
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 2, pp. 205–238 (2005)

Two-Layer Planarization:

Improving on Parameterized Algorithmics

Henning Fernau

University of Hertfordshire, Computer Science,
College Lane, Hatfield, Herts AL10 9AB, UK

Universität Tübingen, WSI für Informatik, Sand 13,
72076 Tübingen, Germany, fernau@informatik.uni-tuebingen.de

The University of Newcastle, School of Electr. Eng. and Computer Science,
University Drive, Callaghan, NSW 2308, Australia

Abstract

A bipartite graph is biplanar if the vertices can be placed on two
parallel lines in the plane such that there are no edge crossings when
edges are drawn as straight-line segments connecting vertices on one line
to vertices on the other line. We study two problems:

• 2-Layer Planarization: can k edges be deleted from a given graph
G so that the remaining graph is biplanar?

• 1-Layer Planarization: same question, but the order of the ver-
tices on one layer is fixed.

Improving on earlier works of Dujmović et al. (Proc. Graph Drawing GD

2001, pp. 1–15, 2002), we solve the 2-Layer Planarization problem in
O(k2 · 5.1926k + |G|) time and the 1-Layer Planarization problem in
O(k3 · 2.5616k + |G|2) time. Moreover, we derive a small problem kernel
for 1-Layer Planarization.

Article Type Communicated by Submitted Revised

regular paper G. Liotta October 2004 September 2005

An extended abstract of this paper appeared in [14]; a more refined analysis is con-

tained in the report version [11].

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 206

1 Introduction

In a 2-layer drawing of a bipartite graph G = (A,B;E), the vertices in A are
positioned on a line in the plane, which is parallel to another line containing the
vertices in B, and the edges are drawn as straight-line segments. Such drawings
have various applications, not only in graph drawing / visualization [4] but also
in bioinformatics [24] and VLSI layouts [16].

A biplanar graph is a bipartite graph that admits a 2-layer drawing with
no edge crossings; we call such a drawing a biplanar drawing. It has been
argued that 2-layer drawings in which all the crossings occur in a few edges are
more readable than drawings with fewer total crossings [17, 18]—which gives
the crossing minimization problem(s) [8].

This naturally leads to the definition of the 2-Layer Planarization prob-
lem (2-LP): given a graph G (not necessarily bipartite), and an integer k called
the parameter, can G be made biplanar by deleting at most k edges? Two-
layer drawings are of fundamental importance in the “Sugiyama” approach to
multi-layer graph drawing [22]. This method involves (repeatedly) solving the 1-
Layer Planarization problem (1-LP): given a bipartite graph G = (A,B;E),
a permutation π of A, and an integer k, can at most k edges be deleted to permit
G to be drawn without crossings with π as the ordering of A? In this paper, we
also present results on this problem.

Fixed parameter tractability. We develop improved algorithms for 2-LP
and for 1-LP that are exponential in the parameter k. This has the following
justification: when the maximum number k of allowed edge deletions is small,
an algorithm for 1- or 2-LP whose running time is exponential in k but polyno-
mial in the size of the graph may be useful. We expect the parameter k to be
small in practice. Instances of the 1- and 2-LP problems for dense graphs are
of little interest from a practical point of view, as the resulting drawing will be
unreadable anyway.

Hence, his analysis fits into the framework of parameterized algorithmics.
A parameterized problem P with input size n and parameter size k is fixed
parameter tractable, or in the class FPT , if there is an algorithm to solve the
problem in f(k) · nα time, for some function f and constant α (independent
of k). There is an alternative characterization of FPT : P is in FPT iff there
exists a polynomial-time reduction that transforms each instance (I, k) into an
equivalent instance (I ′, k′) of P such that the size of I ′ and k′ is bounded by
some function g(k) (not depending on the size of the original input I). (I ′, k′) is
then called a problem kernel of (I, k). Two basic approaches for producing FPT
algorithms are kernelization and bounded search trees [5], and these will be ap-
plied in this paper, as well. Further details on this notion can be found in [5, 12].

Our results. In this paper, we apply kernelization and search tree methods
to obtain algorithms for the 1- and 2-LP problems, this way improving earlier
results from [7]. This leads to an O(k2 · 5.1926k + |G|) time algorithm for 2-LP
in a graph G. Here |G| = |V | + |E| for a graph G = (V,E). We present a

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 207

similar second algorithm to solve the 1-LP problem in O(k3 · 2.5616k + |G|2)
time. By way of contrast, in [7] algorithms were given that solve 2-LP in time
O(k26k + |G|) and 1-LP in time O(3k|G|). Note that we not only improve
on the running times of the derived algorithms (which is mainly due to better
search tree algorithms), but we also present the first small problem kernel for
1-LP. This is important, since from a practical point of view, reduction rules
(that have to be developed to get small kernels) are often the key to efficient
solutions of computationally hard problems. Therefore, getting small kernels
can be seen as a valid approach rather independent from the problem of getting
better exponential running times, see [9] for further (philosophical) comments
on this issue. As a further technical contribution, we also present kernelization
rules that lead to a cubic kernel for 3-Hitting Set that is vertex-induced; this
is essential to get a proper (non-annotated) kernel of cubic size for 1-LP.

Our methodology. To arrive at our results, we draw connections to Hitting
Set problems. The top-down analysis technique presented in [10] is applied to
obtain the claimed running times in the analysis of the search tree algorithms.
We believe that certain insights gained from this approach are more widely
applicable to other problems that involve “forbidden structures,” even though
often a sort of postprocessing prevents the direct application of Hitting Set
algorithms off from the shelf; in the case of our problems, the postprocessing
mainly deals with resolving (larger) cycles. Notice that a safe approach under
these circumstances is often to enumerate all minimal solutions of the underlying
Hitting Set instance (see [3, 12] for details on parameterized enumeration) and
then postprocess the solutions in the leaves of the search tree. In a certain sense,
this is essentially the approach taken in [7] to solve 2-LP and 1-LP. However,
one could try to do better by following the steps listed below.

• Try to “translate” the well-known reduction rules for Hitting Set into
the target area of the problem P under consideration. This translation
will not always yield sound rules for P . According to our experience,
particular problems are raised by the so-called vertex domination rule.

• This translation will almost immediately give a polynomial-size kernel.

• Moreover, it is possible to improve on the running time of the search
tree algorithm whenever it is possible to find a substitute for the vertex
domination rule that allows to cope with at least “some” of the degree-
one-vertices (in the corresponding Hitting Set instance), so that one
can always branch at vertices of degree at least two.

The search tree algorithms derived by this approach have a quite simple general
structure:

1. Exhaustively apply all reduction rules.

2. Decide if a trivial YES- or NO-instance is obtained.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 208

3. If possible, enter the polynomial-time postprocessing phase.

4. Otherwise, select a vertex x (in the corresponding Hitting Set instance)
according to so-called heuristic priorities and branch according to the two
possibilities if x is in the hitting set or not.

Knowing that the “weak point” of this approach is often the validity of the
vertex domination rule also directs the search of useful reduction rules to those
who can cope with vertices of degree one.

There is an additional benefit coming from this approach: while it is tedious
if not close to impossible to give a formal correctness proof for improved exact
algorithms that rely on a scrutinized local analysis and accordingly complicated
branching structures (see the 3-Hitting Set algorithm published in [19]), this
becomes quite an easy task now, since the proof can be modularized:

1. Prove that all reduction rules are sound.

2. Check if the trivial cases are correctly covered.

3. See if the postprocessing phase is correctly entered.

4. Check if the branching process itself covers all cases.

Based on these observations, a proof of the correctness of the algorithm by
induction on the number of vertices (in the Hitting Set terminology) becomes
easy. In the case of a Hitting Set algorithm whose design was based on the
sketched principles, a formal correctness proof can be found in [10]. The same
approach was undertaken for the Linear Arrangement by Deleting Edges
problem in [13].

Finally, this approach has also benefits for the implementation of such algo-
rithms, since they will correctly work even without implementing the reduction
rules and the heuristic priorities; these bits will only affect the running time. So,
rapid prototyping is encouraged, as well as experimenting with the reduction
rules and priorities; we hope to report on such experiments soon.

The burden is more shifted towards the time analysis of the algorithm, which
is no longer trivial. Let us also mention that the recent breakthroughs [15] in the
development of exact algorithms for Dominating Set are using similar princi-
ples, in particular the relations to Hitting Set and the accordingly translated
reduction rules, resulting in a nearly trivial algorithm with a far from trivial
running time analysis.

There is one last technical bit worth mentioning here: when we try to benefit
from the relationships of our problem P to Hitting Set, we often cannot simply
remove the vertices that have been decided not to form part of a solution of
the Hitting Set problem we are after (e.g., in the branch where we do not
take a certain vertex into the hitting set), since they might be still needed in
the postprocessing phase. Rather, we will mark them: they will be ignored in
the Hitting Set branching hitherto, but they must be (possibly) considered
in the postprocessing phase. Hence, formally we will work with an annotated

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 209

version of our original problem P . Also, the reduction rules will have to work
with such annotated instances. This annotation technique has often found to
be useful; e.g., in the context of Hitting Set related problems, recent work on
Face Cover gives an example involving rather extensive annotation rules [1].

2 Preliminaries

In this section, we introduce notation, recall a characterization of bipla-
nar graphs and formalize the problem statements. All the mentioned results
can be found in [7], although some of them already appear in the older literature.

Basic definitions. In this paper, each graph G = (V,E) is simple and undi-
rected. The subgraph of G induced by a subset E′ of edges is denoted by G[E′].
A vertex with degree one is a leaf. If vw is the edge incident to a leaf w, then
we say w is a leaf at v and vw is a leaf-edge at v. The non-leaf degree of a
vertex v in graph G is the number of non-leaf edges at v in G, and is denoted
by deg′G(v).

A graph is a caterpillar if deleting all the leaves produces a (possibly
empty) path. A 2-claw is a graph consisting of one degree-3 vertex, the
center, which is adjacent to three degree-2 vertices, each of which is adjacent
to the center and one leaf. A graph consisting of a cycle and possibly some
leaf-edges attached to the cycle is a wreath. Notice that a connected graph
that does not have a vertex v with deg′(v) ≥ 3 is either a caterpillar or a wreath.

Problem statements. A set T of edges of a (not necessarily bipartite) graph G
is called a biplanarizing set if G \ T is biplanar. The bipartite planarization
number or biplanarization number of a graph G, denoted by bpr(G), is the size
of a minimum biplanarizing set for G. The 2-LP problem is: given a graph G
and an integer k, is bpr(G) ≤ k?

For a given bipartite graph G = (A,B;E) and permutation π of A, the
1-layer biplanarization number of G and π, denoted bpr(G, π), is the minimum
number of edges in G whose deletion produces a graph that admits a biplanar
drawing with π as the ordering of the vertices in A. The 1-LP problem asks
if bpr(G, π) ≤ k. When dealing with a bipartite graph G = (A,B;E) and a
permutation π of A, we write <π to denote the order induced by π on A.

Useful earlier results. To prove their kernelization result for 2-LP, Dujmović
et al. introduced the following potential function. For a graph G = (V,E),
define

∀v ∈ V, ΦG(v) = max{deg′G(v) − 2, 0}, and Φ(G) =
∑

v∈V

ΦG(v) .

Intuitively, Φ(v) approximates the number of edges in the distance-2 neigh-
borhood of v that must be included in any biplanarizing set for G.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 210

Lemma 1 Φ(G) = 0 if and only if G is a collection of caterpillars and wreaths.

Biplanar graphs are easily characterized, and there is a simple linear-time
algorithm to recognize biplanar graphs, as the next lemma makes clear.

Lemma 2 Let G be a graph. The following assertions are equivalent:

(a) G is biplanar.

(b) G is a forest of caterpillars.

(c) G is acyclic and contains no 2-claw as a subgraph.

(d) G is acyclic and Φ(G) = 0 (with Lemma 1).

Lemma 2 implies that any biplanarization algorithm must destroy all cycles
and 2-claws. The next lemma gives a condition for this situation.

Lemma 3 If there exists a vertex v in a graph G such that deg′G(v) ≥ 3, then
G contains a 2-claw or a 3- or 4-cycle containing v.

The following two lemmas concerning the potential function Φ(G) are im-
portant for the development of efficient parameterized algorithms; in particular,
Lemma 4 exhibits a case when the biplanarization number can be found in
polynomial time.

Lemma 4 For graphs G with Φ(G) = 0, a minimum biplanarizing set of G
consists of one cycle edge from each component wreath.

Lemma 5 For every graph G, bpr(G) ≥ 1
2Φ(G).

3 Hitting Set: Setting the scene

As mentioned in the Introduction, the relation of the two problems we are in-
terested in to Hitting Set is crucial for the methodology we are proposing.
Therefore, we will recall some terminology and results in connection with Hit-
ting Set.
Some terminology on hypergraphs. A hypergraph G = (V,E) is given by
its finite set of vertices V and its set of (hyper)-edges E, where a hyperedge is a
subset of V . The cardinality of a hyperedge e is also called its size. The cardi-
nality of the set of edges which contain a specific vertex v is called the degree of v.

Problem definition. d-Hitting Set can be viewed as a “vertex cover prob-
lem” on hypergraphs. More formally, this problem can be stated as follows:

Given a hypergraph G = (V,E) with edge size bounded by d and an integer
k, the question is if there is a hitting set or cover of size at most k:

∃C ⊆ V ∀e ∈ E(C ∩ e 6= ∅) ?

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 211

The least upperbound d on the edge size of a hypergraph G is also called the
arity of G.

Reduction rules. The following simple reduction rules have been obviously
rediscovered again and again over the past 40 years, see [10] for a short history.

1. (hyper)edge domination: A hyperedge e is dominated by another hyper-
edge f if f ⊂ e. In that case, delete e.

2. tiny edges: Delete all hyperedges of degree one and place the correspond-
ing vertices into the hitting set.

3. vertex domination: A vertex x is dominated by a vertex y if, whenever
x belongs to some hyperedge e, then y also belongs to e. Then, we can
simply delete x from the vertex set and from all edges it belongs to.

These rules are mainly important to arrive at good estimates for search tree
based Hitting Set algorithms, as can be seen in [10]. As they are not men-
tioning the parameter in any form, they are also valid when solving nonparame-
terized Hitting Set problems, see [15, 23] for applications.1 For the purpose
of getting better running time estimates, the vertex domination rule is by far
the most important. The use of the edge domination rule is usually more subtle.
Namely in our analysis, we set up mutual recursions that estimate search tree
sizes assuming that a certain number of “small edges” are present. Therefore,
it is important to know that, e.g., in the branch that explicitly does not put
a vertex x into the cover, a certain number of small edges are created, only
depending on the degree of x. Without having applied the edge domination
rule, it could be the case that the supposedly new edge is already present in the
count of small edges.

For the purpose of getting small kernels, the following large degree rules are
important, see [20]. We only formulate them in the case of 3-Hitting Set, but
the generalization to Hitting Set problems of higher arity should be clear.

• For any pair of vertices x, y do: if the number of edges that contain both
x and y exceeds k, then add an edge {x, y}.2

• For all vertices x do: if the number of edges that contain x exceeds k2,
then add an edge {x}.

Now, if none of the above rules applies to a 3-Hitting Set instance, the
following cutting rule applies:

• If the instance has more than k3 hyperedges, then NO.

1It should be clear, however, that the tiny edge rule decrements the parameter.
2That is our interpretation of [20, Proposition 1]; actually, it is stated there that “all sets

(hyperedges) containing both x and y can be deleted,” but this alone is surely not working,
since we must model that either x or y go into the hitting set.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 212

The cutting rule of course implies that there is a 3k3 kernel for 3-Hitting
Set(measured in terms of vertices). In a similar way, kernels of size O(kd) can
be derived for other d-Hitting Set problems.

Observe that in fact all mentioned reduction rules are needed to obtain this
kernel; e.g., the vertex domination rule is used to get rid of isolated vertices: an
isolated vertex is dominated by any other vertex. Notice finally that all but the
vertex domination rule are also valid when it comes to the task of enumerating
all minimal hitting sets of size at most k; however, we still have a small kernel
(when the arity is bounded by a constant d), since we can easily get rid of
isolates by an extra reduction rule:

3a. If x is an isolated vertex, then delete x.

Induced problem kernels. There is one drawback of the kernelization
from [20]: the kernel is obtained by adding / deleting edges, not only by deleting
vertices. In other words, the obtained kernel is not vertex-induced. This is no
problem with d-Hitting Set in general, but if we want to “use” this kernel-
ization in situations where the Hitting Set instance is merely used to model
another problem instance, this tends to become problematic. Namely, often the
hyperedges correspond to “forbidden situations” (e.g., forbidden subgraphs) and
the vertices are the constituents that form the situations. Deleting a hyperedge
would then be meaningless in the “world” that is modeled by the Hitting Set
instance: all of a sudden say a certain forbidden subgraph would no longer be
forbidden, although all constituents are still there. By way of contrast, vertex
deletions will also destroy the forbidden situations, so that a vertex-induced
kernel can be meaningfully interpreted in the modeled world. Therefore, the
following result is interesting on its own right:3

Theorem 1 3-Hitting Set admits a vertex-induced problem kernel of size
O(k3), measured both in the number of vertices and in the number of edges.

We do not present a proof of that theorem in what follows, but only describe
the reduction rules that we use. We will also use the hyperedge domination
rule, tiny edge rule (only needed if the original instance contains such small
edges) and isolated vertex rule to obtain the kernel. Whenever we face an
instance of Hitting Set, we partition its vertex and edge sets as follows: Let
F = {x ∈ V | x shares more than k edges with some y in V } and let S be
the complement of F in V . Elements of F and S will be referred to in the
sequel as fat and slim vertices, respectively. The set of (hyper-)edges E can be
partitioned as follows:

Ej∗s = {e ∈ E | |e| = 3 ∧ |e ∩ S| = j} for j = 0, 1, 2, 3; and

Ep = {e ∈ E | |e| = 2}.
3The work on vertex-induced kernels is common work with F. Abu-Khzam.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 213

Observe that edges that only contain one vertex can be dealt with by using the
tiny edge rule, so that in fact we can assume that

E =

3
⋃

j=0

Ej∗s ∪ Ep.

In the rules listed below, whenever we say that we put x into the hitting
set, then this means that we reduce the parameter by one and delete x and
all edges containing x from the instance. Later, we will refer to these rules as
modified large degree rules.

• If x is a vertex that occurs more than k times in edges from Ep, then put
x into the hitting set.

• If x is a slim vertex of degree larger than k2, then put x into the hitting
set.

• If x is a fat vertex that appears more than k times with more than k
different other fat vertices, then put x into the hitting set.

• If x is a fat vertex that belongs to more than k2 edges of E2∗s, then put
x into the hitting set.

Let us define the co-occurrence of a pair {x, y} of vertices to be the number
of edges that “contain” the two vertices simultaneously. Denote by co(x, y) the
co-occurrence of {x, y}. Now, let

E1∗s,< = {{x, y, z} ∈ E1∗s | x, y ∈ F and co(x, y) ≤ k in E} .

Moreover, let E1∗s,> = E1∗s \ E1∗s,<.

• If x is a vertex that occurs more than k2 times in edges of E1∗s,<, then
put x into the hitting set.

• If x is a slim vertex that occurs in edges of E1∗s,> and does not appear
elsewhere in E, then delete x.

4 2-Layer Planarization: Bounded search tree

4.1 The general strategy

The algorithm of Dujmović et al. Based on the lemmas collected in Sec. 2,
Dujmović et al. showed [7] the following result:

Theorem 2 Given a graph G and integer k, there is an algorithm that deter-
mines if bpr(G) ≤ k in O(k · 6k + |G|) time.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 214

That algorithm consists of two parts: a kernelization algorithm and a
subsequent search tree algorithm called 2-Layer Bounded Search Tree. The
latter algorithm basically looks for a vertex v with deg′(v) ≥ 3: if found, then
at most 6 recursive branches are triggered to destroy the forbidden structures
described in Lemma 3. After branching, a graph G with Φ(G) = 0 remains
that is solvable with the help of Lemma 4.

Linking 2-Layer Planarization and 6-Hitting Set. Can we further im-
prove on the running time of the search tree algorithm? Firstly, observe that
whenever deg′G′(v) ≥ ℓ for any G′ obtained from G by edge deletion, then al-
ready deg′G(v) ≥ ℓ. This means that we can modify the sketched algorithm by
collecting all vertices of non-leaf degree at least three and, based on this, all
forbidden structures F , i.e., 2-claws, 3-cycles, or 4-cycles, according to Lemma 3
(which then might interact). For reasons of improved algorithm analysis, we also
regard 5-cycles as forbidden structures in what follows. By re-interpreting the
edges of G as the vertices of a hypergraph H = (E,F), where the hyperedges
correspond to the forbidden structures, a 2-LP instance (G, k) is translated into
an instance (H, k) of 6-Hitting Set (6HS).

If we delete all those edges in G that are elements in a hitting set as delivered
by a 6HS algorithm, we arrive at a graph G′ which satisfies deg′G′(v) < 3 for
all vertices v. Hence, Φ(G′) = 0, and Lemma 4 applies.

Unfortunately, we cannot simply take any 6HS algorithm, as described,
e.g., in [19]. Why? The problem is that the 6HS algorithm would be com-
pletely oblivious of large wreath components. Therefore, clever branching in
6HS algorithms might miss optimal solutions to the original 2-Layer Pla-
narization instance. Hence, instead of solving the decision problem 6HS we
should enumerate all minimal hitting sets [3, 12]. This throws us back to the
O∗(6k) algorithm complexity found in [7].

Let us therefore see how the methodology sketched in the Introduction works
out in this case.

4.2 The basic ingredients of our algorithm

In order to maintain the structure of the original graph for the final wreath
analysis, we will mark edges that will not be put into a solution during the
recursive branching process, but we will not delete them. Hence, during the
course of the algorithm we present, a set M of marked edges will be maintained.
A forbidden structure f is a set of edges of the graph instance G = (V,E) such
that

• f describes a cycle of length up to five or a 2-claw, and

• f \ M 6= ∅.
c(f) = f \ M is the core of f ; s(f) = |c(f)| is the size of f . The number of
unmarked forbidden structures to which a specific edge e belongs is also called
the degree of e.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 215

Translating reduction rules. We will use the following reduction rules that
can be obtained by translating the according reduction rules for Hitting Set
as described in the preceding section:

1. (structure domination: A forbidden structure f is dominated by another
structure f ′ if c(f ′) ⊂ c(f).) Then, mark f .

2. tiny structure: If s(f) = 1, put the only unmarked edge into the solution
that is constructed.

3a. isolate: If e is an edge of degree zero, then mark e.

These rules are valid, since they are valid rules for the task of enumerating
minimal hitting sets. In fact, as mentioned in the previous section, the bene-
fits of what is now the structure domination rule will only show up within a
much finer analysis than we are after here. Hence, we will disregard that rule
in what follows, since it creates additional complications when describing the
overall algorithm, due to the otherwise unnecessary marking of (some) forbidden
structures.

In order to facilitate the following arguments, we shall actually work with a
variant of the isolates rule:

3a.’ isolate’: If e is an edge of degree zero, then do:

• Mark e if this would not create any cycle that only consists of marked
edges.

• Otherwise, delete e and decrement the parameter.

We could have also incorporated a translation of the modified large degree
rules, which are valid as well. This way, it is possible to derive a kernel for
2-Layer Planarization in a rather canonical fashion (as we will show in the
case of 1-Layer Planarization below). However, the corresponding kernel
size is worse than what has been obtained in [7], so that we do not follow this
trail.

The rules we got so far do not suffice to improve on the running time. To
achieve this goal, we must be able to handle edges of degree one (to a certain
extent) by reduction rules. As we already commented on, we cannot simply
translate the vertex domination rule; this would not be a valid rule for 2-LP,
since larger cycles are neglected. We will discuss this point later on.

To formulate the new rule, we need to fix some notions to talk about 2-
claws. Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that wi

is adjacent (at least) to c and to xi for i = 1, 2, 3. We will call Fi = {cwi, wixi} a
finger of C, so that the forbidden structure fC corresponding to C is partitioned
into three disjoint fingers. A 2-claw where one or more edges are marked is called
injured. Clearly, in an injured 2-claw with five edges, only one of the fingers
actually got injured and two fingers are still healthy. In an injured 2-claw with
four edges, we still have at least one healthy finger left over.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 216

In the following analysis, assume that we have already branched on all cycles
up to length five (see the first heuristic priority below). Then, we can apply the
following reduction rule for (injured) 2-claws:

3b. (injured) 2-claws: If e is an edge of degree one in a forbidden structure
of size four, five or six corresponding to an (injured) 2-claw, and if e is
incident to the center of the corresponding 2-claw, then mark e.

This rule is a weak substitute of the vertex domination rule of Hitting Set.
It finally allows us to bound the running time as claimed.

Heuristic priorities. The second ingredient in the approach to hitting set
problems described in the Introduction are so-called heuristic priorities. These
describe “rules of thumb” according to which our algorithm will select an un-
marked edge e to branch at. Here, branch at e means the following in the context
of Alg. 1 that describes the procedure TLP:

if TLP(G − e, k − 1,M) then
return YES

else if G[M ∪ {e}] is acyclic then
return TLP(G, k,M ∪ {e})

else
return NO

end if

Hence, either we put e into the biplanarization set, or we (possibly) mark e. If
G[M ∪{e}] contains a cycle but not G[M], then e is the last unmarked edge on a
long cycle and hence must be put into the biplanarization set (basically following
the tiny structure rule); this is covered by the TLP(G − e, k − 1,M)-branch.

The heuristic priorities are the following ones.

1. If possible, select a forbidden structure c that corresponds to a cycle of
length at most five and continue at point 5.

2. Choose a forbidden structure f of minimum size s(f). Let c = c(f).
(Since the previous priority did not apply, f must correspond to a 2-claw.)

3. If there is another forbidden structure f ′ with s(f ′) = s(f) and with
c(f) ∩ c(f ′) 6= ∅, then restrict c = c(f) ∩ c(f ′).

4. If the condition in the previous priority does not apply, then c corresponds
to a (possibly injured) 2-claw.

(a) If 4 ≤ s(f) ≤ 5, then restrict c further to collect only those unmarked
edges that belong to healthy fingers.

(b) If 3 = s(f), then restrict c further to collect only those unmarked
edges that do not belong to other injured 2-claws; if this means that
c would become empty, restore c = c(f).

5. Select e ∈ c of maximal degree.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 217

4.3 The algorithm and its correctness

Algorithm 1 A search tree algorithm for 2-LP, called TLP

Require: a graph G = (V,E), a positive integer k, a set of marked edges M
Ensure: YES if there is a biplanarization set B ⊆ E, |B| ≤ k (and it will

implicitly produce such a small biplanarization set then) or
NO if no such set exists.

Exhaustively apply the reduction rules 2. and 3a.’ (as well as 3b. if G contains
no cycles of length at most five); the resulting instance is also called (G, k,M).
if k < 0 then

return NO
else if E = M then

return YES
else

Select e according to heuristic priorities.
Branch at e.

end if

The correctness of Alg. 1. To prove the soundness of rule 3b., we have
to show that we will never miss out cycles this way. We therefore show the
following assertions:

Proposition 1 At most one edge per finger will be marked due to rule 3b.

Proof: 3b. obviously only affects one 2-claw at a time, since only edges of
degree one are marked. Per 2-claw, the rule triggers at most once per finger. �

Proposition 2 Cycles of length at least six that only consists of marked edges
can never be created by running Alg. 1.

To prove Proposition 2, the following observation is crucial.

Property 1 Let F = {xy, yz} be one finger of a (injured) 2-claw C with center
x such that xy occurs only in one forbidden structure. Then, y has degree two.

Proof: If the conclusion were false, there must be an edge yv in the given 2-LP
instance. Hence, there is an (injured) 2-claw C ′ with center x which is like C,
only having z replaced by v. This contradicts that xy has degree one, since xy
participates both in C and in C ′. �

Proof of Proposition 2. As can be seen in the pseudo-code for “branching at e”,
during branching edges are only marked if marking them would not introduce
cycles exclusively consisting of marked edges. Similarly, the application of rule
3a.’ is protected.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 218

Therefore, the only situation that might miss out long cycles is introduced by
applying reduction rule 3b. Let C be a (possibly injured) 2-claw that contains
an edge e = xy that is incident to the center x of C, belongs to a healthy finger
F = {e, e′} and has degree one (with respect to the collection of forbidden
structures), so that 3b. triggers. If e belongs to some long cycle, then e′ does so
because of Property 1. Therefore, e can be marked without losing the capability
of destroying all long cycles. �

Based on the validity of the lemmas listed so far, it is now relatively straight-
forward to prove the correctness of Alg. 1 by induction on the number of un-
marked edges of a graph. As a technical notice, we remark that reduction rule
3a.’ is essential for the correctness of the algorithm (by way of contrast to our
general remarks on the role of reduction rules in Hitting Set algorithms in the
preceding section). Namely, it completely deals with wreath components that
were subject to postprocessing in the previously published algorithm in [7].

Theorem 3 Given a graph G and an integer parameter k, Alg. 1 when called
with TLP(G, k, ∅), returns YES iff bpr(G) ≤ k, and it returns NO otherwise.

4.4 The time analysis of Algorithm 1

Putting up recurrences. Now, let us turn to the time analysis of the proce-
dure. We will follow the ideas explained in [10] for 3-Hitting Set. Let T (k)
denote the number of leaves in a worst-case search tree for Alg. 1, which inciden-
tally also is the worst-case for the number of solutions returned by the routine.
More distinctly, let T ℓ(k) denote the situation of a search tree assuming that at
least ℓ forbidden structures in the given instance (with parameter k) have size
five. Of course, T (k) ≤ T 0(k). We analyze the recurrences for T 0, T 1 and T 2.

Lemma 6 T 0(k) ≤ T 0(k − 1) + T 2(k).

Proof: Due to the reduction rule 3b., the 2-LP instance G contains an edge
e of degree 2 in a forbidden structure f of size 6, since f represents a healthy
2-claw. Hence, there is another healthy 2-claw corresponding to a forbidden
structure f ′ with e ∈ f ∩f ′. One branch is that e is put into the biplanarization
set. The size of the corresponding subtree can be estimated by T 0(k − 1). If
e is not put into the biplanarization set, then e is marked and hence at least
two forbidden structures of size five are created with cores f \ {e} and f ′ \ {e}.
Therefore, the size of that subtree is bounded above by T 2(k). �

Let us first do a simplified analysis to see that our venue is worth pursuing
at all; here, we basically ignore reduction rules in the derivation of the following
simple branching lemmas.

Lemma 7 T 1(k) ≤ 5T 0(k − 1).

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 219

Proof: This is a consequence of trivial branching at the five edges collected in
a forbidden structure of size five. �

Lemma 8 T 2(k) ≤ max{25T 0(k − 2), T 0(k − 1) + 16T 0(k − 2), 2T 0(k − 1) +
9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}.

Proof: Let f1 and f2 be the two forbidden structures of size five. We have to
consider some sub-cases:

1. If c(f1) ∩ c(f2) = ∅, then we get by the analysis of Lemma 7, keeping
in mind that by branching on say f1 we still keep the low-size forbidden
structure f2 on which we would then continue branching:

T 2(k) ≤ 25T 0(k − 2).

2. If |c(f1) ∩ c(f2)| = 1, our heuristic priorities let us branch at e ∈
c(f1)∩ c(f2). If we take e into the biplanarization set, we get a T 0(k− 1)-
branch. If we don’t take e into the biplanarization set, we are left with
two forbidden structures of size four, namely c(f ′

1) = c(f1) \ {e} and
c(f ′

2) = c(f2)\{e}. Trivial branching on those forbidden structures (which
will be done according to the heuristic priorities) gives sixteen T 0(k − 2)-
branches. Hence,

T 2(k) ≤ T 0(k − 1) + 16T 0(k − 2).

3. More generally, if |c(f1) ∩ c(f2)| = ℓ, we would first have ℓ many T 0(k −
1)-branches according to priority 3. Taking none of the edges into the
biplanarization set leaves us with two structures each of size 5− ℓ; trivial
branching (according to priority 2.) gives (5−ℓ)2 many T 0(k−2)-branches.

Solving recurrences. We now look for an estimate T 0(k) ≤ ck, where we
always assume T ℓ(0) = 1 as an anchor of the recursion:

Assuming T 2(k) ≤ 25T 0(k − 2).

T 0(k) ≤ T 0(k − 1) + T 2(k) ≤ T 0(k − 1) + 25T 0(k − 2)

The ansatz T 0(k) = ck then shows that we have to find the largest real zeros

of the following polynomial: c2 − c − 25. Hence, c ≤ 5.5250 . 4

Assuming T 2(k) ≤ T 0(k − 1) + 16T 0(k − 2).

T 0(k) ≤ T 0(k − 1) + T 2(k) ≤ 2T 0(k − 1) + 16T 0(k − 2)

T 0(k) = ck yields c = 1 +
√

17 ≤ 5.1232.

4We include some mathematical explanation for this approach in the appendix.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 220

Assuming T 2(k) ≤ 2T 0(k − 1) + 9T 0(k − 2).

T 0(k) ≤ T 0(k − 1) + T 2(k) ≤ 3T 0(k − 1) + 9T 0(k − 2)

T 0(k) = ck yields c ≤ 4.8542.

Assuming T 2(k) ≤ 3T 0(k − 1) + 4T 0(k − 2).

T 0(k) ≤ T 0(k − 1) + T 2(k) ≤ 4T 0(k − 1) + 4T 0(k − 2)

T 0(k) = ck again yields c ≤ 4.8285.

Assuming T 2(k) ≤ 4T 0(k − 1) + T 0(k − 2).

T 0(k) = T 0(k − 1) + T 2(k) ≤ 5T 0(k − 1) + T 0(k − 2)

T 0(k) = ck yields c = 2.5 +
√

7.25 ≤ 5.1926.
After this preliminary analysis, we can draw the following conclusions:

• The approach we used looks promising, since we can rather easily improve
on the earlier claimed search tree size of O(6k).

• By far the worst case is encountered in the only situation when we ac-
tually use the (trivial) estimate for T 1(k) as derived in Lemma 7. More
specifically, that case (marked by a box in the previous derivations) yields
a search tree estimate worse than O(5.5k), while in all other cases, the
estimates are better than O(5.2k).

This gives us an excellent hint on how to further improve on the estimates
of the search tree sizes: we “only” have to analyze the T 1-branchings more
thoroughly.

Refined time analysis of Alg. 1. A more involved analysis of the T 1- and
T 2-branches as well as some algebra for solving the recursions (included in the
appendix), shows:

Lemma 9 T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1).

This readily improves our estimate for T 2(k) as follows:

Lemma 10 T 2(k) ≤ max{2T 1(k − 1) + 3T 2(k − 1), T 0(k − 1) + 16T 0(k −
2), 2T 0(k − 1) + 9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}.

We finally notice that we can implement the branching in Alg. 1 by actu-
ally looking for vertices on non-leaf-degree at least three instead of looking for
forbidden structures of size at most six (in particular, also referring to cycles of
length five) based on the following observations:

• We only need the fact that small cycles are already worked on “locally”
in the analysis included in the appendix.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 221

• Also, the heuristic priorities are only analyzed based on a local scheme,
i.e., following up the way they trigger further (local) situations.

Hence, we can maintain all necessary local information, as it is indicated
within [21] when describing an implementation of the algorithm from [7].

Theorem 4 Given a graph G and an integer k, Alg. 1 can be implemented such
that it determines if bpr(G) ≤ k in O(k2 · 5.1926k + |G|) time, when applied to
the problem kernel derived in [7].

To prove these results, the following lemma is important, which is also in-
teresting from a structural point of view on its own account; this also explains
why we considered 5-cycles as forbidden structures.

Lemma 11 In a graph without cycles up to length five, each 2-claw is vertex-
induced. In particular, the center is uniquely determined.

By changing the heuristic priorities in one case and by using a generalization
of rule 3b., we can improve the base further to 5.1844. Details on this marginal
improvement can be found in the report version [11].

5 1-Layer Planarization: Kernelization and

branching algorithms

5.1 Combinatorial properties

Preliminary results. The next two results from [7] give important properties
for π-biplanar graphs.

Lemma 12 A bipartite graph G = (A,B;E) with a fixed permutation π of A
is π-biplanar if and only if G is acyclic and the following condition (∗) holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex
u ∈ A between x and y in π, the only edge incident to u (if any) is
uv.

Let us say that an edge e of a bipartite graph G potentially violates condition
(∗) if, using the notation of condition (∗), e = ei for i = 1, 2, 3, where e1 = xv
or e2 = vy or e3 = uz for some u strictly between x and y in π such that z 6= v.
We will also say that e1, e2, e3 (together) violate condition (∗).

Let G = (A,B;E) be a bipartite graph with a fixed permutation of A that
satisfies condition (∗). Let H = K2,p be a complete bipartite subgraph of G
with H ∩ A = {x, y}, and H ∩ B = {v ∈ B : vx ∈ E, vy ∈ E,degG(v) = 2},
and |H ∩ B| = p. Then H is called a p-diamond. Every cycle of G is in some
p-diamond with p ≥ 2.

Lemma 13 If G = (A,B;E) is a bipartite graph and π is a permutation of A
satisfying condition (∗), then bpr(G, π) =

∑

maximal p-diamonds of G(p − 1) .

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 222

Basically, we are going to further analyze the following lemma from [7]:

Lemma 14 If G = (A,B;E) is a bipartite graph and π is a permutation of A
that satisfies condition (∗), then all the cycles of G are 4-cycles and any two
non-edge-disjoint cycles share exactly two edges. Moreover, the degree of any
vertex in B that appears in a cycle is exactly two.

More precisely, we are going to prove:

Lemma 15 Let G = (A,B;E) be a bipartite graph and let π be a permutation
of A. Then, every cycle C of length 2ℓ > 4 has at most two edges not violating
condition (∗).

More precisely, let u be the leftmost vertex of C on A and v be the rightmost
vertex of C on A. Then, there is at most one edge incident to u and at most
one edge incident to v that potentially violate condition (∗).

Proof: Let u be the leftmost vertex of C on A and v be the rightmost vertex
of C on A. C contains two disjoint paths P and P ′ between u and v.
Claim 1: Any edge on C not incident with u or v potentially violates (∗).

Namely, assume that e = {x, y} belongs to P , x ∈ A\{u, v}. Then, consider
the vertex x′ <π x of A that is closest to x among all vertices of P ′. Vertex
x′ exists, since x 6= u. By the choice of x′, there is a vertex z′ >π x on P ′

at distance two from x′ on P ′, since x 6= v. Let y′ be the vertex on B that
interconnects x′ and z′ on P ′. Then, (x′, y′, z′) and e violate condition (∗).
This shows the claim. ♦

Consider now the case that e = {x, y} belongs to P with x = v. Let x′

be defined as above. Vertex y has a neighbor z on P , z 6= u, since 2ℓ > 4. If
z <π x′, (x, y, z) and the edge {x′, y′} violate (∗) for any neighbor y′ of x′ on
P ′. Otherwise, x′ <π z. Consider the path P ′ as starting at v: (v, y′, z′, . . .).
By definition of x′, z′ ≤π x′ <π z <π x = v. Hence, (v, y′, z′) together with
{z, y} violate (∗). We can conclude:
Claim 2: There is at most one edge incident to v that does not potentially
violate (∗). ♦

By symmetry, an analogous statement is true for u. �

5.2 Kernelization algorithm

Kernelization rules. We are now going to derive a kernelization algorithm for
1-Layer Planarization. As announced, we will do this by first translating
the Hitting Set reduction rules that were useful for kernelization, which were
in particular the modified large degree rules, as well as the isolated vertex rule.

According to Lemma 12 (as well as the proof of Lemma 13 for the last
two rules), the following reduction rules are sound, given an instance (G =
(A,B;E), π, k) of 1-LP.

1L-RR-edge: If e ∈ E does not participate in any cycle and does not poten-
tially violate condition (∗), then remove e from the instance (keeping the same
parameter k).

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 223

1L-RR-large: Notice that we can translate the modified large degree rules de-
scribed after the formulation of Theorem 1, since that reduction is only dealing
with vertex-induced hypergraphs. We omit the further details here.
1L-RR-isolate: If v ∈ A ∪ B has degree zero, then remove v from the instance
and modify π appropriately (keeping the same parameter k).

Let E⋆ ⊆ E be all edges that potentially violate condition (∗). Let E◦ ⊆ E
be all edges that participate in cycles. Let G4c be generated by those edges from
E◦ \E⋆ that participate in 4-cycles. By construction, G4c satisfies condition (∗).
Lemma 13 shows that the next reduction rule can be applied in polynomial time:

1L-RR-4C: If bpr(G4c, π) > k, then NO.

Lemma 16 Let G = (A,B;E) be a bipartite graph and let π be a permutation
of A. Let v ∈ B. Then, there is at most one edge e incident to v that does not
potentially violate condition (∗) and participates in cycles of length > 4.

Proof: Let C = (v1, v2, . . . , v2ℓ) and C ′ = (v′
1, v

′
2, . . . , v

′
2ℓ′) be “long cycles”,

such that (w.l.o.g.) e = v2v3 and e′ = v′
2v

′
3, with e 6= e′, and v = v2 = v′

2.
Assume that e and e′ both do not potentially violate condition (∗). W.l.o.g.,
we can further assume that v1 <π v3. We now consider all possible positions of
v′
1 with respect to v1 <π v3.

• If v1 <π v′
1 <π v3, then (v1, v2, v3) together with v′

1v
′
2ℓ′ do not satisfy

condition (∗), so that e potentially violates (∗), contradicting our assump-
tions. Similarly, v′

1 <π v1 <π v3 can be ruled out.

• If v′
1 ≤π v1 <π v3, then both cases v3 <π v′

3 and v′
3 <π v3 lead to

contradictions (symmetric to the previous situation). But if v3 = v′
3, then

e = e′.

• v′
1 = v3 is ruled out by Lemma 15, since then e and e′ would be two

subsequent edges on C ′ which do not potentially violate (∗).

• Hence, v1 <π v3 <π v′
1 remains as the only possibility. Interchanging

the roles of C and C ′ in the argument, v′
1 <π v′

3 is ruled out. Hence,
v1 <π v3, v

′
3 <π v′

1 with v3 6= v′
3 since e 6= e′. Consider (a) v1 <π v3 <π

v′
3 <π v′

1. Then, (v3, v, v′1) together with v′
3v

′
4 violate (∗), contradicting

our assumption on e. If (b) v1 <π v′
3 <π v3 <π v′

1, we get a similar
violation of our assumption on e′. �

Theorem 5 Let G = (A,B;E) be a bipartite graph, π be a permutation of A
and k ≥ 0. Assume that none of the reduction rules applies to the 1-LP instance
(G, π, k). Then, |E| = O(k3). The kernel can be found in time O(|G|2).

Proof: Since no reduction rules apply to (G, π, k), E = E◦ ∪ E∗. Our rules
1L-RR-edge and 1L-RR-large correspond to the rules from Theorem 1. Hence,
|E∗| = O(k3).

If e = xy ∈ E◦ \E⋆ with y ∈ B does not belong to a 4-cycle, then Lemma 16
shows that there is no other edge zy ∈ E◦ \ E⋆. But since xy ∈ E◦, there must

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 224

be some “continuing edge” zy on the long circle xy belongs to, so that zy ∈ E⋆

follows. We can take zy as a witness for xy. By Lemma 16, zy can witness for
at most one edge from E◦ \E⋆ incident to y and not participating in a 4-cycle.

This allows us to partition E◦ into three disjoint subsets: (a) E◦ ∩ E⋆, (b)
E4c = {e ∈ E◦ \E⋆ | e participates in a 4-cycle }: there can be at most 4k such
edges according to 1L-RR-4C and Lemma 13, and (c) E◦ \ E4c: according to
our preceding reasoning, there are at most |E⋆| many of these edges. �

Remark 1 (annotated kernel) If we are willing to accept annotated in-
stances as the result of a kernelization, we can get a slightly better kernel
bound of |E| ≤ k3 with the same argument, see Sec. 3. Then, besides the
graph G = (A,B;E), we would have a set E of pairs of edges such that, for all
{e1, e2} ∈ E, e1 or e2 must be removed (and this will be done by the subsequent
branching).

5.3 Bounded search tree

Dujmović et al. obtained the following result in [7]:

Theorem 6 Given a bipartite graph G = (A,B;E), a fixed permutation π of
A, and integer k, there is an algorithm that determines if bpr(G, π) ≤ k in
O(3k · |G|) time.

Can we further improve on this algorithm? Firstly, it is clear that we can
combine the search tree algorithm with the kernelization algorithm described
above. Here, the annotated kernel version would have the advantage that we
could start branching at the edge pairs in the annotation set E ; this would give
a nice 2k-branching.

But furthermore, observe that the search tree algorithm basically branches
on all members of E⋆, trying to destroy the corresponding triples of edges vi-
olating condition (∗). This means that we again take ideas stemming from
solutions of the naturally corresponding instance of 3-Hitting Set. Unfortu-
nately again, we cannot simply “copy” the currently best search tree algorithm
for 3-Hitting Set [10, 19], running in time O(k · 2.179k + |G|), since destroy-
ing triples of edges violating condition (∗) might incidentally also destroy more
or less of the 4-cycles. As explained in the 2-LP case, the problem is again
the vertex domination rule. In order to gain anything against the previously
sketched algorithm 1-Layer Bounded Search Tree, we must somehow at least avoid
branching on vertices of degree one contained in hyperedges of size three.

Firstly, we can prove a lemma that shows that, whenever we have branched
on all hyperedges of size three in the 3-Hitting Set instance (This corresponds
to situations violating condition (∗) in the original 1-LP instance) that contain
vertices of degree at least two, then we have already destroyed all “large” cycles.
More precisely, we show:

Lemma 17 Let G = (A,B;E) be a bipartite graph and π be a fixed permutation
of A. If C is a cycle of length six or more, then C contains two vertex-disjoint
paths (x, y, z) and (b, a, c) such that x, a, z ∈ A and b, y, c ∈ B and xπ < a <π z.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 225

Proof: Let x be the leftmost vertex of C in A. On C, the neighbors of x be
{x, a, z}. Assume x <π z. By definition, x <π a. Call the common neighbor of
x and z on C y, and the two neighbors of a on C b, c. This shows the claim. �

Then, we investigate the possible interaction between a cycle of length four
and a structure violating (∗), after having “destroyed” all “mutually interacting”
structures violating (∗).

Lemma 18 Let G = (A,B;E) be a bipartite graph and π be a fixed permutation
of A. Let C = {ab, bc, cd, da} be a sequence of edges forming a 4-cycle.

Assume that the following condition (+) is true: if h = {e1, e2, e3} and
h′ = {e′1, e′2, e′3} are two situations violating (∗), then h ∩ h′ = ∅.

Then, there is at most one hyperedge hC—among the hyperedges modeling
situations violating (∗)—such that C ∩ hC 6= ∅.

The rather technical proof is contained in the Appendix.
Our Alg. 2 is worked out again according to the Hitting Set methodology.

We therefore inherit some terminology from the previous section: A forbidden
structure is either a set of three edges f = {e1, e2, e3} violating (∗) or a 4-
cycle (this viewpoint makes the presentation of the algorithm easier). The core
c(f) of a forbidden structure f is c(f) = f \ M . Accordingly, the notions of
s(f) = |c(f)| and the degree of an edge e are understood. Let

Fd = {f | f is a forbidden structure ∧ s(f) = d} for d = 2, 3, 4;

dmin = min
d=2,3,4

{d | Fd 6= ∅} and

F ∗
d = {f ∈ Fd | ∃f ′ ∈ Fdmin

\ {f} : c(f) ∩ c(f ′) 6= ∅}.
The list of heuristic priorities according to which we select the edge e to branch
at is as follows (in addition, we describe a forbidden structure f that contains e):

1. Determine d = dmin . If d = 3 and F ∗
d = ∅, then let d = 4.

2. If F ∗
d 6= ∅, then choose f ∈ Fd and f ′ ∈ Fdmin

\{f} and let c = c(f)∩c(f ′).
Otherwise, choose f ∈ Fd and let c = c(f).

3. Select e ∈ c of maximal degree.

Furthermore, we make use of the following rules that can be seen as translat-
ing the tiny edge rule and the vertex domination rule, respectively; observe that
(already upon branching) we now also mark certain edges. In fact, we require
that the translated tiny edge rule will be always applied prior to applying any
other rules.

1. If e is the last unmarked edge in a forbidden structure, then delete e (and
decrement the parameter).

2. If e is an edge from a forbidden structure such that e is not part of another
forbidden structure, then mark e.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 226

Algorithm 2 A search tree algorithm for 1-LP, called OLP

Require: a bipartite graph G = (A,B;E), a permutation π of A, a positive
integer k, a set of marked edges M

Ensure: NO if bpr(G, π) > k; otherwise, YES (and it will implicitly produce
such a small biplanarization set then)

Exhaustively apply the reduction rules; the resulting instance is also called
(G, π, k,M).
if k < 0 then

return NO
else if E = M then

return YES
else

Select e in forbidden structure f according to heuristic priorities.
if OLP(G − e, π, k − 1,M) then

return YES
else if f is not a 4-cycle then

return OLP(G, π, k,M ∪ {e})
else

return NO
end if

end if

For the validity of these rules, Lemma 14 and our interpretation of forbidden
structures (including 4-cycles) is essential.

In the algorithm depicted in Alg. 2, we again use a set of marked edges M to
mark edges which (according to our previous branching) we shall not put into
the biplanarization set. This part of the input is therefore initialized with ∅ at
the very beginning.

Theorem 7 1-LP can be solved in O(k3 · 2.5616k + |G|2) time.

Proof: Let us firstly comment on the correctness of the algorithm. We deviate
from the standard scheme of Hitting Set algorithms only when we select an
edge e from a 4-cycle for branching, because we suppress the otherwise necessary
case not taking e into the planarization set. This is justified as follows. By the
heuristic priorities, a 4-cycle will be selected for branching only if F2 = ∅ and if
either F3 = ∅ or if F3 6= ∅ but F ∗

3 = ∅. Since we are always dealing with reduced
instances, isolated forbidden structures (in particular, isolated 4-cycles) will not
show up when the algorithm branches. Hence, F ∗

4 = F4 if F2 = ∅. Therefore,
the case F3 = ∅ implies F4 = ∅ and hence will not trigger branching; in fact, if
F2 = F3 = F4 = ∅, then the algorithm will have already terminated, since all
edges will then be marked by the reduction rules (and possibly, the parameter
value would be below zero); therefore, this case cannot show up in the branching
stage of the algorithm. When F3 6= ∅ but F ∗

3 = ∅, Lemma 18 assures that we
have to take out the edge that is selected according to the heuristic priorities in

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 227

order to deal with the remaining forbidden structures of size three.
Therefore, branching only actually takes place when we “solve” the corre-

sponding 3-Hitting Set instance. During these recursions, we can always
assume that, whenever we branch at forbidden structures of size three, there is
some element contained in that forbidden structure which actually participates
in at least two forbidden structures. Namely, a forbidden structure that does
not interact with any other forbidden structure will be dealt with by the reduc-
tion rules (more specifically, by the translations of the vertex domination and
the tiny edge rule). A forbidden structure of size three that only interacts with
4-cycles will be dealt with as described in the preceding paragraph.

Let us now turn to the time analysis. To this end, let T ℓ(k) denote the
situation of a search tree assuming that at least ℓ forbidden structures in the
given instance (with parameter k) have a size of (at most) 2. Of course, T 0(k)
is the worst case tree size. We again analyze the recurrences for T 0, T 1 and T 2,
and we use the notions of core and size of a forbidden structure similarly to the
2-LP case.

The reasoning of Lemma 6 basically transfers to 1-LP, yielding

T 0(k) ≤ T 0(k − 1) + T 2(k).

Namely, we face the situation that we have no forbidden structures of size two,
i.e., F2 = ∅. According to the argument given in the first paragraph of this proof,
we then must have F3 6= ∅ and F ∗

3 6= ∅ in order to actually trigger the binary
branching process. (More formally, if the binary branching is not triggered,
we get the estimate T 0(k) ≤ T 0(k − 1) which is clearly better than what we
claim and can therefore be neglected). Since F ∗

3 6= ∅ and F2 = ∅, the heuristic
priorities will select an edge e to branch at that is contained in two forbidden
structures of size three. Hence, if e is not taken into the biplanarization set,
then we encounter at least two forbidden structures of size two (as claimed).

For T 1, we cannot claim to “gain” any new forbidden structures of size two.
Therefore, a trivial branching gives:

T 1(k) ≤ 2T 0(k − 1).

For T 2, we distinguish two sub-cases, considering two forbidden structures f1, f2

of size two:

1. c(f1) ∩ c(f2) = ∅. Then, trivial branching gives:

T 2(k) ≤ 4T 0(k − 2).

2. ∃e ∈ c(f1) ∩ c(f2). Branching at e (which our algorithm will do) then
yields:

T 2(k) ≤ T 0(k − 1) + T 0(k − 2).

The first sub-case leads to:

T 0(k) ≤ T 0(k − 1) + 4T 0(k − 2) ≤ 2.5616k.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 228

The second sub-case gives:

T 0(k) ≤ T 0(k − 1) + (T 0(k − 1) + T 0(k − 2)) ≤ 2.4143k.

So, the first sub-case yields the worst case. �

6 Conclusion

In this paper we have presented two methods for producing FPT algorithms in
the context of 2-layer and 1-layer planarization. The smaller exponential bases
(in comparison with [7]) are due to the tight relations with Hitting Set, as
we exhibited. For small values of k, our algorithms provide a feasible method
for the solution of these NP-complete problems.

With the results in [7, 8], we have now good kernelization and search tree
algorithms for three types of “layered planarization” problems:

1. For 2-LP, we got an O(k2 · 5.1926k + |G|) algorithm and a kernel size
O(k).

2. For 1-LP, we found an O(k3 · 2.5616k + |G|2) algorithm and a kernel
size O(k3).

3. For 1-Layer Crossing Minimization, we obtained an O(1.4656k +
k|G|2) algorithm and a kernel size O(k2), where k is now the number
of crossings.

For 2-Layer Crossing Minimization, the (more general) results of [6]

only give an O(232(2+2k)3 |G|) algorithm, which should be further improvable.
In [18], also the importance of weighted variants of 2-Layer Planariza-

tion and 1-Layer Planarization is mentioned. If one likes to attack such
problems from a parameterized point of view, it is customary to assume that
all weights are at least one; the parameter is then an upperbound on the weight
of the edges taken out to planarize the given instance. The O∗(3k) and O∗(6k)
search tree algorithms (for 1-LP and 2-LP, respectively) that are essentially
based on enumerating minimal solutions of the underlying Hitting Set prob-
lem will also work in the weighted case, especially with the same time analysis.
However, the task of improving these running times becomes even more challeng-
ing, since already in the simplest weighted Hitting Set case, i.e., Weighted
Vertex Cover, the degree-one case becomes non-trivial, see [20].

Finally, it would be interesting to see if the FPT route to exact algorithms
for 1-LP and 2-LP can be combined with other approaches, as [2, 18].

Acknowledgments

We are grateful for discussion of this topic with V. Dujmović. Moreover, the
numerous comments of the referees of JGAA were very helpful to improve on
the presentation of the paper.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 229

References

[1] F. Abu-Khzam, H. Fernau, and M. A. Langston. Asymptotically faster
algorithms for parameterized face cover. In H. Broersma, M. Johnson, and
S. Szeider, editors, Algorithms and Complexity in Durham ACiD 2005, vol-
ume 4 of Texts in Algorithmics, pages 43–58. King’s College Publications,
2005.

[2] L. Carmel, D. Harel, and Y. Koren. Combining hierarchy and energy for
drawing directed graphs. IEEE Transactions on Visualization and Com-
puter Graphics, 10(1):46–57, 2004.

[3] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. In R. Downey, M. Fellows, and F. Dehne, editors,
International Workshop on Parameterized and Exact Computation IWPEC
2004, volume 3162 of LNCS, pages 1–12. Springer, 2004.

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[6] V. Dujmović, M. R. Fellows, M. Hallett, M. Kitching, G. Liotta, C. Mc-
Cartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. White-
sides, and D. R. Wood. On the parameterized complexity of layered graph
drawing. In F. M. auf der Heide, editor, 9th Annual European Symposium
on Algorithms ESA, volume 2161 of LNCS, pages 488–499. Springer, 2001.

[7] V. Dujmović, M. R. Fellows, M. Hallett, M. Kitching, G. Liotta, C. Mc-
Cartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. White-
sides, and D. R. Wood. A fixed-parameter approach to two-layer planariza-
tion. In P. Mutzel, M. Jünger, and S. Leipert, editors, 9th International
Symposium on Graph Drawing GD 2001, volume 2265 of LNCS, pages 1–15.
Springer, 2002.

[8] V. Dujmović, H. Fernau, and M. Kaufmann. Fixed parameter algorithms
for one-sided crossing minimization revisited. In G. Liotta, editor, 11th In-
ternational Symposium on Graph Drawing GD 2003, volume 2912 of LNCS,
pages 332–344. Springer, 2004.

[9] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond.
FPT is P-time extremal structure I. In H. Broersma, M. Johnson, and
S. Szeider, editors, Algorithms and Complexity in Durham ACiD 2005,
volume 4 of Texts in Algorithmics, pages 1–41. King’s College Publications,
2005.

[10] H. Fernau. A top-down approach to search-trees: Improved algorithmics
for 3-Hitting Set. Technical Report TR04-073, Electronic Colloquium on
Computational Complexity ECCC, 2004.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 230

[11] H. Fernau. Two-layer planarization: Improving on parameterized algorith-
mics. Technical Report TR04-078, Electronic Colloquium on Computa-
tional Complexity ECCC, 2004.

[12] H. Fernau. Parameterized Algorithmics: A Graph-Theoretic Approach.
Habilitationsschrift, Universität Tübingen, Germany, 2005. Submitted.

[13] H. Fernau. Parameterized algorithmics for linear arrangement problems.
Submitted for publication, Aug. 2005.

[14] H. Fernau. Two-layer planarization: Improving on parameterized algorith-
mics. In P. Vojtáš, M. Bieliková, B. Charron-Bost, and O. Sýkora, editors,
SOFSEM, volume 3381 of LNCS, pages 137–146. Springer, 2005.

[15] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: dom-
ination – a case study. Technical Report 294, Department of Informatics,
University of Bergen (Norway), Apr. 2005. To appear in Proc. ICALP
2005.

[16] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley, 1990.

[17] P. Mutzel. An alternative method to crossing minimization on hierarchical
graphs. SIAM J. Optimization, 11(4):1065–1080, 2001.

[18] P. Mutzel and R. Weiskircher. Two-layer planarization in graph drawing.
In K.-Y. Chwa and O. H. Ibarra, editors, Algorithms and Computation
— 9th International Symposium ISAAC’98, volume 1533 of LNCS, pages
69–78, 1998.

[19] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm
for 3-Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003.

[20] R. Niedermeier and P. Rossmanith. On efficient fixed parameter algorithms
for weighted vertex cover. Journal of Algorithms, 47:63–77, 2003.

[21] M. Suderman and S. Whitesides. Experiments with the fixed-parameter
approach for two-layer planarization. In G. Liotta, editor, 11th Interna-
tional Symposium on Graph Drawing GD 2003, volume 2912 of LNCS,
pages 345–356. Springer, 2003.

[22] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Systems Man Cybernet.,
11(2):109–125, 1981.

[23] M. Wahlström. Exact algorithms for finding minimum transversals in rank-
3 hypergraphs. Journal of Algorithms, 51:107–121, 2004.

[24] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull.
Math. Biol., 48(2):189–195, 1986.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 231

Appendix: Explanation of the analysis approach

Our approach to analyze search trees based on multiple recurrences is justified
on the following grounds:

Generally speaking, the technical approach to recurrences is via gener-
ating functions. In the simple first example of a recurrence analyzed after
Lemma 8, we are looking for a closed form of the function G(z) given by
G(z) =

∑

k T 0(k)zk, i.e.,

G(z) =
∑

k

T 0(k)zk

=
∑

k

T 0(k − 1)zk + 25
∑

k

T 0(k − 2)zk + 1

= zG(z) + 25z2G(z) + 1

 G(z) =
1

−25z2 − z + 1

It is known that then T 0(k) can be expressed in a closed form as T 0(k) =
a1ρ

k
1 +a2ρ

k
2 , where ρi are the roots of the reflected polynomial z2−z−25 (which

is also sometimes called the characteristic polynomial of that linear recurrence),
i.e., ρ1 = .5+

√
25.25 and ρ2 = .5−

√
25.25. Obviously, ρ1 is the largest positive

root, so that T 0(k) = O(ρk
1) ≤ O(5.5250k) as claimed.

This justifies our approach taken above, where this largest root has been
simply computed using a numerical approximation program.

When facing mutually recurrent linear inequalities of a more general form,
i.e., in our case,

T 0(k) ≤ max{f0
1 (k), f0

2 (k), . . . , f0
n0

(k)},

T 1(k) ≤ max{f1
1 (k), f1

2 (k), . . . , f1
n1

(k)}, and

T 2(k) ≤ max{f2
1 (k), f2

2 (k), . . . , f2
n2

(k)},
where f ℓ

i (k) are positive linear combinations of some T j(k′), we might be happy
that we can transform this into a single inequality of the form

T 0(k) ≤ max{g0
1(k), g0

2(k), . . . , g0
n0

(k)},

where g0
i (k) are positive linear combinations of some T 0(k′). Then, we can find

the roots of the characteristic polynomials of each of the recurrences T 0(k) ≤
g0

i (k); the largest c of all these roots will satisfy all inequalities. In fact, this is
possible with all the algorithmic analysis from the main text body.

In the general case, we can first transform the mutually recurrent linear
inequalities into a set of mutually recurrent linear inequalities without the max-
imum operator. In the case sketched above, this gives n0n1n2 inequalities, from

T 0(k) ≤ f0
1 (k), T 1(k) ≤ f1

1 (k), T 2(k) ≤ f2
1 (k) to

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 232

T 0(k) ≤ f0
n0

(k), T 1(k) ≤ f1
n1

(k), T 2(k) ≤ f2
n2

(k).

Each such mutually recurrent linear inequality system can be solved by the
approach that we get the “best estimates” by assuming equalities in all inequal-
ities. This should give an estimate T 0(k) ≤ ck

j for each of the mutually recurrent
linear inequalities. Now, we can pursue this approach by setting

c = max{cj | 1 ≤ j ≤ n0n1n2}.

The claim would be then that T 0(k) = ck allows to satisfy all given inequalities.
In the more general situation, we should however also find expressions for T 1

and for T 2 to validate this claim.
Here, it is helpful to know that the ansatz T 0(k) = ck can be supplemented

by T 1(k) = α1c
k and T 2(k) = α2c

k, for suitable 0 < α2 ≤ α2 ≤ 1 depending
on c. Notice that there is quite a practical interpretation of the αi: (1 − αi)
gives the fraction of running time that is saved (at least) when facing the T i-
situation instead of the T 0-situation, since the search tree size shrinks down by
this factor.

Appendix: the branches of Alg. 1—more details

Proof of the analysis of the branches

t1

b1

t2 t3

b3

w1
w2 w3

x1

2
x3

c

2b

x

Figure 1: A typical 2-claw.

Proof of Lemma 11. Assume that C = {c, w1, w2, w3, x1, x2, x3} is a 2-claw
centered at c with fingers fi = {bi, ti}: the edges forming the fingers are called
bases bi = cwi and tips ti = wixi, see Fig. 1.

Now, assume that alternatively w1 were the center of a 2-claw with vertex
set C. This means that there must be an edge in G that connects w1 with wi

or xi for some i 6= 1 in order to form another finger. But this would introduce
short cycles in G.

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 233

If x1 were the center of a 2-claw, then again there must be edges connecting
x1 with c, wi or xi for some i 6= 1 in order to form another finger. But this
would again introduce short cycles in G.

By symmetry, w2, w3, x2 and x3 cannot be centers of another 2-claw with
vertex set C.

Therefore, c must be also the center of the assumed alternative 2-claw with
vertex set C. Now, if one of the xi would be a finger articulation in this alter-
native 2-claw interpretation, this means that there is an edge connecting xi and
c, so that (c, xi, wi) would form a 3-cycle. Hence, only the wi could be finger
articulations. Therefore, only the xi could be finger tips, since an edge between
wi and tj would introduce short cycles if i 6= j. �

In these proofs, we need the following easy corollary from reduction rule 3b.:

Proposition 3 In a reduced instance, injured 2-claws corresponding to forbid-
den structures of size five in the 6HS instance always still have two healthy
fingers, and the edges incident to the center that belong to these fingers have
degree of at least two in the 6HS instance.

Proof of Lemma 9. Let us first analyze the situation that we actually only
have one injured 2-claw with five edges within our reduced problem instance.
Let G = (V,E) be a reduced instance such that G contains no 3-, 4-, or 5-cycles
(they have been already branched at).

Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that wi

is neighbored (at least) to c and xi for i = 1, 2, 3, with fingers fi = {bi, ti}, as
depicted in Fig. 1.

Assume that the 2-claw is injured, so that w.l.o.g., either b1 or t1 are marked.
Now, observe that we can show a couple of claims for this situation:

1. The degree of w2 (and of w3) in G is two.
If this were false, we would face a T≥2-situation, since there would be
another injured 2-claw C ′ centered at c; in fact, C ′ and C would have four
unmarked edges in common, including the injured finger {b1, t1}. ♦

2. c is not the center of another 2-claw.
Avoiding the previous case, this means that the assumed other 2-claw Ĉ
with center c has at least one finger F = {b, t} disjoint from the ones
of C. But then, F together with the injured finger of C and one non-
injured finger of C would produce another injured 2-claw C ′ centered at
c, different from C. Here, C ′ and C would have three unmarked edges in
common. Again, we would face a T≥2-situation. ♦

3. Both b2 and b3 interact with other 2-claws. Hence, b2 must be the tip of
another 2-claw C2 with center x2 and b3 must be the tip of another 2-claw

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 234

C3 with center x3, where C2 6= C3.
b2 and b3 have degree at least two, since our instance is assumed to be
reduced. Let us discuss possible interactions between C and another 2-
claw C2 that contains b2 and has center c2. If b2 were not the tip of another
2-claw, it would be the base of another 2-claw. Hence, either c2 = w2,
which contradicts Claim 1, or c2 = c, contradicting Claim 2.

Consider the case that the base of C2 would be another edge adjacent to
c but not contained in C. Then, C2 would have two other fingers g1 and
g2 (besides {c2c, b2}) that do not interfere with C (otherwise, short cycles
would be introduced). Now, e.g., f1, f2 and a finger formed by cc2 and
say the base of g1 would be injured, so that we face a T≥2-situation, in
contrast to our assumptions.

If finally t2 is the base of C2, then x2 is the center (as claimed), due to
Claim 1.

A similar reasoning is valid for the third finger of C and the corresponding
2-claw C3 that contains b3.

Since C is a 2-claw, x2 6= x3 by definition. Therefore, C2 6= C3: due to
Lemma 11, C2 and C3 actually define different 2-claws. ♦

4. w1 /∈ C2 ∪ C3.
Assume w1 ∈ C2. Then, there must be a path P of length at most two
between w1 and x2, which together with the path (w1, c, w2, x2) forms a
5-cycle. ♦

5. Similarly: w3 /∈ C2 and w2 /∈ C3. ♦

Now we are ready to analyze the branching for T 1(k). C is the injured 2-
claw we are going to branch on. According to Lemma 11, C can be uniquely
described alternatively as a set of edges or as a set of vertices. We adopt the
first notation in the following.

Due to the heuristic priorities 4a. and 5., we would select either b2 or b3

for branching, whatever has larger degree. Assume that the degree of b2 is
larger than the degree of b3. If b2 goes into the biplanarization set, we create a
T 0(k−1)-branch. In the case that we do not take b2 ∈ C into the biplanarization
set, b2 will get marked. Hence, at least one new forbidden structure of size
five is created, namely (following the terminology introduced in the claims)
C ′

2 = C2 \ {b2}.
Nonetheless, C ′ = C \ {b2} is now the smallest forbidden structure with

s(C ′) = 4. Due to the last heuristic priority, we would select b3 for branching.
According to Claim 5, b3 is not part of C2. Hence, if we take b3 into the
biplanarization set, we won’t destroy C2, so that this is a T 1(k − 1)-branch.

If we don’t put b3 into the biplanarization set, then we will create a new
small forbidden structure, namely C ′

3 = C3 \ {b3}. In that case, we proceed
branching at the injured finger {b1, t1} according to heuristic priority 4b. So,
let z denote the still unmarked part of that finger. According to Claim 4, if

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 235

we put z into the biplanarization set, neither C ′
2 nor C ′

3 get destroyed. Hence,
this is a T 2(k − 1)-branch. Finally, branching at say t2 would only destroy C ′

2

but not C ′
3, so this is a T 1(k − 1)-branch, and then branching at t3 gives a

T 0(k − 1)-branch.
Altogether, this shows the claimed relation if we actually had encountered

a T 1-situation and not a T≥2-situation in disguise.
Hence, T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1).
If the assumption that only one forbidden structure of size five is present was

wrong, our branching analysis could only get better. More precisely, our earlier
reasoning shows that we only encountered the two cases that two forbidden
structures f1 and f2 of size five intersect, such that 3 ≤ |c(f1) ∩ c(f2)| ≤ 4. To
cover these cases, we may wish to include the estimates

T 1(k) ≤ max{3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}

that have been derived when proving Lemma 8. �

We will include the two inequalities in the algebraic analysis that follows but
refrain from putting it into the (set of) inequalities listed in the formulation of
Lemma 9, since it is not really dealing with a T 1-situation.

Proof of Lemma 10. Let f1 and f2 be the two forbidden structures of size five.
We have to consider only one further sub-case, the other ones we already dealt
with in the proof of Lemma 8.

If c(f1)∩c(f2) = ∅, then we get by the analysis of Lemma 9, keeping in mind
that by branching on say c(f1) we still keep the low-size forbidden structure
c(f2):
T 2(k) ≤ 2T 1(k − 1) + 2T 2(k − 1) + T 3(k − 1) ≤ 2T 1(k − 1) + 3T 2(k − 1). �

More algebra for 2-LP

We only include the case when the resulting T 1-case describes a situation with
exactly one forbidden structure of size five, i.e., an injured 2-claw.

T 0(k) = T 0(k − 1) + T 2(k)

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) = 2T 1(k − 1) + 3T 2(k − 1)

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 236

The first equation allows to replace all occurrences of T 2 by according occur-
rences of T 1, leading to two equations (derived from the last two):

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 0(k − 1) − T 0(k − 2)

= 3T 0(k − 1) + 2T 1(k − 1) − T 0(k − 2)

T 0(k) − T 0(k − 1) = 2T 1(k − 1) + 3T 0(k − 1) − 3T 0(k − 2)

 2T 1(k − 1) = T 0(k) − 4T 0(k − 1) + 3T 0(k − 2) (1)

The last equation can be now plugged into the first one, leading to:

T 1(k) = T 0(k) − T 0(k − 1) + 2T 0(k − 2)

This implies—by applying an argument shift to Eq. (1) to get the second line:

2T 1(k) = 2T 0(k) − 2T 0(k − 1) + 4T 0(k − 2)

= T 0(k + 1) − 4T 0(k) + 3T 0(k − 1)

which yields:

0 = T 0(k + 1) − 6T 0(k) + 5T 0(k − 1) − 4T 0(k − 2)

Hence, T 0(k) ≤ 5.1844k, i.e., c ≤ 5.1844 for the ansatz T 0(k) = ck.
If the involved T 1-case is actually a T 2-case, the corresponding recurrences

get only better. Details are contained in the ECCC report, see [10].
So, for the whole set of mutual recurrences that have to be satisfied by T 0,

T 1 and T 2, we get T 0(k) ≤ ck with c = 2.5 +
√

7.25 ≤ 5.1926.
To actually get expressions for the other two functions involved, we follow

the approach setting T 1(k) = α1c
k and T 2(k) = α2c

k. Hence, from T 0(k) ≤
T 0(k−1)+T 2(k) we derive α2 ≥ 1−1/c. From T 2(k) ≤ 4T 0(k−1)+T 0(k−2),
i.e., the equation yielding the worst c-estimate, we get α2 ≤ 4 + 1/c. This
implies that we have to take

α2 =
1.5 +

√
7.25

2.5 +
√

7.25
≈ 0.8074.

Hence, we make the choice T 2(k) = 1.5+
√

7.25
2.5+

√
7.25

(

2.5 +
√

7.25
)k

alongside with

T 0(k) = (2.5 +
√

7.25)k. It is easy to check that now also T 2(k) ≤ max{T 0(k −
1) + 16T 0(k − 2), 2T 0(k − 1) + 9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k −
1) + T 0(k − 2)} is true with this choice (it suffices to check that 4T 0(k − 1) +
T 0(k − 2) is the largest among the entities that are maximized for k = 2).
The only tricky bit is the inequality T 2(k) ≤ 2T 1(k − 1) + 3T 2(k − 1), since
this one actually involves T 1. Since we are now actually treating the whole
set of mutually recursive relations and since T 1 was not involved in creating
the worst-case recursion, we should choose T 1 in a way that trivially satisfies
T 2(k) ≤ max{2T 1(k − 1) + 3T 2(k − 1), T 0(k − 1) + 16T 0(k − 2), 2T 0(k − 1) +
9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}, i.e., T 1 should

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 237

be as small as possible. Since T 2 ≤ T 1, the easiest choice would be T 1 = T 2,
i.e., α1 = α2. Surely, the equations for T 2 are now satisfied. What about the
equation for T 1 itself ? T 1(k) ≤ 2T 0(k−1)+2T 1(k−1)+T 2(k−1) now becomes
T 2(k) ≤ 2T 0(k − 1) + 3T 2(k − 1). This is true if cα2 = 1.5 +

√
7.25 ≤ 2 + 3α2,

which is easy to check.

Appendix: A rather technical proof of Lemma 18

Proof: So, let C = {ab, bc, cd, da} be a 4-cycle with a ∈ A and a <π c.
We first investigate how a single additional edge can create one (but not

two) situation(s) violating (∗). More specifically, we discuss the ways in which
(w.l.o.g.) the edge ab can be engaged in situations violating (∗).

1. If, w.l.o.g., (a, b, c) together with some edge e violates (∗), then either
also (a, d, c) together with e violates (∗) or d is incident with e = xd. In
the first case, there is a forbidden structure (namely {ad, dc, e}) that has
non-empty intersection with the forbidden structure {ab, bc, e}, violating
(+).

2. Consider now the case that some path (x, y, z) together with ab violates
(∗). Firstly assume that y 6= d. Then, (x, y, z) does not satisfy (∗) both
together with ab and with ad, which violates (+). Consider now y = d. A
simple case analysis yields that the only non-prohibited situation is y = d
and c ∈ {x, z}.

We can summarize our observations as follows: if C = {ab, bc, cd, da} is a
4-cycle with a ∈ A and a <π c and if e is an edge that—together with two edges
from C—forms a forbidden structure reflecting a situation violating (∗), then

• either e = xbb (in that case, xb >π a and xb 6= c)

• or e = xdd (then, xd <π c and xd 6= a).

More specifically, the situation e = xdd and a <π xd <π c showed up in
the first part of our case analysis, while the situation e = xdd and xd <π a
appeared in the second part of the case analysis. The other situations reflect
symmetries.

Claim: If there are two edges e = xdd and e′ = x′
dd, then the edge ab appears

in more than one forbidden structure reflecting situations violating (∗).
Proof: The following case distinctions cover all possibilities, assuming, w.l.o.g.,
xd <π x′

d:

• xd <π x′
d <π a: Then, (xd, d, c) together with ab violates (∗), and (x′

d, d, c)
together with ab violates (∗).

• xd <π a <π x′
d: Then, (xd, d, c) together with ab violates (∗), and (a, b, c)

together with x′
dd violates (∗).

H. Fernau, Parameterized Biplanarization, JGAA, 9(2) 205–238 (2005) 238

• a <π xd <π x′
d: Then, (a, b, c) together with xdd as well as with x′

dd
violate (∗). ♦

Analogously, one can show:
Claim: If there are two edges e = xbb and e′ = x′

bb, then the edge cd appears in
more than one forbidden structure reflecting situations violating (∗). ♦

So, the only possibility that C could interfere with more than one forbidden
structure reflecting situations violating (∗) is when both fb = xbb and fd = xdd
exist. This is rejected with the following case analysis.

• xd <π a <π c <π xb: Then, (xd, d, c) together with ab violates (∗), and
(a, b, xb) together with cd violates (∗). Hence, ab shows up in both violat-
ing forbidden structures.

• a <π xd <π c <π xb: Then, (xd, d, c) together with ab violates (∗), and
(a, b, xb) together with xdd violates (∗). Hence, xdd shows up in both
violating forbidden structures.

• xd <π a <π xb <π c: Symmetrical to the previous case.

• a <π xd <π xb <π c: Then, (xd, d, c) together with xbb violates (∗),
and (a, d, c) together with xdd violates (∗). Hence, xdd shows up in both
violating forbidden structures.

• a <π xb <π xd <π c: Symmetrical to the previous case. �

