. Crossings (Quadratic): number of crossings obtained with our quadratic formulation.

Fig. 30b shows that the number of crossings obtained by the quadratic implementation was
the optimal one for all graphs with up to 14 vertices per layer and up to 40% of density. Also,
the number of crossings obtained by the quadratic (resp., linear) implementation, in all sets of
instances deviates of at most 8% (resp., 9%) from the optimal one. Futher, for 60% of the sets
both the linear and the quadratic implementations achieve the optimum.

The comparison of the time employed by D-Wave (linear and quadratic) with the one of the
best exact methods is quite promising, even if the times in the Best Current Time column are
the results of a computation performed on a non-up-to-date classical hardware, and indicate that
D-Wave can be used to efficiently tackle instances of TLCM. The valleys in 30a show that classical
algorithms perform well for sparse instances, whereas quantum algorithms appear to perform better
on dense instances. The comparison between linear and quadratic CBO formulations indicates that
the quadratic formulation is more efficient, since it generates fewer constraints. Their behaviour
in terms of number of crossings are quite similar. The time we report is the overall time elapsed
between the remote call from our client and the reception of the result. The actual time spent on
the quantum processor is always between 0.016 and 0.032 sec.

7 Conclusions and Open Problems

We initiate the study of quantum algorithms in the Graph Drawing research area, providing a
framework that allows us to tackle several classic problems within the 2-level and book layout
drawing standards. Our framework, equipped with several quantum circuits of potential interest
to the community, builds upon Grover’s quantum search approach. It empowers us to achieve,
ignoring polynomial terms, a quadratic speedup compared to the best known classical exact
algorithms for all the problems under consideration. In addition, we conducted experiments using
the D-Wave quantum annealing platform for the Two-Level Crossing Minimization problem.
Our experiments demonstrated that the platform is highly suitable for addressing graph drawing
problems and showcased significant efficiency when compared to the top approaches available for
solving such problems [11, 28]. The encounter between Graph Drawing and Quantum Computing is
still in its nascent stage, offering a vast array of new and promising problems (see, for instance, the
recent developments in [12]). Virtually, all graph drawing problems can be explored through the
lenses of quantum computation, utilizing both the quantum circuit model and, more pragmatically,
quantum annealing platforms.

Acknowledgments. We thank the anonymous reviewers of this paper for their valuable comments
that helped us improve the quality of our manuscript.

JGAA, 29(2) 3–47 (2025) 43

Table 3: TLCM: D-Wave vs other approaches. Bipartite graphs with increasing number of vertices
per layer and density. All times are in seconds.

n d (%)
Best [11]
Approach

Best
[11]
Time

D-Wave
Time

(Linear)

D-Wave
Time

(Quadratic)

Crossings
(Exact)

Crossings
(Linear)

Crossings
(Quadratic)

Constraints
(Linear)

Constraints
(Quadratic)

10 10 LIN 0,01 0,26 0,15 0,22 0,22 0,22 509 269
10 20 JM 0,05 0,92 0,50 12,22 12,22 12,22 1926 996
10 30 JM 0,15 1,48 0,79 61,33 61,33 61,33 2969 1529
10 40 JM 0,33 1,39 0,76 151,33 151,33 151,33 2970 1530
10 50 JM 0,61 1,44 0,83 281,88 281,88 281,88 2970 1530
10 60 JM 1,14 1,52 0,81 458,55 458,55 458,55 2970 1530
10 70 JM 2,35 1,47 0,79 706,55 706,55 706,55 2970 1530
10 80 JM 4,05 1,49 0,81 1007,11 1007,11 1007,11 2970 1530
10 90 SDP 6,79 1,92 0,81 1408 1408 1408 2970 1530
12 10 LIN 0,02 1,18 0,61 0,67 0,67 0,67 2293 1183
12 20 JM 1,52 2,15 1,07 34,22 34,22 34,22 4110 2110
12 30 JM 4,53 2,77 1,41 139,11 139,11 139,11 5263 2696
12 40 JM 16,36 2,72 1,44 339,89 339,89 339,89 5337 2734
12 50 SDP 44,84 2,80 1,52 664,56 664,56 664,56 5412 2772
12 60 SDP 48,26 2,94 1,44 1040 1040 1040 5412 2772
12 70 SDP 40,31 2,71 1,48 1535 1535 1535 5412 2772
12 80 SDP 28,71 2,82 1,63 2228,55 2228,67 2228,56 5412 2772
12 90 SDP 22,21 2,88 1,68 3023,67 3023,67 3023,67 5412 2772
14 10 LIN 0,33 2,30 1,10 2,67 2,67 2,67 3912 2008
14 20 SDP 89,61 4,19 2,37 89,33 89,33 89,33 7701 3933
14 30 SDP 132,72 4,69 2,55 316,78 316,89 316,78 8512 4344
14 40 SDP 144,03 5,20 2,74 716 716 716 8918 4550
14 50 SDP 180,49 4,71 2,88 1315,78 1316,11 1316 8918 4550
14 60 SDP 141,93 4,67 2,35 2052,67 2053 2052,89 8918 4550
14 70 SDP 149,68 4,93 2,76 3015,89 3017,78 3016,22 8918 4550
14 80 SDP 145,97 5,03 2,46 4255,78 4258,89 4257,67 8918 4550
14 90 SDP 81,27 4,92 2,39 5861,33 5865,33 5875,22 8918 4550
16 10 LIN 2,77 3,45 1,83 11,56 11,56 11,56 6672 3410
16 20 SDP 309,31 6,70 3,34 176,22 176,78 176,33 12423 6324
16 30 SDP 630,31 7,53 3,63 603,22 604,78 603,89 13397 6817
16 40 SDP 800,87 7,56 3,73 1322,78 1326,89 1324,44 13680 6960
16 50 SDP 451,09 7,46 3,82 2368,67 2376,89 2375,44 13680 6960
16 60 SDP 403,82 7,33 3,73 3750,78 3770,11 3762,67 13680 6960
16 70 SDP 789,62 7,48 3,77 5476,56 5501,67 5486,78 13680 6960
16 80 SDP 568,55 7,37 3,66 7550,56 7591,78 7575,11 13680 6960
16 90 SDP 362,29 7,08 3,72 10279,45 10336,11 10310,89 13680 6960
18 10 LIN 7,06 6,16 3,36 18 18,11 18,11 12154 6187
18 20 SDP 778,86 10,25 4,99 307,45 312,78 309,56 18424 9358
20 10 LIN 117,72 10,25 5,26 43,22 44,78 44,33 19357 9828
20 20 SDP 1813,87 14,25 7,34 534,78 551,33 548,22 26589 13479
22 10 LIN 546,71 14,06 7,09 87 94,22 92,22 25942 13152
22 20 SDP 3443,81 19,62 10,04 900,56 984,22 962,44 35217 17830
24 10 LIN 2225,82 20,96 10,69 137,44 150,44 148,33 37757 19110
24 20 // // 27,70 14,17 // 1794,22 1835,11 48788 24669

44 Caroppo et. al Quantum Graph Drawing

References

[1] S. Aaronson. Introduction to quantum information science lecture notes, April 2019. URL:
https://www.scottaaronson.com/qclec.pdf.

[2] P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, and M. Patrignani. 2-Level quasi-planarity
or how caterpillars climb SPQR-trees. In D. Marx, editor, SODA 2021, pages 2779–2798.
SIAM, 2021. doi:10.1137/1.9781611976465.165.

[3] P. Angelini, G. Da Lozzo, H. Förster, and T. Schneck. 2-Layer k-planar graphs - density,
crossing lemma, relationships, and pathwidth. In D. Auber and P. Valtr, editors, Graph
Drawing and Network Visualization - 28th International Symposium, GD 2020, Vancouver,
BC, Canada, September 16-18, 2020, Revised Selected Papers, volume 12590 of LNCS, pages
403–419. Springer, 2020. doi:10.1007/978-3-030-68766-3_32.

[4] P. Angelini, G. Da Lozzo, H. Förster, and T. Schneck. 2-Layer k-Planar Graphs
Density, Crossing Lemma, Relationships And Pathwidth. The Computer Journal, 04
2023. arXiv:https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/

comjnl/bxad038/50062043/bxad038.pdf, doi:10.1093/comjnl/bxad038.

[5] H. Babu. Quantum Computing: A Pathway to Quantum Logic Design. G - Refer-
ence,Information and Interdisciplinary Subjects Series. Institute of Physics Publishing, 2020.
URL: https://books.google.it/books?id=KVRAygEACAAJ.

[6] M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings of
graphs with bounded treewidth. In C. A. Duncan and A. Symvonis, editors, Graph Drawing
- 22nd International Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014,
Revised Selected Papers, volume 8871 of Lecture Notes in Computer Science, pages 210–221.
Springer, 2014. doi:10.1007/978-3-662-45803-7_18.

[7] M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings
of graphs with bounded treewidth. J. Graph Algorithms Appl., 22(4):577–606, 2018. doi:

10.7155/jgaa.00479.

[8] Z. Baranyai. The edge-coloring of complete hypergraphs I. J. Comb. Theory B, 26(3):276–294,
1979. doi:10.1016/0095-8956(79)90002-9.

[9] F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Comb. Theory, Ser. B,
27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

[10] D. Bhattacharyya, D. BHATTACHARYYA, J. Guha, and I. of Physics (Great Britain).
Quantum Optics and Quantum Computation: An Introduction. IOP series in advances in
optics, photonics and optoelectronics. IOP Publishing, 2022. URL: https://books.google.it/
books?id=ubnzzgEACAAJ.

[11] C. Buchheim, A. Wiegele, and L. Zheng. Exact algorithms for the quadratic linear ordering
problem. INFORMS J. Comput., 22(1):168–177, 2010. doi:10.1287/ijoc.1090.0318.

[12] S. Caroppo, G. Da Lozzo, and G. Di Battista. Quantum algorithms for one-sided crossing
minimization. In S. Felsner and K. Klein, editors, 32nd International Symposium on Graph
Drawing and Network Visualization, GD 2024, September 18-20, 2024, Vienna, Austria, volume

https://www.scottaaronson.com/qclec.pdf
https://doi.org/10.1137/1.9781611976465.165
https://doi.org/10.1007/978-3-030-68766-3_32
https://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxad038/50062043/bxad038.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxad038/50062043/bxad038.pdf
https://doi.org/10.1093/comjnl/bxad038
https://books.google.it/books?id=KVRAygEACAAJ
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1016/0095-8956(79)90002-9
https://doi.org/10.1016/0095-8956(79)90021-2
https://books.google.it/books?id=ubnzzgEACAAJ
https://books.google.it/books?id=ubnzzgEACAAJ
https://doi.org/10.1287/ijoc.1090.0318

JGAA, 29(2) 3–47 (2025) 45

320 of LIPIcs, pages 20:1–20:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL:
https://doi.org/10.4230/LIPIcs.GD.2024.20, doi:10.4230/LIPICS.GD.2024.20.

[13] S. Caroppo, G. Da Lozzo, and G. Di Battista. Quantum Graph Drawing. In R. Uehara, K. Ya-
manaka, and H. Yen, editors, WALCOM: Algorithms and Computation - 18th International
Conference and Workshops on Algorithms and Computation, WALCOM 2024, Kanazawa,
Japan, March 18-20, 2024, Proceedings, volume 14549 of Lecture Notes in Computer Science,
pages 32–46. Springer, 2024. doi:10.1007/978-981-97-0566-5_4.

[14] S. Caroppo, G. Da Lozzo, and G. Di Battista. Source code for the experimental study
presented in the paper “Quantum Graph Drawing”, May 2024. URL: https://github.com/
s-caro/Quantum-TLCM.

[15] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[16] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A Language-
Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge
University Press, 2012.

[17] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, 1999.

[18] V. Dujmovic, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. A. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered
graph drawing. Algorithmica, 52(2):267–292, 2008. doi:10.1007/s00453-007-9151-1.

[19] P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem. In 9th Australian
Comp. Science Conference, ACSC 1986, Proceedings, pages 327–334, 1986.

[20] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica,
11(4):379–403, 1994. doi:10.1007/BF01187020.

[21] S. Fukuzawa, M. T. Goodrich, and S. Irani. Quantum Tutte embeddings. CoRR,
abs/2307.08851, 2023. arXiv:2307.08851, doi:10.48550/arXiv.2307.08851.

[22] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 4(3):312–316, 1983. arXiv:https://doi.org/10.1137/0604033,
doi:10.1137/0604033.

[23] L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L. Miller,
editor, STOC 1996, pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

[24] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge insertion with
embedding constraints. In M. Kaufmann and D. Wagner, editors, Graph Drawing, 14th
International Symposium, GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised
Papers, volume 4372 of Lecture Notes in Computer Science, pages 126–137. Springer, 2006.
doi:10.1007/978-3-540-70904-6_14.

[25] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge insertion with
embedding constraints. J. Graph Algorithms Appl., 12(1):73–95, 2008. URL: https://doi.org/
10.7155/jgaa.00160, doi:10.7155/JGAA.00160.

https://doi.org/10.4230/LIPIcs.GD.2024.20
https://doi.org/10.4230/LIPICS.GD.2024.20
https://doi.org/10.1007/978-981-97-0566-5_4
https://github.com/s-caro/Quantum-TLCM
https://github.com/s-caro/Quantum-TLCM
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1007/BF01187020
https://arxiv.org/abs/2307.08851
https://doi.org/10.48550/arXiv.2307.08851
https://arxiv.org/abs/https://doi.org/10.1137/0604033
https://doi.org/10.1137/0604033
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-540-70904-6_14
https://doi.org/10.7155/jgaa.00160
https://doi.org/10.7155/jgaa.00160
https://doi.org/10.7155/JGAA.00160

46 Caroppo et. al Quantum Graph Drawing

[26] A. W. Harrow. Quantum algorithms for systems of linear equations. In Encyclopedia of
Algorithms, pages 1680–1683. 2016. doi:10.1007/978-1-4939-2864-4_771.

[27] M. Jünger, E. Lobe, P. Mutzel, G. Reinelt, F. Rendl, G. Rinaldi, and T. Stollenwerk. Perfor-
mance of a quantum annealer for ising ground state computations on chimera graphs. CoRR,
abs/1904.11965, 2019. arXiv:1904.11965.

[28] M. Jünger and P. Mutzel. 2-Layer straightline crossing minimization: Performance of exact and
heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997. doi:10.7155/jgaa.00001.

[29] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, W. Sun, Z. Jiang, N. Rubin,
A. Fowler, A. Aspuru-Guzik, H. Neven, and R. Babbush. Improved Fault-Tolerant Quantum
Simulation of Condensed-Phase Correlated Electrons via Trotterization. Quantum, 4:296, July
2020. doi:10.22331/q-2020-07-16-296.

[30] Y. Kobayashi, H. Maruta, Y. Nakae, and H. Tamaki. A linear edge kernel for two-layer crossing
minimization. Theor. Comput. Sci., 554:74–81, 2014. doi:10.1016/j.tcs.2014.06.009.

[31] Y. Kobayashi and H. Tamaki. A faster fixed parameter algorithm for two-layer crossing
minimization. Inf. Process. Lett., 116(9):547–549, 2016. doi:10.1016/j.ipl.2016.04.012.

[32] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-completeness of a
computer network layout problem. In Proc. IEEE International Symposium on Circuits and
Systems (ISCAS 1987), page 292–295, 1987.

[33] C. C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing: Theory and
Practice. Synthesis Lectures on Quantum Computing. Morgan & Claypool Publishers, 2014.
doi:10.2200/S00585ED1V01Y201407QMC008.

[34] H. Nagamochi and N. Yamada. Counting edge crossings in a 2-layered drawing. Inf. Process.
Lett., 91(5):221–225, 2004. URL: https://doi.org/10.1016/j.ipl.2004.05.001, doi:10.1016/J.
IPL.2004.05.001.

[35] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information (10th
Anniversary edition). Cambridge University Press, 2016.

[36] F. Rendl, G. Rinaldi, and A. Wiegele. A branch and bound algorithm for max-cut based on
combining semidefinite and polyhedral relaxations. In M. Fischetti and D. P. Williamson,
editors, IPCO 2007, volume 4513 of LNCS, pages 295–309. Springer, 2007. doi:10.1007/

978-3-540-72792-7_23.

[37] E. Rieffel and W. Polak. Quantum Computing: A Gentle Introduction. The MIT Press, 1st
edition, 2011.

[38] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrto. Book embeddings and crossing numbers.
In E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, WG 1994, volume 903 of LNCS, pages
256–268. Springer, 1994. doi:10.1007/3-540-59071-4_53.

[39] R. Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC,
2013.

[40] J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse matrices. Algorithmica,
48(3):287–299, 2007. doi:10.1007/s00453-007-0118-z.

https://doi.org/10.1007/978-1-4939-2864-4_771
https://arxiv.org/abs/1904.11965
https://doi.org/10.7155/jgaa.00001
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1016/j.tcs.2014.06.009
https://doi.org/10.1016/j.ipl.2016.04.012
https://doi.org/10.2200/S00585ED1V01Y201407QMC008
https://doi.org/10.1016/j.ipl.2004.05.001
https://doi.org/10.1016/J.IPL.2004.05.001
https://doi.org/10.1016/J.IPL.2004.05.001
https://doi.org/10.1007/978-3-540-72792-7_23
https://doi.org/10.1007/978-3-540-72792-7_23
https://doi.org/10.1007/3-540-59071-4_53
https://doi.org/10.1007/s00453-007-0118-z

JGAA, 29(2) 3–47 (2025) 47

[41] A. Wigderson. The complexity of the Hamiltonian circuit problem for maximal planar graphs.
Technical Report TR-298, Princeton University, 1982. arXiv:https://www.math.ias.edu/
avi/node/820.

[42] M. Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:

10.1137/0210021.

https://arxiv.org/abs/https://www.math.ias.edu/avi/node/820
https://arxiv.org/abs/https://www.math.ias.edu/avi/node/820
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021

	Introduction
	Preliminaries
	A Quantum Framework for Graph Drawing Problems
	Input Transducer Circuits
	Order Transducer
	Skewness Transducer

	Solution Detector Circuits
	Problem TLCM
	Problem TLKP
	Problem TLQP
	Problem TLS
	Problem OPCM
	Problem BT
	Problem BS

	Exploiting Quantum Annealing for Graph Drawing
	CBO Formulations for Two-Level Problems
	CBO Formulations for Book-layout Problems
	From CBO to QUBO
	D-Wave Experimentation

	Conclusions and Open Problems

