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Abstract. In this paper, we study the problem of black hole search by a team of
mobile agents. A black hole is a dangerous stationary node in a graph that eliminates
any visiting agent without leaving any trace of its existence. Key parameters that
dictate the complexity of finding the black hole include the number of agents required
to locate the black hole, the number of moves performed by the agents and the time
taken to determine the black hole location. This problem was first investigated in the
context of dynamic rings by Di Luna et al. (Proc. of ICDCS 2021, IEEE, pp. 987-997).
In this paper, we extend the same problem to a dynamic cactus. We introduce two
categories of dynamicity. Firstly, we examine the scenario where the underlying graph
has at most one dynamic edge, i.e., at most, one edge can disappear or reappear at
any round. Secondly, we consider the problem for at most k dynamic edges. In both
cases, the underlying graph must be connected irrespective of which edge (or edges) is
dynamic. Now for each case of dynamicities, we establish lower and upper bounds on
the number of agents, moves and rounds required to locate the black hole.

1 Introduction

We study the black hole search problem (also termed as BHS problem) by a team of mobile agents.
A mobile agent in a graph network is a software code that migrates from one node to another while
performing specific actions. Moreover, the agent, while traversing from one node to another, also
interacts with the host environment at each node that it visits. One of the fundamental problems
in the domain of mobile agents is exploration of networks. The exploration problem terminates
once each node of the network is visited at least once by any exploring agent. The black hole search
problem is a unique variation of this exploration problem. A black hole is a malicious node that

1A preliminary version of this work appeared in the proceedings of the 18th International Conference and Work-
shops on Algorithms and Computation (WALCOM) 2024 [3].
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can delete any visiting agent without leaving any trace of its existence. In practicality, a black hole
can be modeled into various real-life failure models. It can be malware that attacks a node in the
network, where the behavior of that node resembles to that of a black hole, and hence it destroys
any incoming agents. This scenario frequently arises within networked systems, particularly in
situations requiring the safeguarding of agents from potential host attacks. In literature, the study
of the BHS problem focuses on efficiently determining the position of the black hole in an unknown
network under several assumptions such as communication models, agent’s capabilities and level
of synchrony being some of them. A complete survey of each of these assumptions is discussed by
Markou et al. [25]. Note that each of these assumptions is explored when the underlying graph is
static, i.e., the graph network remains the same over time.

Recent advancements show that the study of mobile agents is getting more traction on highly
dynamic graphs, i.e., graphs that change over time. It is because due to the increasing prevalence of
internet connectivity and mobile devices with connectivity, networks are becoming predominantly
dynamic. Such networks change over time, i.e., a node can join, leave, or move around, or the
links may appear or disappear over time. So, in this paper, we consider our underlying graph to
be a synchronous evolving graph. These dynamic graphs can be visualized as a collection of static
graphs with the additional constraint that at any round, whichever or howsoever many edges are
reappeared or disappeared by the adversary, the underlying graph must remain connected. This
constraint of the graph remaining connected always is termed as 1-interval connectivity property.

Apart from the research paper by Di Luna et al. [12] concerning dynamic ring networks, there
is limited knowledge about finding the black hole when the underlying network exhibits dynamic
behaviour. Therefore, we focus on expanding our findings in this context and in our investigation,
we consider a set of mobile agents, all of whom are initially co-located at a node that is free from
any black hole threat (this initial node is termed as home) and also executes the same algorithm
synchronously. The primary objective is to efficiently determine the location of the black hole
within the network in the shortest possible time.

1.1 Related Work

The black hole search problem (BHS) is well-studied in the domain of mobile agents. This problem
has been studied under varying underlying topologies such as rings, grids, and torus, as well as in
arbitrary topology. The problem was first introduced by Dobrev et al. [14], in which they solved
the BHS problem, considering the underlying topology as an arbitrary network. In this setting,
they established tight bounds on the number of agents and calculated the cost of a size-optimal
BHS protocol. After this seminal paper, there has been a plethora of work done in this domain
under different graph classes such as trees [8], rings [2, 6, 15, 16], tori [5, 24] and in graphs of
arbitrary and unknown topology [7, 14]. Mainly, two variations of this problem are studied: first,
when the agents are initially co-located [8] and second, when the agents are initially scattered
[5, 6, 15] in the underlying network.

Most of these studies have been done for static networks; there is little knowledge about this
BHS problem for networks that are not static. Researchers have started investigating some of the
fundamental problems in this domain for dynamic networks. Notably, the exploration problem
has already been studied in dynamic rings [10, 21], dynamic tori [20], dynamic cactuses [22] and
in dynamic general graphs [19]. In addition to the exploration problem, there are other problems
regarding mobile agents which are as well studied in dynamic networks, such as gathering [11],
compacting of oblivious agents [9], dispersion of mobile agents [1, 23]. Compared to that, the
only papers regarding BHS on dynamic networks are as follows [4, 12, 13, 17]. Flocchini et al. [17]
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studied the BHS problem in carrier graphs (which they specifically term as subway network), it is a
special graph under the class of periodic temporal graphs. They showed that the minimum number
of agents required to solve the BHS problem on such a subway network, where an asynchronous
scheduler controls the mobile agents is γ + 1 (γ is denoted to be the minimum number of carrier
stops at black holes). On the other hand, Di Luna et al. [12, 13] explored the BHS problem in
a dynamic ring. In [12], they considered that the agents are initially co-located, whereas in [13],
they considered the agents are initially scattered arbitrarily along the nodes of the ring (where
each such initial node does not contain the black hole). In both papers, they obtained optimal
bounds on the number of agents, moves and round complexities. Bhattacharya et al. [4] extended
the BHS problem in the dynamic torus, in which they gave upper and lower bound results on the
number of agents and round complexity required to execute a BHS algorithm. In this work, we
aim to solve a similar problem where the agents are initially co-located, and we want to determine
the position of the black hole using a minimum number of agents, where the underlying topology
is considered to be a dynamic cactus.
Our Contribution: The following results are obtained when the cactus graph can have at most
one dynamic edge at any round.

� We establish the impossibility of finding the black hole in a dynamic cactus with 2 agents.

� We have shown that any black hole search (BHS) algorithm with 3 agents requires at least
Ω(n1.5) rounds and Ω(n1.5) moves. Further, we propose a BHS algorithm that works with 3
agents in O(n2) rounds and O(n2) moves.

� Next, with 4 agents we obtain an improved lower bound of Ω(n) rounds and Ω(n) moves.

Subsequently, when the cactus graph has at most k (k > 1) dynamic edges at any round, we obtain
the following results.

� We establish the impossibility of finding the black hole with k + 1 agents.

� Next, we show that any BHS algorithm with k+2 agents requires Ω(n1.5) rounds and Ω(n1.5)
moves, respectively.

� With 2k + 3 agents we give an improved lower bound of Ω(n) rounds and Ω(n) moves,
respectively.

� Lastly with 2k+3 agents, we establish an upper bound of O(kn) rounds and O(k2n) moves.

Table 1 summarizes the list of obtained results.

# DE # Agents Moves Rounds Reference
1 3 Ω(n1.5) Ω(n1.5) LB (Cor 2 & Thm 3)

3 O(n2) O(n2) UB (Thm 11)
4 Ω(n) Ω(n) LB (Thm 5)

k (> 1) k + 2 Ω(n1.5) Ω(n1.5) LB (Cor 7 & Thm 8)
2k + 3 Ω(n) Ω(n) LB (Thm 9)
2k + 3 O(k2n) O(kn) UB (Thm 12 & Thm 13)

Table 1: Summary of results, where LB, UB and DE represent Lower Bound, Upper Bound and
Dynamic Edge, respectively.
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Organization: The rest of the paper is organized as follows. We discuss the model and prelimi-
naries in Section 2. Next in Section 3, we give the lower bound results for both cases of dynamicity.
Further, in Section 4 we present the algorithm and its correctness for both the single and multiple
dynamic edges case. Lastly, we give our concluding remarks in Section 5.

2 Model and Preliminaries

Dynamic Graph Model: We consider the dynamic graph to be an evolving graph. An evolv-
ing graph G is defined to be a sequence of static graphs, where G =< G0, G1, . . . , Gr, . . . >, and
Gi = (V,Ei), Ei ⊆ E0. E0 defines the collection of edges present in G at round 0, and we assume
that at round 0 no missing edge exists in G. We consider time to be discrete, so a round is defined
to be a discrete time step. This means that Gi = (V,Ei) is a static graph at round i (where
i ∈ Z+). The set of vertices V remains fixed, i.e., does not change over time, but the edges can
disappear (or, in other terms, go missing) and reappear at any round. Note that we consider
our dynamic graph G to be 1-interval connected, which implies that irrespective of which edge
(or edges) disappear at any round, our graph must remain connected. In this work, our graph is
considered to be a dynamic cactus G = (V, E), where |V | = n and E = ∪∞

i=0Ei. Note that a cactus
graph is a connected graph in which any two simple cycles have at most one node in common.
The footprint of G is defined to be the initial cactus graph, i.e., G0 = (V,E0). We denote deg(u)
as the maximum degree of u ∈ G. The maximum degree of the graph G is denoted as ∆. The
vertices (or nodes) in G are anonymous, i.e., unlabeled, although the edges are labeled. An edge
incident to u is labeled via the port numbers 0, · · · , deg(u) − 1. The ports are labeled uniformly
in G in ascending order along the counter-clockwise direction, where a port with the port number
i denotes the i-th incident edge at u in the counter-clockwise direction. Any edge e = (u, v) ∈ G
is labeled by two ports (refer to the edge (v14, v16) in Fig. 1), one among them is incident to u
(termed as outgoing port of u corresponding to the edge e) and the other incident to v (termed as
incoming port of v corresponding to the edge e), they have no relation in common. Any number
of agents can pass through an edge concurrently. Each node in G has local storage in the form
of a whiteboard, the size of the whiteboard at a node v ∈ V is O(deg(v)(log deg(v) + k log k)),
where k is the maximum number of dynamic edges at any round. The whiteboard is essential
to store the list of port numbers attached to a node. Any visiting agent can read and/or write
some information corresponding to each port number. Fair mutual exclusion to all incoming agents
restricts concurrent access to the whiteboard. The network G contains a malicious node termed as
black hole, which can eliminate any incoming agent without leaving any trace of its existence. The
remaining nodes, except black hole, are termed as safe nodes.

Agent: We consider A = {a1, · · · , am}, to be the set ofm ≤ n agents, which are initially co-located
at a safe node, termed as home. Each agent has a distinct and visible ID of size ⌊logm⌋ bits taken
from the set [1,m]. We define an agent to be a t-state automata (such that t ≥ αn∆ log∆, where
α ∈ Z+, n is total number of nodes in G and ∆ is the maximum degree of G), having a local storage
of O(n∆ log∆) bits of memory. An agent visiting a node can access the information written on
the whiteboard, it can see the IDs of the other agents present at the current node, and can also
communicate with them. Further, an agent, while traversing along an edge e = (u, v), knows the
incoming port (along which it left u), as well as the outgoing port (the port along which it entered
v from u). These agents operate in synchronous rounds, where each agent gets activated at each
round. After the agents get activated, they perform the “Look-Compute-Move” (LCM) cycle. The
steps are defined as follows:
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Figure 1: An example dynamic cactus graph with the edge (v7, v8) is missing, where the port
labeling is indicated in cycle C4. BH represents the black hole.

Look: During look phase, an agent takes a local snapshot of its current node. This snapshot includes
the presence of other agents at the current node and their IDs as well as contains the contents of
the whiteboard, present at the current node.
Compute: Based on the contents of its local memory, the snapshot obtained during the look phase
and the information gathered from other agents, an agent decides whether to move from its current
node. If it chooses to move, the algorithm outputs a direction dir, where if the current node is
u ∈ G in that case dir ∈ {0, 1, . . . , deg(u)− 1}. Otherwise, if dir = nil, the agent does not perform
the Move phase and becomes inactive.
Move: In this phase, the agent chooses the port dir at the current node u, then it traverses along
the corresponding edge to reach the adjacent node v, after which it becomes inactive. Moreover,
while moving along dir, some information may also be updated on the whiteboard of u, if required.

An agent takes one unit of time, i.e., one round, to move from a node u to another node v
following the edge e = (u, v). Since the agents operate in synchronous rounds, each agent gets
activated at each round to perform one LCM cycle synchronously. So, the time taken by the
algorithm is measured in terms of rounds. Another parameter is move complexity, which counts
the total number of moves performed by the agents during the algorithm’s execution.

Before defining some walks or movements, an agent performs while executing our BHS algo-
rithms, we first define what a BHS algorithm really means.

Definition 1 Given a dynamic cactus G, an algorithm A for a set of co-located agents with distinct
ID, solves the BHS problem if at least one agent survives and terminates. The terminating agent
must either know the exact node of the black hole or has knowledge about the sequence of ports in
the footprint of G, such that visiting the last node following this sequence of ports will determine
the location of the black hole.

Cautious Walk [14]: It is a movement strategy for the agents in a network with a black hole. In
this movement, it is ensured that while at least two agents move together, exactly one agent can
get destroyed by the black hole, and the remaining agent not only survives but also can detect the
location of the black hole, provided that the edge between them exists.

The strategy works as follows: suppose two agents, namely a1 and a2 are located at u, then
according to this strategy the lowest ID agent among them, say a1 (also can be called the explorer
agent among these two agents executing this walk), travels to an adjacent node v (which is yet to
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be explored by any agent). If a1 finds v safe, it returns to u, while a2 waits at u for a1 to return.
If a1 returns to node u at the next round, both a1 and a2 move to v together. Otherwise, if at the
next round, a1 fails to return to u irrespective of the fact that the edge (u, v) exists, a2 detects v
to be the black hole node.

Pendulum Walk [12]: From a high-level perspective, an agent that performs the pendulum walk
(say, a1) travels back and forth, increasing the number of hops after each movement, and always
reports back to another agent (which may be referred to as a “witness” agent). More precisely,
let us consider that two agents a1 and a2 are located at a node u. Now, a1 (which performs the
pendulum walk) decides to move one hop along the edge (u, v) and reaches the node v. If v is safe,
a1 returns back to u, which helps a2 understand that v is safe. Next, a1 decides to move two hops
instead of one, along the edges (u, v) and (v, w), thus reaching the node w. If w is safe, again a1
returns back to u via v. In general, a1 after exploring a new node, reports back to the witness
agent, which increments the hop count by one.

Marking Walk: This walk is a special case of cautious walk. An agent executing marking walk
performs a similar movement as explained in cautious walk, but unlike cautious walk, no other
agent is waiting for the explorer agent to return and then move together to the new node.

In this case, an agent a1 (say) currently at a node u moves one hop to an adjacent unexplored
node v, along an edge (u, v). If v is safe, it returns to u, marks the port (u, v) as safe, and in the
next round moves to v. Next, from v, it moves one hop towards the next unexplored node w along
the edge (v, w). If w is safe, it returns to v and marks (v, w) as safe and then moves to w.

3 Lower Bound Results

In this section, we study the lower bound on the number of agents, moves and rounds required to
execute a BHS algorithm on a dynamic cactus. First, we study the case where only one edge can
be dynamic at any round and then, the case where at most k edges can be dynamic at any round.

3.1 Lower Bound Results on Single Dynamic Edge

In this section, we present the lower bound results, when at most one edge can be dynamic at any
round.

Theorem 1 (Impossibility for a single dynamic edge) Given a dynamic cactus G of size
n > 3 with at most one dynamic edge at any round, let the agents know that the black hole is
located in any of the three consecutive nodes S = {v1, v2, v3} inside a cycle of G. Then, it is not
possible for two agents to successfully determine the location of the black hole.

The above theorem is a consequence of Lemma 1 in [12]. Note that the proof of Lemma 1 in [12],
falls in line with our BHS algorithm definition. It is because, with 2 agents, the adversary can
create a situation where both these agents cannot communicate among themselves since an agent
in S is blocked on one side by a missing edge and on the other side by the black hole. Hence, the
agent outside S can never determine when the other agent has been destroyed by the black hole
or at which node in S it is destroyed. Observe that the proof technique does not require the use
of whiteboards, but the result holds even if the nodes are equipped with a whiteboard.
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Corollary 2 (Lower bound for a single dynamic edge) Any BHS algorithm on a dynamic
cactus graph with at most one dynamic edge requires at least three agents.

Lemma 1 ([12]) If an algorithm solves BHS with O(n · f(n)) moves with three agents, then there
exists an agent that explores a sequence of at least Ω( n

f(n) ) nodes such that:

� The agent does not communicate with any agent while exploring any node in the sequence.

� The agent visits at most n
4 nodes outside the sequence while exploring any node in the se-

quence.

The proof of the above lemma does not incorporate the use of whiteboards, but this lemma
holds even if the nodes are equipped with a whiteboard, as stated in [12].

In the following theorem, we give a lower bound on the move and round complexities required
by any BHS algorithm operating with three agents on a dynamic cactus graph with at most one
dynamic edge at any round.

Theorem 3 Given a dynamic cactus G, where there can be at most one dynamic edge at any
round, any BHS algorithm operating with three agents requires Ω(n1.5) rounds and Ω(n1.5) moves.

The above theorem is a consequence of Theorem 6 in [12], which uses Lemma 1. The following
observation gives an idea about the movement of the agents on a cycle inside a dynamic cactus. It
states that when a single agent is trying to move along a cycle, the adversary can confine the agent
on any single edge of the cycle. In the case of multiple agents trying to move along a cycle inside a
cactus graph, if their movement is along one direction, i.e., either clockwise or counter-clockwise,
the adversary can prevent the agents from visiting further nodes inside the cycle.

Observation 4 Let G be a dynamic cactus with a cut U (where |U | > 1), such that the footprint of
U is connected with V \U by the edges e1 and e2 in the clockwise and counter-clockwise directions,
respectively. In this setting, if we assume that all the agents at round r are present at the nodes in
U , and that they attempt to cross to V \ U only via the edge e2 and not e1, then in this scenario
the adversary may prevent the agents to visit a node outside U .

The above observation follows from Observation 1 of [12], where a cut is defined to be a partition
of vertices of the graph in to two disjoint subsets. The next theorem gives an improved lower bound
on the move and round complexity when 4 agents execute a BHS algorithm instead of 3.

Theorem 5 Any BHS algorithm with 4 agents requires at least Ω(n) rounds and Ω(n) moves on
a dynamic cactus graph G with at most one dynamic edge at any round.

Proof: Let a1, a2, a3 and a4 be the four agents that are assigned to detect the black hole in
G. Suppose these agents execute a BHS algorithm H. Let us consider H terminates within o(n)
rounds in the presence of a single dynamic edge.

To contradict this claim, we consider an instance cactus graph G of n nodes, which consists of
a single cycle, denoted as C ′

1, where C ′
1 has n − 1 nodes (refer to Fig. 2). Let the black hole be

somewhere in the cycle C ′
1, (in Fig. 2, the node y1 depicts the black hole), and suppose that without

loss of generality, a1 is the first agent to get destroyed by the black hole while moving clockwise
in C ′

1. Let Q be the set of O(1) many consecutive counter-clockwise nodes to the black hole in C ′
1

(where |Q| or the cardinality of Q is at least 1) along which a1 has written the exact location of
the black hole or the sequence of ports that leads to the black hole before it got destroyed. As by
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hypothesis, each node contains a whiteboard, hence, it is possible for a1 to write this information.
This phenomenon implies that whenever some agent (except a1) visits at least one node in Q,
it understands the exact location of the black hole. Accordingly, H gets terminated (refer to
Definition 1). Let eq be the edge separating the black hole and the sector Q from the remaining
nodes in C ′

1. Now, as per Observation 4, if the remaining agents need to locate the black hole in
C ′

1, then at least one agent needs to traverse along C ′
1 in a counter-clockwise direction, and at least

one in a clockwise direction. So, the only possibility remains: while an agent always tries to visit a
node in Q (it cannot do so until the adversary keeps the edge eq missing), the remaining two agents
can correctly locate the black hole location while traversing in a counter-clockwise direction along
C ′

1. This shows that in at least |C ′
1|−|Q| (= n−1−O(1)) rounds, one among these three remaining

agents detect the black hole location, which contradicts our claim that H terminates within o(n)
rounds. Moreover, at any round, a constant number of agents are moving, so to successfully locate
the black hole location with four agents, any algorithm requires Ω(n) rounds and Ω(n) moves. □

3.2 Lower Bound Results for Multiple Dynamic Edges

In this section, we present the lower bound results when, at most, k (k > 1) edges are dynamic.

Theorem 6 (Impossibility for multiple dynamic edges) It is impossible for k+1 co-located
agents to successfully locate the black hole position in a dynamic cactus G with at most k dynamic
edges at any round.

Proof: We prove the above statement by contradiction. Let us consider a dynamic cactus G (refer
to Fig. 3) of n vertices, in which at most k edges are dynamic at any round. Let us consider G
contains k cycles, denoted by Ci where i ∈ {1, 2, · · · , k}, in which except the last cycle Ck which is
of length n+2−3k, every other cycle is of length 3. Let H be a BHS algorithm, which successfully
terminates with a set of k+ 1 agents. Each agent is initially at home, and suppose after following
the algorithm H, the agents enter a configuration where an agent ai reaches a node vi or wi inside
Ci (i ∈ {1, 2, · · · , k − 1}), and the remaining two agents enter the cycle Ck. Suppose the black
hole is located at any one among the four consecutive nodes S = {vk, wk, xk, yk} ∈ Ck, of which
the agents have no idea. Since the adversary can disappear and reappear at most k edges at any
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round, hence, it can restrict each ai inside Ci by alternating its position between vi and wi, by
removing the edge (ui, vi) and (ui, wi) alternatively (where i ∈ {1, · · · , k − 1}). So, the remaining
agents ak and ak+1 have no choice but to explore Ck. They cannot explore a node in S together for
the first time, as the adversary may place the black hole at that node, eliminating both of them,
whereas the other agents have no idea of the location of the black hole as they are unable to come
out of Ci (i ∈ {1, · · · , k − 1}). So let us consider an agent ak (say) is the first to enter S, i.e., at
a node vk at some round r, or both agents enter a node in S at round r (suppose ak visits vk and
ak+1 visits yk). At this point, regardless of the position of ak+1, the adversary removes the edge
(vk, pk). Now, in any case, ak cannot communicate with ak+1 even in the presence of a whiteboard.
It is because on one side, there is a black hole, and on the other side, there is a missing edge. If
vk and wk are safe nodes, ak has no other option but to visit xk at some round. In the meantime,
each of the remaining agents ai are stuck inside Ci (i ∈ {1, · · · , k − 1}), respectively.

If xk is the black hole node, ak gets destroyed. On the other hand, ak+1 has no other option but
to eventually reach xk, as it has no idea about ak’s destruction at xk. So, whenever ak+1 reaches
xk, it also gets destroyed. Now, after finding that both of these agents have failed to return, the
remaining agents can only guarantee that at least one among them is destroyed by the black hole.
But they cannot guarantee which among the nodes xk, wk or vk is indeed the black hole. It is
because if xk is safe, ak has already been eliminated. So, whenever ak+1 reaches xk, the adversary
can reappear the edge (vk, pk) and disappear the edge (yk, xk). This restricts ak+1 to come out
of S and communicate with other agents, with the help of whiteboard, that xk is safe. Hence, in
any case, the remaining k − 1 agent cannot terminate the algorithm, as they have no idea which
of these three nodes is indeed the black hole node. This leads to a contradiction. □

Corollary 7 (Lower bound for k dynamic edges) Any BHS algorithm operating on a dynamic
cactus with at most k dynamic edges at any round requires at least k + 2 agents.

The following two theorems give lower bound complexity of any BHS algorithm with k+2 and
2k + 3 agents, respectively.

Theorem 8 Any BHS algorithm operating on G with k + 2 agents require at least Ω(n1.5) rounds
and Ω(n1.5) moves, where G is a dynamic cactus with at most k dynamic edges at any round.

Proof: We prove the above statement by contradiction. Let us suppose H be a BHS algorithm
that works with k+2 agents within o(n1.5) rounds. Now, consider the same instance graph G (refer
to Fig. 3) of k-cycles, where |Ci| = 3 (for all, 1 ≤ i ≤ k − 1) and |Ck| = n + 2 − 3k. The set of
k+2 agents A = {a1, a2, · · · , ak+2} are initially co-located at home. Suppose, while executing the
algorithm H, they enter a configuration in which ai gets stuck inside Ci (for all, 1 ≤ i ≤ k − 1),
whereas the remaining agents, i.e., ak, ak+1 and ak+2 enter Ck. Now, by Theorem 6 in [12], a set

of 3 agents require Ω((n+ 2− 3k)
1.5

) = Ω(n1.5) rounds (since k < n
3 ) to correctly locate the black

hole inside Ck. Note that in Ck, at most, one edge can be dynamic, similar to a dynamic ring of
size n + 2 − 3k. Hence, this leads to a contradiction to the fact that H locates the black hole in
o(n1.5) rounds. Moreover, a constant number of agents move while exploring Ck, whereas to enter
this configuration starting from home, at least 2k moves are required. So, this shows that at least
Ω(n1.5 + 2k) = Ω(n1.5) moves are required. This proves the theorem. □

Theorem 9 Any BHS algorithm operating on a dynamic cactus G with 2k+3 agents requires Ω(n)
rounds and Ω(n) moves, where at any round at most k edges can be dynamic in G.
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uv

v0

v1

Half-1

Figure 4: Represents a cactus graph, where blue vertices belong to Half-2 and rest in Half-1.
Dashed edges represent edge from Half-1 to Half-2.

Proof: We have proved the above statement by contradiction. Suppose a BHS algorithm H exists,
which determines the location of a black hole in o(n) rounds. Let G be the same graph (refer to
Fig. 3) with k-cycles, where |Ci| = 3, for all 1 ≤ i ≤ k − 1 and |Ck| = n + 2 − 3k, the agents
are initially co-located at home. Now again, suppose the agents executing H enter a configuration
where each ai gets stuck in Ci, for all 1 ≤ i ≤ k − 1, then in this situation, the remaining k + 4
agents try to explore Ck. Next, by Theorem 5, we know that it takes four agents among the k+4
agents to successfully locate the black hole in Ω(n+2− 3k) = Ω(n) (where k < n

3 ) rounds. Hence,
this leads to a contradiction. Moreover, the bound on the number of moves comes from at least
2k additional moves that are required to attain this configuration. On the other hand, a constant
number of agents move to explore Ck. Hence, this shows that any BHS algorithm requires Ω(n)
rounds and Ω(n+ 2k) = Ω(n) moves. □

The next lemma follows from the structural property of a cactus graph.

Lemma 2 Given two nodes u and v in a cactus graph G, there exists at most two nodes adjacent
to v such that their removal disconnects u from v.

Proof: To prove this claim, we have considered two cases: the node v is part of a cycle in G, and
v is not part of a cycle.
1. The node v is part of a cycle C in G. Let v0 and v1 be the two adjacent nodes of v (refer to
Fig. 4), such that there exists at least one path from u to v0 and at least one path from u to v1,
which do not contain v. In this context, we have contradicted that after removing v0 and v1, the
node v remains connected to u. We define Half-1 to be the collection of nodes in G such that
for each node w in Half-1, there exists at least one w to v0 or w to v1 path which does not pass
through v. The remaining nodes belong to Half-2. Now, u belongs to Half-1. After the removal of
v0 and v1, the cycle C gets disconnected. So, if any path exists from a node in Half-1 to v, that
path uses at least one edge which is not part of C. This violates the definition of the cactus graph,
as in the original graph, i.e., in the presence of C, there exists at least one edge, which is common
between two cycles. This proves that the removal of v0 and v1 disconnects u from v.
2. The node v is not part of any cycle in G. Let v0 be the adjacent node of v, where at least one
path exists from u to v0 that does not contain v. In this context, we contradict that after the
removal of v0, the node v still remains connected to u. We have defined Half-1 as the set of nodes
in G such that for each node w in Half-1, there exists at least one w to v0 path which does not
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contain v. So, u belongs to Half-1. After removal of v0, if still there exists a path from Half-1 to v,
then that implies there exists an alternate path to reach v, which does not pass through v0. This
contradicts the fact that in the original graph, v is not part of any cycle. □

The next corollary follows from Lemma 2.

Corollary 10 Suppose a node v in a cactus graph G is part of a cycle, then there exists a set of
three consecutive nodes {v0, v, v1}, such that any path from u to v in G must either pass through
v0 or v1.

4 Black Hole Search in Dynamic Cactus

In this section, we first present a BHS algorithm that works in the presence of at most one dynamic
edge. Subsequently, we present another BHS algorithm that works in the presence of at most k (>
1) dynamic edges. Accordingly, we analyze the correctness and find move and round complexities
required by each algorithm.

4.1 Black Hole Search in Presence of Single Dynamic Edge

In this section, we present a BHS algorithm that works in the presence of, at most, one dynamic
edge. Our algorithm requires three agents, namely A = {a1, a2, a3}, where without loss of general-
ity, we assume a3 to be the Leader, and other two agents are just termed as agents. In this section,
we always call a3 to be the Leader, and by agents, we only mean a1 and a2. Our BHS algorithm
comprises two parts, one for the agents (i.e., a1 and a2) and the other for the Leader. The BHS
algorithm executed by the agents is SingleEdgeBHSAgent, whereas SingleEdgeBHSLeader
is for the Leader. Each of our algorithms uses the presence of a whiteboard present at each node.
Before discussing the algorithm idea, we first define all the contents of a whiteboard required while
executing the BHS algorithm.

A whiteboard is maintained at each node v ∈ G, where a list of information is used by both the
agents and the Leader. Formally, for each port j of a node v ∈ G, where j ∈ {0, · · · , deg(v)− 1},
an ordered tuple (f(j), Last.Leader) is stored, where the function f is defined as follows: f :
{0, · · · , deg(v)− 1} −→ {⊥, 0, 1}∗,

f(j) =



⊥, if the port j is yet to be visited by any agent

0 ◦A, if the set of agents in A has visited j but yet

to explore the sub-graph originating from j

1, if the sub-graph originating through j is fully explored by

at least one agent and no agent is stuck along that sub-graph

The symbol “◦” refers to the concatenating of two binary strings. We define A as the collection of
agents that have visited the port j. For example, let us assume a2 with ID 2 (i.e., 10) is the only
agent to visit the port j, and it is yet to explore the sub-graph originating from j. In that case, the
function f(j) returns the value 010. The first bit represents that the sub-graph originating from
the port j is yet to be fully explored by at least one agent. The remaining bits of f(j) represent
the ID of a2.

The other entity, i.e., the Last.Leader at the node v stores the information about the last
movement of the Leader at v. To be precise, Last.Leader = 1 for the j-th port means that it
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is the port along which the Leader must have moved from v, the last time it visited v. For the
remaining ports at v, Last.Leader is set to be 0.

Before discussing our algorithms SingleEdgeBHSAgent and SingleEdgeBHSLeader, we,
in the following part, discuss a brief idea about the protocol an agent executes while executing their
respective algorithms. Each agent (i.e., a1 and a2) executes the protocol of t-Increasing-DFS
[18] while exploring the graph G. This protocol of t-Increasing-DFS helps the agent to choose
the next port. In addition, this protocol also helps the agent return to the starting node. An agent
stores each new port it visits from the starting node and stops whenever it exceeds t-bits (refer to
Section 2 for the value of t). While performing this protocol, the movement of the agents can be
subdivided into the following categories: explore and trace.

(a): An agent performs explore when it explores a port that is yet to be visited by any other
agent, i.e., if that port is j, then f(j) is marked as ⊥. An agent can only perform either cautious
or pendulum walk on such ports (as instructed by the Leader) while trying to explore j.

(b): An agent a1 (say) can perform trace when it visits a port, which a2 has visited but not a1. In
addition to that, the sub-graph originating from this port is not yet fully explored, i.e., it is still
not marked 1 on the whiteboard. An agent only performs pendulum walk along these ports.

Next, the task of the Leader is explained as follows:

(a): It can instruct a1 or a2 to perform cautious or pendulum walk.

(b): It maintains certain variables for the agents a1 and a2, which help the Leader to understand
how far an agent a1 (say) has traversed and along which path. These variables are defined to be
Alena1

and Apatha1
for a1.

(c): It also maintains some more variables, which track how far the Leader has traversed from
a certain agent a1 (say), and along which path. These variables are defined to be Llena1

and
Lpatha1

for a1.

An agent can fail to report to the Leader if either of these conditions holds:

(a): The agent is destroyed by the black hole.

(b): The agent, while traversing along a specific direction, encounters a missing edge.

Brief Idea of the Algorithms: Each agent starts from home, where we assume the ID of a1 < ID
of a2 < ID of a3. The agent a3 is elected as the Leader at home. Next, as we have defined earlier,
a1, a2 are termed as agents and a3 as the Leader. After being elected Leader, a3 executes the
algorithm SingleEdgeBHSLeader, whereas the agents execute SingleEdgeBHSAgent. On a
high level, the Leader instructs both agents to perform either one among the two walks: cautious
or pendulum walk. Based on their movements, the Leader stores the path and the distance these
agents have traversed. It also stores the path that it itself traverses away from its previous position.
Whenever the Leader realises that any agent fails to report, it performs the following task. If it
finds both a1 and a2 fails to report, the Leader understands that the black hole has destroyed at
least one among them. Next, within a finite round, it either detects the exact black hole position,
or concludes the sequence of paths that it needs to traverse to eventually locate the black hole.
Otherwise, if any one agent fail to report, in that case, the Leader traverses towards that agent
following the stored path. If the agent is found, that agent is again instructed to perform a
particular movement. Otherwise, if the agent is not found and the Leader encounters a missing
edge along its traversal, the Leader waits until the missing edge reappears. On the other hand, if
it neither finds the agent nor any missing edge, the Leader concludes the black hole position. Both
algorithms terminate once the Leader locates the black hole position or finds the exact sequence
of ports to visit in order to locate the black hole. Next, we describe of our two algorithms in detail.

Detailed Description of SingleEdgeBHSAgent: This algorithm is executed by a1 and a2 au-
tonomously. Initially, the Leader (which is executing SingleEdgeBHSLeader) instructs a1
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(since it is the lowest ID agent) to perform cautious walk and a2 to perform pendulum walk. Con-
sider that at the beginning, every port corresponding to each node in the network is marked (⊥, 0),
as any agent or Leader is yet to visit these nodes. The agents choose a port based on the protocol
of t−Increasing-DFS (where t ≥ αn∆ log∆, and α ∈ Z+), which helps to select the next port.

So an agent, a1 (say), executes the following movement after being instructed to perform
cautious walk. Since the cautious walk is performed with a following agent, in each scenario, that
following agent is the Leader. Let us assume at round r (≥ 0), a1 is with the Leader at a node
u ∈ G. Then at round r + 1, a1 first checks whether any port exists at u, which is marked as ⊥.
If so, then a1 chooses the lowest port among them, say that port be i, and moves along it to an
adjacent node v (say). Let m be the incoming port at v along which a1 reaches v from u. The
agent not only moves to v from u through port i but also writes the data, 0 ◦ {a1} with respect
to the port i at u and the port m at v. This helps others gather the information that a1 has
already visited the nodes u and v, taking the ports i and m, respectively. This also helps others
understand that the sub-graph originating from the port i or m is not yet fully explored, or a1 is
stuck somewhere along the sub-graph originating from the port i or m.

Suppose v is safe and the edge (u, v) exists at round r + 2, then a1 returns to u from v to
meet with the Leader at round r+2. At round r+3, if the edge (u, v) exists, a1 accompanies the
Leader to the next node v. But on the contrary, at round r+1 if a1 is unable to find any port at u
marked as ⊥, then in this round itself, a1 accompanies the Leader and backtracks to an adjacent
node, already visited by a1 at any previous round. This is how a1 executes cautious walk.

If an agent, a1 (say), is instructed to perform pendulum walk, it performs the following move-
ment. If we consider at round r, a1 is with Leader at a node u ∈ G, then at the next round,
it checks if at least one port at u is marked as ⊥. If so, then it chooses the lowest port among
them and stores the port number in its internal memory. After which it moves along this port to
an adjacent node v (say) while writing 0 ◦ {a1} both at the outgoing port of u (the port along
which it traverses towards v) and at the incoming port of v (the port along which it reaches v
from u). If there is no such port marked as ⊥, but at least one port is marked as 0 ◦ {a2}, a1
chooses the lowest among these ports and stores the port number. Next, it moves to the adjacent
node v (say) following this stored port. While moving, it updates the whiteboard information
to 0 ◦ {a1, a2}, both at the outgoing port of u and the incoming port of v. In the next round,
considering this adjacent node to be safe and the edge (u, v) to be present, a1 returns to u and
meets with Leader, conveying the path it has traversed in order to reach v. After which, at round
r + 3, again considering the edge (u, v) to be present, a1 moves alone to v. At round r + 4, from
v, it reaches some new adjacent node w (based on the existence of such a port, not marked 1 or
0 ◦ {a1}, and also the corresponding edge must not disappear), this information is updated by a1.
If w is safe, then at round r+5, it returns to v and at round r+6, it returns to the Leader at u and
conveys this extended path to the Leader, provided that all these in between edges has not gone
missing. In this way, the agent executes the pendulum walk. Note that, irrespective of which walk
an agent performs, whenever it encounters a missing edge along its chosen direction of movement,
it immediately stops at the adjacent node of that missing edge until further instruction is provided
to the agent or the missing edge reappears.
Detailed Description of SingleEdgeBHSLeader: This algorithm is executed by a3 once it is
elected as the Leader. Initially co-located with other agents at home, it instructs the lowest ID
agent, i.e., a1, to start performing cautious walk, and instructs a2 to perform pendulum walk. The
Leader maintains certain variables for the agent currently performing pendulum walk. In this case,
we have a2 performing pendulum walk currently, hence the variables which the Leader maintains
are: Alena2 and Apatha2

. The variable Apatha2
keeps track of the sequence of ports that a2 has
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explored while performing pendulum walk, whereas Alena2
stores the cardinality of Apatha2

. Each
time a2 returns to the Leader after exploring a new node, the Leader increments Alena2

by 1,
and updates Apatha2

. Thereafter, if the Leader moves away from the node where it last met with
an agent, the Leader keeps track of the path it has traversed away from that node. The variables
which keeps track about the Leader’s movement are: Llena2 and Lpatha2

, for an agent a2 (say)
from which it has moved away. The variable Last.Leader is used by the Leader to help an agent
reach the current position of Leader. This entity is updated by the Leader at the whiteboard of
each node that it visits. To be accurate, if at round r, both Leader and an agent a2 (say) met
at a node u, and after which Leader decides to move away from u to a node v, in that case, the
Leader at round r+1 before reaching v, updates Last.Leader at the whiteboard of u to 1 for the
port j (if the Leader has taken the j-th port to reach v from u) and the rest of the ports at u to 0.
Next, after reaching v, it updates Lpatha2

to Lpatha2
∪ (j,m) and increments Llena2

by 1, where
j and m indicates the port of the edge (u, v). Next, we discuss the scenarios that may occur for
the Leader while executing this algorithm.

Scenario-1: An agent, say a2, fails to report when it is performing pendulum walk, while the
other agent is performing cautious walk.

In this scenario, Leader can understand a2’s failure to return, only when it finds a2 does not
report within (2 · (Alena2

+ Llena2
+ 1)) rounds, since they last. After this realization, whenever

a1 meets the Leader, it instructs a1 to change its movement from cautious to pendulum walk.
After this, the Leader starts moving towards a2 and while moving, it updates the respective
stored variables (so that a1 can eventually find the Leader). The purpose of Leader’s movement
towards a2 is to check about a2, i.e., whether it is stuck (or waiting) due to a missing edge or has
been destroyed by the black hole. The Leader takes help from the stored variables: Lpatha2

and
Apatha2

to reach the last reported node of a2. While moving, the Leader may face the following
possibilities: Leader may encounter a missing edge, or it may not find a2, or it may find a2 stuck
(or waiting) for a missing edge to reappear. If the Leader encounters a missing edge, then it
waits until the missing edge reappears. Otherwise, if it does not find a2 but encounters no missing
edge, then it concludes that the adjacent node along which a2 last traversed from the last reported
node is the black hole, which terminates the algorithm. Lastly, the Leader may find a2 stuck (or
waiting) for a missing edge. In this case, if the edge is still missing, then the Leader sets a2 free
by instructing it to continue performing pendulum walk along alternate ports, whereas the Leader
waits for the missing edge to reappear. This shows that while the Leader waits for the missing
edge to reappear, both a1 and a2 perform pendulum walk. On the contrary, if the missing edge
reappears, the moment Leader finds a2, then it asks a2 to start performing cautious walk (note,
earlier a2 has been performing pendulum walk). So, a2 performs cautious walk, but a1 continues
to perform pendulum walk.

Scenario-2: An agent, say a1 fails to report to the Leader when it is performing cautious walk,
while the other agent is performing pendulum walk.

Before a1 has failed to report, let us suppose both a1 and Leader have been at a node u, and
then a1 has visited an adjacent unexplored node v. If the failure for a1’s return occurs when the
edge (u, v) still exists, then the Leader being present at the adjacent node concludes that v is the
black hole. On the other hand, if the failure of a1’s return is due to the edge (u, v), which has gone
missing, then the Leader waits at u until the edge reappears. In between all this, until Leader
instructs a2 to change its movement, it continues to perform pendulum walk.

Scenario-3: Both a1 and a2 fails to report, while a1 and a2 are performing cautious walk and
pendulum walk, respectively.

Without loss of generality, if a1 fails to report before a2, that failure of a1’s return is triggered
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by the missing edge between the Leader and a1. Otherwise, if the edge has existed and still a1
fails to return, then Leader must have already concluded the black hole node and terminated the
algorithm. So, while the Leader waits for the missing edge to reappear, it finds that after waiting
for (2·(Alena2+Llena2+1)) rounds since it last met a2, a2 is still yet to return. As this is a sufficient
number of rounds for a2 to return, Leader understands that a2 also fails to return. Subsequently,
the Leader concludes that a2 must have been destroyed by the black hole and terminates the
algorithm by concluding the last visited node of a2 to be the black hole position. Note that
the black hole can be found after eventually reaching the last reported node of a2 following the
sequences Apatha2

and Lpatha2
, and then checking the whiteboard of that node. The whiteboard

information indicates the last port visited by a2, which is indeed the black hole position. 2

Scenario-4: Both a1 and a2 fail to report while they are performing pendulum walk.

In this situation, the Leader moves towards the agent which has the value: mini∈{1,2}(Alenai +
Llenai

). Let that agent be a1. So, the Leader moves towards a1 with the help of Apatha1
and

Lpatha1
, while updating Last.Leader, Llena2

and Lpatha2
, respectively. If, while traversing, the

Leader encounters a missing edge along the direction of its movement, it stops and waits for the
missing edge to reappear. While waiting, if the Leader finds that again a2 fails to report within
maxi∈{1,2}(2 · (Alenai + Llenai + 1)) rounds, then it concludes that a2 is destroyed by the black
hole. This node can be located by following the instructions mentioned in the earlier case. On the
contrary, if while traversing towards a1, no missing edge is encountered, then the Leader reaches
to the last reported node of a1 with the help of Apatha1

and Lpatha1
, respectively. If a1 is not

found at this node, the Leader concludes that a1 is destroyed by the black hole. In addition to
that, the node at which a1 got destroyed is also detected by the Leader. The black hole node is
the neighbouring node of the current position of Leader with respect to the port j if a1 visited the
j-th port for the last time from the last reported node.

Before describing the pseudo codes of our algorithm, we first define the purpose of the states
that a1 or a2 or Leader can attain while executing their respective algorithm.

a1 or a2 while executing SingleEdgeBHSAgent can change to any of these following states:

Cautious: This state resembles the movements performed by an agent while executing cautious
walk. An agent, say a1, is in the state Cautious, first sets the variable Move1 = 0 and checks if
a port exists whose f value is ⊥. If such a port exists, it chooses the lowest port among them and
traverses along it to an adjacent node. While traversing, it updates Move1 = 1 and writes 0◦{a1}
at the whiteboard of this edge’s incoming and outgoing ports. Next, if the adjacent port is safe
and the edge between the Leader and a1 exists, then it returns to the Leader. While backtracking,
it sets Move1 = 2. In the next round, if the edge still exists, then it changes Move1 = 0 again
and, together with the Leader, traverses to the adjacent node. After backtracking to the previous
node, if the Leader cannot be found (i.e., the Leader has already moved from its earlier position),
then the agent follows Last.Leader at each node until it meets the Leader, and all this while, the
Move1 value remains the same (i.e., 2). After it finds the Leader, it changes its Move1 to 0.

On the other hand, if no such port exists at the current node with f value ⊥, then it traverses
back to an already visited node along with the Leader and with the same Move1 value (i.e., 0).
Further, irrespective of any Move1 value, whenever the agent encounters a missing edge along its
path, it waits at that adjacent node until the edge reappears or the Leader instructs a specific
movement.

2the exact port should be the highest port along which 0 ◦ A is written and a2 ∈ A, this port is chosen by a2
based on the protocol t−Increasing-DFS.
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Algorithm 1: SingleEdgeBHSAgent(ai)

1 Input: {n, home}
2 States: {Cautious,Pendulum}
3 Initialize Move1 = 0, Move2 = 0, Apathai

= NULL. // Move1 variable is used for state Cautious

and Move2 variable is used for state Pendulum.

4 In State: Cautious
5 if a missing edge is encountered then
6 Wait
7 else
8 if Move1 = 0 // Move1 = 0 implies the agent is ready to explore

9 then
10 if current node has at least one port marked as ⊥ then
11 Choose minj∈deg(current−node){j} such that f(j) = ⊥
12 Traverse along this port. Update f(j) = 0 ◦ {ai} at the current node and f(m) = 0 ◦ {ai} at

the adjacent port. // j, m are the outgoing and incoming port of the edge

connecting current node and adjacent node, respectively.

13 Update Move1 = 1

14 else
15 Backtrack while accompanying the Leader, along a path previously traversed.

16 else if Move1 = 1 // Move1 = 1 implies the agent has reached an unexplored node.

17 then
18 if a missing edge appears then
19 Wait, until the missing edge reappears.
20 else
21 Move along the port m and set Move1 = 2. // Move1 = 2 means that the agent has

started backtracking after exploring a new node.

22 else
23 if current node does not have Leader then
24 Follow Last.Leader.
25 else
26 If the agent has followed Last.Leader then change Move1 to 0. Otherwise, wait for the

instruction of the Leader. If no instruction given, then accompany the Leader through port
j and change Move1 to 0.

Pendulum: This state resembles the movement of an agent performing pendulum walk. An agent,
say a1, is in the state Pendulum, first sets the variable Move2 = 0 and checks whether a port
exists at the current node with f value ⊥. If so, it chooses the minimum port among them. If
not, then it checks if a port exists at the current node with f value 0 ◦ {a2}. If such a port exists,
it chooses the minimum port among them. Now, irrespective of which port is chosen, i.e., either
marked as⊥ or 0◦{a2}, the agent, while traversing along this port, updatesMove2 = 1 and updates
Apatha1

= Apatha1
∪ (j,m) (where j and m are the ports of the edge along which a1 traverses).

Thereafter, it moves towards the adjacent node while writing 0 ◦ {A ∪ a1} on the whiteboard
of both the ports j and m, respectively. Next, after exploring the new node, it backtracks the
next round onwards until it meets the Leader. While backtracking, the agent follows the stored
sequence Apatha1

to navigate its path towards Leader, and whenever that sequence exhausts and
yet the Leader is not found, then the agent uses Last.Leader at each node to find the Leader.
At the same time, following the edges with the help of Last.Leader, a1 also updates Apatha1

for
each new port that it takes. Whenever it finds the Leader, it changes Move2 from 2 to 1. Next,
a1 again follows Apatha1

to reach its last reported node. If, along this movement, the sequence
Apatha1

is exhausted, that means a1 has reached the last reported node. So, after reaching this
node, it again sets Move2 = 0 and iterates this process.
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27 In State: Pendulum
28 if a missing edge is encountered along its direction of movement and the node is vacant then
29 Wait.
30 else
31 if Move2 = 0// Move2 = 0 implies that the agent is ready to explore

32 then
33 if the current node has at least one port marked as ⊥ then
34 Choose minj∈deg(current−node){j} such that f(j) = ⊥
35 Traverse along this port and update f(j) = 0 ◦ {ai} at the current node and f(m) = 0 ◦ {ai}

at the adjacent port. // j, m are the outgoing and incoming port of the edge

connecting current node and adjacent node, respectively.

36 Update Move2 = 1 and Apathai
= Apathai

∪ (j,m).

37 else if the current node has at least one port marked as f(j) = 0 ◦ (A \ {ai}) then
38 Choose minj∈deg(current−node){j} such that f(j) = 0 ◦ (A \ {ai})
39 Traverse along this port and update f(j) = 0 ◦ {A ∪ ai} at the current node as well as at the

adjacent port.
40 Update Move2 = 1 and Apathai

= Apathai
∪ (j,m). // Move2 = 1 implies the agent has

already performed a new exploration.

41 else
42 Set Move2 = 3 // Move2 = 3 implies that no port to explore at current node

43 else if Move2 = 1 then
44 if current node has the Leader then
45 Communicate the Move2 value with the Leader.
46 Set Move2 = 2 and choose the first port in Apathai

and follow it.

47 else
48 if the sequence Apathai

is exhausted then
49 Backtrack following the Last.Leader for every new node traversed, update

Apathai
= (j,m) ∪Apathai

// (j,m) is the incoming and outgoing port of the

edge along which ai has traversed following Last.Leader

50 else
51 Backtrack following Apathai

.

52 else if Move2 = 2 then
53 if the current port chosen is the last port of Apathai

then
54 Set Move2 = 0.
55 else
56 Continue following the sequence Apathai

.

57 else if Move2 = 3 then
58 if at the current node at least one port exists marked as ⊥ or 0 ◦ (A \ {ai}) then
59 Set Move2 = 4.
60 Update Apathai to store the sequence of path from the last position of the Leader to the

current node and also set Alenai = |Apathai |, where |Apathai | implies the cardinality of
Apathai .

61 else
62 if current node has the Leader then
63 Communicate Move2 value to the Leader and continue backtrack.
64 else
65 Backtrack to an already traversed node.

66 else if Move2 = 4 then
67 if current node has the Leader then
68 Communicate Move2, Alenai and Apathai with the Leader.
69 Move until it reaches the last node, following the sequence Apathai and after reaching set

Move2 = 0.
70 else
71 Keep finding the Leader, following Apathai or Last.Leader.
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Algorithm 2: SingleEdgeBHSLeader

1 Input={n, home}
2 States:

{Initial,Assign,Movement,Missing-Edge-Leader,Fail-to-Report,Fail-to-Report-Movement}
3 In State: Initial
4 Set Alenai = Llenai = 0 and Apathai

= Lpathai
= NULL, where i ∈ {1, 2} and initialize Wtime1 = 0.

5 Instruct a1 to change to state Cautious and a2 to change to state Pendulum in SingleEdgeBHSAgent
and change to state Assign.

6 In State: Assign
7 if am is instructed to change to state Cautious then
8 Update Alenam = Llenam = 0 and Apatham

= Lpatham
= NULL. Change to state

Movement.// am can be either a1 or a2
9 else

10 Update Alenam = Llenam = 0 and Apatham
= Lpatham

= NULL. Change to state Movement.

11 In State: Movement
12 if a missing edge is encountered then
13 Change to state Missing-Edge-Leader.
14 else
15 if am performing cautious walk returns along port j and the Leader has not moved from the node at

which am last reported then
16 Traverse along the port j.
17 Update Last.Leader at port j to 1 and other to 0. Also update Llenan = Llenan + 1 and

Lpath = Lpath ∪ (j,m) // am and an are agents among a1 and a2 and (j,m) is the

outgoing and incoming port of the edge taken by the Leader

18 else if am performing pendulum walk, returns along port j with Move2 = 1 then
19 Update Alenam = Alenam + 1 and gather the updated Apatham

from am.

20 else if am performing pendulum walk, returns along port j with Move2 = 3 then
21 Do not update Alenam and Apatham

22 else if am performing pendulum walk, returns along port j with Move2 = 4 then
23 Update Apatham and Alenam and instruct am to follow Apatham till the last node and then

continue in state Pendulum.

24 In State: Missing-Edge-Leader
25 if current node is adjacent to a missing edge, and it is vacant then
26 Wait at the current node and change to state Fail-to-Report if an agent fails to report.
27 else
28 if the edge is yet to reappear then
29 Wait and instruct the agent at current node to perform state Pendulum. Change to state

Assign and set Wtime1 = 0.
30 else
31 Instruct the agent at current node to perform state Cautious. Change to state Assign and set

Wtime1 = 0.

32 if the Leader is waiting for the missing edge, and it reappears then
33 if an agent reports then
34 Instruct the agent to continue earlier walk. Change to state Assign and set Wtime1 = 0.
35 else
36 If previous state was Fail-to-Report, then continue performing Fail-to-Report. Else change to

state Fail-to-Report.

On the other hand, if there does not exist any port at the current node, which is either marked
as ⊥ or 0 ◦ {a2}, then in that case, a1 sets Move2 = 3, and communicates this information with
the Leader. After which, it backtracks to an already traversed node following the whiteboard and
at each node that the Leader visits, it checks whether there exists a port that is marked as ⊥ or
0 ◦ {a2}. If it finds such a port, it sets Move2 = 4 and updates Apathai

to store the sequence of
ports from Leader to the current node, also updates Alenai = |Apathai |, where |Apathai | is the
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37 In State: Fail-to-Report
38 if am fails to report within 2 rounds while performing cautious walk then
39 if there exists an adjacent missing edge then
40 Change to state Missing-Edge-Leader.
41 else
42 Conclude the node visited by am is the black hole node and terminate the algorithm.

43 else if am does not report within 2 · (Alenam + Llenam + 1) rounds, while performing pendulum walk
then

44 if Wtime1 > 2 then
45 if current node has an then
46 if an is performing cautious walk then
47 Instruct an to change to Pendulum. Set Apathan

= Lpathan
= NULL and

Alenan = Llenan = 0.
48 Move towards am following Apatham

, while updating Llenan = Llenan + 1 and
Lpathan

= Lpathan
∪ (j,m).

49 else
50 Remain at the current node, instruct an to continue state Pendulum. Update the

parameters according to state Movement.

51 else
52 if the edge exists and there exists port in Apatham

to be traversed then
53 Move towards am following Apatham

, while updating Llenan = Llenan + 1 and
Lpathan

= Lpathan
∪ (j,m).

54 else if the edge does not exist but there exists port in Apatham
to be traversed then

55 Change to state Missing-Edge-Leader
56 else if the edge does not exist and there is no port in Apatham

to be traversed then
57 Change to state Missing-Edge-Leader
58 else if am is found then
59 If no missing edge is found, then instruct am to perform state Cautious and change to

state Assign. Otherwise change to state Missing-Edge-Leader.
60 else
61 Conclude am is destroyed by the black hole.

62 else
63 Wtime1 = Wtime1 + 1.

64 else if am performing cautious walk, does not return within 2 round, and, an performing pendulum walk,
does not return within 2 · (Alenan + Llenan + 1) rounds then

65 if the edge between am and Leader is missing then
66 Conclude the last visited node of an as the black hole and terminate the algorithm.
67 else
68 Conclude the adjacent node visited by am is the black hole and terminate the algorithm.

69 else if both am and an performing pendulum walk does not return within
∑2

i=1(2 · (Alenai +Llenai + 1))
round then

70 Change to state Fail-to-Report-Movement.

cardinality of Apathai
. Thereafter it moves towards the Leader, and after the Leader is found,

it communicates these Move2, Alenai and Apathai values to the Leader and returns to the last
node, following the sequence Apathai and sets Move2 = 0. Consecutively, the process mentioned
for Move2 = 0 earlier is iterated.

Currently, we discuss the states the Leader can attain while executing the algorithm Sin-
gleEdgeBHSLeader.

Initial: This state symbolizes the start of the algorithm SingleEdgeBHSLeader. Initially the
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71 In state: Fail-to-Report-Movement
72 if a missing edge is encountered then
73 Wait at the current node.
74 if wait time greater than maxi∈{1,2}(2 · (Alenai + Llenai + 1)) then
75 if no agent reports then
76 Conclude that the last visited node of the agent with maxi∈{1,2}(2 · (Alenai + Llenai + 1)) is

the black hole.
77 else
78 Change to state Fail-to-Report.

79 else
80 Move towards the agent with mini∈{1,2}(2 · (Alenai + Llenai + 1)).

81 if the agent is found then
82 Set Alenam = Llenam = 0 and Apatham

= Lpatham
= NULL and instruct am to change to

state Pendulum.// am be that agent found.

83 Change to state Fail-to-Report.

84 else
85 Conclude the last visited node of the agent with mini∈{1,2}(2 · (Alenai + Llenai + 1)) is the black

hole.

Leader is accompanied by the agents a1 and a2 at home, where the Leader initializes the variables:
Apathai

= Lpathai
= NULL and Alenai = Llenai = 0, for all i ∈ {1, 2}. Next, it instructs the

lowest ID agent, i.e., a1, to change to state Cautious and a2 to state Pendulum, and itself
changes its state to Assign.

Assign: This state aims to initialize certain variables based on the fact that which agent (i.e.,
a1 or a2) is instructed to perform which walk. After all this initialization, the Leader changes to
state Movement.

Movement: This state discusses the updation of variables and direction of Leader’s movement (if
at all it moves). Let a1 be the agent, which returns to the Leader along the port j while performing
cautious walk. Now, if the Leader is present at the same node at which it last met a1, it decides
to move with a1 to the adjacent node from where a1 has returned. While the Leader moves, it
updates Lpatha2

= Lpatha2
∪ (j,m) (where (j,m) are the incoming and outgoing port of the edge

chosen by the Leader for its movement) and Llena2 = Llena2 + 1. It also updates Last.Leader
to 1 for the port j and the remaining ports to 0.

On the other hand, if an agent a1 (say) returns along port j with Move2 = 1 while it performs
pendulum walk, then the Leader understands that a1 has returned after exploring a new node.
Accordingly, the Leader gathers this information and updates Apatha1

and increments Alena1
by

1. If a1 returns with Move2 = 3, the Leader understands that there is no new information to
gather from a1 and it does not update Apatha1

and Alena1
. Lastly, if a1 returns with Move2 = 4,

the Leader understands that while backtracking, about the fact that the agent a1 has found a port
marked as ⊥ or 0 ◦ a2. So, at this point, the Leader updates the variables Apatha1 and Lpatha1

from a1, and instructs a1 to reach the last reported node and then continues to perform pendulum
walk along this available port, after changing to state Pendulum.

Missing-Edge-Leader: The Leader changes to this state when it finds a missing edge. There
are two possibilities: the current node contains only the Leader, or another agent is present.

If the Leader is alone, it waits at the current node until the edge reappears. While waiting,
if an agent fails to report, then the Leader changes its state to Fail-to-Report. On the other
hand, if another agent is present, then the Leader changes to state Assign by assigning the agent
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to either change to state Cautious or Pendulum. It may be noted that the Leader can only
instruct an agent to change its state to Cautious if it finds the missing edge reappear, and in
addition to that, the other agent is currently performing pendulum walk.

On the other hand, if the edge reappears and an agent reports, then that agent is instructed
to continue its earlier walk or change its walk, whereas the Leader changes its state to Assign.
Otherwise, if no agent reports even after the edge has reappeared, then the Leader continues to
perform Fail-to-Report (if, before changing to state Missing-Edge-Leader, it has been in state
Fail-to-Report). Otherwise, if it has been in a different state before changing to Missing-Edge-
Leader, it changes to Fail-to-Report.

Fail-to-Report: This state symbolises the decision that the Leader takes after it finds that an
agent has failed to report. There are two possibilities: (1) an agent a1 (say) fails to report while
performing cautious walk, or (2) a1 fails to report while performing pendulum walk. If a1 fails to
report while performing cautious walk and the edge between the Leader and that of a1 is missing,
then Leader changes its state to Missing-Edge-Leader. Otherwise, if there is no missing edge
between the Leader and a1, then Leader concludes a1 to be destroyed by the black hole, which
terminates the algorithm. The second scenario occurs when a1 fails to report while performing
pendulum walk. In this scenario, after a1 fails to report, if the other agent is currently performing
cautious walk, then it is instructed to perform pendulum walk, and the Leader moves towards
a1. If a1 is found and a missing edge is encountered or not, the Leader instructs a1 to either
perform cautious or pendulum walk, and it changes to either Assign or Fail-to-Report. If a1 as
well as a missing edge is not found, then the black hole location is concluded, which terminates
the algorithm. Otherwise, if a missing edge is encountered while moving towards a1, the Leader
changes to state Fail-to-Report.

The third scenario arises when the Leader finds both the agents are not reporting, where we
suppose a1 is performing pendulum walk, and a2 is performing cautious walk. In this scenario, if
the edge between the Leader and a2 doesn’t exist, then the Leader concludes that the last visited
node of a1 is the black hole. Otherwise, the Leader concludes a2 is destroyed by the black hole.

The last scenario occurs when both agents a1 and a2 are performing pendulum walk, and they
fail to report. This is understood by the Leader after it waits for

∑2
i=1(2 · (Alenai

+ Llenai
+ 1))

rounds. So, the Leader simply changes its state to Fail-to-Report-Movement.

Fail-to-Report-Movement: This state explains the phenomenon when both agents, i.e., a1 and
a2, fail to report while performing pendulum walk. The Leader moves towards the agent with
mini∈{1,2}(2 · (Alenai

+Llenai
+1)) value. While moving, if it encounters a missing edge, it waits.

While waiting, if the other agent (say, a2) again fails to report (i.e. wait time is greater than
maxi∈{1,2}(2 · (Alenai + Llenai + 1))), then the Leader concludes that the last node visited by a2
is the black hole. On the other hand, if within the waiting period a2 reports, then the Leader
changes its state to Fail-to-Report.

If while the Leader moves towards the agent with mini∈{1,2}(2 · (Alenai
+ Llenai

+ 1)), and
encounters no missing edge but finds the agent (say, that agent be a1), in that case it instructs a1
to change its state to Pendulum and initializes all the parameters associated with a1 to 0 and
NULL. The Leader, on the other hand, changes to state Fail-to-Report. But if no agent is
found, the Leader concludes that the last node visited by a1 is the black hole position.

The pseudo codes of SingleEdgeBHSAgent and SingleEdgeBHSLeader are, thus, ex-
plained in Algorithm 1 and Algorithm 2, respectively.
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4.1.1 Correctness and Complexity

In this section, we have proved the correctness of our algorithm, as well as showed the upper bound
results in terms of move and round complexity.

Lemma 3 Our algorithms SingleEdgeBHSAgent and SingleEdgeBHSLeader on a dy-
namic cactus graph G with at most one edge being dynamic at any round, ensures that between
a1, a2 and Leader, at most 2 among them can be stuck or waiting due to a missing edge.

Proof: To prove this claim, we have discussed the decisions that the Leader takes whenever it
encounters a missing edge along its path. The Leader can either encounter a missing edge while it
is moving with an agent a1 (say) which is performing cautious walk, or when it is moving towards
an agent a1 (say) which fails to report, while performing pendulum walk. We have discussed each
case that the Leader may encounter:

� If the Leader encounters a missing edge while it is moving with a1, which is performing
cautious walk, then either a1 is with the Leader, or they are separated by this missing
edge. In the first scenario, the Leader instructs a1 to change its state from Cautious to
Pendulum. This implies that a1 starts performing pendulum walk around the remaining
paths (those ports can be identified with the help of a whiteboard at each visiting node).
In the meantime, the Leader waits until the edge reappears (refer to state Missing-Edge-
Leader in Algorithm 2). On the other hand, if the Leader and a1 are separated due to the
missing edge, then Leader remains stationary until the missing edge reappears, or the other
agent, i.e., a2, also fails to report.

� If the Leader is moving towards a1, which has been performing pendulum walk, then any
of the following two situations can occur: either the Leader can find an agent stuck due
to a missing edge, or it may encounter a missing edge not occupied by any agent. For the
first situation, the agent found stuck or waiting can be either a1 or a2. In that case, the
Leader instructs that agent to perform pendulum walk along any alternate available path,
and the Leader itself remains stationary. The Leader remains stationary until the missing
edge reappears or it finds some other agent has failed to report. In the second situation,
whenever it encounters a node incident to a missing edge not occupied by any agent, it waits
until the missing edge reappears or any other agent fails to report.

So, in either case, the Leader does not allow more than one agent to occupy one end of the
missing edge.

Now, we discus the decisions an agent takes while encountering a missing edge.

� If an agent a1 (say) encounters a missing edge along its movement and finds that another
agent a2 is already present for that missing edge, then a1 chooses an alternate port and
continues executing its algorithm or if there does not exist any available port, it backtracks
from the current node.

� If an agent a1 (say) encounters a missing edge and finds the node adjacent to the missing
edge to be vacant, then a1 waits until the missing edge reappears or the Leader instructs a1
not to wait by interchanging the position with a1.

So, in this scenario as well, an agent also does not allow more than one agent to remain stuck or
waiting for a missing edge. This ensures our claim that between a1, a2 and Leader, at most, 2
among them can be stuck or waiting due to a missing edge. □
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Lemma 4 The Leader executing SingleEdgeBHSLeader ensures that if both a1 and a2 are
either stuck or waiting due to a missing edge, then the Leader eventually instructs one among
these agents to move, whereas it itself waits for the missing edge.

Proof: Let r be the first round when both a1 and a2 are stuck or waiting at the nodes u and v,
respectively, due to a missing edge (u, v). The movements of these agents before they get stuck
(or waiting) lead us to the following cases.

� Both a1 and a2 have performed pendulum walk before each of them gets stuck.

This scenario of both agents performing pendulum walk can only arise when at a round r′ < r,
the Leader gets stuck or is waiting at one end of the missing edge. The Leader, while it
waits, must have instructed both agents to perform pendulum walk if not already performing.
Now, at round r, while a1 and a2 are performing pendulum walk, they encounter a missing
edge and again get stuck (or wait) due to the missing edge. This means that from round
r onwards, the missing edge for which the Leader has been waiting has reappeared (since,
there is at most one dynamic edge at any round).

Let r′′ (where r < r′′) be the current round, at which Leader finds both the agents fail to
report. It can happen only when the Leader finds no agent reporting even after waiting for
at most

∑2
i=1(2 · (Alenai

+Llenai
+1)) rounds since any of these agents last reported. This

triggers the Leader to move towards the agent with mini∈{1,2}(2 · (Alenai
+Llenai

+1)). Let
that agent be a1, so within r′′ + (2 · (Alena1 + Llena1 + 1)) rounds, the Leader reaches the
node occupied by a1 and finds a1. Next, it instructs a1 at u to start pendulum walk.

� One agent has performed cautious walk, whereas the other agent has performed pendulum
walk before they get stuck (or wait) for the missing edge at round r.

Let a1 be the agent which has performed cautious walk. So, at round r, whenever it has
chosen to travel through the edge (u, v), it has found the edge (u, v) is missing and hence
gets stuck or waits for the missing edge to reappear. The Leader, being present at the same
node also, must have found a1 stuck (or waiting) at round r. Hence, in this situation, it must
have instructed a1 to leave u by changing to pendulum walk at round r itself.

Thus, in both these scenarios, it is proved that if both a1 and a2 occupy both sides of a missing
edge, then the Leader eventually instructs one among them to continue performing its movement,
i.e., it makes the stuck or waiting agent free to move, whereas the Leader itself remains stationary
until either the missing edge reappears or it moves towards certain agent. Hence, this proves our
claim. □

Lemma 5 Neither the agents executing SingleEdgeBHSAgent nor the Leader executing Sin-
gleEdgeBHSLeader explore any cycle infinitely.

Proof: We, first, have shown that an agent a1 (without loss of generality) while executing Algo-
rithm 1 can never explore any cycle infinitely. Let C1 be a cycle in G containing a node u along
which the agent a1 starts exploring this cycle. Let us suppose from u, a1 moves to an adjacent node
v along the port j. While moving, it updates f(j) = f(j) ◦ {a1} (here, earlier A = Φ or A = {a2})
at the whiteboard of u. Next, after exploring all the nodes of C1, whenever a1 returns to u and it
attempts to choose the port j again, it finds that it has already visited the port j (based on the
f(j) value written on the whiteboard). Hence, it does not choose this port again, irrespective of



150 Bhattacharya et al. Searching for a Black Hole in a Dynamic Cactus

whether a1 is performing cautious walk or pendulum walk. This proves that an agent executing
SingleEdgeBHSAgent never explores any cycle infinitely.

Further, the Leader can move with an agent while the accompanying agent is performing cau-
tious walk, or it can move towards an agent who has failed to report while executing pendulum
walk. In the first case, as the agent itself never explores any cycle infinitely, the Leader, accompa-
nying it, can also never explore any cycle infinitely. In the second case, the Leader moves towards
the agent by following the same path that the agent a1 (say) has already traversed, which is the
length at most maxi∈{1,2}(2 · (Alenai

+ Llenai
+ 1)). Hence, in this case, it is impossible for the

Leader to explore any cycle infinitely since the agent itself, executing Algorithm 1, cannot explore
any cycle infinitely according to the earlier argument. So, this shows that the Leader also can
never explore any cycle infinitely. □

Lemma 6 The algorithm SingleEdgBHSAgent ensures that in the worst case, every node in
G is explored by either a1 or a2 until any one among them gets destroyed by the black hole or the
Leader terminates the algorithm.

Proof: As stated earlier, a1, a2 and Leader are all t−state finite automata’s, where t ≥ αn∆ log∆.
An agent (either a1 or a2) finds eligible ports 3 at the current node, irrespective of whether they
are executing cautious or pendulum walk. Among these eligible ports, the one the agent chooses
is based on the protocol of t−Increasing-DFS. It may be noted that this t−Increasing-DFS
protocol requires O(n∆ log∆) bits of memory for an agent. It is because the agents while executing
Algorithm 1, not only explore each port in G but also stores the ports that it visits. The ports
are stored via the sequence Apathai

(where i ∈ {1, 2}), where this sequence only gets incremented
when an agent is performing pendulum walk. In addition to this, while only exploring a new port
(not visited yet by ai), the sequence Apathai

is updated. As per the eligibility of a port, a port
already visited by ai is never explored again. Only during backtracking, it may be visited, but
during which the sequence Apathai

is not updated. Each node in G can have at most ∆ such ports,
and in the worst case, an agent needs to store each such port. So this shows that O(n∆ log∆)
bits are sufficient for an agent to store each port in G. This further implies that, the cardinality
of Apathai

is at most O(n∆ log∆). Further, as stated in Theorem 6 and Corollary 7 of [18], an
agent with O(n log∆) bits of memory is sufficient to explore any static graph with diameter n and
maximum degree ∆. So, O(n∆ log∆) bits are more than sufficient for an agent to explore G. Also,
Lemma 4 states that eventually, Leader and one among a1 or a2 remain stuck (or wait) due to a
missing edge. Now, as G can have at most one dynamic edge at any round, the other agent among
a1 and a2 can unobstructively explore the remaining graph until (which is indeed a static graph,
as either a1 or a2 and Leader occupy both sides of a missing edge) it gets destroyed by the black
hole or the Leader terminates the algorithm by either detecting the position of the black hole, or
the path where visiting the last node, indicates the black hole node. □

Lemma 7 Algorithm SingleEdgeBHSLeader ensures that the Leader never gets destroyed by
the black hole.

Proof: The Leader can move from its current node for either of these two cases: (1) it is accompa-
nied by an agent that is performing cautious walk, (2) when it finds that a certain agent has failed
to report. In the first case, it is observed that the Leader only visits a node after it is ensured safe
by the agent performing cautious walk. This means that it is only possible for the agent to get

3a port j is eligible for an agent a1 (say) executing cautious walk, if f(j) = ⊥, whereas if a1 is executing pendulum
walk, then an eligible port is one, which is either f(j) = ⊥ or f(j) = 0 ◦A \ {a1}
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destroyed by the black hole, as it never explores an unexplored node while accompanying with the
agent, performing cautious walk.

In the second case, the Leader moves from its current node only after it finds that an agent a1
(say) has failed to report while performing pendulum walk. In this case, the Leader moves towards
a1. The path taken by the Leader to reach a1 is already traversed by either a1 or a2 or both. It is
because, the Leader only follows the sequence Apatha1

∪ Lpatha1
. Hence, the Leader cannot be

destroyed by the black hole. □

Lemma 8 At least one among a1 and a2 executing SingleEdgeBHSAgent gets destroyed by
the black hole within O(n2) rounds.

Proof: It may be recalled that the Leader instructs one among a1 or a2 to perform cautious walk,
or it instructs both a1 and a2 to perform pendulum walk. We have the following cases based on
these movements, and we have proved our claim for each case.

� The case where one among a1 and a2 is instructed to perform cautious walk and the other
to perform pendulum walk: Let us suppose a1 be the agent which is instructed to execute
cautious walk, whereas a2 is instructed to execute pendulum walk. In this situation, a1
explores and moves to a new node in every 3 rounds (if not stuck or waiting due to a missing
edge), whereas a2 requires at most 2n rounds to explore a new node. Hence, in the worst
case, if a2 is not blocked at all, then it takes O(n2) rounds to get destroyed by the black hole.

� The case when both a1 and a2 are instructed to perform pendulum walk: As per our algo-
rithm, this scenario can arise when the Leader is stationary due to an adjacent missing edge.
So, while the Leader is still waiting for the missing edge to reappear, at least one among
these two agents can unobstructively perform pendulum walk. In the worst case, the other
agent may get stuck (or wait) on the other node of the same missing edge. Now, an agent
performing pendulum walk requires at most 2n rounds to explore a new node, which shows
that within O(n2) rounds, at least one agent gets destroyed by the black hole.

□

Lemma 9 Let r be the round at which one among a1 and a2 while executing SingleEdgeBH-
SAgent, is the first to get destroyed by the black hole, then the Leader while executing Sin-
gleEdgeBHSLeader terminates the algorithm within r +O(n2) rounds.

Proof: Let us assume a1 is the first agent to get destroyed by the black hole at round r. First,
it is needed to be observed that maxi∈{1,2}(Alenai

+ Llenai
) ≤ n∆ ≈ n2, since ∆ ≤ n − 1. This

inequality holds since an agent never explores a port more than once. It can visit a port more
than once while backtracking, but during backtracking, it never stores the port along which it
backtracks (refer to Algorithm 1). Hence, we have the following cases based on the movement
strategies followed by a1 and a2 while executing Algorithm 1.

� Let a1 is destroyed at round r while it is performing cautious walk.

This means at round r, a1 has visited an unexplored node, while the Leader waits at the
adjacent node for a1 to report. As a1 is performing cautious walk, a2 must be performing
pendulum walk. So, now we have two situations. Either the edge e between Leader and a1
exists, or it has gone missing. If it exists, then the Leader at round r + 1 finds that a1 has
failed to report. Hence, it identifies the black hole and terminates the algorithm. On the
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contrary, suppose the edge e is missing from round r onwards, as the underlying graph can
have at most one such dynamic edge at any round; so while the Leader waits for the missing
edge to reappear, the agent a2 can unobstructively continue pendulum walk until it gets
destroyed by the black hole. It may be noted that pendulum walk requires at most 2n rounds
to explore a new node. This implies that within r+O(n2) rounds, a2 also gets destroyed by
the black hole. If e is still missing, then the Leader finds that a2 fails to report, after waiting
for 2 · (Alena2

+ Llena2
+ 1) rounds since a2 last met with Leader. This helps the Leader

to conclude that a2 is destroyed by the black hole and accordingly terminates the algorithm.
The Leader terminates the algorithm because it knows the exact path to visit in order to
locate the black hole. Otherwise, if e reappears (within 2 · (Alena2 +Llena2 +1) rounds since
a2 last met with Leader), then the Leader finds that a1 is not reporting. So, in the next
round itself (as a1 fails to report), the Leader concludes that a1 is destroyed by the black hole,
which terminates the algorithm. This implies that within at most r+O(n2)+n2 = r+O(n2)
rounds, the Leader terminates the algorithm.

� Let a1 be destroyed at round r by the black hole while it is performing pendulum walk.

There are two possibilities for this case: (1) a2 is performing cautious walk at round r, or (2)
a2 is performing pendulum walk at round r. The case (2), where a2 is performing pendulum
walk, is discussed in the next case. Let us consider (for case (1)) that a2 is performing cautious
walk. So anyhow the Leader at round r′ (where r′ ≤ r+ 2 · (Alena1 +Llena1 + 1) ≤ r+ n2)
finds that a1 fails to report. This implies that at round r′, if a2 is with the Leader, then
it instructs a2 to change its movement from cautious to pendulum. Otherwise, if a2 is not
with the Leader, then the Leader waits for 2 rounds (assuming there is no missing edge
between the Leader and a2) for a2 to report. Then, it instructs a2 to change its movement
from cautious to pendulum. Next, in that round, the Leader moves towards a1 following the
sequence Apatha1

∪ Lpatha1
. While moving, if it does not encounter any missing edge, then

at round r′′ (where r′′ ≤ r′ + Alena1
+ Llena1

≤ r + O(n2)), the Leader identifies that a1
is destroyed by the black hole and terminates the algorithm. On the contrary, while moving
towards a1, if the Leader encounters a missing edge, it waits again for the missing edge to
reappear. In the meantime, a2 has already begun performing pendulum walk, from round
r′ onwards (or from r′ + 2 onwards). So, it explores a new node in at most 2n rounds and
then reports to the Leader. If a2 also gets stuck (or waits) due to a missing edge, and fails
to report at some round r1 ≤ r + O(n2), then the Leader again moves towards a2. Either
the Leader finds a2, or a1 again fails to report (because a1 is already destroyed by the black
hole at round r) and eventually, the Leader terminates the algorithm. So, in worst case, the
Leader takes r1 + 2n2 +O(n2) = r +O(n2) rounds to terminate the algorithm.

� Let a1 be destroyed by the black hole at round r, while a1 and a2 are performing pendulum
walk.

Earlier, this case arose because the Leader has been waiting for a missing edge to reappear.
Otherwise, both agents are never instructed to perform pendulum walk while they both still
are reporting back to Leader. Now, since a1 fails to report, and if a2 is not obstructed at all,
then a2 can explore a new node in every at most 2n rounds and eventually fails to report,
as it gets destroyed by the black hole. So, this concludes that within r + O(n2) rounds,
a2 also gets destroyed. Next, whenever the Leader finds that a2 has failed to report, then
it towards mini∈{1,2}(Alenai + Llenai) and either detects the black hole which terminates
the algorithm or encounters a missing edge. If it again encounters a missing edge, then it



JGAA, 29(2) 127–166 (2025) 153

further waits for maxi∈{1,2}(Alenai
+Llenai

) rounds. Again, the Leader finds that no agent
is reporting, as both are destroyed. In this case, the Leader detects the agent (based on the
entity maxi∈{1,2}(Alenai

+Llenai
)) destroyed by the black hole and terminates the algorithm,

as it knows the exact agent which has been destroyed and also it knows the path to follow
in order to locate the black hole. In the worst case, this process requires r + 2n2 + O(n2)
rounds. This shows that the Leader terminates the algorithm in at most r +O(n2) rounds.

The above cases cover all the possibilities, and in each case, we have proved our claim. □

Lemma 10 The Leader executing SingleEdgeBHSLeader correctly terminates the algorithm.

Proof: It may be noted that according to our Definition 1, the surviving agent can terminate
the algorithm when it either knows the exact black hole node or knows the path that it needs
to visit to determine the black hole node. In our BHS algorithm, the Leader is the one that
can terminate the algorithm. The Leader while executing SingleEdgeBHSLeader encounters
many scenarios. In this proof, we discuss all such scenarios and show that the Leader correctly
terminates the algorithm in each of them.
Case-1: An agent (say, a1) has been consumed by the black hole while executing cautious walk.

Let the black hole node be u. Since a1 has been executing cautious walk, so the Leader is
located at one of the neighbours of u, say at v. Now, if the edge (u, v) exists, then the Leader
finds that a1 fails to report and concludes that a1 is destroyed by the black hole. Since the Leader
knows the port by which a1 has traveled to reach u, so accordingly, the Leader locates the black
hole and terminates the algorithm. Otherwise, if the edge (u, v) is missing, at that moment when
a1 gets destroyed by the black hole. Then the Leader waits for that edge to reappear, whereas
the other agent, i.e., a2, continues to perform pendulum walk and eventually gets destroyed. In
that case, the Leader understands a2’s failure to report, after waiting 2 · (Alena2 + Llena2 + 1)
rounds. After which, the Leader concludes that a2 is destroyed by the black hole and terminates
the algorithm. The reason for termination is that the Leader currently knows the location of the
black hole, as it can be determined by traversing the sequence of ports in Apatha2

∪ Lpatha2
and

then accessing the whiteboard. It is noted that this conclusion by the Leader is indeed correct.
It is because the Leader at node v is occupying one end of the missing edge, whereas the other
node is the black hole (which has earlier destroyed a1). Now, as the underlying graph has at most
one missing edge, so a2, other than being destroyed by the black hole, must not have faced any
obstruction to report back within 2 · (Alena2

+ Llena2
+ 1) rounds.

Case-2: An agent (say, a1) has been destroyed by the black hole while executing pendulum walk.
It may be noted that a1 has been performing pendulum walk before it gets destroyed by the

black hole, and this can only happen if either a2 has failed to report or the Leader has encountered
a missing edge. We have explained each of these possibilities in detail.

� a2 fails to report: In this case, the Leader instructs a1 to change its movement from cautious
to pendulum. Next, while the Leader starts moving towards a2 following Apatha2

∪Lpatha2
,

either it finds a2, or it is not found, or the Leader encounters a missing edge.

Case-A: If the Leader encounters a missing edge, it waits. In the meantime, a1, while
performing pendulum walk, gets destroyed by the black hole and fails to report. As a1
has also failed to report, the Leader moves towards a1, leaving the node adjacent to the
missing edge. If it faces no obstruction, it correctly locates the black hole and terminates
the algorithm. But if it encounters a missing edge while moving towards a1, it waits for a2
and eventually a2 reports to the Leader. It is because the earlier missing edge for which a2
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has failed to report has reappeared (since there can be at most missing edge at any round).
In this case, a2 continues to perform pendulum walk. While performing, a2 eventually gets
destroyed by the black hole and also fails to report. In this situation, Leader again moves
towards a2 as described earlier, leaving the node adjacent to the missing edge and correctly
locates the black hole. It is because while moving towards a2, either a2 is not found or the
Leader encounters a new missing edge. If the missing edge is encountered, then failure of
a1’s return concludes that a1 has been destroyed. Moreover, the Leader, having knowledge
of the path until the last reported node of a1, knows the exact path to visit in order to locate
the black hole and terminates the algorithm. Otherwise, not finding a2 means that a2 is
destroyed by the black hole, which the Leader understands, and terminates the algorithm.

Case-B: If a2 is found, and whether there is a missing edge along the next direction of
a2 or not, the Leader instructs a2 either to perform cautious or pendulum walk. Now a1
fails to report since it has been destroyed by the black hole. If a2 has been performing
cautious walk before a1 fails to report, and when the Leader understands that a1 has failed
to report, then it instructs a2 to change to pendulum walk. Otherwise, the Leader instructs
a2 to continue performing pendulum walk. Irrespective of which instruction the Leader
provides, it invariably moves towards a1. If the Leader does not find any missing edge
corresponding to the last traversed port of a1 at the last reported node, it correctly locates
the black hole and terminates the algorithm. Otherwise, if the Leader encounters a missing
edge, it waits for the missing edge to reappear. When Leader is waiting, a2 is performing
pendulum walk. After a few rounds, a2 either reaches the other end of the missing edge
or gets destroyed by the black hole. This means a2 also eventually fails to report. So, the
Leader finds that both a1 and a2 are not reporting. Hence, it moves towards a2 as the path
towards a1 is already blocked by a missing edge. If a2 is found, then the Leader correctly
concludes that a1 has been destroyed by the black hole (location of which can be found after
visiting the sequence of ports Apatha1

∪ Lpatha1
and then finding the last visited port at

the whiteboard of last reported node), which terminates the algorithm. On the other hand,
if the Leader again encounters a missing edge while moving towards a2, it waits for another
maxi∈{1,2}(2 · (Alenai

+ Llenai
+ 1)) rounds. Thereafter, the Leader concludes that a1 has

been destroyed by the black hole and terminates the algorithm, as now the Leader knows
the sequence of ports, i.e., Apatha1

∪ Lpatha1
to reach the last reported node of a1, and

eventually visiting this node will determine the location of the black hole node.

Case-C: If a2 is not found and there is no missing edge, the Leader correctly concludes that
the black hole has destroyed a2 and locates the position of the black hole and terminates the
algorithm, as otherwise a2 must have been found.

� Leader encounters a missing edge: In this case, both a1 and a2 must execute pendulum walk
as per SingleEdgeBHSLeader. While performing their respective movement, if both a1
and a2 fail to report, then the Leader moves towards the agent with mini∈{1,2}(2 · (Alenai

+
Llenai

+ 1)) (let that agent be a1) and eventually locates the black hole (refer to the earlier
case) and terminates the algorithm. On the contrary, while moving towards a1, if the Leader
encounters a missing edge, then this case is similar to the earlier Case-B, where the Leader
again correctly terminates the algorithm. □

Theorem 11 The agents a1 and a2 executing SingleEdgeBHSAgent and the Leader executing
SingleEdgeBHSLeader correctly terminates the algorithm, in a dynamic cactus graph G with
at most one dynamic edge at any round, within O(n2) moves and O(n2) rounds.
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Proof: Lemmas 8 and 9 state that our Algorithms 1 and 2, correctly terminate within O(n2)
rounds, and since at each round, the Leader and the agents can move at most once. Hence, there
can be at most 3 moves at each round. This implies that the agents following Algorithm 1 and the
Leader following Algorithm 2 solves the BHS problem within O(n2) moves. □

4.2 Black Hole Search in Presence of Multiple Dynamic Edges

In this section, we discuss the case where the dynamic cactus graph G can have at most k (k > 1
and k ∈ Z) dynamic edges. In addition, irrespective of the fact that whichever edges are dynamic,
the underlying constraint of 1-interval connectivity property has to be preserved. Accordingly, we
present a BHS algorithm, which is termed as MultiEdgeBHS. This algorithm works with 2k+3
agents and locates the black hole within O(kn) rounds and O(k2n) moves.

Initially, a set of A = {a1, a2, . . . , a2k+3} agents are co-located at home. Our algorithm requires
each node to have a whiteboard with O(deg(u)(log deg(u) + k log k)) bits of storage, where u ∈ G.
For each node u ∈ G, the whiteboard stores the following information: for each port j of u,
where j ∈ {0, 1, . . . , deg(u) − 1}, an ordered tuple (g1(j), g2(j)) is maintained. The function g1
is same as the function f , defined in Section 4.1. The function g2 is defined as follows, g2 :
{0, 1, . . . , deg(u)− 1} → {⊥, 0, 1},

g2(j) =


⊥, if an agent is yet to visit the port j

0, if no agent has returned to the node u through the j-th port

1, if the node with respect to j-th port is safe

Unlike our earlier BHS algorithm discussed for the single edge dynamic case, we don’t require
any Leader, i.e., each of the 2k + 3 agents autonomously execute MultiEdgeBHS. Similar to
Algorithm 1, each agent executes the protocol of t−Increasing-DFS (where t ≥ αn∆ log∆,
α ∈ Z+). In this algorithm, an agent performs two types of action: (1) it explores an unexplored
node, or (2) it walks along an already marked safe port. These two types of actions can be explained
as follows:

1. Explore: In this action, an agent explores an unexplored port. While exploring, it either
performs cautious walk or marking walk.

2. Trace: In this action, an agent only moves along safe ports. These ports are marked safe by
some agent that has been performing the action explore.

Now, we provide a brief idea of our algorithm MultiEdgeBHS.

Brief Idea of MultiEdgeBHS: Each of the 2k + 3 agents start from home, where without loss
of generality we order, ID of ai < ID of ai+1 (∀ i ∈ {1, 2, . . . , 2k + 2}). On a high level, the
task of each agent is to explore each port of G. The exploring continues until the agent gets
destroyed by the black hole, or it encounters a missing edge along its path of movement, or the
black hole is detected. If more than one agent is together, then to explore an unexplored port,
the agents together perform cautious walk. If only one agent is present, then to do the very same
task, the single agent performs marking walk (refer to the definition of marking walk in Section
2). Next, while traversing on G, if an agent discovers a missing edge along its path of movement,
and currently, no agent is waiting for that edge, this agent waits until the edge reappears.
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Algorithm 3: MultiEdgeBHS(ai)

1 Input = {n, home}
2 States: {Initial,Cautious, Marking, MissingCautious-Wait, Cautious-Wait}
3 Initially set Move1 = Wtime1 = Move2 = Wtime3 = 0
4 In State: Initial
5 if the current node has more than one agent then
6 Change to state Cautious.
7 else
8 Change to state Marking.

9 In State: Cautious.
10 if a port exists at the current node marked as (⊥,⊥) then
11 if Move1 = 0 then
12 if the edge with respect to lowest such port exists then
13 if ai is the lowest ID agent at the current node, in state Cautious then
14 Set Move1 = 2 and traverse along this port, while marking (0 ◦ {ai}, 0) at both the ports

of the edge to this adjacent node, update Apathai
= Apathai

∪ (j,m).// j−th port

is the lowest such outgoing port at the current node, m−th port is the

incoming port of the adjacent node

15 else
16 Set Wtime2 = 0 and change to state Cautious-Wait.

17 else
18 If no agent is waiting and ai is the lowest ID agent, then it changes to state

MissingCautious-Wait whereas other agents change to state Initial. Otherwise, if an
agent is waiting for this edge, then choose a different port, if no port exists to choose, then
backtrack and change to state Initial.

19 else if Move1 = 1 then
20 if there exists an agent with Move1 = 0 then
21 Set Move1 = 0 and change to state Cautious. Also set Wtime2 = 0.

22 else if Move1 = 2 then
23 If the edge with respect to port m exists, then return to previous node while updating g2(m) = 1

and g2(j) = 1, and set Move1 = 3. Otherwise, if the edge is missing, then wait.
24 else
25 Move along port j and then set Move1 = 0 and change state to Initial. Otherwise, if edge is

missing then wait.

26 else if a port j exists marked with (0 ◦A, 0) exists then
27 if Move1 = 0 then
28 if the edge is missing and no agent is waiting then
29 If ai is the lowest ID agent with Move1 = 0, then wait. Otherwise, change to state Initial.
30 else if the edge exists and no agent is waiting then
31 if Wtime1 > 1 then
32 If g2 with respect to this node is marked 1, then change to state Initial and also set

Wtime1 = 0. Otherwise, conclude the adjacent node to be the black hole.
33 else
34 Wtime1 = Wtime1 + 1.

35 else
36 Choose a different port. Otherwise, if no port exists to choose from, then backtrack and

change to state Initial.

37 else if Move1 = 1 then
38 if there exists an agent with Move1 = 0 then
39 Set Move1 = 0 and change to state Cautious also set Wtime2 = 0.

40 else if Move1 = 2 then
41 If the edge with respect to port m exists, then return to previous node, while updating g2(m) = 1

and g2(j) = 1, and set Move1 = 3. Otherwise, if the edge is missing, then wait.
42 else
43 Move along port j and then set Move1 = 0 and change state to Initial. Otherwise, if edge is

missing, then wait.
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44 else if a port j exists marked as (0 ◦A, 1) then
45 if Move1 = 0 then
46 if the set A contains ID of an agent present at current node which is not waiting for any missing

edge then
47 Choose a different port or backtrack and change to state Initial.
48 else
49 if the edge is missing and no agent is waiting for this edge then
50 If ai is the lowest ID agent, then wait. Otherwise change to state Initial.
51 else if the edge exists but no agent is waiting for this edge then
52 Move along this port and update g1(j) = g1(m) = 0 ◦ (A ∪ {ai}) and

Apathai
= Apathai

∪ (j,m), set Move1 = 0 then change to state Initial.

53 else
54 Choose a different port and if no port exists to choose then backtrack and change to state

Initial.

55 else if Move1 = 1 then
56 If another agent with Move1 = 0 is present, then set Move1 = 0 and change to state Cautious

also set Wtime2 = 0.
57 else if Move1 = 2 then
58 If the edge with respect to port m exists, then return to previous node, while updating g2(m) = 1

and g2(j) = 1, and set Move1 = 3. Otherwise, wait.
59 else
60 Move along port j and then set Move1 = 0 and change state to Initial. Otherwise, if the edge is

missing then wait.

61 else
62 if Move1 = 0 then
63 Backtrack to an already traversed node, and change to state Initial.
64 else if Move1 = 1 then
65 If there exists another agent with Move1 = 0, then set Move1 = 0 and change to state Cautious

and set Wtime2 = 0.
66 else if Move1 = 2 then
67 If the edge with respect to port m exists, then return to previous node, while updating g2(m) = 1

and g2(j) = 1, and set Move1 = 3. Otherwise, wait.
68 else
69 Move along port j and then set Move1 = 0 and change state to Initial. Otherwise, if the edge is

missing, then wait.

70 In State: MissingCautious-Wait
71 if the edge is missing then
72 Wait.
73 else
74 Change state to Initial

75 In State: Cautious-Wait
76 if Wtime2 > 1 then
77 if the edge exists then
78 if there is an agent which returned along port j with Move2 = 3 then
79 if the edge exists then
80 Move along this port update g1(j) = g1(m) = 0 ◦ (A ∪ {ai}) and

Apathai
= Apathai

∪ (j,m), set Move1 = 1 and change to state Initial.

81 else
82 Change to state Initial.

83 else
84 Conclude the adjacent node to be black hole.

85 else
86 If the agent is of lowest ID among all the agents which are in state Cautious-Wait, then wait.

Otherwise change to state Initial.

87 else
88 Wtime2 = Wtime2 + 1
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89 In State: Marking
90 if a port exists at current node marked as (⊥,⊥) then
91 if Move2 = 0 then
92 if the edge with respect to lowest such port exists then
93 Set Move2 = 1 and traverse that port, while marking (0 ◦ {ai}, 0) at both the outgoing port j

and incoming port m, update Apathai
= Apathai

∪ (j,m).

94 else
95 If no agent is already waiting, then wait. Otherwise, choose a different port and if no port

exists to choose from, then backtrack and change to state Initial.

96 else if Move2 = 1 then
97 If the edge with respect to port m exists then return to previous node, while updating

g2(m) = g2(j) = 1, otherwise wait. If returned then in the next round move along port j and set
Move2 = 0, change to state Initial. Otherwise if the edge is missing, then wait.

98 else if a port exists at the current node marked with (0 ◦A, 0) then
99 if Move2 = 0 then

100 if the edge exists then
101 if Wtime3 > 1 then
102 If g2 with respect to this port is marked 1, then change to state Initial and set

Wtime3 = 0. Otherwise, conclude the node with respect to this port is the black hole.
103 else
104 If no other agent is waiting, then set Wtime3 = Wtime3 + 1.

105 else
106 Wait, if no other agent is already waiting, and ai is the lowest ID among all agents with

Move2 = 0. Otherwise, choose a different port and if no port exists then backtrack and
change to state Initial.

107 else if Move2 = 1 then
108 If the edge with respect to port m exists, then return to previous node, while updating

g2(m) = g2(j) = 1, otherwise wait. If returned then in the next round move along port j and set
Move2 = 0, change to state Initial. Otherwise if missing edge then wait.

109 else if a port exists at the current node marked with (0 ◦A, 1) then
110 if Move2 = 0 then
111 if the edge exists then
112 if A does not contain ai then
113 Move the lowest among such port and update g2(j) = g2(m) = 0 ◦ (A ∪ {ai}),

Apathai
= Apathai

∪ (j,m) and change to state Initial.

114 else
115 Choose a different port if exists or backtrack and change to state Initial.

116 else
117 Wait, if no other agent is already waiting, and ai is the lowest ID among all agents with

Move2 = 0. Otherwise, choose a different port and if no port exists then backtrack and
change to state Initial.

118 else if Move2 = 1 then
119 If the edge with respect to port m exists, then return to previous node, while updating

g2(m) = g2(j) = 1, otherwise wait. If returned then in the next round move along port j and set
Move2 = 0, change to state Initial. Otherwise if the edge is missing, then wait.

120 else
121 if Move2 = 0 then
122 if the edge exists then
123 Backtrack to an already traversed port, and change to state Initial
124 else
125 Wait, if no other agent is already waiting, and ai is the lowest ID among all agents with

Move2 = 0. Otherwise, change to state Initial.

126 else if Move2 = 1 then
127 If the edge with respect to port m exists, then return to previous node, while updating

g2(m) = g2(j) = 1, otherwise wait. If returned along port j, then in the next round move along
port j and set Move2 = 0, change to state Initial. Otherwise if missing edge then wait.
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Otherwise, if some agent is already waiting for the same missing edge to reappear, then it simply
ignores this port and moves along some alternate port or backtracks. Whenever an agent finds
a port whose g2 value is marked as 0 but the edge corresponding to this port is not missing, it
waits for 2 rounds. If still no agent arrives and marks g2 value to 1, then the agent concludes this
adjacent node to be the black hole and terminates the algorithm.
Detailed Description of MultiEdgeBHS: At the beginning, the whiteboard entry corresponding
to each port and at each node in G is marked as (⊥,⊥). So, each agent initially co-located at
home, sets the following variables: Move1, Wtime1, Move2, Wtime2 and Wtime3 to 0. Next, they
change their state to Initial. In this state, if an agent finds multiple agents are available4 at the
current node, they change their state to Cautious. Otherwise, if the agent finds no other agent is
available, it changes to state Marking.

An agent in state Cautious, first checks the ports corresponding to the current node. After
checking, the following possibilities may arise: (1) a port can be marked as (⊥,⊥), (2) a port can
be marked as (0 ◦A, 0), (3) a port can be marked as (0 ◦A, 1), (4) a port can be marked as (1, 1).
Now, based on these ports we define all possible actions that an agent may execute.
1. If at least one port is found, which is marked as (⊥,⊥) (i.e., all these ports are yet to be
visited by any agent), then the following actions are performed. Next, the agent checks whether
Move1 value is 0. It may be noted that, this Move1 = 0 signifies the fact that the agent is
available for the next move. Suppose, among all such ports with marking (⊥,⊥), let us assume
j to be the lowest port. If the edge with respect to the port j exists, then the lowest ID agent
(say, ai) with Move1 = 0 traverses along this port. While traversing, it updates the whiteboard
with the value (0 ◦ ai, 0), at both ports of this edge (say those ports are j and m, respectively).
After it reaches the adjacent node, it updates Move1 = 2. On the other hand, for all the agents
not with the lowest ID, they set Wtime2 = 0 and change their state to Cautious-Wait. On the
contrary, if the edge corresponding to the port j is missing, the lowest ID agent changes its state
to MissingCautious-Wait, whereas the other agents with Move1 = 0, change to state Initial.

If the agent has Move1 value to be 1, then that means the agent has earlier performed cautious
walk, and it has moved to a new node. This Move1 value also signifies that the agent is not the
explorer agent among all the agents performing cautious walk. It is because the explorer agent,
or the agent leading the cautious walk, never changes its Move1 value to 1. Currently, this agent
is checking if the explorer agent is also present at the current node; if so, then it changes Move1
value to 0 and moves into state Cautious.

If the agent has Move1 value 2, then this signifies that this agent is the explorer agent, per-
forming cautious walk, and it has reached a node through a port marked as (⊥,⊥). Currently,
it is trying to return to the earlier node through the same edge in order to mark this port (or
corresponding edge) safe. If the edge exists (i.e., it has not gone missing), the agent returns by
marking the corresponding ports with respect to this edge to 1 and sets Move2 = 3. Otherwise, if
the edge does not exist, i.e., has gone missing, then the agent waits until the edge reappears.

Finally, if the agent has Move1 value 3, it implies that the agent has returned to the earlier
node (say, u) after reaching a node (say, v) through an unexplored port. Currently, it is trying to
reach v again. If it manages to reach v through the same port, then it sets Move1 = 0 and changes
to state Initial. Otherwise, if the edge (u, v) is missing then it waits with the same Move1 value
until the edge reappears.
2. If none of the ports has marking (⊥,⊥), then the agent checks for ports with marking (0◦A, 0).
If such a port exists, but the edge with respect to the lowest port with this marking is missing,

4the available agents are the ones that are neither stuck due to a missing edge nor waiting for other agents to
report
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then the lowest ID agent with Move1 = 0 waits if no agent is already waiting for this edge. All
the other agents with the same Move1 value change to state Initial. On the contrary, if the
edge is not missing and no agent is waiting, then all the agent with Move1 = 0 waits for two
rounds. If some agent returns, i.e., g2 value of this port changes to 1, they all change their state to
Initial. Otherwise, they conclude that the adjacent node contains the black hole and terminates
the algorithm. On the other hand, if Move1 = 1, then as discussed in the earlier case, if it finds
another agent with Move1 = 0, it updates Move1 = 0. Otherwise, if Move1 = 2 or Move1 = 3,
then the agent will execute the same instructions as discussed in the earlier case.

3. If none of the ports is marked as (⊥,⊥) or (0 ◦ A, 0), but there exists at least one port that is
marked as (0◦A, 1), then the following actions are performed by the agents. If the agent has Move1
value 0, and the edge with respect to the lowest such port (i.e., the port marked as (0 ◦ A, 1)) is
missing, also no other agent is waiting for this edge, the lowest ID agent with Move1 = 0 waits.
The other agents with the same Move1 value change to state Initial. Otherwise, if another agent
is waiting for this missing edge, the agents with Move1 = 0 attempt to change the port. If no
ports are available, they backtrack and change to state Initial. On the contrary, if an edge with
marking (0 ◦A, 1) is available, they check the set A with respect to this port. If the set A contains
the ID of an which is also trying to traverse through this edge and has Move1 value 0, then all
these agents with Move1 = 0, those are trying to visit this edge, either choose a different port or
backtrack and then change to state Initial. Otherwise, if A does not contain any ID of the agents
with Move1 = 0 and trying to visit this port, each agent with Move1 = 0 moves along this port
while updating (0 ◦ A, 1) to 0 ◦ (A ∪ {ai}) (if, {ai} denotes the collection of all those agents) and
then changes to state Initial. For remaining Move1 values (i.e., 1, 2 and 3), the same instruction
is followed as explained in earlier cases.

4. If all ports are marked with (1, 1) and the agent has Move1 = 0, then it backtracks to an
already traversed node and changes its state to Initial. For the remaining Move1 values, the
actions follow from earlier cases.

An agent is in the state MissingCautious-Wait because it has been the explorer among the
set of agents executing cautious walk, and currently, it is waiting. The purpose for its waiting is as
follows: it has tried to traverse along a port that is marked as (⊥,⊥), but while traversing, it found
that edge to be missing. So, currently, it waits for the missing edge to reappear, and whenever the
edge reappears, it will change to state Initial.

Next, an agent is in state Cautious-Wait because it is one among the follower agents per-
forming cautious walk, where the explorer agent has traversed along the port, say j, and is yet to
return. If the edge exists, this agent waits for at most two rounds, and the following conclusions
are established.

(a): If the explorer agent returns and the edge still exists, it moves to this new node. While
moving, it updates the g1 value, Apathai

sequence and sets Move1 = 1. Thereafter, it changes
to state Initial. On the other hand, if the edge does not exist after the explorer agent returns, it
changes to state Initial.

(b): If the explorer agent does not return, the agent concludes that the adjacent node is the black
hole.

Otherwise, if the edge does not exist, and the current agent is of the lowest ID among all agents
in this state, it waits. Otherwise, it changes to state Initial and chooses a different port, or if no
ports are available, it backtracks and changes to state Initial.

An agent in the state Marking can encounter the following types of ports: (1). a port marked
as (⊥,⊥), (2). a port marked as (0 ◦A, 0), (3). a port marked as (0 ◦A, 1), (4). a port marked as
(1, 1).
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1. An agent finds at least one port marked as (⊥,⊥) and, if that agent is with Move2 = 0, then
the lowest port among them is chosen. Let that port be j. Now, if the edge with respect to port
j exists, then the agent moves along this edge while updating (⊥,⊥) to (0 ◦ {ai}, 0) (where ai be
the agent). It may be noted that this updation is done on both ports of this edge, i.e., both the
outgoing and incoming ports. The agent ai also changes Move2 value to 1 from 0. Otherwise, if
the edge with respect to port j is missing and no other agent is waiting for this edge, ai waits. Or,
if another agent is already waiting, ai chooses another port and continues to execute this state. If
none of the ports is available, then ai backtracks and changes to state Initial.

Otherwise, if ai is with Move2 = 1, that means it has already traversed along an unexplored
port, and currently, it is waiting to return to the previous node and mark the corresponding edge
safe. In this situation, if the edge exists, it moves back to the previous node, sets Move2 = 0, and
tries to return. If, after returning, the edge has gone missing, then it waits until the missing edge
reappears. After moving back to the new node with Move2 = 0, it changes to state Initial.

2. The agent finds no ports with marking (⊥,⊥), but at least one port exists that is marked as
(0 ◦ A, 0). If the agent (say, ai) has Move2 = 0, then it waits for 2 rounds if no other agent is
already waiting. After waiting, if no agent returns, then ai locates the black hole and terminates
the algorithm. Otherwise, if some agent returns along this port and marks g2 value to 1, then ai
changes its state to Initial. If, on the other hand, some agent is already waiting, then ai chooses
a different port, and if no such port exists to choose from, then ai backtracks and changes to state
Initial. On the contrary, if ai has Move2 = 1, then it follows the same instruction as discussed in
the earlier case.

3. The agent (say, ai) finds no ports with marking (⊥,⊥) or (0 ◦A, 0), but finds at least one port
with marking (0 ◦ A, 1). If Move2 = 0 and the set A with respect to this port does not contain
the ID of ai, then ai moves along this port while updating g2 to (0 ◦ (A ∪ {ai})) with respect to
both ports of this edge, provided that the edge is not missing. After reaching the adjacent node,
it changes to state Initial. Otherwise, if A contains the ID of ai, then ai chooses a different port.
If no ports are available, it changes to state Initial.

Otherwise, if the port that is marked with (0 ◦A, 1) is missing, then ai waits if no other agent
is already waiting. Otherwise, if Move2 = 1, then ai follows similar instructions defined in earlier
cases.

4. All the ports are marked as (1, 1). If Move2 = 0 and the edge exists, then ai backtracks to an
already traversed port and changes to state Initial. Otherwise, if the edge is missing and no other
agents are waiting, then ai waits. If Move2 = 1, then the same instruction is followed as defined
earlier.

It may be noted that irrespective of which state an agent is currently executing, whenever the
agent chooses to traverse a port not explored by it previously, it not only updates the g1 and g2
values in the whiteboard but also stores this port. This port is updated in the set Apathai , which
contains the sequence of ports that the agent has traversed. The pseudo code of MultiEdgeBHS
is explained in Algorithm 3.

4.2.1 Correctness and Complexity

In this section, we analyze the correctness and complexity of our algorithm MultiEdgeBHS.

Lemma 11 Our algorithm MultiEdgeBHS ensures that at most 2 agents can be stuck or waiting
due to a missing edge at any round, where the underlying graph G is a dynamic cactus graph with
at most k dynamic edges at any round.
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Proof: An agent executing MultiEdgeBHS can encounter a missing edge along its path while
it is performing cautious walk or marking walk. Irrespective of which walk it performs, whenever
it encounters a missing edge, it either waits for it or ignores it. First, the agent checks whether
there already exists an agent waiting for that particular port (this can be understood as the agents
can communicate among themselves whenever they are present at the same node). If some agent
is already waiting, it ignores this missing edge. Otherwise, if no agent is waiting and if the agent
is of the lowest ID among all agents performing cautious or marking walk, then it waits for the
missing edge to reappear (refer to the case when Move1 = 0 in state Cautious and Move2 = 0
in state Marking, and encounters a missing edge in Algorithm 3). Hence, this shows that either
end of a missing edge can be occupied by at most 2 agents. In contrast, the remaining agents that
encounter them ignore this missing edge by choosing a different port or by backtracking from the
current node. □

Lemma 12 Our algorithm MultiEdgeBHS ensures that at most 2 agents can be destroyed by
the black hole.

Proof: Let v be the black hole node in G and suppose it is part of some cycle in G, where the two
other adjacent nodes in that cycle are v0 and v1. As per Corollary 10, any path originating from
u (where u ∈ Half-1) either passes through v0 or v1, to reach v. So, any agent that first explores
the edges (v0, v) and (v1, v) cannot mark these edges to be safe as they get destroyed by the black
hole the moment they reach v. As we consider, v is part of a cycle, so the adversary can remove at
most one edge in this cycle at any round, otherwise, the underlying graph will get disconnected.
So, while executing Algorithm 3, a round r must exist at which at least one agent is at the node
v0, trying to explore (v0, v), and at least one other agent is at the node v1, trying to explore (v1, v).
So, at both these nodes, they find the g2 value of the ports corresponding to the edges (v0, v) and
(v1, v), marked as 0, whereas at least one of these edges exists. So, after waiting for at most 2
rounds, either of these agents at v0 or v1 can successfully detect the black hole location without
destroying more agents. Hence, this shows that our algorithm ensures that at most 2 agents can
be destroyed by the black hole. □

Lemma 13 Our algorithm MultiEdgeBHS ensures that no agent explores any cycle infinitely.

Proof: Consider C be any cycle in G and u be the node in C through which an agent ai while
executing Algorithm 3 starts exploring the cycle C. So, ai may be performing cautious walk or
marking walk. If ai is performing cautious walk, then the edge (u, v) ∈ C is chosen if it is marked
as (⊥,⊥) or (0 ◦A, 1), where the set A does not contain the IDs of the agents performing cautious
walk. So, in this case, an edge already traversed by any agent performing cautious walk is never
chosen again. On the other hand, if ai is performing marking walk, then it also chooses a port
marked as (⊥,⊥) or (0 ◦ A, 1), where A does not contain the ID of the current agent. So, in this
case as well, an edge already traversed by this agent is never explored again. Hence, no agent
explores a cycle infinitely. □

Lemma 14 MultiEdgeBHS ensures that any agent which is not stuck or waiting for a missing
edge can explore the remaining graph until it gets destroyed by the black hole or detects it.

Proof: As we have stated earlier, each agent is a t-state finite automata, where t ≥ αn∆ log∆. An
agent, while executing cautious ormarking walk, executes the underlying protocol of t−Increasing-
DFS. Now, as there are at most k dynamic edges at any round, so by Lemma 11, at most 2k among
2k + 3 agents can be stuck or waiting for these dynamic edges. This implies that at any round,
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there exist at least 3 agents that have a static graph to explore. Moreover, as per Theorem 6 and
Corollary 7 in [18], O(n log∆) bits of memory are required to explore any static graph of diameter
n and maximum degree ∆. So, the agents executing MultiEdgeBHS have more than sufficient
internal memory to explore any static graph (as they have O(n∆ log∆) bits of internal memory).
Further, it may be noted that O(n∆ log∆) bits of memory is sufficient for any agent executing
Algorithm 3, because, in this case as well, the agents store the ports of each newly explored edge
in Apathai

(there can be at most n∆ many such edges). So, each remaining agent can explore the
remaining graph until and unless it gets destroyed by the black hole or detects it. □

Theorem 12 Our algorithm MultiEdgeBHS ensures that it requires at most 2k + 3 agents to
successfully locate the black hole position on a dynamic cactus graph G with at most k dynamic
edges at any round.

Proof: By Lemma 11, we have shown that, at most 2 agents can be stuck or waiting due to a
dynamic edge. Now, at any round, there can be at most k dynamic edges, which implies that at
most 2k agents can be stuck or waiting due to these dynamic edges. Moreover, by Lemma 12, it
is shown that at most 2 agents can get destroyed by a black hole. Also, Lemma 14 ensures that
any agent, not stuck or waiting, can explore the graph until it either detects the black hole or gets
destroyed by it. Hence, the remaining agent among 2k + 3 agents can traverse along the graph
unobstructively. Whenever it finds a node adjacent to a black hole, i.e., along which a port is
marked unsafe (i.e. g2 value with respect to a port is 0) on the whiteboard, it waits for at most
two rounds. If no agent returns and updates g2 to 1, then this remaining agent correctly concludes
that the node with respect to the unsafe port is the black hole. □

Theorem 13 A set of 2k + 3 agents executing MultiEdgeBHS, locates the black hole in a dy-
namic cactus graph G within O(kn) rounds and O(k2n) moves, where at any round, G can have at
most k dynamic edges.

Proof: Let us suppose the dynamic cactus graph G contains k many cycles. Let these cycles are
denoted by Ci, where we define |Ci| = li for all i ∈ {1, 2, · · · , k} and li ≥ 3, li ∈ N. Since G
contains k cycles, this means at most k many edges can be dynamic at any round. This shows
that as per Theorem 12, to execute MultiEdgeBHS on G, 2k + 3 agents are required.

We first analyze the round complexity that our algorithm requires in order to explore the cycle
Ci ∈ G. Let us suppose α many agents (where α > 5) are currently at a node u ∈ Ci, where Ci

is yet to be explored. Now, as there are multiple agents at u, so they start performing cautious
walk, with the lowest ID agent (say aj1) becoming the explorer, i.e., the first agent to explore
an unexplored node. So, they start their movement, and without loss of generality, we assume
that their movement is along the clockwise direction. While moving, suppose they encounter a
missing edge (v, v′) ∈ Ci. In the worst scenario, this missing edge separates the explorer from the
remaining α − 1 agents. Now, as per our algorithm, the lowest ID agent (say, aj2) among α − 1
agents must wait for the return of aj1 after the edge (v, v′) reappears. So, this implies the edge
(v, v′) separates aj1 and aj2 from the remaining α − 2 agents. In this situation, the remaining
agents following Algorithm 3, must find an available port (i.e., a port which is either marked as
(⊥,⊥), or (0 ◦A, 1), where A does not contain the ID of these α− 2 agents). In order to find this
available port, they may need to backtrack as well if no ports are available at the current node
(i.e., from v′ in this case). Let us assume that these α − 2 agents need to eventually backtrack
to u, which we have previously considered to be the starting node of Ci. Next, from u there
exists an unexplored port in counter-clockwise direction. This can lead these α− 2 agents to start
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performing cautious walk in a counter-clockwise direction, with the lowest ID agent among them
(say, aj3) being the explorer.

In the meantime, when these α−2 agents have already moved from v′ towards u, the adversary
reappears (v, v′), which eventually makes aj1 and aj2 to reunite. After reuniting, they continue
exploring in a clockwise direction. On the other hand, suppose after the adversary reappears (v, v′),
it again removes an edge (w,w′) at some other round. Now, this edge (w,w′) can belong on the
path of exploration of these α − 2 agents, which again by the earlier argument can separate two
agents, namely aj3 and the lowest ID agent among the remaining α − 3 agents (aj4, say). Once
more, the remaining α − 4 agents (i.e., except aj1, aj2, aj3 and aj4) start finding an available
port. So, in the quest to find a black hole, a situation can arise again where these α − 4 agents
need to backtrack up to v′ until they find an available port. This shows that in order to separate
4 agents from a group of α agents, our algorithm requires O(li) rounds (more precisely, at most
4 · li rounds). Going by the same argument, if α = 2k + 3, then to separate them by reappearing
and disappearing edges in Ci, our algorithm requires at most O(α · li) = O(k · li) rounds. It may
be noted that this separation can be done for each k such cycles. So the total number of rounds
required to detect the black hole is: O(k ·

∑k
i=1 li) = O(kn), it is because O(

∑k
i=1 li) = O(n) (this

comes from a well known result, that the number of at most edges in a cactus graph of size n is

⌊ 3(n−1)
2 ⌋, refer to page 160 in [26]). Moreover, it may be noted that, at each round, at most 2k+3

agents move along a single edge. Hence the worst case move complexity is O(k2n). □

Remark 1 There is a fundamental difference between the algorithm presented in Section 4.1 and
that of the one presented in Section 4.2. It is because the algorithm presented for single dynamic
edge case is optimal in terms of agents. So, there exist certain scenarios where both a1 and a2 get
destroyed by the black hole. In these scenarios, the Leader, even knowing which agent has been
destroyed by the black hole and also the exact path to traverse in order to locate the black hole,
cannot do so. The reason is that after 2 agents are destroyed, only the Leader remains alive, and
the adversary still has the power to remove any one edge, so what it can do is that whenever the
Leader tries to follow the path to the black hole, the adversary blocks it. If it tries to visit through
a separate path, the adversary reappears the earlier edge and disappears a new edge such that it
is again blocked. This shows that the Leader can never reach the last reported node of one of the
agents which has been destroyed by the black hole and identify the exact black hole node. So, even
if the Leader understands the path to visit in order to locate the black hole, then in that case as
well the algorithm terminates.

On the other hand, the algorithm, explained for multiple dynamic edges case, does not face
these issues. As there are a sufficient number of agents present, so in this case, an agent can know
the black hole position only if it reaches one of the adjacent nodes through which another agent has
already been destroyed. So, the terminating agent knows the exact black hole node.

5 Conclusion

In this paper, we have studied the BHS problem in a dynamic cactus for two types of dynamicity.
We have proposed algorithms, lower bounds and upper bound complexities in terms of number
of agents, rounds and moves for each case of dynamicities. First, we have studied at most one
dynamic edge case, where we have shown that, with 2 agents it is impossible to find the black
hole, and correspondingly designed a BHS algorithm for 3 agents. Our algorithm is tight in terms
of number of agents. Second, we studied the case when at most k edges are dynamic. In this
case, we also propose a BHS algorithm with 2k + 3 agents. Further, we have proposed that it is
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impossible to find the black hole with k + 1 agents in this scenario. An interesting future work
may be to design an optimal algorithm in terms of a number of agents when the underlying graph
has at most k dynamic edges. Further, it will be interesting to find an optimal algorithm in terms
of complexity in both cases of dynamicity.
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