
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 10, no. 1, pp. 69–94 (2006)

Finding Dominators in Practice

Loukas Georgiadis 1 Robert E. Tarjan 1,2 Renato F. Werneck 1

1Department of Computer Science
Princeton University, Princeton, NJ 08544

http://www.cs.princeton.edu/
{lgeorgia,ret,rwerneck}@cs.princeton.edu

2Office of Strategy and Technology
Hewlett-Packard, Palo Alto, CA 94304

http://www.hp.com/

Abstract

The computation of dominators in a flowgraph has applications in sev-
eral areas, including program optimization, circuit testing, and theoretical
biology. Lengauer and Tarjan [30] proposed two versions of a fast algo-
rithm for finding dominators and compared them experimentally with an
iterative bit-vector algorithm. They concluded that both versions of their
algorithm were much faster even on graphs of moderate size. Recently
Cooper et al. [11] have proposed a new, simple, tree-based implementa-
tion of an iterative algorithm. Their experiments suggested that it was
faster than the simple version of the Lengauer-Tarjan algorithm on graphs
representing computer program control flows. Motivated by the work of
Cooper et al., we present an experimental study comparing their algo-
rithm (and some variants) with careful implementations of both versions
of the Lengauer-Tarjan algorithm and with a new hybrid algorithm. Our
results suggest that, although the performance of all the algorithms is sim-
ilar, the most consistently fast are the simple Lengauer-Tarjan algorithm
and the hybrid algorithm, and their advantage increases as the graph gets
bigger or more complicated.

Article Type Communicated by Submitted Revised

regular paper Tomasz Radzik September 2004 September 2005

Research at Princeton University partially supported by the Aladdin project, NSF

Grant No. CCR-9626862.

A preliminary version of this paper was presented at the 12th Annual European Sym-

posium on Algorithms (ESA 2004) [22].

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 70

1 Introduction

A flowgraph G = (V,A, r) is a directed graph with |V | = n vertices and |A| = m
arcs such that every vertex is reachable from a distinguished root vertex r ∈ V .
A vertex w dominates a vertex v if every path from r to v includes w. Our goal
is to find for each vertex v in V the set Dom(v) of all vertices that dominate
v. The dominance relation in G can be represented in compact form as a tree
I, called the dominator tree of G, in which the dominators of a vertex v are
its ancestors. Therefore, the output of a dominators computation can have size
Θ(n).

Certain applications require computing the postdominators of G, defined as
the dominators in the graph obtained from G by reversing all arc orientations.
In this setting G is assumed to contain a sink vertex t reachable from all v ∈ V .
Sometimes t is introduced as an artificial vertex of the graph. For example, in
data-flow analysis t may represent a global exit point of a function.

The dominators problem occurs in several application areas, such as program
optimization, code generation, circuit testing, and theoretical biology. Com-
pilers make extensive use of dominance information during program analysis
and optimization. Perhaps the best-known application of dominators is natural
loop detection, which in turn enables a host of natural loop optimizations [32].
Structural analysis [36] also depends on dominance information. Postdominance
information is used in calculating control dependencies in program dependence
graphs [14]. Dominator trees are used in the computation of dominance fron-
tiers [13], which are needed for efficiently computing program dependence graphs
and static single-assignment forms. A dominator-based scheduling algorithm
has also been proposed [39]. Apart from its applications in compilation, domi-
nator analysis is also used in VLSI testing for identifying pairs of equivalent line
faults in logic circuits [7]. In constraint programming, dominators have been
used to implement generalized reachability constraints, which are helpful in the
solution of the ordered disjoint-paths problem [35]. Another field where domi-
nator analysis has been applied is theoretical biology; in [4, 5] dominators are
used for the analysis of the extinction of species in trophic models (also called
foodwebs).

The problem of finding dominators has been extensively studied. In 1972
Allen and Cocke showed that the dominance relation can be computed itera-
tively from a set of data-flow equations [3]. A direct implementation of this
method has an O(mn2) worst-case time bound. Purdom and Moore [34] gave
a straightforward algorithm with complexity O(mn). It consists of performing
a search in G − v for each v ∈ V (v dominates all the vertices that become
unreachable from r). Improving on previous work by Tarjan [41], Lengauer
and Tarjan [30] proposed an O(m log n)-time algorithm and a more compli-
cated O(mα(m,n))-time version, where α(m,n) is an extremely slow-growing
functional inverse of the Ackermann function [42]. Alstrup et al. [6] gave a
linear-time algorithm for the random-access model of computation; a simpler
algorithm was given by Buchsbaum et al. [9]. Georgiadis and Tarjan [20] gave
a linear-time algorithm for the pointer machine computation model.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 71

Experimental results for the dominators problem appear in [9, 11, 30]. In
[30] Lengauer and Tarjan found the O(mα(m,n))-time version of their algorithm
(LT) to be faster than the simple O(m log n) version (SLT) even for small graphs.
They also showed that the Purdom-Moore [34] algorithm is only competitive for
graphs with fewer than 20 vertices, and that a bit-vector implementation of the
iterative algorithm, by Aho and Ullman [2], is 2.5 times slower than LT for
graphs with more than 100 vertices. Buchsbaum et al. [9] reported that their
claimed linear-time algorithm has low constants, being only about 10% to 20%
slower than their implementation of LT for graphs with more than 300 vertices.
This algorithm was later shown to have the same time complexity as LT [20],
and the corrected linear-time version is more complicated (see the Corrigendum
of [9]). Cooper et al. [11] presented a clever tree-based space- and time-efficient
implementation of the iterative algorithm, which they claimed to be 2.5 times
faster than SLT. However, a more careful implementation of SLT later led to
different results [10].

In this paper, we explore the effects of different initializations and processing
orderings on the tree-based iterative algorithm. We also discuss implementation
issues that make LT and SLT faster in practice and competitive with simpler
algorithms even for small graphs. Furthermore, we describe a new algorithm
that combines SLT (or LT) with the iterative algorithm and is very fast in
practice. Finally, we present a thorough experimental analysis of the algorithms
using real as well as artificial data. We have not included linear-time algorithms
in our study; they are significantly more complex and thus unlikely to be faster
than LT or SLT in practice.

2 Algorithms

In this section, we describe in more detail the algorithms we implemented.1

Before doing so, we need to review some definitions and introduce additional
notation. The immediate dominator of a vertex v 6= r, denoted by idom(v),
is the unique vertex w 6= v that dominates v and is dominated by all vertices
in Dom(v) − v (the immediate dominator of r is undefined). The (immedi-
ate) dominator tree is a directed tree I rooted at r and formed by the arcs
{(idom(v), v) | v ∈ V − r}. A vertex w dominates v if and only if w is an ances-
tor of v in I [1], so computing the immediate dominators is enough to determine
all dominance information.

Given a directed graph G = (V,A) we say that u is a predecessor of v (and
that v is a successor of u) if (u, v) ∈ A. We denote the set of all predecessors of
v by pred(v) and the set of successors of v by succ(v).

Throughout this paper the notation “v
∗
→F u” means that v is an ancestor

of u in the forest F , and “v
+

→F u” means that v is a proper ancestor of u in F .
We use the same notation when we refer to the corresponding paths in F . Also,
we omit the subscript when the context is clear. Given a tree T , we denote by

1Since most of the algorithms have been presented elsewhere, we do not show pseudocodes
here. The interested reader will find them in [19].

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 72

Tv the subtree of T rooted at v, and by pT (v) the parent of v in T . If T is a
spanning tree of a flowgraph G = (V,A, r), an arc a = (u, v) ∈ A is a tree arc

(with respect to T) if a ∈ T , a forward arc if u
+

→T v and (u, v) 6∈ T , a back arc

if v
+

→T u, and a cross arc if u and v are unrelated in T . Given a forest F , we
denote by rootF (v) the root of the tree in F that contains v. Finally, for any
subset U ⊆ V and a tree T , NCA(T,U) denotes the nearest common ancestor
of U ∩ T in T .

2.1 The Iterative Algorithm

Without loss of generality we can assume that the root r has no incoming arcs,
since deleting such arcs has no effect on dominators. Then the sets Dom(v) are
the unique maximal solution to the following data-flow equations:

Dom ′(v) =
(

⋂

u∈pred(v)

Dom ′(u)
)

∪ {v}, ∀ v ∈ V. (1)

As Allen and Cocke [3] showed, one can solve these equations iteratively by
initializing Dom ′(r) = {r} and Dom ′(v) = V for v 6= r, and repeatedly applying
the following step until it no longer applies:

Find a vertex v such that (1) is false and replace Dom ′(v) by the
expression on the right side of (1).

A simple way to perform this iteration is to cycle repeatedly through all the
vertices of V until no Dom ′(v) changes. It is unnecessary to initialize all the
sets Dom ′(v); it suffices to initialize Dom ′(r) = {r} and exclude uninitialized
sets from the intersection in (1). In this case, an iterative step is applied to a
vertex v only if a value has been computed for at least one u ∈ pred(v). It is
also possible to initialize the sets Dom ′(v) more accurately. Specifically, if S
is any tree rooted at r (spanning or not, as long as it is a subgraph of G), we
can initialize Dom ′(v) for v ∈ S to be the set of ancestors of v in S, and leave
Dom ′(v) for v 6∈ S uninitialized.

Cooper et al. [11] improved the efficiency of this algorithm significantly by
observing that we can represent all the sets Dom ′(v) by a single tree and perform
an iterative step as an update of the tree. Specifically, we begin with any tree
T rooted at r that is a subgraph of G and repeat the following step until it no
longer applies:

Find a vertex v such that

pred(v) ∩ T 6= ∅ and pT (v) 6= NCA(T, pred(v));

replace pT (v) by NCA(T, pred(v)).

The correspondence between this algorithm and the original algorithm is that
for each vertex in T , Dom ′(v) is the set of ancestors of v in T . The intersection
of Dom ′(u) and Dom ′(v) is the set of ancestors of NCA(T, {u, v}) in T . Once

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 73

the iteration stops, the current tree T is the dominator tree I. One can also
perform the iteration arc-by-arc rather than vertex-by-vertex, replacing pT (v) by
NCA(T, {pT (v), u}) for an arc (u, v) such that u ∈ T . The most straightforward
implementation is to cycle repeatedly through the vertices (or arcs) until T does
not change.

The number of iterations through the vertices (or arcs) depends on the order
in which the vertices (or arcs) are processed. Kam and Ullman [28] show that
certain data-flow equations, including (1), can be solved in at most d(G,D) + 3
iterations when the vertices are processed in reverse postorder with respect to
a DFS tree D. Here d(G,D) is the loop connectedness of G with respect to D,
the largest number of back arcs found in any cycle-free path of G. When G
is acyclic the dominator tree is built in one iteration. This is because reverse
postorder is a topological sort of the vertices, so for any vertex v all vertices in
pred(v) are processed before v. The iterative algorithm will also converge in a
single iteration if G is reducible [25], i.e., when the repeated application to G of
the following operations

(i) delete a loop (v, v);

(ii) if (v, w) is the only arc entering w 6= r delete w and replace each arc (w, x)
with (v, x),

yields a single node. Equivalently, G is reducible if every loop has a single entry
vertex from r. In a reducible flowgraph, v dominates u whenever (u, v) is a back
arc [40]. Therefore, deletion of back arcs, which produces an acyclic graph, does
not affect dominators.

The running time per iteration is dominated by the time spent on NCA
computations. If these are performed näıvely (ascending the tree paths until
they meet), then a single iteration takes O(mn) time. Because there may be
up to Θ(n) iterations, the running time is O(mn2). The iterative algorithm
runs much faster in practice, however. Typically d(G,D) ≤ 3 [29], and it is
reasonable to expect that few NCA calculations will require Θ(n) time. If T is
represented as a dynamic tree [37], the worst-case bound per iteration is reduced
to O(m log n), but the implementation becomes much more complicated and
unlikely to be practical.

Initializations and vertex orderings. Our base implementation of the it-
erative algorithm (IDFS) starts with T ← {r} and processes the vertices in
reverse postorder with respect to a DFS tree; this algorithm is the one proposed
by Cooper et al. [11]. It requires a preprocessing phase that performs a DFS on
the graph and assigns a postorder number to each vertex. We do not initialize
T as a DFS tree because this is bad both in theory and in practice: it causes
the back arcs to be processed in the first iteration, even though they contribute
nothing to the NCAs in this case.

Intuitively, a much better initial approximation of the dominator tree is a
BFS tree. We implemented a variant of the iterative algorithm (which we call

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 74

IBFS) that starts with such a tree and processes the vertices in BFS order. As
Section 4 shows, this method is often (but not always) faster than IDFS.

We note that there is an ordering σ of the arcs that is optimal with respect
to the number of iterations that are needed for convergence. This is stated in
the following lemma.

Lemma 1 There exists an ordering σ of the arcs of G such that if the iterative

algorithm processes the arcs according to σ, then it will construct the dominator

tree of G in a single iteration.

Proof: We will use ancestor-dominance spanning trees as defined in [21]. There
it is shown that G has two spanning trees T1 and T2 such that, for any v, the
paths r

∗
→T1

v and r
∗
→T2

v intersect only at the vertices of Dom(v). We
construct σ by catenating a list σ1 of the arcs of T1 with a list σ2 of the arcs
of T2 that do not appear in T1. The arcs in σi are sorted lexicographically
in ascending order with respect to a preorder numbering of Ti. The iterative
algorithm starts with T ← {r}. After processing the arcs of σ1 we will have
T = T1. We show by induction that after (pT2

(v), v) is processed in σ2 we will
have pT (v) = idom(v). This is immediate for any child of r in T2. Suppose
now that u = pT2

(v) 6= r. Since (pT2
(u), u) has been processed before (u, v), we

have by the induction hypothesis that x = NCA(T, {u, v}) is a dominator of u.
Thus, by the ancestor-dominance property, x is an ancestor of u in both T1 and
T2. Since u is on r

∗
→T2

v, x is also an ancestor of v in T2. Note that when a

vertex w moves to a new parent in T , it ascends the path r
∗
→T w. So, the set

of ancestors of w in T is always a subset of the set of its ancestors in T1. This
implies that x is also an ancestor of v in T1, and by the ancestor-dominance
property, x dominates v. Now notice that idom(v) dominates u. If this were
not the case there would be a path P from r to u that avoids idom(v). Then
P followed by (u, v) would form a path from r to v that avoids idom(v), a

contradiction. Therefore, idom(v) is both on r
∗
→T v and on r

∗
→T u, and using

the fact that x ∈ Dom(v) we conclude that x = idom(v). 2

This generalizes the result of Hecht and Ullman [25], which considered the re-
stricted class of reducible graphs. An algorithm given in [21] constructs ancestor-
dominance spanning trees by running a modified version of the Lengauer-Tarjan
algorithm, and therefore takes O(mα(m,n)) time (or linear time using a more
complicated algorithm [8, 19]). An open question, of both theoretical and prac-
tical interest, is whether there is a simple linear-time construction of such an
ordering.

Another question that arises immediately is whether any graph has a fixed

ordering of its vertices that guarantees convergence of the iterative algorithm
in a constant number of iterations. The answer is negative. Figure 1 shows
linearvit(k), a graph family that requires Θ(k) = Θ(n) iterations. A similar
graph was used in [12] in order to show that by processing the vertices in reverse
postorder, Θ(n) iterations are necessary. The next lemma shows that in fact this
graph requires Θ(n) iterations for any fixed ordering of the vertices. Note that,

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 75

x3 x4 x5 x7

w

r

y

x1 x2 x6

Figure 1: Graph family linearvit(k). In this instance k = 7. The iterative
algorithm needs Θ(k) iterations to converge when we initialize T ← {r}, and
the vertices are processed in any fixed order in each iteration.

if we allow the vertex ordering to be different in each iteration, then the proof
of Lemma 1 trivially implies that two iterations suffice to build the dominator
tree.

Lemma 2 Any iterative algorithm that processes the vertices in a fixed order

requires Θ(k) iterations to build the dominator tree of linearvit(k).

Proof: Consider the time when the first vertex xi has its parent set to r. This
cannot happen until a tree has been built that is a subgraph of the original
graph and contains all vertices but xi; after this happens, the lone vertex xi

that is not in the tree can have its parent set to r. Suppose without loss of
generality that i ≥ k/2. After xi is processed, the current tree T consists of
a path from r to xi−1 through w and x1, x2, . . . , xi−2, a path from r to xi+1

through y and xk, xk−1, . . . , xi+2 and an arc from r to xi. Let p be the number
of pairs xj , xj+1 such that xj+1 follows xj in the vertex order and 1 ≤ j < i−1.
The number of passes through the vertices required to build the tree T is at least
i−1−p. Once xi is processed, the vertices xi−1, xi−2, . . . , x1, in this order, will
eventually become children of r. The number of passes required for this is at
least p, because if a pair xj , xj+1 is such that xj+1 follows xj in the vertex order,
then xj must have its parent set to r in a pass after the pass that sets the parent
of xj+1 to r. This means that there must be at least i−1−p+p = i−1 ≥ k/2−1
passes. This bound is tight to within the additive constant. 2

Marking. It is reasonable to expect that not all the Dom ′(v) sets will be
updated in each iteration. We could obtain significant savings if we could locate
and mark the vertices that need to be processed in the next iteration. However,
we cannot locate these vertices efficiently, since assigning a new parent in T
to a vertex v may require marking all the successors in G of each vertex in
Tv. Indeed, as it turned out in our experiments, this marking scheme added a
significant overhead to the iterative algorithm, which was much slower on most

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 76

graphs (the exceptions were a few artificial graphs). Hence we did not include
these experiments in Section 4.

2.2 The Lengauer-Tarjan Algorithm

The Lengauer-Tarjan algorithm starts with a depth-first search on G from r
and assigns preorder numbers to the vertices. The resulting DFS tree D is
represented by an array parent. For simplicity, we refer to the vertices of G
by their preorder number, so v < u means that v has a lower preorder number
than u. The algorithm is based on the concept of semidominators, which give
an initial approximation to the immediate dominators. We call a path P = (u =
v0, v1, . . . , vk−1, vk = v) in G a semidominator path if vi > v for 1 ≤ i ≤ k − 1.
The semidominator of v is defined as

sdom(v) = min{u | there is a semidominator path from u to v}.

Any vertex v 6= r is related to idom(v) and sdom(v) in the following way

idom(v)
∗
→ sdom(v)

+

→ v. (2)

Semidominators and immediate dominators are computed by finding minimum
sdom values on paths of D. As shown in [30], for any vertex w 6= r,

sdom(w) = min{sw(v) | v ∈ pred(w)},

where the function sw : pred(w) 7→ V is defined as

sw(v) =

{

v, v ≤ w

min{sdom(u) | NCA(D, {v, w})
+

→ u
∗
→ v}, v > w

.

The immediate dominator can be found similarly, by evaluating the function
e : V − r 7→ V , defined by

e(w) = arg min{sdom(u) | sdom(w)
+

→ u
∗
→ w}.

For any w 6= r, e(w) is a relative dominator of w, i.e., it satisfies idom(e(w)) =
idom(w). Furthermore, if sdom(e(w)) = sdom(w) then idom(w) = sdom(w).

The vertices are processed in reverse preorder to ensure that all the necessary
information is available when needed. The core of the computation is performed
by a link-eval data structure, introduced by Tarjan [43]. Given a tree T on V
and real values value(v) for each v in V , the link-eval data structure maintains
a forest F that is a subgraph of T subject to the following operations:

link(v, x): Assign value(v)← x and add arc (pT (v), v) to F . This links the tree
rooted at v in F to the tree rooted at pT (v) in F .

eval(v): If v = rootF (v), return v. Otherwise, return any vertex of minimum

value among the vertices u that satisfy rootF (v)
+
→F u

∗
→F v.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 77

Initially, every vertex v in V is a singleton in F . We say that v is linked

if link(v, ·) has been performed. In order to enhance the performance of the
eval operation, the link-eval data structure employs path compression and other
techniques [43]. Instead of dealing with F directly, it actually maintains a
virtual forest, denoted by VF , and ensures that the eval operation applied on
VF returns the same value as if it were applied on F .

In the Lengauer-Tarjan algorithm, T = D and, for all v ∈ V , value(v) equals
v initially and sdom(v) after v is processed for the first time. Every vertex w
is processed three times. The first time w is processed, sdom(w) is computed
by executing eval(u) for each u in pred(w), thus computing sw(u). Then w is
inserted into a bucket associated with vertex sdom(w) and link(w, sdom(w)) is
performed. The algorithm processes w again after sdom(v) has been computed,

where v satisfies parent [v] = sdom(w) and v
∗
→ w; at this time it performs the

operation eval(w), thus computing e(w). Finally, immediate dominators are
derived from relative dominators in a preorder pass.

With a simple implementation of the link-eval data structure, using only
path compression, the Lengauer-Tarjan algorithm runs in O(m log(2+m/n) n)
time [44]. With a more elaborate linking strategy that ensures that VF is
balanced, the algorithm runs in O(mα(m,n)) time [43]. We refer to these two
versions as SLT and LT, respectively.

Implementation issues. Lengauer and Tarjan process bucket [parent [w]] at
the end of the iteration that deals with w; hence the same bucket may be
processed several times. A better alternative is to process bucket [w] in the
beginning of the iteration that deals with w; each bucket is now processed
exactly once, so it need not be emptied explicitly.

We observe that buckets have very specific properties: (1) every vertex is
inserted into at most one bucket; (2) there is exactly one bucket associated with
each vertex; (3) vertex i can only be inserted into some bucket after bucket i itself
is processed. Properties (1) and (2) ensure that buckets can be implemented
with two n-sized arrays, first and next : first [i] represents the first element in
bucket i, and next [v] is the element that succeeds v in the bucket it belongs
to. Property (3) ensures that these two arrays can actually be combined into a
single array bucket.

Another measure that is relevant in practice is to avoid unnecessary bucket
insertions: a vertex w for which parent [w] = sdom(w) is not inserted into any
bucket because we already know that idom(w) = parent [w]. Also, we note that
the last bucket to be processed is the one associated with the root r. For all
vertices v in this bucket, we just need to set idom(v) ← r; there is no need to
call eval for them.

2.3 The SEMI-NCA Algorithm

In this section, we introduce SEMI-NCA, a new hybrid algorithm for computing
dominators that works in two phases:

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 78

(a) Compute sdom(v) for all v 6= r, as done by Lengauer-Tarjan.

(b) Build I incrementally as follows: Process the vertices in preorder. For each

vertex w, ascend the path r
∗
→I pD(w) (where D is the DFS tree used

in phase (a)) until reaching the deepest vertex x such that x ≤ sdom(w),
and set x to be the parent of w in I.

The correctness of this algorithm is based on the following result:

Lemma 3 For any vertex w 6= r, idom(w) is the nearest common ancestor in

I of sdom(w) and pD(w), i.e.,

idom(w) = NCA(I, {pD(w), sdom(w)}).

Proof: By relation (2), we have that idom(w)
∗
→ sdom(w)

∗
→ pD(w). Obvi-

ously, if pD(w) = idom(w) then idom(w) = sdom(w) and we are done. Now
suppose pD(w) 6= idom(w). Then also pD(w) 6= sdom(w). First we observe that

any vertex u that satisfies idom(w)
+

→ u
∗
→ w is dominated by idom(w); if not

then there would be a path from r to u that avoids idom(w), which catenated

with u
∗
→ w forms a path from r to w that avoids idom(w), a contradiction.

Hence, both sdom(w) and pD(w) are dominated by idom(w).
If idom(w) = sdom(w), then clearly idom(w) is the nearest common ancestor

of sdom(w) and pD(w) in I. Now suppose idom(w) 6= sdom(w). Let v be

any vertex such that idom(w)
+

→ v
∗
→ sdom(w). Then there is a path P

from idom(w) to w that avoids v. Let z be the first vertex on P that satisfies

v
+

→ z
∗
→ pD(w). This vertex must exist, since otherwise sdom(w) < v, which

contradicts the choice of v. Therefore v cannot be a dominator of pD(w). Since
idom(w) dominates both pD(w) and sdom(w), we conclude that idom(w) is
nearest common ancestor of sdom(w) and pD(w) in I. 2

The above lemma implies that x = idom(w). Although we gave a direct
proof of this fact we note that it also follows by applying the iterative algorithm
to the graph G′ = (V,A′, r), where A′ consists of the arcs (pD(w), w) and
(sdom(w), w), for all w ∈ V − r. Clearly the semidominator of any vertex is the
same in both G and G′. Hence the Lengauer-Tarjan algorithm implies that the
dominators are also the same. Finally, since G′ is acyclic the iterative algorithm
IDFS builds the dominator tree in one iteration.

If we perform the search for idom(w) näıvely, by visiting all the vertices on

the path idom(w)
∗
→I pD(w), the second phase runs in O(n2) worst-case time.

However, we expect it to be much faster in practice, since our empirical results
indicate that sdom(v) is usually a good approximation to idom(v).

SEMI-NCA is simpler than the Lengauer-Tarjan algorithm in three ways.
First, eval can return the minimum value itself rather than a vertex that achieves
that value. This eliminates one array and one level of indirect addressing. Sec-
ond, buckets are no longer necessary because the vertices are processed in pre-
order in the second phase. Finally, there is one fewer pass over the vertices,

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 79

since there is no need to compute immediate dominators from relative domina-
tors. Therefore, the algorithm aims to combine the efficiency of SLT with the
simplicity of the iterative algorithm.

With the simple implementation of link and eval (which is faster in practice),
this method (which we call SNCA) runs in O(n2) worst-case time. We note that
Gabow [16] has given a rather complex procedure that computes NCAs in total
linear time on a tree that grows through the addition of leaves. Therefore, the
time for the second phase of SEMI-NCA can be reduced to O(n), but this is
unlikely to be practical. In fact, Gabow’s result (together with Lemma 3) would
yield a linear-time algorithm for computing dominators, if one could compute
semidominators in linear time.

3 Worst-Case Behavior

This section describes families of graphs that elicit the worst-case behavior of
the algorithms we implemented. In particular, they show that neither IBFS nor
IDFS dominate the other: there are instances on which IBFS is asymptotically
faster than IDFS, and vice versa. The worst-case graphs also confirm that the
time bounds we have presented for SNCA, IBFS, and IDFS are tight. Although
such graphs are unlikely to appear in practice, it is important to study them
because similar patterns may occur in real-world instances. Also, as discussed
by Gal et al. [17, 18], in an extreme situation a malicious user could exploit the
worst-case behavior of a compiler to launch a denial-of-service attack.

Figure 2 shows graph families that favor particular methods against the
others. For each family, we define a parameter k that controls the size of its
members. We denote by Gk = (Vk, Ak) the member that corresponds to a
particular value of k.

Iterative. Family itworst(k) contains worst-case inputs for the iterative meth-
ods. The set of vertices Vk is defined as {r} ∪ {wi, xi, yi, zi | 1 ≤ i ≤ k}. The
set of arcs Ak is the union of

{(r, w1), (r, x1), (r, zk)} , {(wi, wi+1), (xi, xi+1), (yi, yi+1), (zi, zi+1) | 1 ≤ i < k} ,

{(zi, zi−1) | 1 < i ≤ k} , {(xk, y1), (yk, z1)} , and {(yi, wj) | 1 ≤ i, j ≤ k} .

We have |Vk| = 4k + 1 and |Ak| = k2 + 5k. Because of the chain of k back
arcs (zi, zi−1), the iterative methods need Θ(k) iterations to converge. Each
iteration requires Θ(k3) operations to process the k2 arcs (yi, wj), so the total
running time is Θ(k4).

Note however that only the dominators of the zi’s change after the first
iteration. This fact can be detected by marking the vertices that need to be
processed in each iteration, thus processing only the zi’s after the second itera-
tion, and finishing in Θ(k3) total time. If we added the arc (z1, yk), then all the
vertices would have to be marked in each iteration and the total running time
would remain Θ(k4). As already mentioned, this marking scheme did not work
well in our experiments, so we did not include results for it in Section 4.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 80

x1

x2

x3

y1

y2

y3

z1

z2

z3

r

x1

y1

z1

z2

z3

y2x3

y3

x2

sncaworst(3)

ibfsquad(3)

itworst(3)

idfsquad(3)

x2 x3
z

x1

r

w y

r

x1

x2

x3

y3y2y1

r

w3

w2

w1

Figure 2: Worst-case families for k = 3. Subscripts take values in {1, . . . , k}.
The vertices with no subscript are fixed for each member of a family. The DFS
tree used by IDFS, SLT, LT and SNCA is shown with solid arcs; the arcs outside
the DFS tree are dashed. Note that other initial DFS trees (though not all)
would also cause bad behavior.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 81

IDFS. Family idfsquad(k) favors IBFS over IDFS. Vk contains the vertices in
{r} and {xi, yi, zi | 1 ≤ i ≤ k}. Ak is the union of

{(r, x1), (r, z1)} , {(xi, xi+1), (yi, zi+1) | 1 ≤ i < k} and

{(xi, yi), (yi, zi), (zi, yi) | 1 ≤ i ≤ k} .

We have |Vk| = 3k + 1 and |Ak| = 5k. By processing the vertices in reverse
postorder, IDFS requires k + 1 iterations to propagate the correct dominator
values from z1 to yk, and the total running time is Θ(k2). On the other hand,
IBFS processes the vertices in the correct order. Therefore, it constructs the
dominator tree in one iteration and runs in linear time (as do the semidominator-
based methods).

IBFS. Family ibfsquad(k) favors IDFS over IBFS. Here Vk is the union of
{r, w, y, z} and {xi, | 1 ≤ i ≤ k}. Ak contains the arcs (r, w), (r, y), (y, z), and
(z, xk), alongside with the sets

{(w, xi) | 1 ≤ i ≤ k} and {(xi, xi−1) | 1 < i ≤ k}.

Then |Vk| = k + 4 and |Ak| = 2k + 3. Processing the vertices in BFS order
takes k iterations to reach the fixed point. On the other hand, one iteration
with cost O(k) suffices if we order the vertices in reverse postorder, since the
graph is acyclic. The semidominator-based methods also run in linear time.

Simple Lengauer-Tarjan. Family sltworst(k) causes worst-case behavior of
SLT [15, 44]. For any particular k this is a graph with k vertices (r = x1, . . . , xk)
and 2k−2 arcs that causes path compression without balancing to take Θ(k log k)
time. The graph contains the arcs (xi, xi+1), 1 ≤ i < k, and k − 1 arcs (xi, xj)
where j < i, with the property that, after xj is linked, xi is a vertex with
maximum depth in the tree rooted at xj of the virtual forest VF . Note that
idom(xi) = xi−1 for every i > 1. For this reason, the iterative methods need only
one iteration to build the dominator tree. However, they still run in quadratic
time because they process the same paths repeatedly. It is unclear whether there
exists a graph family on which the iterative algorithm runs asymptotically faster
than SLT.

SEMI-NCA. Family sncaworst(k) causes the worst-case behavior of SNCA.
The set of vertices Vk consists of r, xi and yi for 1 ≤ i ≤ k. The set of arcs Ak

is the union of

{(r, x1)} , {(xi, xi+1) | 1 ≤ i < k} and {(r, yi), (xk, yi) | 1 ≤ i ≤ k}.

We have |Vk| = 2k + 1 and |Ak| = 3k. Note that sdom(yi) = r and xk is the
parent of every yi, which forces SNCA to ascend the path from xk to r for every
yi. As a result, the algorithm runs in Θ(k2) total time. The same bound holds
for the iterative methods as well (despite the fact that the graph is reducible),

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 82

as they also have to traverse the same long path repeatedly. On the other hand,
the Lengauer-Tarjan algorithm can handle this situation efficiently because of
path compression.

Notice that if we added any arc (yi, xk), then we would have sdom(xk) = r
and SNCA would run in linear time. Also BFS would set yi to be the parent of
xk and r to be the parent of yi, which implies that IBFS would also run in O(k)
time. However, IDFS would still need quadratic time.

4 Empirical Analysis

Based on worst-case bounds only, the sophisticated version of the Lengauer-
Tarjan algorithm is the method of choice among those studied here. In practice,
however, “sophisticated” algorithms tend to be harder to code and to have
higher constants, so other alternatives might be preferable. The experiments
reported in this section shed some light on this issue.

Implementation and experimental setup. We implemented all algorithms
in C++. They take as input the graph and its root, and return an n-element
array representing immediate dominators. Vertices are assumed to be integers
from 1 to n. Within reason, we made all implementations as efficient and uni-
form as we could (of course, there might still be room for further improvement,
especially for the more sophisticated algorithms). The source code is available
from the authors upon request.

The code was compiled using g++ v. 3.3.1 with full optimization (flag -O4).
All tests were conducted on a Pentium IV with 256 MB of RAM and 256 kB of
cache running Mandrake Linux 9.2 at 1.7 GHz. We report CPU times measured
with the getrusage function. Since the precision of getrusage is only 1/60
second, we ran each algorithm repeatedly for at least one second; individual
times were obtained by dividing the total time by the number of runs. Note that
this strategy artificially reduces the number of cache misses for all algorithms,
since the graphs are usually small. To minimize fluctuations due to external
factors, we used the machine exclusively for tests, took each measurement three
times, and picked the best. Running times do not include creating the graph
(which uses an array-based representation) or creating predecessor lists from
successor lists (both required by all algorithms). However, times do include
allocating and deallocating the arrays used by each method.

Instances. We used control-flow graphs produced by the SUIF compiler [26]
from benchmarks in the SPEC’95 suite [38] and previously tested by Buchsbaum
et al. [9] in the context of dominator analysis. We also used control-flow graphs
created by the IMPACT compiler [27] from six programs in the SPEC 2000
suite. The instances were divided into series, each corresponding to a single
benchmark. Series were further grouped into three classes, SUIF-FP, SUIF-INT,
and IMPACT. We also considered two variants of IMPACT: class IMPACTP
contains the reverse graphs and is meant to test how effectively the algorithms

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 83

compute postdominators; IMPACTS contains the same instances as IMPACT,
with parallel arcs removed. (These arcs appear in optimizing compilers due to
superblock formation, and are produced much more often by IMPACT than by
SUIF.) We also ran the algorithms on graphs representing circuits from VLSI-
testing applications [7] obtained from the ISCAS’89 suite [45] (all 50 graphs
were considered a single class), and on graphs representing foodwebs used in
[4, 5] (all 21 graphs were considered a single class).

Finally, we tested eight instances that do not occur in any particular appli-
cation related to dominators. Five are instances from the worst-case families
described in Section 3, and the other three are large graphs representing speech
recognition finite state automata (originally used to test dominator algorithms
by Buchsbaum et al. [9]).

Test results. We start with the following experiment: read an entire series
into memory and compute dominators for each graph in sequence, measuring
the total running time. This simulates the behavior of a compiler, which must
process several graphs (which typically represent functions) to produce a single
executable.

For each series, Table 1 shows the total number of graphs (g) and the average
number of vertices and arcs (n and m). As a reference, we report the average
time (in microseconds) of a simple breadth-first search (BFS) on each graph.
Since all the algorithms considered here start by performing a graph search,
BFS acts as a lower bound on the actual running time and therefore can be
used as a baseline for comparison.2 Times for computing dominators are given as
multiples of BFS. Using a baseline method is a standard technique for evaluating
algorithms whose running time is close to linear in practice [23, 24, 31, 33].

In absolute terms, all algorithms are reasonably fast: none is slower than
BFS by a factor of more than six on compiler-generated graphs. The worst
relative time observed was slightly below eight, for FOODWEB. Furthermore,
despite their different worst-case complexities, all methods have remarkably
similar behavior in practice. In no series was an algorithm twice as fast (or slow)
as any other. Differences do exist, of course. LT is consistently slower than SLT,
which can be explained by the complex nature of LT and the relatively small
size of the instances tested. The iterative methods are usually faster than LT,
but often slower than SLT. Both variants (IDFS and IBFS) usually have very
similar behavior, although occasionally one method is significantly faster than
the other (series 145.fppp and 256.bzip2 are good examples). Almost always
within a factor of four of BFS (with FOODWEB as the only exception), SNCA
and SLT are the most consistently fast methods in the set.

By measuring the total (or average) time per series, the results are naturally
biased towards large graphs. For a more complete view, we also computed
running times for individual instances, and normalized them with respect to
BFS. In other words, for each individual instance we calculated the ratio between
the running times of the dominator algorithm and of BFS (the result is the

2Another natural baseline algorithm is DFS; the results are similar.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 84

Table 1: Complete series: number of graphs (g), average number of vertices
(n) and arcs (m), and average time per graph (in microseconds for BFS, and
relative to BFS for all dominator algorithms). The best result in each row is
marked in bold.

instance dimensions bfs relative total times

class series g n m time IBFS IDFS LT SLT SNCA

CIRCUITS circuits 50 3228.8 5027.2 224.72 6.42 5.44 4.87 3.87 3.49

FOODWEB foodweb 21 78.8 741.0 5.10 7.73 7.88 6.72 4.59 4.50

IMPACT 181.mcf 26 26.5 90.3 1.31 4.47 5.00 5.34 3.56 3.53

197.parser 324 16.8 55.7 1.17 3.69 4.63 4.53 3.26 3.19

254.gap 854 25.3 56.2 1.86 2.89 3.26 3.82 2.77 2.63

255.vortex 923 15.1 35.8 1.25 2.62 2.95 3.44 2.50 2.34

256.bzip2 74 22.8 70.3 1.24 3.93 5.13 5.03 3.45 3.32

300.twolf 191 39.5 115.6 2.38 4.33 5.00 5.00 3.57 3.34

IMPACTP 181.mcf 26 26.5 90.3 1.34 4.40 5.16 5.03 3.56 3.32

197.parser 324 16.8 55.7 1.20 3.44 4.30 4.13 3.00 2.93

254.gap 854 25.3 56.2 1.77 3.57 3.60 3.77 2.81 2.78

255.vortex 923 15.1 35.8 1.25 2.80 3.12 3.31 2.48 2.45

256.bzip2 74 22.8 70.3 1.27 3.80 5.16 4.70 3.34 3.16

300.twolf 191 39.5 115.6 2.29 4.75 5.43 4.94 3.54 3.43

IMPACTS 181.mcf 26 26.5 72.4 1.30 3.88 4.53 4.93 3.31 3.21

197.parser 324 16.8 42.1 1.09 3.42 4.11 4.30 3.23 3.04

254.gap 854 25.3 48.8 1.79 2.76 3.08 3.85 2.79 2.65

255.vortex 923 15.1 27.1 1.15 2.43 2.65 3.41 2.48 2.36

256.bzip2 74 22.8 53.9 1.16 3.56 4.40 4.95 3.40 3.29

300.twolf 191 39.5 96.5 2.16 4.20 4.90 5.14 3.72 3.49

SUIF-FP 101.tomcatv 1 143.0 192.0 4.19 3.87 3.55 5.59 3.63 3.48

102.swim 7 26.6 34.4 0.98 3.07 2.97 4.43 3.10 2.84

103.su2cor 37 32.3 42.7 1.31 2.95 2.99 4.45 2.99 2.95

104.hydro2d 43 35.3 47.0 1.42 3.02 2.88 4.43 2.95 2.79

107.mgrid 13 27.2 35.4 1.08 2.99 2.79 4.18 2.89 2.76

110.applu 17 62.2 82.8 2.13 3.46 3.23 4.93 3.34 3.20

125.turb3d 24 54.0 73.5 1.54 3.66 3.59 5.86 3.70 3.25

145.fpppp 37 20.3 26.4 0.81 3.49 3.18 4.77 3.18 3.10

146.wave5 110 37.4 50.7 1.43 3.19 3.31 4.90 3.27 3.10

SUIF-INT 009.go 372 36.6 52.5 1.62 3.29 3.51 4.93 3.27 3.29
124.m88ksim 256 27.0 38.7 1.13 3.32 3.52 5.11 3.27 3.29
126.gcc 2013 48.3 69.8 2.34 3.03 3.12 4.46 2.94 2.94

129.compress 24 12.6 16.7 0.62 2.70 3.15 3.83 2.74 2.66

130.li 357 9.8 12.8 0.53 2.44 2.74 3.81 2.73 2.66
132.ijpeg 524 14.8 20.1 0.81 2.66 3.12 4.35 2.92 3.00
134.perl 215 66.3 98.2 2.69 3.72 3.97 5.37 3.54 3.52

147.vortex 923 23.7 34.9 1.36 2.63 2.72 3.73 2.59 2.48

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 85

Table 2: Times relative to BFS: geometric mean and geometric standard devi-
ation. The lowest mean in each row is marked in bold.

IBFS IDFS LT SLT SNCA

class mean dev mean dev mean dev mean dev mean dev

CIRCUITS 6.12 1.42 5.97 1.23 6.37 1.16 4.60 1.15 4.26 1.13
FOODWEB 7.01 1.31 7.11 1.32 6.52 1.13 4.22 1.19 4.14 1.19
SUIF-FP 2.56 1.56 2.71 1.40 4.03 1.42 2.88 1.31 2.78 1.26
SUIF-INT 2.51 1.56 2.81 1.42 3.98 1.43 2.80 1.31 2.71 1.29
IMPACT 2.36 1.70 2.87 1.60 3.80 1.40 2.76 1.32 2.61 1.30
IMPACTP 2.42 1.78 2.83 1.59 3.60 1.38 2.59 1.31 2.55 1.29
IMPACTS 2.25 1.64 2.64 1.56 3.71 1.41 2.70 1.33 2.55 1.32

relative time of the algorithm). For each class, Table 2 shows the geometric
mean and the geometric standard deviation of the relative times. Now that
each graph is given equal weight, the aggregate measures for iterative methods
(IBFS and IDFS) are somewhat better than before, particularly for IMPACT
instances. This, together with the fact that their deviations are higher, suggests
that iterative methods are faster than semidominator-based methods for small
instances, but slower when size increases.

The plot in Figure 3 confirms this for the IMPACT class. Each point rep-
resents the mean relative running times for all graphs with the same value of
⌈log2(n + m)⌉. Iterative methods clearly have a much stronger dependence
on size than other algorithms. Almost as fast as a single BFS for very small
instances, they become the slowest alternatives as size increases. The relative
performance of the other methods is the same regardless of size: SNCA is slightly
faster than SLT, and both are significantly faster than LT. A similar behavior
was observed for IMPACTS and IMPACTP.

For SUIF, which contains graphs that are somewhat simpler, iterative meth-
ods remained competitive even for larger sizes. This is shown in Figure 4 for
SUIF-INT (the results for SUIF-FP are similar). Note that SLT and SNCA still
have better performance as the graph size increases, but now they are closely
followed by the iterative methods. All algorithms tend to “level-off” with re-
spect to BFS as the size increases, which suggests an almost-linear behavior for
this particular class.

Figure 5 presents the corresponding results for class CIRCUIT. For the range
of sizes shown (note that the graphs are bigger than in the other classes), the
average performance of each algorithm (relative to BFS) does not have a strong
correlation with graph size.

Finally, Figure 6 contains results for the FOODWEB class. On these graphs,
which are significantly denser than the others, LT starts to outperform the
iterative methods much sooner.

The results for IMPACT and IMPACTS shown in Tables 1 and 2 indicate
that the iterative methods benefit the most by the absence of parallel arcs.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 86

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

m
ea

n
re

la
tiv

e
ru

nn
in

g
tim

e
(w

.r
.t.

 B
F

S
)

logarithm of instance size

BFS
IBFS
IDFS

LT
SLT

SNCA

Figure 3: Times for IMPACT instances within each size. Each point represents
the mean relative running time (w.r.t. BFS) for all instances with the same
value of ⌈log2(n + m)⌉.

 0

 2

 4

 6

 8

 10

 12

 4 6 8 10 12

m
ea

n
re

la
tiv

e
ru

nn
in

g
tim

e
(w

.r
.t.

 B
F

S
)

logarithm of instance size

BFS
IBFS
IDFS

LT
SLT

SNCA

Figure 4: Times for SUIF-INT instances within each size. Each point is the
mean relative running time (w.r.t. BFS) for instances with the same value of
⌈log2(n + m)⌉.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 87

 0

 2

 4

 6

 8

 10

 12

 6 8 10 12 14 16

m
ea

n
re

la
tiv

e
ru

nn
in

g
tim

e
(w

.r
.t.

 B
F

S
)

logarithm of instance size

BFS
IBFS
IDFS

LT
SLT

SNCA

Figure 5: Times for CIRCUIT instances within each size. Each point is the
mean relative running time (w.r.t. BFS) for instances with the same value of
⌈log2(n + m)⌉. Note that the class contains no graph for which this value is 7
or 8.

 0

 2

 4

 6

 8

 10

 12

 7 8 9 10 11 12

m
ea

n
re

la
tiv

e
ru

nn
in

g
tim

e
(w

.r
.t.

 B
F

S
)

logarithm of instance size

BFS
IBFS
IDFS

LT
SLT

SNCA

Figure 6: Times for FOODWEB instances within each size. Each point is the
mean relative running time (w.r.t. BFS) for instances with the same value of
⌈log2(n + m)⌉.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 88

Table 3: Percentage of vertices that have their parents as semidominators (sdp),
average number of iterations, and number of vertex comparisons per arc.

sdp iterations comparisons per arc

class (%) IBFS IDFS IBFS IDFS LT SLT SNCA

CIRCUITS 76.7 3.2000 2.8000 25.3 20.9 7.5 6.2 5.7
FOODWEB 30.9 2.1429 2.1905 12.1 13.0 4.9 4.3 4.3
IMPACT 73.4 1.4385 2.0686 11.1 12.2 6.2 5.1 4.4
IMPACTP 88.6 1.5376 2.0819 12.8 12.0 6.0 4.7 4.3
IMPACTS 73.4 1.4385 2.0686 11.4 12.1 6.8 5.4 4.6
SUIF-FP 67.7 1.6817 2.0000 11.9 9.2 7.5 5.9 5.1
SUIF-INT 63.9 1.6659 2.0009 11.9 10.3 7.6 5.8 5.0

Because of path compression, Lengauer-Tarjan and SEMI-NCA can handle re-
peated arcs in constant time.

So far, we have only compared the algorithms in terms of running times.
These can vary significantly depending on the architecture or even the compiler
that is used. For a more complete understanding of the relative performance
of the algorithms, Table 3 shows three architecture-independent pieces of in-
formation. The first is sdp, the percentage of vertices (excluding the root)
whose semidominators are their parents in the DFS tree. These vertices are not
inserted into buckets, so large percentages are better for LT and SLT. On aver-
age, far more than half of the vertices have this property. In practice, avoiding
unnecessary bucket insertions makes the algorithm roughly 5% faster.

The next two columns show the average number of iterations performed by
IDFS and IBFS. It is very close to 2 for IDFS: almost always the second iteration
just confirms that the candidate dominators found in the first are indeed correct.
This is expected for control-flow graphs, which are usually reducible in practice.
On most classes the average is smaller than 2 for IBFS, indicating that the BFS
and dominator trees often coincide. Note that the number of iterations for
IMPACTP is slightly higher than for IMPACT, since the reverse of a reducible
graph may be irreducible. The small average number of iterations helps explain
why iterative algorithms are competitive. In each iteration, they perform one
pass over the arcs. In contrast, the other three algorithms perform a single pass
over the arcs (to compute semidominators) and one (for SNCA) or two (for SLT
and LT) over the vertices.

The last five columns of Table 3 show how many comparisons between ver-
tices are performed (normalized by the total number of arcs); the results do not
include the initial DFS or BFS. The number of comparisons is always propor-
tional to the total running time; what varies is the constant of proportionality,
which is much smaller for simpler methods than for elaborate ones. Iterative
methods need many more comparisons; they are competitive mainly because
of smaller constants. In particular, they need to maintain only three n-sized
arrays, as opposed to six or more for the other methods. (Two of these arrays

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 89

Table 4: Individual graphs (times for BFS in microseconds, all others relative
to BFS). The best result in each row is marked in bold.

instance bfs relative running times

name vertices arcs time IBFS IDFS LT SLT SNCA

idfsquad 1501 2500 31 17.8 2599.0 7.8 4.0 9.7
ibfsquad 5004 10003 82 11015.6 10.5 9.4 5.1 4.8

itworst 401 10501 32 6510.0 7583.8 9.5 4.8 4.7

sltworst 32768 65534 2809 287.5 288.4 8.0 11.5 10.6
sncaworst 10000 14999 226 191.6 391.9 9.2 4.6 287.4
atis 4950 515080 2607 12.7 8.5 6.2 3.3 3.2

nab 406555 939984 47619 15.9 18.2 12.7 12.0 10.2

pw 330762 823330 42500 15.1 18.4 13.4 12.4 10.6

translate vertex numbers into DFS or BFS labels and vice-versa.)
Note that the constants associated with our implementation of IBFS are

slightly smaller than those of IDFS. On SUIF graphs, for example, IBFS performs
more comparisons per arc than IDFS: because IBFS starts from a full tree, it
must process all arcs during the first iteration. Even so, IBFS is still faster on
average, as shown in Table 2. In fact, we have observed that the initial DFS is
around 40% slower than the initial BFS. This happens because, while the array
that maps BFS labels into vertex numbers doubles as the queue used by BFS,
DFS actually needs an extra stack. This stack can be implemented either as a
separate array or (implicitly) by making the function recursive. We used the
latter approach, but their performance is similar.

Table 3 also shows that SLT performs fewer comparisons per arc than LT.
This happens despite the fact that the paths traversed by LT during the eval

operation have on average fewer vertices than those traversed by SLT, as one
would expect. For these graphs, the difference is clearly not large enough to
offset the extra cost of maintaining a more complicated data structure.

We end our experimental analysis with results on artificial graphs. For each
graph, Table 4 shows the numbers of vertices and arcs, the time for BFS (in
microseconds), and the times for computing dominators (as multiples of BFS).
The first five entries represent the worst-case families described in Section 3.
In all cases, the algorithms behave as predicted. The speech-recognition graphs
(atis, nab, and pw) have no special adversarial structure, but are significantly
larger than other graphs. As previously observed, the performance of iterative
methods tends to degrade more noticeably with size. SNCA and SLT remain the
fastest methods, but the asymptotically better behavior of LT starts to show.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 90

5 Final Remarks

We compared five algorithms for computing dominators. Results on three classes
of application graphs (program flow, VLSI circuits, and foodwebs) indicate that
they all have similar overall performance in practice. The tree-based iterative
algorithms proposed by Cooper et al. are by far the easiest to code and use
less memory than the other methods, which makes them perform particularly
well on small, simple graphs. For the compiler-generated graphs we tested, the
iterative algorithms remained competitive even as the size increased. Given
their simplicity, they are a good choice for non-critical applications.

Even on small instances, however, we did not observe the clear superiority
of the original tree-based algorithm (IDFS) reported by Cooper et al., which
we attribute to their inefficient implementation of SLT [10]. Both versions of
the Lengauer-Tarjan algorithm (LT and SLT) and the hybrid algorithm (SNCA)
are more robust on application graphs, and the advantage increases with graph
size or graph complexity. Among these three, LT was the slowest, in contrast
with the results reported by Lengauer and Tarjan [30]. SLT and SNCA were the
most consistently fast algorithms in practice; since the former is less sensitive
to pathological instances, we think it should be preferred where performance
guarantees are important.

Acknowledgements

We thank Spyridon Triantafyllis and David August for providing us with the
IMPACT graphs and for their collaboration on the preliminary version of this
work. Matthew Bridges helped us install and use the IMPACT compiler. We
thank Adam Buchsbaum for providing the SUIF and speech recognition graphs
and for useful comments on an earlier draft of this paper. Stefano Allesina and
Jennifer Dunne gave us the foodweb graphs. We also thank the referees for
several useful comments and suggestions.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 91

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA, 1986.

[2] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-
Wesley, 1977.

[3] F. E. Allen and J. Cocke. Graph theoretic constructs for program control
flow analysis. Technical Report IBM Res. Rep. RC 3923, IBM T.J. Watson
Research Center, 1972.

[4] S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy
flow bottlenecks and cascading extinctions. Journal of Theoretical Biology,
230(3):351–358, 2004.

[5] S. Allesina, A. Bodini, and C. Bondavalli. Secondary extinctions in ecolog-
ical networks: Bottlenecks unveiled. Ecological Modelling, 2005. In press.

[6] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in
linear time. SIAM Journal on Computing, 28(6):2117–32, 1999.

[7] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault equiva-
lence identification using redundancy information and static and dynamic
extraction. In Proceedings of the 19th IEEE VLSI Test Symposium, pages
124–130, 2001.

[8] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan,
and J. R. Westbrook. Linear-time pointer-machine algorithms for path-
evaluation problems on trees and graphs. In preparation.

[9] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. A new,
simpler linear-time dominators algorithm. ACM Transactions on Program-

ming Languages and Systems, 20(6):1265–96, 1998. Corrigendum appeared
in 27(3):383-7, 2005.

[10] K. D. Cooper, 2003. Personal communication.

[11] K. D. Cooper, T. J. Harvey, and K. Kennedy. A
simple, fast dominance algorithm. Available online at
http://www.cs.rice.edu/∼keith/EMBED/dom.pdf.

[12] K. D. Cooper, T. J. Harvey, and K. Kennedy. Iterative data-flow analysis,
revisited. Technical Report TR04-432, Department of Computer Science,
Rice University, 2004.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 92

[14] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming

Languages and Systems, 9:319–349, July 1987.

[15] M. J. Fischer. Efficiency of equivalence algorithms. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 153–168.
Plenum Press, New York, 1972.

[16] H. N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. In Proceedings of the 1st ACM-SIAM Symposium

on Discrete Algorithms, pages 434–443, 1990.

[17] A. Gal, C. W. Probst, and M. Franz. Complexity-based denial-of-service
attacks on mobile code systems. Technical Report 04-09, School of Infor-
mation and Computer Science, University of California, Irvine, 2004.

[18] A. Gal, C. W. Probst, and M. Franz. Average case vs. worst case: Margins
of safety in system design. In Proceedings of the New Security Paradigms

Workshop, 2005.

[19] L. Georgiadis. Linear-Time Algorithms for Dominators and Related Prob-

lems. PhD thesis, Princeton University, 2005.

[20] L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Pro-

ceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, pages
862–871, 2004.

[21] L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-
disjoint paths. In Proceedings of the 16th ACM-SIAM Symposium on Dis-

crete Algorithms, pages 433–442, 2005.

[22] L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I.
August. Finding dominators in practice. In Proceedings of the 12th An-

nual European Symposium on Algorithms, volume 3221 of Lecture Notes in

Computer Science, pages 677–688, 2004.

[23] A. V. Goldberg. Shortest path algorithms: Engineering aspects. In Proceed-

ings of the International Symposium on Algorithms and Computation, vol-
ume 2223 of Lecture Notes in Computer Science, pages 502–513. Springer-
Verlag, 2001.

[24] A. V. Goldberg. A simple shortest path algorithm with linear average
time. In Proceedings of the 9th European Symposium on Algorithms, vol-
ume 2161 of Lecture Notes in Computer Science, pages 230–241. Springer-
Verlag, 2001.

[25] M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs.
Journal of the ACM, 21(3):367–375, 1974.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 93

[26] G. Holloway and C. Young. The flow analysis and transformation libraries
of Machine SUIF. In Proceedings of the 2nd SUIF Compiler Workshop,
1997.

[27] The IMPACT compiler. http://www.crhc.uiuc.edu/IMPACT.

[28] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM, 23:158–171, 1976.

[29] D. E. Knuth. An empirical study of FORTRAN programs. Software Prac-

tice and Experience, 1:105–133, 1971.

[30] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Transactions on Programming Languages and Systems,
1(1):121–41, 1979.

[31] B. M. E. Moret and H. D. Shapiro. An empirical assessment of algorithms
for constructing a minimum spanning tree. DIMACS Monographs in Dis-

crete Mathematics and Theoretical Computer Science, 15:99–117, 1994.

[32] S. S. Muchnick. Advanced Compiler Design and Implementation, chap-
ter 14. Morgan-Kaufmann Publishers, San Francisco, CA, 1997.

[33] M. Poggi de Aragão and R. F. Werneck. On the implementation of MST-
based heuristics for the Steiner problem in graphs. In Proceedings of the

4th International Workshop on Algorithm Engineering and Experiments,
volume 2409 of Lecture Notes in Computer Science, pages 1–15. Springer-
Verlag, 2002.

[34] P. W. Purdom, Jr. and E. F. Moore. Algorithm 430: Immediate predom-
inators in a directed graph. Communications of the ACM, 15(8):777–778,
1972.

[35] L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for
solving constrained path problems. In Proceedings of the 8th International

Symposium on Practical Aspects of Declarative Languages, volume 3819 of
Lecture Notes in Computer Science, pages 73–87. Springer-Verlag, 2006.

[36] M. Sharir. Structural analysis: A new approach to flow analysis in opti-
mizing compilers. Computer Languages, 5(3):141–153, 1980.

[37] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal

of Computer and System Sciences, 26:362–391, 1983.

[38] The Standard Performance Evaluation Corp. http://www.spec.org/.

[39] P. H. Sweany and S. J. Beaty. Dominator-path scheduling: A global
scheduling method. In Proceedings of the 25th International Symposium

on Microarchitecture, pages 260–263, 1992.

L. Georgiadis et al., Dominators in Practice, JGAA, 10(1) 69–94 (2006) 94

[40] R. E. Tarjan. Testing flow graph reducibility. In Proceedings of the 5th

Annual ACM Symposium on Theory of Computing, pages 96–107, 1973.

[41] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on

Computing, 3(1):62–89, 1974.

[42] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):212–225, 1975.

[43] R. E. Tarjan. Applications of path compression on balanced trees. Journal

of the ACM, 26(4):690–715, 1979.

[44] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algo-
rithms. Journal of the ACM, 31(2):245–81, 1984.

[45] The CAD Benchmarking Lab, North Carolina
State University. ISCAS’89 benchmark information.
http://www.cbl.ncsu.edu/www/CBL Docs/iscas89.html.

