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Abstract

We present computational results of an implementation based on the
fixed parameter tractability (FPT) approach for biplanarizing graphs.
These results show that the implementation can efficiently find minimum
biplanarizing sets containing up to about 18 edges, thus making it com-
parable to previous integer linear programming approaches. We show
how our implementation slightly improves the theoretical running time

to O(6bpr(G) + |G|) for any input graph G. Finally, we explain how our
experimental work predicts how performance on sparse graphs may be
improved.
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1 Introduction

A layered drawing of a graph G is a 2-dimensional drawing of G in which
each vertex is placed on one of several parallel lines called layers, and each
edge is drawn as a straight line between its end-vertices. In this paper, we
consider drawings on two layers in which the end-vertices of each edge lie on
different layers. These drawings have applications in visualization [1, 10], DNA
mapping [17], and VLSI layout [12]; a recent survey [15] gives more details.

One of the most studied objectives for obtaining “good” drawings of graphs is
to minimize the number of edge crossings in the drawing. For a bipartite graph,
the minimum possible number of crossings in a 2-layer drawing is called the bi-
partite crossing number of the graph. Unfortunately, the problem of computing
the bipartite crossing number of a graph is NP-complete [6]. Furthermore, in
practice at present, exact solutions are practical for up to only about 15 vertices
per layer, and heuristics are extremely inaccurate for sparse graphs [8].

Some recent experimental evidence suggests that drawings that minimize
the number of edges causing crossings are “better” than drawings that minimize
the number of crossings [14]. This motivates a strategy of removing a minimum
number of edges so that the resulting graph can be drawn without crossings (and
then possibly re-inserting the removed edges). A graph is biplanar if it admits
a planar 2-layer drawing. A set of edges whose removal from a graph makes it
biplanar is called a biplanarizing set for the graph. The biplanarizing number
of a graph G, denoted by bpr(G), is the size of the minimum biplanarizing set
for G. Thus, the 2-Layer Planarization problem is: given a graph G and
an integer k ≥ 0, determine whether or not bpr(G) ≤ k. This problem was first
studied by Tomii et al. [16], who showed that it is NP-complete. Therefore,
the optimization problem of finding the biplanarizing number of a graph is NP-
hard. Interestingly, Mutzel [13,14] reports much better results for integer linear
programming based algorithms that find the biplanarizing number of a graph
than for algorithms that find its bipartite crossing number. Thus, references
[13,14] provide two compelling reasons to study 2-Layer Planarization and
its corresponding optimization problem.

Biplanarity has been studied from the perspective of parameterized complex-
ity. A problem with input size n and parameter k is said to be fixed-parameter
tractable, or in the class FPT, if it can be solved in O(f(k) · nα) time, for some
function f and constant α (see Downey and Fellows [2]). Dujmović et al. [3]
describe such an algorithm for solving the 2-Layer Planarization problem
that runs in time O(k · 6k + |G|).

In this paper, we describe an implementation based on the algorithm of [3].
Our implementation finds a biplanarizing set of size bpr(G). We also present
experimental evidence showing that the FPT approach to biplanarization is of
more than theoretical interest. In particular, our results show that our imple-
mentation can be used in practice to find minimum biplanarizing sets containing
up to about 18 edges. Furthermore, the running times of our implementation
in practice are roughly comparable to running times for implementations based
on the well-studied integer linear programming approach. As for a theoretical
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Figure 1: (a) Caterpillar, (b) Wreath, (c) 2-Claw

upper bound on the running time, we show that the algorithm we implemented
runs in time O(6k + |G|), a slight improvement on the theoretical bound of [3].

Finally, we predict, on the basis of our experimental results, that a further
variation of our implementation, described in Section 5, will be able to efficiently
planarize sparse graphs with biplanarization numbers much larger than 18.

The rest of the paper is organized as follows. The next section defines sev-
eral terms and presents previous work. Section 3 describes our implementation
and its running time. Section 4 presents computational results for our imple-
mentation and compares them to those of Mutzel in [13, 14]. Finally, Section 5
describes a further variation of our implementation for use on sparse graphs.

2 Preliminaries

In this paper, each graph G = (V,E) is simple and undirected, but not nec-
essarily connected. A leaf is a vertex with exactly one neighbor, and we use
deg′G(v) (or deg′(v) when the context is clear) to denote the number of non-leaf
neighbors of a vertex v with respect to G. Any graph that can be transformed
into a path by removing all its leaves is a caterpillar. This unique path is called
the spine of the caterpillar. The 2-claw is the smallest tree that is not a cater-
pillar. It consists of a vertex called the root that has three neighbors, and each
neighbor is additionally adjacent to a leaf.

Lemma 1 ([5, 7, 16]) Let G be a graph. The following are equivalent:

1. G is biplanar;

2. G is a forest of caterpillars;

3. G is acyclic and contains no 2-claw; and

4. The graph obtained from G by deleting all leaves is a forest and contains
no vertex with degree three or greater.

Let P = v1 . . . vp be a simple path of length at least two in a graph G. If
deg′G(v1) ≥ 3, deg′G(vp) = 1, and the remaining vertices vi have deg′G(vi) = 2,
then the subgraph induced by the vertices of P and the neighbors of vertices
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v2, . . . , vp is called a pendant caterpillar of G. This pendant caterpillar is said
to be connected to the graph at v1, its connection point. If, instead, we have
deg′G(vp) ≥ 3, then the subgraph induced by the vertices of P and the neighbors
of vertices v2, . . . , vp−1 is called an internal caterpillar of G. This internal
caterpillar is said to be connected to G at vertices v1 and vp, its connection
points. The spine of both the pendant and internal caterpillar described above
is the path v2, . . . , vp−1. If an internal caterpillar is a path, then it is also called
an internal path.

Any graph that can be transformed into a cycle C by removing all of its leaves
is called a wreath. The edges of C are called the cycle edges, and C is called
the wreath cycle. A wreath subgraph is called a pendant wreath if exactly one
of its wreath cycle vertices v has a neighbor outside of the wreath. The wreath
subgraph is said to be connected to the rest of the graph at v, its connection
point. A pendant triangle is a pendant wreath composed of three edges, all
cycle edges. The middle edge of a pendant triangle is the edge whose end-
vertices have degree equal to 2. A component wreath is a connected component
that is a wreath1.

3 Algorithm Implementation

We begin by recalling the following lemma whose proof we include in order to
describe our implementation.

Lemma 2 ([3]) If there exists a vertex v in a graph G such that deg′G(v) ≥ 3,
then v belongs to a 2-claw or a 3- or 4-cycle in G.

Proof: Let w1, w2, w3 be three distinct non-leaf neighbors of v, and let x1, x2, x3

be neighbors of w1, w2, w3, respectively, that are distinct from v. If xi = wj for
some i and j, then vwjwi is a 3-cycle. On the other hand, if xi 6= wj for each i
and j but xi = xj for some i 6= j, then vwixiwj is a 4-cycle. If neither of these
is true, then vertices v, w1, w2, w3, x1, x2, x3 form a 2-claw rooted at v. 2

We call a 2-claw or a 3- or 4-cycle in a graph a forbidden structure.
One approach for producing FPT algorithms to solve problems that have

associated parameters is the method of bounded search trees [2]. The basic
idea is to exhaustively search for a solution to the problem in a tree whose
size is bounded by a function of the problem parameter. In the case of the
2-Layer Planarization problem, the input is a graph G with an integer
parameter k ≥ 0, where k bounds the number of edges that may be removed to
make G biplanar. Thus, the algorithm returns ‘yes’ if G can be made biplanar
by removing at most k edges, and ‘no’ otherwise. For intuition, we give a
basic bounded search tree algorithm for solving the 2-Layer Planarization

problem. Both our implementation and the algorithm of [3] elaborate on this
basic idea.

1Note: a component wreath may be regarded as a pendant wreath by thinking of one of
its leaves as outside the wreath subgraph.
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We construct the search tree recursively, beginning at the root. To each
node, we associate a subgraph H of G; for the root node, we have H = G.
For each non-leaf node, we also associate a forbidden structure S in H. By
Lemma 1, at least one edge in S is in every biplanarizing set of H; consequently,
the current node has |S| children, one corresponding to each edge in S. The
subgraph associated with each child is obtained by removing an edge in S from
H. A node is a leaf if its subgraph H is obtained from G by removing k or more
edges, or if H does not contain any forbidden structures. In the latter case, we
have, by Lemma 2, that every vertex v in H has deg′H(v) ≤ 2; in other words,
each connected component in H is either a caterpillar or a wreath. By Lemma
1, any minimum biplanarizing set H contains exactly one cycle edge from each
wreath in H. Thus, a leaf node represents a yes-instance to the problem if
its subgraph H does not contain any forbidden structures, and the sum of the
number of edges removed from G to obtain H, plus the number of component
wreaths in H, is at most k. The corresponding biplanarizing set consists of
the edges removed from G to obtain H together with one cycle edge from each
component wreath in H.

The resulting search tree has at most O(6k) nodes because, first of all, each
node has at most 6 children, and secondly, each non-root node corresponds to
an edge removal, so the height of the tree is at most k. Constructing this tree
naively requires O(|G|) time at each node; therefore, we have an O(6k · |G|) time
algorithm for solving the 2-Layer Planarization problem.

Although this is enough to prove that the 2-Layer Planarization problem
is fixed-parameter tractable, the running time can be further improved. In fact,
an O(k · 6k + |G|) time algorithm is given in [3], roughly by reducing the graph
to a “kernel” of size O(k) so that at most O(k) time is needed at each node.

In looking for a convenient implementation, we discovered that we could
further reduce the running time to O(6k + |G|). We obtained this reduction
by finding a way to determine, at each search tree node, whether or not its
associated subgraph H contains a forbidden structure, and, if so, to exhibit one
such structure, all in constant time. In addition, instead of handling component
wreaths only at leaf nodes, we handle them as soon as they are created by an
edge-removal.

It is possible to find a forbidden structure in constant time by maintaining
the list F of vertices with deg′ ≥ 3, and, for each vertex v ∈ F , the list f(v) of
edges incident on v that correspond to the non-leaf neighbors of v. We construct
a forbidden structure in constant time as in the proof of Lemma 2. We first
select the first vertex v in F , then the first three edges (v, w1), (v, w2) and
(v, w3) in f(v), and, for each wi, an incident edge other than (v, wi). If these
six edges induce a cycle, then we have found either a 3- or 4-cycle; otherwise,
we have a 2-claw rooted at v. If F is empty, then we are at a leaf node in the
search tree.

The following lemmas show that we can update these lists after each edge
removal in constant time. In what follows, if (v, w) is an edge, then nl(v, w)
denotes the other neighbor w′ 6= w of v if deg(v) = 2; otherwise, nl(v, w) = v.
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Lemma 3 Let e = (v0, v1) be an edge in a graph G. Let F be the set of vertices
in G with deg′ ≥ 3, and let F ′ be the set of vertices in G\e with deg′ ≥ 3. Then:

F ′ ⊆ F ⊆ F ′ ∪ {nl(v0, v1),nl(v1, v0)}.

Proof: After removing edge e, only vertices whose deg′ decreases to 2 are
removed from F . Such vertices either lose a non-leaf neighbor or one of their
neighbors becomes a leaf. Thus, the value of deg′ may change only for v0, v1,
nl(v0, v1) and nl(v1, v0) when e is removed. If we have v0 6= nl(v0, v1), then
deg(v0) = 2 so v0 6∈ F or F ′. An analogous argument applies to v1. 2

The proof of the next lemma is similar so it is omitted.

Lemma 4 Let e = (v0, v1) be an edge in a graph G, and let f be the mapping
from each vertex in G to the set of incident edges corresponding to its non-leaf
neighbors. Similarly, let f ′ be the mapping from each vertex in G to the set of
incident edges corresponding to its non-leaf neighbors in G \ e.

Then f ′(w) = f(w) for each vertex w in V (G)\{v0,nl(v0, v1), v1,nl(v1, v0)};
otherwise:

• f(v0) ⊆ f ′(v0) ∪ {(v0, v1)},

• f(nl(v0, v1)) ⊆ f ′(nl(v0, v1)) ∪ {(v0,nl(v0, v1))} when nl(v0, v1) 6= v0,

• f(v1) ⊆ f ′(v1) ∪ {(v0, v1)}, and

• f(nl(v1, v0)) ⊆ f ′(nl(v1, v0)) ∪ {(v1,nl(v1, v0))} when nl(v1, v0) 6= v1.

As mentioned earlier, we handle component wreaths at each node in the
tree rather than leaving them for the leaf nodes. Furthermore, we detect and
planarize each wreath in constant time. To do this, we cannot expect to detect
a component wreath by traversing each of its member vertices. Instead, we rely
on pointers called cheaters. Cheaters link the first and last vertices on the spine
of every internal caterpillar. For convenience, we will think of a pendant wreath
as an internal caterpillar with one connection point.

Suppose that the subgraph H of a node contains no component wreaths but
that, for some edge e = (v0, v1) in H, H \ e contains at least one component
wreath W . If a component is a wreath, then each vertex in the component
satisfies deg′ ≤ 2. Thus with respect to the component of H that contains W ,
W contains at least one vertex with deg′H > 2, and, in H \ e, each vertex of W
has deg′H\e ≤ 2. By Lemma 3, H contains at most two vertices v′

0 = nl(v0, v1)
v′
1 = nl(v1, v0) whose non-leaf degree decreases below 3. Therefore, W contains

either or both v′
0 and v′

1, and the other vertices of W have deg′H ≤ 2. In other
words, viewed as a subgraph of H, W is composed of zero or more internal
caterpillars and possibly vertices v′

0 and v′
1 acting as their connection points.

More specifically, removing edge e creates a component wreath if and only if
either:

1. an internal caterpillar has a single connection point v equal to nl(v0, v1)
or nl(v1, v0), and deg′H\e(v) = 2; or
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2. nl(v0, v1) and nl(v1, v0) are connection points for two internal caterpillars
in H and deg′H\e(nl(v0, v1)) = deg′H\e(nl(v1, v0)) = 2.

Both cases can be checked in constant time so, in constant time, any component
wreaths created by an edge removal can be detected and planarized by removing
one of their cycle edges.

Having handled component wreaths using cheaters, we now show how to
efficiently update cheaters whenever an edge is removed. If a new internal
caterpillar is created by an edge removal, then the edge removal decreases the
deg′ of some vertex v down to two. If v is a connection point for two internal
caterpillars P1 and P2 before the edge removal, then the new internal caterpillar
consists of P1, P2, v and the leaf neighbors of v. If v is a connection point for only
one internal caterpillar P , then the new internal caterpillar is the concatenation
of P with v and its leaf neighbors. Otherwise, the new internal caterpillar is
composed only of v and its leaf neighbors. In each of these three cases, it is
a simple matter to update the cheaters in constant time after an edge removal
using existing cheaters.

Thus, we have shown how to explore the bounded search tree in O(6k +
|G|) time. The resulting algorithm Bounded Search Tree for solving 2-Layer

Planarization is given below. We assume that set F and the map f are
correctly initialized for the graph G in O(|G|) time before the algorithm is
executed.

Algorithm Bounded Search Tree (graph G; vertex-set F; map f; integer k)

1. if F = ∅ then return YES;

2. else if k = 0 then return NO;

3. else

(a) S ← a 2-claw, 3-cycle or 4-cycle in G using F and f ;

(b) for each edge (x, y) ∈ S do

i. Remove (x, y) from G and planarize any resulting component
wreaths while updating F , f and the cheaters. Let P be the set
of removed edges (including (x, y));

ii. if Bounded Search Tree(G, F , f , k − |P |)=YES then return
YES;

iii. else

Add edges in P back to G and undo the resulting changes
to F , f and the cheaters;

4. return NO;

We have the following result:

Lemma 5 Given a graph G and an integer k ≥ 0, algorithm Bounded Search
Tree determines if bpr(G) ≤ k in O(6k + |G|) time.
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We can use the algorithm Bounded Search Tree to find a minimum bipla-
narizing set for a graph by repeatedly executing Bounded Search Tree:

1. k ← 0;

2. Compute set F and map f for G;

3. while Bounded Search Tree(G,F ,f ,k)=NO do k ← k + 1;

4. return k;

Thus, we can find a minimum biplanarizing set for a graph in O(60 + 61 + . . . +

6bpr(G) + |G|) = O(6bpr(G) + |G|) time. In fact, we can save the algorithm some
time by initially setting k to a lower bound, either Φ(G)/2, or |E| − |V | + 1,
where Φ(G) is the potential function defined by Dujmović et al. [3] as follows:

Φ(G) =
∑

v∈V (G)

max{deg′(v)− 2, 0}.

Note that reference [3] contains a proof that for every graph G, bpr(G) ≥ Φ(G)
2 .

Observe that |E| − |V | + 1 is also a lower bound for bpr(G) because every
biplanar graph is a forest of trees, or, equivalently, every biplanarizing set con-
tains enough edges to reduce the input graph to a forest of trees. Therefore,
bpr(G) ≥ |E| − |V |+ 1. Thus, we obtain:

Theorem 1 Given a graph G, there exists an algorithm that finds a minimum

biplanarizing set for G in O(6bpr(G) + |G|) time.

In our implementation, we include three other improvements to the algo-
rithm Bounded Search Tree described above. We obtain the first improvement
by slightly generalizing the method for planarizing component wreaths at each
search tree node, which we described above, to planarize all pendant wreaths
as well. The generalization can be applied in constant time after each edge
removal.

The second improvement is based on the observation that, if a vertex is
the root of more than one 2-claw, then planarizing these 2-claws one-at-a-time
could result in exploring unnecessary branches of the search tree. For example,
if a vertex v has exactly four non-leaf neighbors, and each neighbor has degree
equal to two, then v is the root of

(

4
3

)

2-claws. The original algorithm would
typically choose one of these 2-claws, branch on it, and then, on each branch,
branch on the 2-claw remaining at v. This results in trying to planarize the
2-claws rooted at v in 36 different ways. Some of these branches are redundant
because there are exactly 24 different ways to planarize these 2-claws with two
edge removals. Avoiding these redundant branches could lead to a substantially
shorter running time when many vertices in the graph are the roots of more
than one 2-claw. In fact, we end up with a branching factor of

√
24 < 5 rather

than 6.
The redundant branches are due to deleting the same set of edges but in a

different order. For example, if the children of node N correspond to the edges
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e1, . . . , e6 of a 2-claw, then the search subtree corresponding to removing e1 may
explore the possibility of also removing edge e2, and, similarly, the search subtree
corresponding to removing e2 may explore the possibility of also removing edge
e1. Entirely exploring both subtrees would be redundant because, if the graph
remaining at node N could have been planarized by removing both e1 and
e2, then that solution node appears in both subtrees. Thus, it would be more
efficient to completely explore the subtree corresponding to e1, and then explore
only the parts of the subtree corresponding to e2 that do not involve removing
e1. We can avoid these redundant parts by marking e1 as tried after we have
explored its subtree and failed to find a solution. If we fail to find a solution
at a descendant of node N , then, just before backtracking from N , we remove
the mark on e1. In general, then, we mark an edge as tried as soon as we have
explored its subtree and then remove that mark whenever we backtrack away
from its parent node. The extra overhead is clearly constant per node so the

resulting algorithm runs in O(6bpr(G) + |G|) time.
The third improvement is based on the observation that we can avoid ex-

ploring subtrees that correspond to removing a non-candidate edge from the
graph. As defined in [4], an edge is called a candidate for removal if it is the
middle edge of an internal 3-path or triangle, or it does not belong to an internal
3-path or triangle and one end-vertex has deg′ > 2 and the other has deg > 1.
We use K to denote the set of candidate edges, so a canonical biplanarizing set
is a biplanarizing set that is a subset of K. The following lemma shows that
there is always a minimum biplanarizing set that is canonical.

Lemma 6 ([4]) If T is a biplanarizing set for a graph G, then there exists a
canonical biplanarizing set T ∗ of G such that |T ∗| ≤ |T |.

One can easily test whether or not an edge is a candidate for removal in constant

time, so the algorithm still runs in O(6bpr(G) + |G|) time.

4 Computational Results

We implemented the algorithm described in the previous section using the Java
programming language. We compiled the program using the byte-code com-
piler from the Java SDK version 1.4.1 from Sun Microsystems. We ran the
experiments using their byte-code interpreter on a 1 GHz Pentium III computer
with 1 GB RAM running Debian Linux version 2.4.18. Actual running times
depend on many factors such as the speed and architecture of the computer,
other processes running in the background, the quality of the implementation,
and the choice of implementation language; therefore, to support comparisons
with future experimental work, we also recorded the sizes of the search trees
explored. These values depend only on the input graph and the algorithm. We
include the running times in our results only to give a rough idea of how long
the implementation takes to planarize a graph.

We applied our implementation to the bipartite graphs from the Stanford
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Graphbase [11] that were used in the experiments of Mutzel [13, 14]2. The
results of our experiments are shown alongside the results of Mutzel [14] in
Table 1. Each row in the table corresponds to the average values from applying
the algorithm to 100 different graphs3. From Mutzel’s ILP experiments, we
include both the running time and the average guarantee of the solution value
(Gar), i.e. UpBound−Sol

UpBound
× 100 where Sol denotes the number of edges in the

biplanar subgraph of G having the most edges among the biplanar subgraphs
found, and UpBound denotes the upper bound for bpr(G) determined by the
linear programming relaxation when the time limit of 300 seconds expired.

It turns out that for the graphs investigated, this average guarantee of the
solution is not very useful for indicating the quality of the solutions being com-
puted. Indeed, in our experiments, we found that our simple lower bound of

max(φ(G)
2 , |E| − |V | + 1) is quite close to bpr(G), within one unit on average.

Consequently, our lower bound, which is calculated in O(|G|) time, has a good
average guarantee of the solution value. We include this value in the table be-
cause it does give an approximate idea of how close the ILP implementation
solutions are from the optimal. We use this information for comparison with
our experimental results.

It would not be very meaningful to compare our running times directly to
those of Mutzel because of environment differences. More specifically, Mutzel’s
experiments were originally reported in 1996 in [13], so the computers used
were much slower than the ones we used. In addition, whereas we used Java to
implement our algorithm and any necessary supporting libraries, their imple-
mentation language was C++ and they used the ABACUS library [9].

It is, however, meaningful to compare the shapes of the |E| versus running
time graphs. In the first 17 rows of Table 1, we see that the FPT implementation
is quite efficient up to |E| = 55, finding exact solutions to all input graphs. After
|E| = 55, the FPT implementation is able to obtain exact solutions to only a
few input graphs for the maximum time of 600 seconds (10 minutes) per graph.
The ILP implementation, on the other hand, demonstrates poorest performance
at |E| = 50. However, after |E| = 50, it improves as |E| approaches 100.

Thus, we see that these two different approaches may be complementary:
whereas the FPT approach tends to be efficient on sparse graphs, the ILP ap-
proach tends to be efficient on dense graphs. This appears to be due to the fact
that FPT algorithms have running times like O(f(k) · nα); therefore, they will
be efficient when bpr(G) is small, that is, when the graph is sparse. ILP algo-
rithms using branch-and-cut, on the other hand, seek an optimum solution by
repeatedly finding approximate solutions that close in on an optimum solution.

2We note that Theorem1 does not require the input graph G to be bipartite; consequently,
our implementation is not limited to bipartite graphs.

3The graphs for the experiments corresponding to the first 17 rows of Table 1 can be repro-
duced using the Stanford Graphbase [11]. We first generate 1700 random integers beginning
with seed 5841. From each integer we generate a bipartite graph with |Vi| vertices in each
bipartition set and |E| edges. The graphs used in the experiments corresponding to the last 4
rows can be generated by first generating 400 random integers beginning with seed 4741, and
then, from each integer, generating a bipartite graph with |Vi| vertices per bipartition set and
|E| edges.
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Table 1: Results for bipartite graphs with |Vi| vertices per bipartition and |E|
edges.

|Vi| |E|

20 20
20 25
20 30
20 35
20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75
20 80
20 85
20 90
20 95
20 100
20 40
30 60
40 80
50 100

Mutzel ILP [14]
Gar Time

(≤ 300s)
0.00 0
0.00 0
0.00 0
0.00 1
0.00 6
0.03 26
0.67 100
0.53 81
0.37 56
0.32 54
0.13 26
0.13 22
0.03 12
0.10 20
0.02 8
0.00 4
0.00 4
0.00 6
0.13 49
0.55 150
1.45 253

FPT
Time Steps bpr Success

(≤ 600s) /100
0 5 1 100
0 8 1.5 100
0 25 3 100
0 90 4.9 100
0 595 7.7 100
0 1,829 10.7 100
2 53,416 14.3 100
41 1,767,872 18.2 96
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
0 495 7.4 100
1 10,559 11.3 100
9 243,760 15.6 100
43 1,281,694 19.4 97

For planarization, this means that an ILP algorithm begins with a biplanariz-
ing set of size between bpr(G) and |E| − |V | + 1, and then finds increasingly
smaller biplanarizing sets until one of size bpr(G) is found. For dense graphs,
the probability that bpr(G) = |E| − |V |+1 is high, so the ILP algorithm begins
with a solution close to the optimal.

Designing and implementing FPT approaches is still quite new compared to
designing and implementing integer linear programming approaches, especially
for graph drawing problems. Consequently, further work on FPT algorithms is
almost sure to yield improvements. In the next section, we describe some future
possibilities.

5 Future Work

One way that we might improve the performance of our implementation on
larger sparse graphs is to integrate a divide-and-conquer approach into the al-
gorithm. For example, planarizing two subgraphs each with bpr = k as a single
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graph could use up to O(62k + |G|) = O(36k + |G|) time. If, on the other hand,
it were possible to planarize them separately, then we could use O(2 · 6k + |G|)
time. Clearly, the second option is preferable. In sparse graphs, we would expect
this to be possible quite often.

Certainly, if a graph is disconnected, then the minimum biplanarizing set
for the whole graph is simply the union of the minimum biplanarizing sets for
the connected components. We can, however, do slightly better than this by
dividing the graph into p-components. A p-component of a graph is a maximal
connected subgraph consisting of biconnected components that are connected
by internal paths of length at most three, and the internal caterpillars that
connect this subgraph to other p-components. Notice that two p-components
are not necessarily disjoint since they may share a single internal caterpillar. The
following lemma shows that each p-component can be planarized separately.

Lemma 7 If Hi, 1 ≤ i ≤ p, are the p-components of a graph G, and Mi are
their minimum canonical biplanarizing sets, then

⋃

Mi is a minimum canonical
biplanarizing set for G and Mi ∩Mj = ∅ for each i 6= j.

Proof: We first show that
⋃

Mi is a biplanarizing set for G, so we consider re-
moving all edges in

⋃

Mi from G. The resulting graph G′ contains no component
wreaths because each wreath cycle belongs entirely to a single p-component. In
addition, each vertex has deg′ ≤ 2 because each vertex with deg′ ≥ 3 in G has
the same deg′ value in its p-component. This is because, if a vertex is a leaf
in a p-component but not in G, then, by definition, the vertex belongs to an
internal caterpillar shared by two p-components so it is not adjacent to a vertex
with deg′ ≥ 3. Thus, by Lemma 1, G′ is biplanar so

⋃

Mi is a biplanarizing
set for G. Furthermore, any edge that is a candidate for removal in Hi is also
a candidate for removal in G; therefore,

⋃

Mi is also a canonical biplanarizing
set for G.

Next we show that Mi ∩Mj = ∅ for i 6= j. Recall that Hi and Hj share at
most one internal caterpillar or path in G. The single edge on that caterpillar
or path that is a candidate in Hi is a leaf in Hj and vice versa. Therefore, the
candidate edges of Hi are disjoint from those in Hj so Mi ∩Mj = ∅.

Finally, we show that
⋃

Mi is a minimum biplanarizing set for G. Let M ′

be a minimum canonical biplanarizing set for G. Let M ′
i be the candidate

edges in Hi that belong to M ′. Since M ′
i is a biplanarizing set for Hi, we have

|M ′
i | ≥ |Mi|. Thus, |M ′| ≥ |M1|+ . . . + |Mp|. 2

Lemma 7 suggests a divide-and-conquer variation of the algorithm: divide
the graph into p-components, and then planarize each p-component individually.
In fact, we are able to do better than this by planarizing in such a way as to
break a larger p-component into smaller p-components, and then to planarize
each of them individually. One strategy for breaking up a p-component is to
branch on forbidden structures containing cut vertices, which we would expect
to find in sparse graphs.

A slight complication of this variation of the algorithm is that, when pla-
narizing a p-component, we are using a bounded search tree so we have bounded
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the number of edge removals by some parameter k. Thus, if we break the p-
component C into smaller child p-components, then we must somehow divide
the parameter k for C into smaller parameters for each child p-component. The
problem is that we do not know which parameter value to assign each child with-
out knowing the size of its minimum biplanarizing set. We solve this problem
by initializing the parameter for each child to some lower bound on the child.
We re-apply the algorithm to the child, increasing its parameter until we find
its minimum biplanarizing set. If the sum of the parameters for the children
ever becomes greater than the parameter for their parent, then we realize that
the way we divided the parent p-component into smaller p-components will not
yield a biplanarizing set matching the parent’s parameter. In response, we im-
mediately backtrack to the point in the search tree where we disconnected the
parent p-component and continue searching from there.

The extra work of computing the p-components and determining if the cur-
rent p-component C has been broken into smaller p-components can all be done
in O(bpr(C)) time. To compute sub-p-components, we simply apply a modifica-
tion of the algorithm for finding biconnected components in a graph. We apply
the algorithm to the at most O(bpr(C)) vertices having three or more non-leaf
neighbors, skipping over internal caterpillars during graph traversal using the
cheater pointers described in the previous section.

Straight-forward but tedious analysis shows that the running time of this
variation of the algorithm is O(6k + |G|). It remains to be seen how well this
approach will work in practice. We expect that the running time of the algorithm
will differ polynomially with respect the size of sparse graphs with uniform
density.

6 Conclusion

We have described the implementation and computational results of an algo-
rithm inspired by parameterized complexity. We have shown that for computing
the minimum biplanarizing sets, this algorithm has both practical as well as the-
oretical value. Furthermore, we have presented experimental evidence showing
that our implementation of an FPT approach compares reasonably well with an
approach based on well-studied linear programming methods for finding practi-
cal solutions to NP-hard problems. Finally, we have described one possible way
to dramatically improve on the experimental results presented in this paper.

In the future, we plan to obtain computational results from the variation of
the algorithm that employs p-components. We plan to perform further exper-
iments with graphs from sources other than the Stanford Graphbase, such as
from DNA-mapping applications.

One of the limitations of our implementation is that it obtains only exact
solutions. We plan to investigate using FPT algorithms for finding approximate
solutions.
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