Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 30, no. 1, pp. 1-24 (2026)
DOI: 10.7155/jgaa.v30i1.3166

Engineering Hypergraph b-Matching Algorithms'

Ernestine Grofimann® ® Feliz Joos' ® Henrik Reinstadtler® ® Christian Schulz!

nstitute for Informatics
Heidelberg University, Germany

Submitted: July 2024 Accepted: January 2026 Published: January 2026

Article type: Regular paper Communicated by: Petra Mutzel

Abstract. Recently, researchers have extended the concept of matchings to the more
general problem of finding b-matchings in hypergraphs, broadening the scope of potential
applications and challenges. The concept of b-matchings, where b is a function that assigns
positive integers to the vertices of the graph, is a natural extension of matchings in graphs,
where each vertex v is allowed to be matched to up to b(v) edges, rather than just one. The
weighted b-matching problem then seeks to select a subset of the hyperedges that fulfills the
constraint and maximizes the weight.

In this work, we engineer novel algorithms for this generalized problem. More precisely, we
introduce exact data reductions for the problem as well as a novel greedy initial solution and
local search algorithms. These data reductions allow us to significantly shrink the input size.
This is done by either determining if a hyperedge is guaranteed to be in an optimum b-matching
and thus can be added to our solution or if it can be safely ignored. Our iterated local search
algorithm provides a framework for finding suitable improvement swaps of edges. Experiments
on a wide range of real-world hypergraphs show that our new set of data reductions are highly
practical, and our initial solutions are competitive for graphs and hypergraphs as well.

1The Code of this publication can be found at https://github.com/HeiHGM/Bmatching. The dataset and code
is archived at https://doi.org/10.5281/zenodo.18225669.
We acknowledge support by DFG grant SCHU 2567/8-1 and by the state of Baden-Wirttemberg through
bwHPC.
E-mail addresses: E.Grossmann@informatik.uni-heidelberg.de (Ernestine Grofmann) joosQinformatik.uni-
heidelberg.de (Felix Joos) henrik.reinstaedtler@informatik.uni-heidelberg.de (Henrik Reinstéadtler)
christian.schulz@informatik.uni-heidelberg.de (Christian Schulz)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v30i1.3166
https://orcid.org/0000-0002-9678-0253
https://orcid.org/0000-0002-8539-9641
https://orcid.org/0009-0003-4245-0966
https://orcid.org/0000-0002-2823-3506
https://github.com/HeiHGM/Bmatching
https://doi.org/10.5281/zenodo.18225669
mailto:E.Grossmann@informatik.uni-heidelberg.de
mailto:joos@informatik.uni-heidelberg.de
mailto:joos@informatik.uni-heidelberg.de
mailto:henrik.reinstaedtler@informatik.uni-heidelberg.de
mailto:christian.schulz@informatik.uni-heidelberg.de
https://creativecommons.org/licenses/by/4.0/

JGAA, 30(1) 1-24 (2026) 1

1 Introduction

Graph theory has long been a crucial discipline in the world of mathematics and computer science,
providing insights into numerous complex problems. One of the most well-known problems in graph
theory is the matching problem. A matching in a graph is a set of pairwise vertex-disjoint edges.
Computing (these) matchings in a graph is a ubiquitous combinatorial problem that has a myriad of
applications in various fields [36]. By now, maximum weight/cardinality matchings in graphs in the
internal-memory model have been extensively studied, leading to various breakthroughs. However,
finding maximum (weight) matchings in graphs in the internal-memory model is only the tip of
the iceberg. Recently, researchers have extended the concept of matchings to the more general
problem of finding b-matchings in hypergraphs, broadening the scope of potential applications and
challenges. A hypergraph is a natural graph extension in which edges can have more than two
endpoints and thus model more complex relationships. For example, online hypergraph matching
can be used to model auctions of advertisement campaigns [45]. Moreover, the concept of b-
matchings (with b: V' — N) is a natural extension of matchings, where each vertex v is allowed to
be matched with up to b(v) edges, rather than just one. The weighted b-matching problem then
seeks to select a subset of the hyperedges that fulfill the constraint and maximize the weight.

Many applications require the computation of a matching M with certain properties, like being
maximal (no edge can be added without violating the matching property), having maximum car-
dinality, or having maximum total weight »__,,w(e). For example, in multi-level (hyper)graph
partitioning, the problem of coarsening a (hyper)graph without losing the characteristics of the
original (hyper)graph in multi-level decomposition algorithms can be solved by computing a hyper-
graph matching problem [60]. Similarly, hypergraph b-matching plays a critical role in agglomera-
tive hypergraph clustering [56], where hyperedges are evaluated based on the likelihood of merging
adjacent clusters. In this context, the function b assigned to the vertices can serve as a mechanism
to regulate the pace of agglomeration. Other important example applications include allocating
resources to machines or auctioning goods [15], ride-sharing [58] and load balancing [38].

Currently, however, researchers have only developed approximation algorithms [55] for the
weighted case and practical implementations of heuristics to tackle the hypergraph matching prob-
lem are only limited to special classes (d-uniform and d-partite) of hypergraphs without weight [21].
One powerful technique for tackling NP-hard graph problems is to use data reduction rules, which
remove or contract local (hyper)graph structures to reduce the input instance to an equivalent
but smaller instance. Originally developed as a tool for parameterized algorithms [14], data re-
duction rules have been effective in practice for computing a (weighted) maximum independent
set [11, 48, 62] / minimum vertex cover [2], maximum clique [10, 65], and maximum k-plex [12, 41],
as well as solving graph coloring [65, 50] and clique cover problems [33, 63], among others [1]. How-
ever, recent work has only scratched the surface for weighted problems, with some examples being
[49, 30, 35, 67].

Our Results. In this work, we devise and engineer data reduction rules and new greedy
initial solution algorithms for the weighted hypergraph b-matching problem in general hypergraphs.
Furthermore, we present a local search for this problem. While our main focus is on the most general
weighted hypergraph b-matching problem, we also compare our greedy initial solutions on graphs
against solvers that are restricted to graphs. Our experiments show that we are able to obtain
better initial solutions by greedy heuristics of up to 10 %, a speedup of 6.85 for exactly solving
hypergraph b-matching, and quality improvements of up to 30 % by our local search algorithm for
the 1-matching case.

2 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

2 Preliminaries

Basic Concepts. A weighted undirected hypergraph H = (V, E,w) is defined as a set of n vertices V'
and a multiset of m hyperedges E with edge weights w : E — Rs, where each edge e € F is a subset
of the vertex set V. We define &(S) := {w(z) | © € S} for some subset S C E. We assume hyper-
edges to be sets rather than multisets; that is, a vertex can only be contained in a hyperedge once,
while multiple edges can contain the same set of vertices. Therefore, we write e for the set of ver-
tices of a hyperedge e and define |e| as the edge size. The maximum edge size is denoted by Ag :=
maxecple|.

We refer to the edges of a vertex by

E(v):={e€ E|ve€e} and for a (multi-)set pefinition Description

M of edges we define M(v) := E(v)N M. A R 1 -

vertex v is incident to an edge e if v € e. ¢ R8>0 eage welg t

The degree of a vertex v is |E(v)| and Ay := @(S)i={w(z) |z € S} edge weight on elements
g v E(v) edges adjacent to v

maxyey |E(v)| is the maximum degree. Two A

. . . maximum edge size
vertices u,v are adjacent if at least one edge A,

maximum node degree

is incident to both of them. Furthermore, two Af(e) :=J, .. E(v) closed neighborhood

. . vee
edges e, f are adjacent if eN f # 0. We call two p(v): V - N capacity
edges e, f linked if there are only vertices of de- 8 := maxb(v) maximum capacity
gree 2 incident to e and f. A set of edges Sin H blocked(e, M) exhausted vertices of e
is independent if for all distinct f,g € S f and
g are disjoint. We define N'(e) := {J,c. E(v) as Table 1: Notation overview.

the closed neighborhood of an edge. We extend

the weight function w to sets naturally, that is, w(F') := Y . pw(e). Given a subset V' C V, the
subhypergraph Hy is defined as Hy: := (V' {enNV’' | e € E:enV’' # 0}). For a set of edges
R of a hypergraph H = (V, E,w) we write H \ R short for (V, E'\ R,w). A hypergraph is called
d-partite if its node can be partioned into d sets such that no edge is adjacent to two vertices in
the same set. If each edge has the same number d of vertices, a hypergraph is called d-uniform. A
weighted undirected graph G = (V, E,w) is defined as a set of n vertices V' and a set of m edges
FE with edge weights w : E — R~(. In contrast to hypergraphs, the size of the edges is restricted
to 2. Throughout this paper, we use edges in the context of hypergraphs and graphs. An overview
of the notations can be found in Table 1.

(Hyper)graph b-Matching. A matching M C E in a (hyper)graph is a set of (hyper)edges
that are pairwise disjoint. The cardinality or size of a matching is simply the cardinality of the
(hyper)edge subset M. We call a matching mazimal if there is no (hyper)edge in E that can be
added to M. A mazimum cardinality matching M. is a matching that contains the largest possible
number of (hyper)edges of all matchings. A mazimum weight matching M,, is a matching that
maximizes w(M,,) among all possible matchings. In a perfect matching, every vertex is incident to
an edge contained in the matching. For a given function b : V' — N, the b-matching problem relaxes
the edge-disjointness constraint so that each vertex can be incident to up to b(v) edges. We define
b(v) as the capacity of vertex v and denote 8 = 5(b) = max,cy b(v). For b = 1, this is equivalent
to the standard matching problem. By blocked(e, M) :={v € e | |IM(v)| = b(v)} we refer to the
set of all vertices of an edge e where the capacity is exhausted, in other words, we cannot add
further edges to the matching. Similarly, we define blockedEdges(e) := U, cc.p)=1 E(v) \ {€} as
the edges blocked by an edge e. An edge e for which blocked(e, M) = () is called free. Finally, for
a finite set X C R let nmax(X, k) denote its k-th largest value if it exists, otherwise 0.

JGAA, 30(1) 1-24 (2026) 3

Related Work. There is a vast amount of literature for matchings in graphs [22, 53, 29, 44,
19, 9, 59, 18, 51, 20]. We refer the reader to the respective papers for more details. For results
in data reduction, we refer the reader to the recent survey [1]. We now cover related work closer
to our main contribution, which are problem variations of the most general weighted hypergraph
b-matching problem.

Graph b-Matching. The b-matching problem can be reduced to the simple matching prob-
lem according to Gabow [28] by substituting vertices, but this is impractical on large graphs. An
overview of exact approaches can be found in Miiller-Hannemann and Schwartz [54]. Grotschel
and Holland [34] use the cutting plane technique to tackle the problem. Based on belief prop-
agation and assuming a unique solution exists, Huang and Jebara [39] developed an exact al-
gorithm for the b-matching problem. Mestre [52] proved that the greedy algorithm is a half-
approximation and generalized the PGA algorithm by Drake and Hougardy [18] to achieve an
O(Bm) time half-approximation. The LD algorithm was generalized to b-matching by Georgiadis
and Papatriantafilou [31] in a distributed fashion. Khan et al. [43] introduced an approxima-
tion algorithm that can be executed in parallel called bSuitor, inspired by the results of Manne
and Halappanavar [51] for normal matchings. Ferdous et al. [25] consider parallel algorithms for
b-matchings with submodular objectives.

Hypergraph Matching. According to Hazan et al. [37], the maximum d-set packing problem
and, therefore, the matching problem on d-partite, d-uniform hypergraphs can be poorly approx-
imated, and there is no approximation within a factor of O(d/logd). In general, as proven by
Hastad [40], the matching problem in non-uniform hypergraphs and the maximum independent
set problem are NP-hard and there is no n'~¢ factor approximation unless P = NP. There is a
polynomial (k + 1 + €)/3-approximation algorithm for k-set packing, and therefore the matching
problem in d-uniform, d-partite hypergraphs proposed by Cygan [13] using local search. Further-
more, Fiirer and Yu [27] improved these results with respect to the run-time. Dufosse et al. [21]
introduce several heuristics to reduce the complexity of the uniform problem by extending the two
well-known Karp-Sipser [42] rules to hypergraphs. Dufosse et al. [21] present the idea of using
the Sinkhorn-Knopp algorithm [61] for the normalization of incident tensors as a third selection
rule. They perform practical experiments, but are limited to only d-partite, d-uniform hypergraphs
with uniform edge weights. Anneg et al. [5] give an improved optimality bound for LP-relaxation
for the non-uniform case. This extends to b-matching. For the weighted k-set packing problem
Thiery and Ward [64] show improved approximation bounds of 1.786 for k = 3. Recently, Neu-
wohner [55] showed how to prove an approximation threshold lower than g by a factor in Q(k).
Both approaches are improvements on long-standing local search ideas presented by Berman [7]
for maximum weight independent set in d-claw free graphs.

Hypergraph b-Matching. The b-matching cardinality problem in hypergraphs has also
no approximation scheme according to El Ouali and Jéger [24], even if the degree of vertices
is bounded. Similarly, El Ouali et al. [23] showed that in k-uniform hypergraphs for the cardinality
problem with 2 < b < k/log k, there is no polynomial-time approximation within any ratio smaller
than Q(ﬁ). For weighted b-matching on k-uniform hypergraphs Krysta [47] gave a greedy k+ 1
approximation, while Parekh and Pritchard [57] achieve a (k— 1+ ;) approximation algorithm via
linear programming. Koufogiannakis and Young [46] developed a k-approximation in a distributed
fashion for weighted k-uniform hypergraphs. We are not aware of any practical implementation
of those algorithms.

4 GroBmann et al. Engineering Hypergraph b-Matching Algorithms

3 Hypergraph h-Matching Algorithm

We now give an overview of our algorithm to solve the general weighted hypergraph b-matching
problem. In Section 3.1 we introduce the exact integer linear program for this problem. Our
approach shown in Algorithm 1 starts by using exact data reductions devised in Section 3.2 to
reduce the instance size. The reduced instances can then be used as input to the exact solver
(based on the ILP) or our heuristic algorithm. Our heuristic algorithm computes a good initial
b-matching using a greedy strategy, see Section 3.3. In Section 3.4 we introduce a local search,
that improves solution quality by swaps. Once a solution is computed on the reduced instance we
reconstruct it to a solution for the original instance by unfolding the reductions in reverse order.

3.1 Optimal Solutions

To solve the b-matching problem to optimality, either on the original or exactly reduced hypergraph,
we use the following integer linear program:

maXZase cw(e) st.YveV: Z ze <bv) z.€{0,1} VeeE. (1)
ecE ecE(v)

For every edge e € E, the integer linear program has a variable x., which is set to z. = 1 iff
the edge e is part of the matching and zero otherwise. The maximization term is the sum of the
weights of the selected edges. The main constraint restricts the number of selected edges to satisfy
the capacity at each vertex in the original hypergraph.

3.2 Exact Reduction Rules

Only few reductions are known that can be used for the hypergraph matching problem [21]. These
data reductions are based on Karp-Sipser rules and are a) not applicable to weighted problems
and b) not applicable to the more general b-matching problem in hypergraphs. However, especially
for large instances, applying exact data reductions is a very important technique to decrease the
problem size. In general, reductions allow the classification of edges as either (1) part of a solution,
(2) non-solution edges, or (3) deferred, i.e., the decision for this edge depends on additional
information about neighboring edges that will be obtained later. We denote by K the resulting
reduced hypergraph, where no reduction rule applies anymore. In the following, we introduce a
large set of new reductions for the weighted b-matching problem. An overview over all reductions
can be found in Table 2. We now propose our first data reduction rule, that is the removal of
abundant vertices. Intuitively, if the degree of a vertex is smaller than or equal to its capacity, the

Algorithm 1 b-Matching Algorithm.

1: procedure BMATCHING(H = (V, E,w))
20 K, Mezact: Efotdged < Reductions(H)
3: Mgernel < Greedy(K) or ILP(K)
4.
5

Mpost — Unfold(H, Efolded7 MKernel)
return Mea:act U MK@T'nel U Mpost

JGAA, 30(1) 1-24 (2026)

Name

Condition

Action

Complexity

Abundant Vertices
(AV)

[E(v)] < b(v)

Remove v

o(vy)

Neighborhood
Removal (NR)

w(e) is larger than sum
b(v)-heaviest neighbors

e is in the solution

O(min (nB,m)Ag +
nAy + log Ay)

Weighted Isolated
Edge Removal
(WIER)

e heaviest edge and
neighbors share common
b(v) = 1 vertex

e is in the solution

O(min (m,n)A%)

Weighted Edge
Folding (WEF)

e has neighbors N
independent with b(v) =

fold e and NNV into €’
with

O(min (m,n)Ag)

5

w(e') = w(N) —wle),
defer if e or N is in

lw(e) > w(N) —mingen f

solution

Weighted Twin e1, e2 non adjacent, same Combine e; and ez O(mAgAv +
(WT) neighbors N that are into one edge and mlogm)

independent and apply WEF or NR

w({e1,e2}) >

w(N) —mingen w(f)
Weighted w(e) > w(f) and e C f Remove f O(mAEgAyv log Ay)
Domination (WD)

Table 2: Overview over all reductions presented in this paper.

vertex can be removed. A vertex v € V is considered abundant if its capacity b(v) is equal to or
exceeds its degree.

Reduction 3.1 (Abundant Vertices (AV)) Any abundant vertex can be removed from the hy-
pergraph. Moreover, any edge that becomes empty in the process can be included in an optimal so-
lution.

Proof: An abundant vertex v can be removed from the hypergraph as v does not restrict the
selection problem, that is, all incident edges of v could in principle be contained in an optimum
matching as the capacity is larger than the number of adjacent edges. Thus, we can remove v from
the hypergraph. If there is an edge e € E, only containing v, it is part of an optimal solution, since
it cannot be blocked at any other vertex. O

Reduction 3.2 (Neighborhood Removal (NR)) An edge e € E is in an optimal matching
Mopt if € has a higher weight than the total sum of weights of the b(v)-th heaviest edge (excluding
e) in each of its vertices v: w(e) > >, ., nmax(w(E(v) \ {e}),b(v)).

Proof: Let M,,; be an optimal solution and assume e ¢ M,y,,. For each v € e with b(v) =
| Mopt (v)| (conflicting vertices), we remove the lightest incident edge that is in the solution. Call this
matching M’. It follows for all vertices v € e: |M'(v)| < b(v). This implies that M"” = M’ U {e}
is also a valid matching. We now show w(M") > w(Mp:). Let €] be a lightest edge removed
from M, at v. Its weight w(el) contributing to M., is smaller or equal to the b(v) heaviest
edge incident to v, since b(v) edges have been in M,y;. Thus, w(e)) < nmax(w(E(v) \ {e}),b(v)).

6 GroBmann et al. Engineering Hypergraph b-Matching Algorithms

this case the blue ones(10 > 8). There exists an optimal solution that contains the orange edge.
Weighted Isolated Edge Removal (WIER): All edges overlap with each other and have a

has the highest weight of the clique.

The weight of all edges removed from M,,; is smaller or equal to w(e), if the equation holds. This
yields w(M") > w(Mp). O

Figure 1 (NR) shows an example of Reduction 3.2 and in Algorithm 2 a naive algorithm is
presented. We iterate over each vertex and check up to b(v) incident edges. For each edge e,
we calculate the sum of weights it needs to dominate and break early if the condition cannot
be satisfied anymore. If we find a candidate, we can include it as part of an optimal matching
and update the hypergraph and capacity accordingly. The time complexity for this algorithm is
O(min(nfB,m)Ag + nAy log Ay). At each vertex, we have to check up to 8 edges, and using a
map for skipping already checked edges, we have in total up to O(min(n3,m)) candidates. The
nmax operation is implementable in O(1) if the edge vector in each vertex is sorted. This initial
sorting requires O(nAy log Ay) steps. We can find multiple reductions in the same pass.

Reduction 3.3 (Weighted Isolated Edge Removal (WIER)) Lete € E be an edge that has
the heaviest weight among its neighbors: w(e) > max e p(e) w(f). If for all f,g € N(e) there exists
a common vertex v € f N g with capacity b(v) = 1 then e is part of an optimal solution.

Proof: Because e and all its adjacent edges contain at least one vertex with capacity 1, we
can select at most one edge in A (e) while excluding all other edges in this neighborhood. An
optimal solution M,,; must contain at least one edge of N (e), otherwise e can directly be added
yielding a heavier matching which is a contradiction to the optimality of the matching. Given
any optimal solution M, containing a neighbor f then M., \ {f} U {e} is also optimal since
w(e) = maxen(e) w(f)- O

A hypergraph where this reduction is applicable, is depicted in Figure 1 (WIER). In Algo-
rithm 3, we give a procedure to detect isolated edges and apply the reduction efficiently in detail.
At each vertex we have to scan the heaviest edge, but only if it has not been scanned before. We si-
multaneously check whether it has maximum weight at each other vertex and collect its neighbors.
After checking if the weight condition is satisfied, we mark each edge incident to the currently
scanned edge also as scanned. Because all neighbors weigh less than the currently scanned edge,
they cannot be candidates themselves for this reduction at other vertices later. For neighbors at
capacity 1 vertices, we save the position we scanned this edge in a bit mask. We add neighboring

JGAA, 30(1) 1-24 (2026) 7

have exactly two independent non-adjacent neighbors (blue), that they dominate one by one, but
not in total. The four edges can be folded and later be decided on. The Weighted Edge Folding is

has a higher weight, and they share a common vertex with capacity 1.

edges at higher capacity vertices in a vector IN;. Afterwards, we check if all neighbors are incident
to a vertex with capacity 1 (property S) and if all pairs have a (blocking) common vertex of ca-
pacity 1. We use the bit mask to check, if all edges in N; are incident to a capacity 1 vertex. This
greatly reduces the number of checks required. This is accomplished by a bitwise and of the masks
in Np. If the result is zero the edges have no common capacity 1 vertex with e, and we have to
do a detailed check. The overall complexity of this algorithm is O(min(m,n)Ar?) because in the
worst case, we would collect Ag distinct neighbors at a vertex with b(v) = 1 that we have to check
for a common vertex.

The previous data reductions work by removing vertices (respectively, edges) from the graph.
The following reduction modifies the structure of the hypergraph and postpones some decisions to
a later point.

Reduction 3.4 (Weighted Edge Folding (WEF)) Let ¢ € E be a edge and N = N(e) \ {e}
be the edges adjacent to e. Suppose the following holds:

1. Fach edge in N is linked to e via a vertex v with capacity b(v) =1,
2. N is independent, that is the vertices in all distinct f,g € N are disjoint,

3. The Neighborhood Removal is not applicable as w(N) > w(e), but it holds w(e) > w(N) —
minyen w(f)

then we can “fold” e and N into a new edge €', inducing an altered hypergraph H'. The hyper-
graph H' contains a new edge ¢’ instead of N and e with w(e') := w(N) —w(e) and e’ = ey f-
Let My, be the optimal solution for H'. The weight of the mazimum b-matching in H is
w(M,,;) +w(e). If the matching My, contains e’ then N is contained in an optimal solution

for H. Otherwise, e is contained in a maximum matching in H.

Proof: We first show, that either e or all edges in NV are contained in a maximum b-matching M ;.
Assumption 2 guarantees that all edges in IV are possible candidates for M,,:. Assumption 1 allows

8 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

Algorithm 2 Neighborhood Removal

1: procedure NR(H = (V, E,w),b)

22 C+0

3 for v € V do

4 checked < 0

5 for e € E(v) ordered by weight desc do
6: checked < checked + 1

7 if checked > b(v) then

8: break {only the b(v) heaviest}

9: if e € C then

10: continue

11: C + CU{e}

12: wqg <0

13: for w € e do

14: wq wg +nmax(@ (E(w) \ {e}),b(w))
15: if wg > w(e) then

16: break {Must dominate}

17: if wg < w(e) then

18: W (v) = b(v) —1 ifvee

b(v) else

19: R + {e} UblockedEdges(e)
20: yield (H \ R,b'), {e},0

Algorithm 3 Weighted Isolated Edge Removal

1: procedure WIER(H = (V, E,w),b)
2: C+0

3 for v € V with b(v) =1 do
4 € < argmaX.¢ g(y)w(e)
5 if e € C then
6: continue
7: Ny + {} {map for faster neighbor check}
8: Nl — @
9: count < 0
10: B+ True
11: for w € e do
12: if w(e) < maxsep(w) w(f) then
13: B < False {exit, edge too light}
14: break
15: for f € E(w) do
16: C+ CU{f}
17: if b(w) =1 then
18: for f € E(w) do
19: Np[f]+ = 2¢°vnt {binary encode}
20: count < count + 1
21: else
22: N; (—NZUE(M))
23: S« VfeN;: Nb[f] >0 {Check N; ng}
24: for f,g € N, do
25: if Ny[g]&Ny[f] = 0 then
26: if Awegn f:b(w)=1 then
27: B < False
28: break {no shared vertex with cap. 1}
29: if SA B then
30: yield (H \ {Np},b), {e},0
31: else

32: C + CU{e} {Exclude at future vertices}

Algorithm 4 Weighted Edge Folding

1: procedure WEF(H = (V, E,w),b)

»

17:
18:
19:
20:
21:

C+0
for v € V with b(v) =1 and |E(v)| =2 do

for e € E(v) with |e] =2 do
if e € C then
continue {skip, edge already checked}
C+ CuU{e}
c+ True
N«
for w € e do
if |[E(w)| > 2V b(w) > 1 then
¢ + False {edge not suitable}
else
N+ NUE(w)\{e}
if ¢ A N independent then
if w(N) > w(e) Amaxe, en wlen) < w(e)
then
€n UEEN €
W —w
w'(en) + w(N) —w(e)
E' '+ E\(NU{e})U{en}
yield ((V, B',),b),0, {e}

Algorithm 5 Weighted Twin

1: procedure TWINREDUCTION(H = (V, E,w),b)

!\?

C+0
for v € V with b(v) =1 and |E(v)| =2 do

X0
for e € E(v) do
if e € C then
continue {skip, already checked}
C+ CuU{e}
candidate <— True
neighbors + ()
for w € e do
if |w| > 2V b(w) > 1 then
candidate < False
else
neighbors < neighbors U E(w) \ {e}
if candidate then
X + X U{(e,neighbors)}
for N,e; # ez : (e1,N), (e2, N) € X do
if N is independent then
én UeGN €
w —w
w'(en) < w(N) —w({e1,e2})
B (B \ {er,e2}) U fen}
H' = (V,E' o)
if w'(e’) > w(N) then
yield NR(H',b)
else if w'(e/) > w(N) — mineen w(e)
then
yield EdgeFolding(H’,b)

JGAA, 30(1) 1-24 (2026) 9

either e or any edge of N to be in a matching. Let F' = N N .M, be a part of an optimal solution,
we show that F'= NN or e € M,,;. We now assume that F' is nonempty and a strict subset of N,
that is F/ C N. Due to Assumption 1 this implies e ¢ M. Since F' is a strict subset of N and
we have w(e) > w(N) — mingen{w(f)} > w(F) (Assumption 3), we could swap it for e in My,
and gain a better result. This is a contradiction to M,,; being optimal and F' C N being a strict
subset. If none of the edges in IV are part of M, e is free and we can include it in the matching.

The vertices of ¢’ in H’ correspond to those of N in H. The vertices of e in H are only contained
in e’ in H" without further neighbors. Therefore, if e’ is not in M, the edge e must be in an
optimal solution for H and otherwise IV is included in an optimal solution for H.

The formula for the weight is correct by the following case distinction. When e’ is not contained
in M’, e is free in the corresponding matching M and must be included in the optimal matching
for H. Otherwise the weight of M’ contains w(e’) and thus the optimal solution in H has weight
w(M")+w(e) = wM'\{e'})+w(e)tw(e) = wM\{e'})+w(N)—w(e)+w(e) = w(M'\{e'})+w(N).

|

Algorithm 4 finds edges with two adjacent edges to fold in order to reduce the problem size.
Only edges of size two are considered for complexity reasons. The complexity of this algorithm
is O(min(m,n)Ag), because we have to check for O(min(m,n)) candidates if the two neighbors
are independent which requires O(Apg) checks. Without constraining the edge size, it would be
O(min(m,n)AyAg) since we would collect more neighbors. We collect the neighbors on the two
vertices with capacity 1 and check if they are independent. If so, we merge the independent
neighboring edges and replace the neighbors and e by this merged e,, with a new weight. Figure 2
shows a (sub-)hypergraph where this reduction is applicable.

The following data reduction groups non-adjacent edges with the same independent neigh-
borhood together. Afterwards, we can directly check again if Neighborhood Removal (NR) or
Weighted Edge Folding (WEF) applies.

Reduction 3.5 (Weighted Twin (WT)) Suppose ey, ez € E are non-adjacent. Let L; = N (e;)\
{ei} be the set of neighboring edges that are linked with e; via a vertex with capacity of 1. Assume
each set L; is independent, L1 = Lo and w({e1,e2}) > w(L1) — minser, w(f) holds. Then, we
can solve the problem on a modified hypergraph H' of H, replacing ei,es with an edge € with
w(e) =w(er) + wlez) and e’ = ey.

Proof: Since L1 = Lo and all edges in Lo are linked via a capacity 1 vertex we do not need to
include the vertices in e;. Because any capacity constraint for an edge in Lo at a vertex in es
is also present at a vertex in e;. If w(e’) > w(Ly) the new edge ¢’ is weighing more than all of
its neighbors combined, satisfying the condition of the Neighborhood Removal (NR). Otherwise,
w(e’) > w(Ly) —min,er, w(n) still holds and the properties for the Weighted Edge Folding (WEF)
are satisfied. Indeed, the neighbors L; and e; are linked, L; is independent and the weight
inequality for Assumption 3 hold. |

Figure 2 (WT) shows two edges that can be folded in such a way. An algorithm for detecting
twins is listed in Algorithm 5. The algorithm first identifies all possible candidates that have only
degree two vertices. Afterwards, we identify twins and either apply the Neighborhood Removal and
add them directly to the matching or apply the Edge Folding. In this case, they only dominate their
neighborhood except for one edge, and we can merge the edges and assign a new weight to the new
combined edge. In order to quickly find identical neighborhoods, we have to sort the candidates by
neighborhood size. Each independence check requires O(AgAy) checks. The overall complexity

10 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

Algorithm 6 Weighted Domination
1: procedure WD(H = (V, E,w),b)

2: C+ 0

3: for v € V with b(v) =1 do

4: for e, € E(v) ordered by weight desc. do
5: if e, € C then

6: continue

7 C «+ {es}

8: D+ 0

9: for e € E(v),w(es) > w(e) do

10: if |e| < |es| A hash(e, es) then

11: D <+ DuU/{e}

12: break {Stop collecting candidates}
13: for w € e, do

14: D+ {ceD|wec}

15: E' <~ E\D

16: return ((V,E',w),b),0,0

of this algorithm is O(mAgAy +mlogm). The algorithm for Weighted Edge Folding (WEF) and
Weighted Twin (WT) share common steps and could be combined.

The original domination proposed by Fomin et al. [26] for the maximum independent set rea-
soned that a vertex v having neighbors N, is superfluous if there is a vertex w with subset neigh-
bors N,, C N,. We extend this idea to edges in a weighted hypergraph.

Reduction 3.6 (Weighted Domination (WD)) Let e, f € E be two edges with w(e) > w(f).
Suppose e is a subset of f and there is a vertex v € e C f with capacity b(v) = 1. Then, the edge f
can be removed from the hypergraph.

Proof: Since there is one vertex v with b(v) = 1 in en f the edges e and f cannot be both in the
maximum matching at the same time. Now assume an optimal solution M,,; containing f. Since
e is a subset of f and it holds w(e) > w(f), in any optimal solution e can replace f. Thus, f can
be removed from the hypergraph. |

Figure 2 (WD) visualizes an example of this reduction, and in Algorithm 6 we show an im-
plementation in pseudocode for finding a Weighted Domination. We iterate over each vertex and
its incident edges in descending weight. We check if the following edges satisfy the natural size
constraint and, using a simple hash function, check for the subset criterion. After collecting all
candidates, we check which of these candidates are super sets and remove them from the graph.
The complexity with the shown subset check is O(m(AgAy log Ay)) if we do not have a hashing
function. For each edge, we can collect at most Ay — 1 candidates. For each candidate, we have
to check up to Ag vertices of e that they are indeed incident requiring log Ay comparisons if
the list is sorted. By multiplying the id of vertices contained in an edge, storing these results in
a wide integer and using the modulo operator to check for division without remainder, we can
reduce the time complexity to O(m(Ag + Ay)) in the ideal case. This requires a growable wide
integer resulting in larger memory cost, so using a hash function, like multiplying only the k least
significant bits of the ids, seems reasonable. If B is the width of the wide integer and we want to
use the k least significant bits, we can hash all edges if Ap < (£1log(2) — 1) holds.

JGAA, 30(1) 1-24 (2026) 11

3.3 Initial Solutions

We now present our algorithms to compute initial solutions. Roughly speaking, we use a greedy
algorithm that sorts the edges by a priority function and adds free edges in this order. Note that
the most intuitive order of adding heavy edges first may yield poor results. This is because any
edge may block a wide range of other edges from being added, for example, if the current edge
has many vertices. Thus, other priority functions are necessary. The core idea of our algorithm
is to assign each edge a positive priority value and then add edges greedily in descending order of
their priority (edges with the highest priority are added first). To overcome the problems of the
weight priority function explained above, we scale the weight function with the number of their
incident vertices and with the capacity at each vertex of the edge. This ensures that we select
edges first that a) have a high weight, b) do not block a lot of other edges, and c) have vertices
with a lot of remaining capacity. We scale by capacity heqp(e) := w(e) [],. b(v), inverse edge
size hyin(€) 1= “’l(:i), the combination of both hypip cap(€) := “’l(:‘)

and inverse vertex degree hscqred(e) := w(e) [],c. %. This results in four algorithms cap, pin,

pin,cap and scaled, defined by the general framework and the respective objective function.

veEe

[I,c. b(v) and finally the capacity

3.4 Local Search

We now give a brief overview over our local search algorithm based on swapping. More detailed
pseudocodes for the algorithms can be found in Algorithm 7. A swap consists of removing one
edge e in favor of two edges s1, so that become unblocked by the removal of e. A swap is feasible
if the combined weight of s1, so is greater than the weight of e.

Swapping Algorithm. In our swapping algorithm, we are searching for a matched edge and
two non-matched adjacent edges that are only blocked by the matched edge and can be admitted
to the matching simultaneously without conflict.

(1,2)-Swaps. For each edge in the matching e, we first collect all neighboring edges that
satisfy the condition of being only blocked by e. In a second step, we identify a pair of edges
that can be added without conflict when e is removed from the matching and also constitute an
improvement. If we find such an edge pair, we include them in the matching and remove the edge
e from it. After a successful swap we maximize, i.e., add all free edges to the solution.

Perturbation. The swapping algorithm ends up in a local optimum if executed repeatedly.
Therefore, we propose to perturb the solution (forcing hyperedges into the solution) similarly to
Andrade et al. [4] who do this for the independent set problem. The geometric distribution and the
number of unmatched edges forced into the solution are directly adopted from Andrade et al. [4].

Iterated Local Search. The whole process is driven by the iterated local search. As long
as the stopping criterion, in our case, a number of unsuccessful searches is not met, the current
solution M gets perturbed and then exhaustively improved by (1, 2)-swaps. We call the obtained
solution M. A better solution automatically becomes the new starting point for the next iteration.
Similarly to Andrade et al. [4], we allow with a low probability” a slightly worse solution to be
accepted as starting point of our next local search.

1
2
(@ Mpest) = w(Ms))(W(M) = w(M)

12 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

Algorithm 7 Local Search
1: procedure ONETWOSWAP(H = (V, E,w), M)
2: force M do
3 L0
4 for p € cdo
5: for e € E(p) \ M do
6: if blocked(e, M) C blocked(c, M) then
7.
8
9

I+ 1U{e}
if |I| > 1 then
: O (z) := blocked(z, M\ {c} U{z})

10: if Jz,yel:d(y)Nd(x) =10

and w(x) + w(y) > w(c) then
11: M — M\ {c}U{z,y}
12: M <+ maximize(M)
13: procedure EXHAUSTIVEONETWOSWAP(H, M)
14: while solution improved do
15: OneTwoSwap(H, M)
16: procedure ILS(H = (V, E,w), M)
17: Mpest — M
18: while stopping criterion not met do
19: M., « Perturb(H, M)
20: ExhaustiveOneTwoSwap(H, M)

1

P Mmoo) @ (M)~ (ML)
22: if w(M,) > w(M) then

23: M = M,

24: else if z € U(0,1) < P then
25: M~ M,

26: if Ww(M) > w(Mpess) then
27: Myest < M

28: return My

4 Experimental Evaluation

Methodology. We implemented our algorithms and data structures in C++17. We compiled
our program and all competitors using g++-12.1 with full optimization turned on (-O3 flag).
In our experiments, we have used machines provided by a cluster, equipped with two 20-core
Intel Xeon Gold 6230 processors running at 2.10 GHz and having a cache of 27.5 MB. Each machine
was either equipped with 96 or 192 GB of main memory. In general, we perform experiments with
uniform capacities of 1, 3, 5 and random capacity. Random in this context means, that we assign
each vertex a capacity uniformly distributed between 1 and its degree. We run the experiments 10
times and take the arithmetic mean as result per instance. We use SCIP [8], one of the fastest
open-source ILP-solvers, as a black box solver for ILPs. Deterministic experiments were only
executed once iff the results (size, weight) and not the time was measured. The experiments were
scheduled in parallel up to the numbers of physical cores of the machine, and the number of cores
used by SCIP concurrently was limited to one. Each experiment run has a memory budget of
60 GB per instance and 140 GB in total. For comparison, we are using performance profiles as

JGAA, 30(1) 1-24 (2026) 13

e-weight random(100), capacity rnd e-weight random(100), capacity rnd
1.0 1.0
" g w o e ———
508 08
£ / S
206 — 2 06
a0 2 0.
) / cap = === hsuitor
£ 04 e pin £ 04 cap
£ / pin,cap 2 < pin
£ 0.2 scaled £02 | in,ca;
& & pin,cap
weight scaled
0.0 0.0
1.0 0.9 0.8 0.7 1.000 0.975 0.950 0.925 0.900 0.875
T T

(a) Quality results for the different proposed priority (b) Performance profile for b(v) = rnd on graph in-
functions on 488 hypergraphs. stances selected by Khan et al. [43].

Figure 3

proposed by Dolan and Moré [17]. We plot which fraction of instances is solved by an algorithm to
an objective value of at least Tw(M™*), 0 < 7 < 1 and M* being the best matching reported by all
heuristics. Thus, having a fraction near 1.0 for a high 7 is considered a good performance because
a high fraction of instances is then solved to near optimum. Similarly, we are using these profiles to
compare execution duration of approaches. Here 7 is greater than 1; for each instance, the time is
marked as a multiple of the minimum time needed to solve the instance exactly by any approach.

Instances. We use a wide range of instances collected from various sources to evaluate our
algorithms and to compare against state-of-the-art competitors. We use the Mpyg dataset of
hypergraph instances, provided by Gottesbiiren et al. [32] containing general hypergraphs. It con-
sists of 488 instances for four different use cases of hypergraphs, including 18 for circuit design
(Ispd98,[3]), 10 routability-driven placement (Dac2012,[66]), 184 instances derived from general
matrices from the Suite Sparse Collection (SPM,[16]) and 276 instances derived from SAT solving
problems (SAT,[6]). When comparing against state-of-the-art b-matching algorithms in graphs, we
use the 10 graphs from the Florida Sparse Matrix Collection by Davis and Hu [16], as proposed by
Khan et al. [43] who also propose the algorithm that we compare against.

Edge Weights & Capacity. For general experiments, we assigned weights uniformly at
random to the edges between 1 and 100. If we use random capacity, we sample for each vertex the
capacity uniformly at random between one and its vertex degree.

Overview. The section is organized as follows. First, we compare our greedy priority func-
tions from Section 3.3 on hypergraphs. Furthermore, we compare our results with those of the
b-matching graph algorithm bSuitor by Khan et al. [43]. Then, we study the effectiveness of our
exact data reductions on SCIP [8], a state-of-the-art open-source ILP solver. Finally, we bench-
mark our local search and compare against the competitors by Dufosse et al. [21] on 6-partite,
6-uniform hypergraphs.

14 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

Reduction Constraint Default
Neighborhood Removal (NR) edge size 10
Weighted Isolated Edge Removal (WIER) edge size 8
Weighted Isolated Edge Removal (WIER) clique size 80
Weighted Domination (WD) subedge size 6
Weighted Domination (WD) candidate 6
Weighted Twin (WT) edge size 4
All iterations 10

Table 3: Parameter constraints of the reductions.

Priority Functions/Initial Solutions. The priority functions for this experiment are de-
fined in Section 3.3. We test them on the general hypergraph data set. In Figure 3a, the results are
shown for random capacity. For reference, we include the simple greedy weight function without
any scaling as a baseline. For uniform capacity of 1, the pin,cap and pin compute the same best
result since their objective function for this capacity is the same. Our other two proposals are
nearly identical to the simple greedy weight algorithm. For a higher uniform capacity of 3 or 5 and
random capacities, the quality of all of our proposals except for the pin is worse than the weight
function. The pin function finds the best solution in around 70 to 80 % of the cases and requires a
maximum 7 = 0.9 across all capacities. Since we only need to precompute the values of pin once,
the running time of pin only slightly exceeds the running time of the simple weight algorithm, on
average by 0.4% of the weight function, which we consider negligible.

We conclude that pin is a natural good choice to compute initial solutions on general hyper-
graphs. The other proposals are not viable since they yield worse results than the greedy weight
algorithm.

Graph b-Matching. In order to show the versatility of our approaches, we also tested them
on normal graphs and compared our results to those by Khan et al. [43]. We compiled and linked
their program into our benchmark suite. The results of this first experiment are shown in Figure 3b.
The competitor bsuitor by Khan et al. [43] is run in comparison to our approaches introduced in
Section 3.3. Because of the fixed edge size of two in normal graphs and the capacity being static
in all but one experiments, all but one function from Section 3.3 report the same results. Only the
scaled approach differs by taking the number of incident edges into account and yielding a better
result. We can report an improvement of up to 2 % over bsuitor on random capacity and up to
7 % on capacity 1. The running time of bsuitor on a single core in sequential cannot be matched
by our algorithms on graphs, these are on average 3.19 times slower. This is however expected
since our data structure supports hypergraphs and that introduces an additional overhead when
only considering graphs.

Reductions and Speedup. In this experiment, we investigate how well our reductions can
speedup solving b-matching problems with SCIP [8] as an open source black-box solver. As some of
the data reductions can be expensive, we restrict some parameters in the search. The parameters
we use can be found in Table 3. We empirically chose the parameters to balance between the
reduction run time and success rate. The most sensitive tuning parameters were the ones for the
Weighted Domination, since allowing bigger edges causes more checks to be needed. We apply

JGAA, 30(1) 1-24 (2026) 15

Instances # Edges (b.) # Edges # Vertices (b.) # Vertices Avg Speedup Geom. Speedup

Type b(v)
ISPD98 1 15 66149,73 6380247 61454,80 5157580 1,48 1,43
3 12 54146,83 34399,25 4981942 2114642 1,10 1,02
5 16 84121,75 2744381 78844,19 1568144 1,71 1,65
rnd 18 87241,94 57598,33 8219444 26716,67 2,50 2,48
SPM 1 76 90291,61 83653,75 66371,99 30211,46 2,60 1,74
3 85 106133,60 88644,16 93424,06 42218,27 1,64 1,21
5 95 121452,67 62287,36 109070,25 19574,86 2,86 1,57
rnd 149 101263,43 86516,18 91509,01 53173,65 1,52 1,29
dac2012 3 9 870493,78 339460,11 883178,44 267180,00 3,14 2,96
5 10 91278800 58781,30 924053,70 24115,70 7,12 6,66
rnd 10 912788,00 456 581,90 924053,70 143152,90 6,98 6,85
sat14 1 88 174182,83 171749,31 13274641 121557,12 2,61 1,50
3 154 378729,73 21001055 980506,36 83418,93 3,71 2,18
5 164 51516857 226712,89 1010003,43 34002,97 5,77 3,00
rnd 155 281539,58 211 308,96 302720,74 76921,45 2,38 2,05
all 1 179 129511,16 125299,78 98590,93 76909,13 2,51 1,59
3 260 291653,62 166 708,88 644174,86 73436,33 2,89 1,75
5 285 373682,38 154825,18 654400,99 27818,10 4,62 2,40
rnd 332 209111,81 154356,59 214688,53 65536,53 2,14 1,74

Table 4: Removal effectiveness and speed up broken down for classes of hypergraphs. We report
the average edge and vertex count per class. Only exactly solvable instances are considered.

our search algorithms for the reductions up to ten times and pass the resulting core problem to
SCIP. We then compare its total running time to the time it takes to solve the whole (hyper-)graph
without applying reductions. The running time of the program with reductions includes the time
to find and apply the data reductions. We set a timeout for the SCIP computations of 1800
seconds and test it on uniform capacities of 1, 3 and 5, as well as on random capacity. We ran
this experiment once to determine which instances are solvable in the given time with any of these
capacities and repeated the experiment on the solvable subset of 395 hypergraphs ten times.
Only instances on which SCIP returns the optimum within the time limit are considered in the
time performance profile for random capacity shown in Figure 4b, similar results were obtained
for the static capacities. The performance profiles show that there are some instances that are
strongly affected by the reductions. Some instances are so small that the time to search for
reductions is bigger than the solving itself. Overall, 80% of instances benefit from running the
reductions search and 40% have a speedup of at least factor 2. In Table 4 we report the average
and geometric speedup sorted by hypergraph class. Our reductions achieve the best average speed
up on the dac2012 instances of nearly 7 for random capacity. For these instances, the average
edge count is halved by our reductions. The least speed up is observed on the ISPD98 instances
for uniform capacities.

A plot of the removal effectiveness is shown in Figure 4a. On the y-axis, we display the relative
edge count of the hypergraphs after applying our reductions. Similarly, on the z-axis, we plot
the relative vertex count. Different shapes signify different capacities and colors are used for the
different classes of hypergraphs. The majority of instances are located above the diagonal, meaning
that the nodes are more reduced than the edges. There are two major clusters, one of not reducible
instances and one for nearly completely reducible instances.

Figure 5 shows the relative running time of the reductions and effect on all 488 instances. The
relative effect is computed on how many edges are included, excluded or deferred by the respective

16 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

b(v) Sort S,cap S,pin S,pin,cap S,scaled bweight
rnd ISPD98 0.40 0.39 0.39 0.42 0.38
SPM 1.58 1.27 1.63 1.84 1.22
dac2012 2.51 2.37 2.62 2.56 2.36
sat14 16.49 15.26 16.61 17.42 15.33
1 ISPD98 0.52 0.44 0.51 0.54 0.45
SPM 2.96 2.27 2.82 2.92 2.27
dac2012 4.84 4.31 4.85 5.22 4.04
sat14 8.56 6.98 8.56 9.34 6.84
3 ISPD98 0.27 0.23 0.26 0.27 0.22
SPM 1.05 0.67 1.08 1.27 0.63
dac2012 1.98 1.75 1.98 2.21 1.66
sat14 16.77 14.26 14.84 16.02 14.38
5 ISPD98 0.16 0.16 0.18 0.19 0.16
SPM 1.02 0.67 1.05 1.23 0.66
dac2012 0.78 0.74 0.76 0.79 0.76
sat14 15.76 14.13 16.29 15.86 14.50

Table 5: Average running time in seconds for reductions and greedy initialization.

b(v) ISPD98 SPM dac2012 satl4

rmd 0.36 1.10 217 14.72
1 0.42 2.27 3.64 6.27
3 0.19 0.53 141 13.72
5 0.14 0.56 0.71 14.06

Table 6: Average running time in seconds for reductions only.

reductions. Table 5 and 6 report the running time in seconds for the reductions and the different
greedy initialization functions. For all capacities the Abundant Vertices, Neighborhood Removal
and Weighted Domination are the most significant reductions and take up the most time. The
impact of the other reductions (Weighted Edge Folding, Weighted Isolated Edge Removal and
Weighted Twin) is limited, but also the share of running time is small. For randomly assigned
capacity the Neighborhood Removal reduction has the biggest impact, having over 50 % of the
affected edges, while taking only a small fraction of running time. The Weighted Domination
contributes the most affected edges for uniform capacity of 1, but also takes the most of the
running time. The Weighted Isolated Edge Removal finds many candidates at capacity of 1 and
uses around one quarter of the running time, finding only few affected edges. For higher or random
capacity the Abundant Vertices reduction requires most of the running time, but also contributes
more than half of the affected edges in the static capacity case.

Local Search. The iterated local search (ILS) approach from Section 3.4 is the main focus of
this experiment. The ILS has only a threshold parameter k& determining after how many fruitless
perturbations and local searches, the search is canceled. The best result so far is returned. In our
experiment, we used the best solution obtained by pin function and tried to improve it. We chose

JGAA, 30(1) 1-24 (2026) 17

e-weight random(100)

e-weight random(100), capacity rnd

1.0 —
Y e

wn '-
g (4
< 0.8 S
3 Sl
&)
= 0.6 /
8 /

0.2 - 204 !

. ISPD98 - dac2012 iﬁ l' —— Reductions-+SCIP
SPM « satld |
0.0 - 1 1 1 1 1 02 | S
00 02 04 06 08 10) A p 5 10

Nodes -
(a) Relative removal effectiveness. Some instances (b) Impact of reductions on optimum ILP solver
can be completely reduced, while many are not re- SCIP on a subset of 395 hypegraphs.
duced at all.

Figure 4

b(v)=1
1.00
0.75 -
0.50 -
0.25 -
0.00 -7
Time
b(v)=3 b(v)=5
1.00
mm AV
0.75 - N NR
s WD
0.50 - mm WEF
0.5 L mEm WIER
s WT
0.00 =% : 0.0 -
Time Effect Time Effect

Figure 5: Relative running time and effect of reductions.

18 Grofimann et al. Engineering Hypergraph b-Matching Algorithms

e-weight random(100), capacity rnd e-weight uniform, capacity 1
1.0 r 1.0 y
72} 0
E) 0.8 E 0.8 I
2 Q
a, Y o
= « 06 ksmd+ILS1500
g 0.4 g [kss+I1LS1500
pe = Reductions+ILS50 £ 04 1 = Reductions+ILS1500
E 0.2 Reductions+pin L%s ' ksmd
0.0 Reductions+pin+ILS15 0.2 kss
1.00 0.95 0.90 0.85 1.0 0.9 0.8 0.7
T T

(a) Iterated Local Search improves the solution qual- (b) Solution quality of Reductions+ILS, ksmd, kss by
ity by up to 8%. Dufosse et al. [21] and combination with ILS.

Figure 6

k = 15, as it showed a good balancing between running time and improvement on this collection of
hypergraphs. We report an improvement of up to eight percent at max over all capacities. Running
time is around ten times on average longer than computing the initial solution. This is however
not surprising as the initial algorithm only sorts by the priority function and adds edges greedily.
The performance plot for this experiment is shown in Figure 6a. For reference, we include k£ = 50
in the performance profile, which has an average running time tenfold in comparison to k = 15.
Some instances are only improved by a negligible amount, while the best instances are improved
by 8%. The average improvement is around 3%.

1-Matching on d-partite, d-uniform Hypergraphs. This experiment compares and com-
bines our algorithm with those developed by Dufosse et al. [21] on a special class of hypergraphs
with uniform edge weight and uniform structure. They implemented kss and ksmd, which employ
two configurations of the Karp-Sipser approach. We are using kss with 20 scaling repetitions as
proposed by the authors. We built and linked both algorithms into our benchmark program to
ensure equal compile flags and settings. Figure 6b shows the performance profile for solution qual-
ity for k = 1500, when combining ILS with their approaches or our approaches as initial solution.
The number of retries needed to see an improvement is significantly higher than the one for the
non-uniform problem. This is due to the uniform structure of the problem, we need more tries in
the perturbation phase to find an improvement. For a low k = 50, we can only report minimal
improvements while running time stays closely to the base approaches. Our Reductions+IL51500
approach, which combines the reductions, a greedy initial matching by pin, and iterated local
search with & = 1500 has a better solution quality than the kss and ksmd approaches. Therefore,
we want to combine both approaches.

Our data reductions cannot be combined with kss and ksmd since these algorithms require
uniform edge size and our data reductions do not ensure this. We can considerably improve the
quality of kss and ksmd by using our ILS as post-processing step. In case of ksmd, we can report a
quality improvement of more than 30% on around 8% of instances, even surpassing the results of
the Reductions+1LS1500 approach. Setting & = 1500 unsuccessful tries can result on a few instances
in a hundredfold running time while consistently yielding better quality. The improvement for kss

JGAA, 30(1) 1-24 (2026) 19

is more pronounced than for ksmd, which has a specific reduction rule for this kind of hypergraph.
Improved quality comes at the expense of running time. The ksmd is the fastest approach and ten
times faster than the kss approach. We need ten times more time to compute the solution than
kss on average. Both, ksmd and kss are deterministic and thus can not be repeated multiple times
to get a fairer comparison. In conclusion, the choice of k is sensitive for determining quality and
running time and is dependent of the structure of the problem. Uniform weight problems require
more tries than their non-uniform counterparts.

5 Conclusion

We developed a scalable algorithm for the general weighted b-matching problem in hypergraphs,
utilizing novel data reductions. Our reductions can identify and incorporate optimum edges into
a preliminary solution, reduce the problem size by combining the decision for multiple edges or,
lastly, eliminate non-optimal edges from the input. We engineered new heuristic initial solution
algorithms in a greedy framework and a local search framework to improve solutions. Experiments
show that our data reductions scale well to large instances and accelerate state-of-the-art black-
box solver. The new initial heuristic solutions by a greedy framework are up to 10 % better on
general hypergraphs. On graphs these approaches also yield good results. The local search is able
to improve solutions up to 30 % over recent results by Dufosse et al. [21] on some instances. Given
the good results, we will release our software as an open source project. Future work includes
parallelization of our algorithms, research in nonlinear optimization objectives, improving local
search techniques, and application of our algorithms to related NP-hard problems.

References

[1] Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian Schulz,
and Darren Strash. Recent advances in practical data reduction. In Hannah Bast, Claudius
Korzen, Ulrich Meyer, and Manuel Penschuck, editors, Algorithms for Big Data: DFG
Priority Program 1736, pages 97-133. Springer Nature Switzerland, Cham, 2022. doi:
10.1007/978-3-031-21534-6_6

[2] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in practice:
A case study of vertex cover. Theor. Comput. Sci., 609:211-225, 2016. doi:10.1016/j.tcs.
2015.09.023.

[3] Charles J. Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998 International
Symposium on Physical Design, ISPD 98, page 80-85, New York, NY, USA, 1998. Association
for Computing Machinery. doi:10.1145/274535.274546.

[4] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck. Fast local
search for the maximum independent set problem. J. Heuristics, 18(4):525-547, 2012. doi:
10.1007/s10732-012-9196-4.

[5] Georg Anegg, Haris Angelidakis, and Rico Zenklusen. Simpler and stronger approaches
for non-uniform hypergraph matching and the Fiiredi, Kahn, and Seymour conjecture.
In Hung Viet Le and Valerie King, editors, fth Symposium on Simplicity in Algorithms,
SOSA 2021, Virtual Conference, January 11-12, 2021, pages 196-203. SIAM, 2021. doi:
10.1137/1.9781611976496.22

https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1145/274535.274546
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1137/1.9781611976496.22
https://doi.org/10.1137/1.9781611976496.22

20

[6]

[7]

GroBimann et al. Engineering Hypergraph b-Matching Algorithms

Anton Belov, Daniel Diepold, Marijn Heule, and Matti Jarvisalo. The SAT competition 2014.
http://www.satcompetition.org/2014/index.shtml, 2014.

Piotr Berman. A d/2 approximation for maximum weight independent set in d-claw free
graphs. In Algorithm Theory - SWAT 2000, pages 214-219, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg. doi:10.1007/3-540-44985-X_19.

Ksenia Bestuzheva, Mathieu Besangon, Weikun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros M. Gleixner,
Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny,
Rolf van der Hulst, Thorsten Koch, Marco E. Liibbecke, Stephen J. Maher, Frederic Matter,
Erik Mithmer, Benjamin Miiller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska
Schlosser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian
Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. Enabling research through
the SCIP optimization suite 8.0. ACM Trans. Math. Softw., 49(2):22:1-22:21, December 2023.
doi:10.1145/3585516.

M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. Efficient parallel and
external matching. In Proc. of FEuro-Par 2013, volume 8097 of LNCS, pages 659-670.
Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-642-40047-6_66, doi:10.1007/
978-3-642-40047-6_66.

Lijun Chang. Efficient maximum clique computation and enumeration over large sparse
graphs. VLDB J., 29(5):999-1022, 2020. doi:10.1007/s00778-020-00602-z.

Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set in
linear time by reducing-peeling. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages
1181-1196. ACM, ACM, 2017. doi:10.1145/3035918.3035939.

Alessio Conte, Donatella Firmani, Maurizio Patrignani, and Riccardo Torlone. A meta-
algorithm for finding large k-plexes. Knowl. Inf. Syst., 63(7):1745-1769, 2021. doi:
10.1007/s10115-021-01570-8.

Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth
local search. In FOCS, pages 509-518. IEEE, 2013. doi:10.1109/F0CS.2013.61.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. How to sell hyperedges: The
hypermatching assignment problem. In SODA, pages 342-351. SIAM, 2013. doi:10.1137/
1.9781611973105.25.

Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1), Dec 2011. doi:10.1145/2049662.2049663.

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201-213, 2002. doi:10.1007/s101070100263.

http://www.satcompetition.org/2014/index.shtml
https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1145/3585516
http://dx.doi.org/10.1007/978-3-642-40047-6_66
https://doi.org/10.1007/978-3-642-40047-6_66
https://doi.org/10.1007/978-3-642-40047-6_66
https://doi.org/10.1007/s00778-020-00602-z
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1007/s10115-021-01570-8
https://doi.org/10.1007/s10115-021-01570-8
https://doi.org/10.1109/FOCS.2013.61
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263

[18]

[19]

[22]

[23]

[25]

[26]

28]

[29]

JGAA, 30(1) 1-24 (2026) 21

Doratha E Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Information Processing Letters, 85(4):211-213, 2003. doi:10.1016/
S0020-0190(02)00393-9.

Andre Droschinsky, Petra Mutzel, and Erik Thordsen. Shrinking trees not blossoms: A
recursive maximum matching approach. In Guy E. Blelloch and Irene Finocchi, editors, Proc.
of the Symposium on Algorithm Engineering and Fxperiments, ALENEX 2020, pages 146—-160.
STAM, 2020. doi:10.1137/1.9781611976007.12.

Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1), Jan 2014. doi:10.1145/2529989.

Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Ucar. Effective heuristics for
matchings in hypergraphs. In International Symposium on Experimental Algorithms, pages
248-264. Springer, 2019. doi:10.1007/978-3-030-34029-2_17.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449-467,
1965.

Mourad El Ouali, Antje Fretwurst, and Anand Srivastav. Inapproximability of b-matching
in k-uniform hypergraphs. In WALCOM: Algorithms and Computation, pages 57—69, Berlin,
Heidelberg, 2011. Springer. doi:10.1007/978-3-642-19094-0_8.

Mourad El Ouali and Gerold Jager. The b-matching problem in hypergraphs: Hardness and
approximability. In Guohui Lin, editor, Combinatorial Optimization and Applications, pages
200-211. Springer, 2012. doi:10.1007/978-3-642-31770-5_18.

S. M. Ferdous, Alex Pothen, Arif Khan, Ajay Panyala, and Mahantesh Halappanavar. A
parallel approximation algorithm for maximizing submodular b-matching. In ACDA, pages
45-56. SIAM, 2021. doi:10.1137/1.9781611976830.5.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for
the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009. doi:10.1145/1552285.
1552286.

Martin Firer and Huiwen Yu. Approximating the k-set packing problem by local im-
provements. In ISCO, LNCS, pages 408420, Germany, 2014. Springer. doi:10.1007/
978-3-319-09174-7_35.

Harold N Gabow. An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems. In STOC, pages 448-456, 1983. doi:10.1145/800061.808776.

Harold N Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 434-443, 1990. URL: http://dl.acm.org/citation.cfm?id=320176.320229.

Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdan Zavalnij.
Boosting data reduction for the maximum weight independent set problem using increasing
transformations. In ALENEX, pages 128—-142. STAM, 2021. doi:10.1137/1.9781611976472.
10.

https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1137/1.9781611976007.12
https://doi.org/10.1145/2529989
https://doi.org/10.1007/978-3-030-34029-2_17
https://doi.org/10.1007/978-3-642-19094-0_8
https://doi.org/10.1007/978-3-642-31770-5_18
https://doi.org/10.1137/1.9781611976830.5
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/978-3-319-09174-7_35
https://doi.org/10.1007/978-3-319-09174-7_35
https://doi.org/10.1145/800061.808776
http://dl.acm.org/citation.cfm?id=320176.320229
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/1.9781611976472.10

22

[31]

GroBimann et al. Engineering Hypergraph b-Matching Algorithms

Giorgos Georgiadis and Marina Papatriantafilou. Overlays with preferences: Distributed,
adaptive approximation algorithms for matching with preference lists. Algorithms, 6(4):824—
856, 2013. doi:10.3390/a6040824.

Lars Gottesbiiren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag. Scalable
high-quality hypergraph partitioning. CoRR, abs/2303.17679, 2023. doi:10.48550/arXiv.
2303.17679.

Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. ACM J. Exp. Algorithmics, 13, Feb 2009. doi:10.1145/1412228.
1412236.

Martin Grotschel and Olaf Holland. Solving matching problems with linear programming.
Mathematical Programming, 33:243-259, 1985. doi:10.1007/BF01584376.

Jiewei Gu, Weiguo Zheng, Yuzheng Cai, and Peng Peng. Towards computing a near-maximum
weighted independent set on massive graphs. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery € Data Mining, pages 467-477, 2021. doi:10.1145/
3447548 .3467232.

Mahantesh Halappanavar. Algorithms for Vertex-Weighted Matching in Graphs. PhD
thesis, Old Dominion University, May 2009. URL: https://digitalcommons.odu.edu/
computerscience_etds/57.

Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set
packing. computational complexity, 15(1):20-39, 2006. doi:10.1007/s00037-006-0205-6.

Wei Hou, Limin Meng, Xuqing Ke, and Lingjun Zhong. Dynamic load balancing algorithm
based on optimal matching of weighted bipartite graph. IEEE Access, 10:127225-127236,
2022. doi:10.1109/ACCESS.2022.3226885.

Bert Huang and Tony Jebara. Fast b-matching via sufficient selection belief propaga-
tion. In Intl. Conf. Artificial Intelligence and Statistics, pages 361-369, 2011. URL:
http://proceedings.mlr.press/vi5/huanglla/huanglia.pdf.

Johan Hastad. Clique is hard to approximate within n'=¢. Acta Mathematica, 182(1):105 —
142, 1999. doi:10.1007/BF02392825.

Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao, and Zhang-Hua Fu. A new upper
bound based on vertex partitioning for the maximum k-plex problem. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-
21, pages 1689-1696. International Joint Conferences on Artificial Intelligence Organization,
8 2021. Main Track. doi:10.24963/ijcai.2021/233.

Richard M. Karp and Michael Sipser. Maximum matching in sparse random graphs. In
Foundations of Computer Science, 1981. SFCS’81. 22nd Annual Symp. on, pages 364-375.
IEEE, 1981. doi:10.1109/SFCS.1981.21.

Arif Khan, Alex Pothen, Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan
Sundaram, Fredrik Manne, Mahantesh Halappanavar, and Pradeep Dubey. Efficient approx-
imation algorithms for weighted b-matching. Scientific Computing, 2016. doi:10.1137/
15M1026304.

https://doi.org/10.3390/a6040824
https://doi.org/10.48550/arXiv.2303.17679
https://doi.org/10.48550/arXiv.2303.17679
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1007/BF01584376
https://doi.org/10.1145/3447548.3467232
https://doi.org/10.1145/3447548.3467232
https://digitalcommons.odu.edu/computerscience_etds/57
https://digitalcommons.odu.edu/computerscience_etds/57
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1109/ACCESS.2022.3226885
http://proceedings.mlr.press/v15/huang11a/huang11a.pdf
https://doi.org/10.1007/BF02392825
https://doi.org/10.24963/ijcai.2021/233
https://doi.org/10.1109/SFCS.1981.21
https://doi.org/10.1137/15M1026304
https://doi.org/10.1137/15M1026304

[44]

[45]

[46]

[47]

(48]

JGAA, 30(1) 1-24 (2026) 23

Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In ESA,
volume 112 of LIPIcs, pages 53:1-53:13, 2018. doi:10.4230/LIPIcs.ESA.2018.53.

Nitish Korula and Martin Pal. Algorithms for secretary problems on graphs and hyper-
graphs. In International Colloquium on Automata, Languages, and Programming, pages 508—
520. Springer, 2009. doi:10.1007/978-3-642-02930-1_42.

Christos Koufogiannakis and Neal E Young. Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In DISC, pages 221-238. Springer, 2009. doi:
10.1007/978-3-642-04355-0_23.

Piotr Krysta. Greedy approximation via duality for packing, combinatorial auctions and
routing. In MFCS, pages 615-627. Springer, 2005. doi:10.1007/11549345_53.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
Finding near-optimal independent sets at scale. J. of Heuristics, 23(4):207-229, Aug 2017.
doi:10.1007/s10732-017-9337~-x.

Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang.
Exactly solving the maximum weight independent set problem on large real-world graphs. In
2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Ezxperiments
(ALENEX), pages 144-158. STAM, 2019. doi:10.1137/1.9781611975499.12.

Jinkun Lin, Shaowei Cai, Chuan Luo, and Kaile Su. A reduction based method for coloring
very large graphs. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pages 517-523, 2017. doi:10.24963/ijcai.2017/73.

Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded matching algo-
rithms. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pages 519-528. ITEEE, 2014. doi:10.1109/IPDPS.2014.61.

Julidan Mestre. Greedy in approximation algorithms. In Algorithms—ESA 2006: 14th Annual
European Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14, pages
528-539. Springer, 2006. doi:10.1007/11841036_48.

Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding maximum match-
ing in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17-27. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.12.

Matthias Miiller-Hannemann and Alexander Schwartz. Implementing weighted b-matching
algorithms: Insights from a computational study. ACM J. Exp. Algorithmics, 5:8, 2000.
doi:10.1145/351827.384250.

Meike Neuwohner. Passing the limits of pure local search for weighted k-set packing. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1090-1137.
STAM, 2023. doi:10.1137/1.9781611977554.ch41.

https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.1007/978-3-642-02930-1_42
https://doi.org/10.1007/978-3-642-04355-0_23
https://doi.org/10.1007/978-3-642-04355-0_23
https://doi.org/10.1007/11549345_53
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.1109/IPDPS.2014.61
https://doi.org/10.1007/11841036_48
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1145/351827.384250
https://doi.org/10.1137/1.9781611977554.ch41

24

[56]

[57]

[59]

[60]

GroBimann et al. Engineering Hypergraph b-Matching Algorithms

David A. Papa and Igor L. Markov. Hypergraph partitioning and clustering. In Handbook
of Approzimation Algorithms and Metaheuristics. Chapman and Hall/CRC, 2007. doi:10.
1201/9781420010749.ch61.

Ojas Parekh and David Pritchard. Generalized hypergraph matching via iterated packing
and local ratio. In Evripidis Bampis and Ola Svensson, editors, Approzimation and Online
Algorithms - 12th International Workshop, WAOA 2014, Wroctaw, Poland, September 11-12,
2014, Revised Selected Papers, volume 8952 of Lecture Notes in Computer Science, pages 207—
223. Springer, Springer, 2014. URL: https://doi.org/10.1007/978-3-319-18263-6_18,
doi:10.1007/978-3-319-18263-6_18.

Marco Pavone, Amin Saberi, Maximilian Schiffer, and Matt Wu Tsao. Online hypergraph
matching with delays. Operations Research, 70(4):2194-2212, 2022. doi:10.1287/opre.
2022.2277.

R. Preis. Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in
General Graphs. In STACS, volume 1563 of LNCS, pages 259-269. Springer, 1999. doi:
10.1007/3-540-49116-3_24.

S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way hypergraph
partitioning via n-level recursive bisection. In Proceedings of the FEighteenth Workshop on
Algorithm FEngineering and Experiments, ALENEX, pages 53—-67, 2016. doi:10.1137/1.
9781611974317.5

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343-348, 1967.

Darren Strash. On the power of simple reductions for the maximum independent set problem.
In Intl. Computing and Combinatorics Conf., pages 345-356. Springer, 2016. doi:10.1007/
978-3-319-42634-1_28.

Darren Strash and Louise Thompson. Effective Data Reduction for the Vertex Clique Cover
Problem, pages 41-53. STAM, 2022. doi:10.1137/1.9781611977042.4.

Theophile Thiery and Justin Ward. An improved approximation for maximum weighted k-set
packing. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 1138-1162. STAM, 2023. doi:10.1137/1.9781611977554.ch42.

Anurag Verma, Austin Buchanan, and Sergiy Butenko. Solving the maximum clique and
vertex coloring problems on very large sparse networks. INFORMS Journal on Computing,
27(1):164-177, 2015. doi:10.1287/ijoc.2014.0618.

Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang Wei. The
DAC 2012 routability-driven placement contest and benchmark suite. In Patrick Groeneveld,
Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual Design Automation Conference
2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, DAC 12, pages 774782, New York,
NY, USA, 2012. ACM. doi:10.1145/2228360.2228500.

Yiyuan Wang, Shaowei Cai, Shiwei Pan, Ximing Li, and Monghao Yin. Reduction and local
search for weighted graph coloring problem. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(03):2433-02441, Apr. 2020. doi:10.1609/aaai.v34103.5624.

https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1007/978-3-319-18263-6_18
https://doi.org/10.1007/978-3-319-18263-6_18
https://doi.org/10.1287/opre.2022.2277
https://doi.org/10.1287/opre.2022.2277
https://doi.org/10.1007/3-540-49116-3_24
https://doi.org/10.1007/3-540-49116-3_24
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1007/978-3-319-42634-1_28
https://doi.org/10.1007/978-3-319-42634-1_28
https://doi.org/10.1137/1.9781611977042.4
https://doi.org/10.1137/1.9781611977554.ch42
https://doi.org/10.1287/ijoc.2014.0618
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1609/aaai.v34i03.5624

	Introduction
	Preliminaries
	Hypergraph b-Matching Algorithm
	Optimal Solutions
	Exact Reduction Rules
	Initial Solutions
	Local Search

	Experimental Evaluation
	Conclusion

