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Abstract

Two-dimensional phase unwrapping is the problem of deducing unam-
biguous “phase” from values known only modulo 2π. Many authors agree
that the objective of phase unwrapping should be to find a (weighted)
minimum of the number of places where adjacent discretized phase values
differ by more than π. This problem, which is known to be NP-hard, is
of considerable practical interest, largely due to its importance in inter-
preting data acquired with synthetic aperture radar (SAR) interferometry.
Consequently, many heuristic algorithms for its approximate solution have
been proposed. Here we present a novel approach to this problem, based
on the local-ratio principle, which guarantees a solution whose cost is at
most twice the minimum sought.
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1 Introduction

Phase unwrapping is a computational process whereby a surface, Φ, is recon-
structed from its so-called “wrapped” form, Ψ. Here, Φ = Φ(x) is a real-valued
function, commonly with x ∈ R

2. In the absence of noise, Ψ(x) is equal to
Φ(x)+2πk(x), where k(x) is an integer-valued function such that −π ≤ Ψ < π.
The problem of phase unwrapping has drawn considerable interest. It is an
essential part of many coherent signal processing applications, for example,
Interferometric Synthetic Aperture Radar (SAR) and optical interferometers.
Coherent processing is based on a signal property known as “phase”, which
often relates to some physical quantity such as surface topography. However,
the actual phase values cannot be extracted directly from the physical signal,
since phase influences the signal through its principal values that lie between
±π radians. All we are given is the wrapped phase, that is, the phase values
forced into the interval [−π, π) by a modulo 2π operation.

The unwrapping process is aimed at providing an estimation of the actual
phase function, Φ, given the wrapped function, Ψ. This turns out to be a
difficult problem. Many phase unwrapping algorithms were developed dur-
ing the last twenty years. These algorithms may be divided into two general
classes: path-following and minimum-norm methods [5]. The path-following,
also called residue-cut “tree” algorithms, unwrap by integrating the gradients
of the wrapped phase (approximated by wrapped differences) along paths that
avoid problematic areas where these differences are inconsistent. The minimum-
norm algorithms, on the other hand, minimize some norm of the distance be-
tween the local differences of the estimate of Φ and the corresponding wrapped
values computed from Ψ. Often, the Lp norm is used with 0 < p ≤ 2. The
problem generally becomes more difficult as p is decreased, but there is an
agreement amongst many authors that reconstructions generally improve as p
tends to zero [3, 4, 5, 6, 8]. For p → 0, the minimum norm and residue-cut
approaches coincide. This is the case we are considering in this paper. We
follow the approach of previous authors who developed heuristic algorithms for
this problem, especially [3, 4, 5, 6, 8]. Our aim in this paper is to formalize and
somewhat generalize this approach and, mainly, to present an algorithm which
yields a solution whose cost is at worst twice that of the optimum.

It should be noted that the result of the unwrapping may, in general, be
quite sensitive to the criteria employed in the reconstruction, even for relatively
simple mathematical models (as seen, for example, in [9, 10, 11]). Nevertheless,
reconstructions using approximate solutions to the model formulated below are
known to yield useful and practical solutions in many cases.

2 Problem Formulation

Suppose that the wrapped phase values are given at a set of discrete points,
which we consider as vertices of a graph, G = (V,E). (In practical applications,
the graph is usually a simple planar grid). Each vertex, v ∈ V , is associated with
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a phase value, φ̃[v]. For each vertex v ∈ V , we are given the “wrapped” values of
φ̃[v], denoted by ψ[v]. For convenience, we transform the problem such that the
wrapping yields values in the range [0, 1), rather than [−π, π). Hence, “wrap-
ping” now means taking the fractional part, while “unwrapping” means adding
an integer. Given the wrapped vector, ψ ∈ [0, 1)|V |, we would like to find a phase
vector, φ ∈ R

|V |, which is our best estimate of the original unknown phase, φ̃.
Clearly, some assumptions are required in order to evaluate different solutions.
Unwrapping algorithms are invariably based on some smoothness assumptions
regarding the original surface. Typically, the smoothness is evaluated by some
measure of distance between the phase values at adjacent vertices. Addition-
ally, some given edge-based non-negative weight function, w : E → R

+, is often
introduced, which represents the degree of our confidence in the smoothness
assumption at the corresponding location. This general problem can formally
be written as follows.

Minimize over φ:
∑

{u,v}∈E w({u, v}) |distance(φ[u], φ[v])|, (1)

subject to φ− ψ ∈ Z
|V | ,

where w({u, v}) is the given weight associated with the edge {u, v}. Unwrapping
algorithms differ mainly by the choice of distance measure. Many authors agree
that the best choice is the so-called L0-norm measure, corresponding to

distance(a, b) =







1, b− a ≥ 1
2

−1, b− a ≤ − 1
2

0, otherwise.
(2)

An edge, {u, v}, for which |distance(φ[u], φ[v])| = 1, is said to constitute a
“violation” (often referred to as a “discontinuity” in the literature). Henceforth,
we refer to the problem defined by (1,2), aimed at minimizing the weight of
violations, as the Phase-Unwrapping Problem (PUP).

Remark 1 Edges, {u, v}, satisfying |ψ[u]−ψ[v]| = 1/2, will evidently constitute
a violation in any solution, and therefore need not be taken into account when
attempting to solve the PUP. Thus, we assume that all such edges are omitted
from the input.

In the sequel we transform the PUP, first into an edge-deletion problem, and
then, for planar graphs, into a forest-satisfaction problem in the dual graph
(cf. [7]).

2.1 From PUP to an edge-deletion problem

For adjacent vertices, u, v ∈ V , denote

d(u, v) ≡ distance(ψ[u], ψ[v]) .

Denoting ∆ = φ−ψ, one can readily see that the following problem is equivalent
to PUP.
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Figure 1: An example of the graph corresponding to a wrapped image. The
numbers represent ψ values, and an arrow from vertex u to vertex v indicates
that d(u, v) = −d(v, u) = 1.

PUP′ : Given a graph G = (V,E) with, for every edge, e ∈ E, a weight
w(e) ∈ R

+, and, for every pair of adjacent vertices u, v ∈ V , a distance d(u, v) =
−d(v, u) ∈ {−1, 0, 1},

Minimize over ∆ ∈ Z
|V |:

∑

d(u,v) 6=∆[u]−∆[v]

w({u, v}) . (3)

This simplifies the formulation, allowing us to work with integers instead of
reals.

Consider for example Figure 1. The numbers indicate the wrapped phase val-
ues, ψ. An arrow from vertex u to vertex v indicates that d(u, v)(= −d(v, u)) =
1. Let P = v0, v1, . . . , vℓ−1 be a path in the graph. Denote by d(P ) the total
distance from v0 to vℓ−1 via the path, i.e.,

d(P ) = d(v0, v1, . . . , vℓ−1) = d(v0, v1) + d(v1, v2) + . . .+ d(vℓ−2, vℓ−1) .

A cycle is called d-balanced if its total distance (in any direction) is zero, for
example, in Figure 1,

d(abcdbea) = d(ab)+d(bc)+d(cd)+d(db)+d(be)+d(ea) = 1+0+0+0+(−1)+0 = 0 .

A graph is said to be d-balanced if all its cycles are d-balanced. The graph in
Figure 1 is not d-balanced, as, for example, the cycle (abca) is not d-balanced.

Proposition 1 A connected graph G is d-balanced if and only if, for every
two paths, P and Q, sharing the same start vertex and the same end vertex,
d(P ) = d(Q).

Proof: This is an immediate result of the fact that the two paths can be
combined into a d-balanced cycle. 2
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For a connected d-balanced graph, G, we can now define d(u, v) for any two
vertices to be the length of an arbitrary path, whose start vertex is u and end
vertex is v, since, by Proposition 1, all such paths have the same length. For d-
balanced graphs, a zero-cost solution to PUP′ exists and can easily be obtained
by the following algorithm. (The algorithm assumes a connected graph. For
graphs that are not connected, it can be applied independently to each connected
component).

Flood-Fill Algorithm: FF(G,w, d). Input: a graph G = (V,E) with, for
every edge e ∈ E, a weight w(e) ∈ R

+, and, for every pair of adjacent ver-
tices u, v ∈ V , a distance d(u, v) = −d(v, u) ∈ {−1, 0, 1}. Assumption: G is
connected and d-balanced. Output: a solution, ∆, to PUP′ .

1. Select an arbitrary vertex, r.

2. For each vertex v, define ∆[v] = d(v, r).

Proposition 2 After the execution of the Flood-Fill algorithm, ∆[u] −∆[v] =
d(u, v) for every pair of vertices, u and v.

Proof: Since G is connected, there exists a path Puv from u to v, a path Pvr

from v to r, and a path Pru from r to u. These three paths can be concatenated
into a cycle, which is d-balanced by assumption, and therefore d(u, v)+d(v, r)+
d(r, u) = 0. By the algorithm, d(u, v) + ∆[v]−∆[u] = 0. 2

Corollary The ∆ vector produced by the Flood-Fill algorithm yields

∑

d(u,v) 6=∆[u]−∆[v]

w({u, v}) = 0 ,

and is therefore a zero-weight solution to (3).

We next define the Minimal Balancing Edge Deletion (BED) problem, and
show it to be equivalent to PUP′ :

Min BED Problem: Given a graph G = (V,E) with, for every edge e ∈ E,
a weight w(e) ∈ R

+, and, for every pair of adjacent vertices u, v ∈ V , a distance
d(u, v) = −d(v, u) ∈ {−1, 0, 1},

Minimize over F ⊆ E:
∑

e∈F w(e), (4)

subject to: G̃ = (V,E − F ) is d-balanced .

Proposition 3 Problems PUP′ and Min BED are equivalent up to a linear-
time reduction.

Proof: Let F be a feasible solution to Min BED (i.e., G̃ = (V,E − F ) is a
d-balanced graph). Apply the FF algorithm on each connected component of
G̃, obtaining a zero-cost solution on G̃. This yields a solution to PUP′ on G
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whose cost is at most
∑

e∈F w(e). For the other direction, let ∆ be a feasible
solution to PUP′ (i.e., ∆ ∈ Z

V ). Define F = {u, v} : ∆[u]−∆[v] 6= d(u, v). The
graph G̃ = (V,E − F ) is evidently d-balanced, because the distance of every
cycle consists of the sums of ∆[v] and −∆[v] for every vertex v, in the cycle. 2

Problem Min BED is known to be hard. In fact, it has been shown to be
NP-hard even for the restricted case of rectilinear planar graphs [4]. We are
therefore interested in approximation algorithms to this problem. However, we
are unaware of an approach that will yield a constant-factor approximation to
the Min BED problem on general graphs. Since the motivating problem, PUP,
deals in practice with planar graphs, we concentrate on this case. In Section 3
we develop a factor-two approximation algorithm for the planar graph case.

2.2 From edge deletion to cycle covering

For later convenience, we reformulate problem Min BED from a deletion problem
into a covering problem. F ⊆ E is called a d-Unbalanced-Cycle Covering (d-
UBCC) if every cycle that is not d-balanced contains at least one edge that is
in the set F .

Min d-UBCC Problem: Given a graph G = (V,E) with, for every edge
e ∈ E, a weight w(e) ∈ R

+, and, for every pair of adjacent vertices u, v ∈ V , a
distance d(u, v) = −d(v, u) ∈ {−1, 0, 1},

Minimize over F ⊆ E:
∑

e∈F w(e), (5)

subject to: F is d-UBCC .

Obviously, problems Min d-UBCC and Min BED are equivalent, as we have
simply replaced deletion by covering.

The dual graph. Let G = (V,E) be a planar graph with, for every e ∈ E, a
weight w(e) ∈ R

+, and, for every pair of adjacent vertices u, v ∈ V , a distance
d(u, v) = −d(v, u) ∈ {−1, 0, 1}. It is convenient to pursue our problem in
the framework of the dual graph, similarly to the approach for PUP originally
proposed in [8], which is the basis for residue-cut algorithms. Let G′ = (V ′, E′)
be the dual graph of a planar embedding of G, where V ′ is the set of faces in
the planar embedding, and E′ is the set of adjacent faces in the embedding. For
each e′ ∈ E′, let e ∈ E be the edge in G which separates the adjacent faces that
comprise e′. Define w(e′) = w(e). With every vertex v′ ∈ V ′, we associate a
charge c(v′), which is the distance of the clockwise cycle around the face in G
which corresponds to the vertex v′ in G′. (This charge is often referred to as
“residue” in the literature). Figure 2 shows an example of a graph and its dual.
The numbers at the vertices of the dual graph are the charges. For example, the
clockwise cycle in the primal graph, acba, is of length -1. Therefore, the charge
at the corresponding dual vertex is -1.
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Figure 2: An example of the primal (solid edges) and dual (dashed edges)
graphs. The numbers at the vertices of the dual graph denote charges.

A vertex set U ′ ⊆ V ′ is called c-balanced if the sum of all its charges is zero.
A graph is called c-balanced if each of its connected components is c-balanced.
F ′ ⊆ E′ is called a c-Unbalanced-Cut Covering (c-UBCC) if, for every non-c-
balanced set U ′ ⊆ V ′, F ′ contains at least one edge of the cut of U ′. This leads
to the following problem:

Min c-UBCC Problem: Given a graph G′ = (V ′, E′) with, for every edge
e′ ∈ E′, a weight w(e′) ∈ R

+, and, for every vertex v′ ∈ V ′, a charge c(v′) ∈ Z,

Minimize over F ′ ⊆ E′:
∑

e′∈F ′ w(e′), (6)

subject to: F ′ is c-UBCC .

The two problems, Min d-UBCC and Min c-UBCC, are equivalent. To show
this, we prove the following proposition.

Proposition 4 Let G = (V,E) be a planar graph and let G′ = (V ′, E′) be the
dual graph of a planar embedding of G. Let F ⊆ E, and let F ′ ⊆ E′ be the dual
of F . Then, F is d-UBCC in G if and only if F ′ is c-UBCC in G′.

Proof: Consider a simple non-d-balanced cycle, and let U ′ ⊆ V ′ be the set of
vertices enclosed by this cycle in the planar embedding. The sum of charges of
the vertices in U ′ is equal to the sum of the clockwise distances of the cycles
surrounding each of the vertices. However, the latter sum is equal to the clock-
wise distance of the surrounding cycle, because all other (internal) edges cancel
pairwise. Therefore, the total charge is nonzero, and if the cut is covered by F ′,
then the non-d-balanced cycle in G is covered by F . For the other direction,
let U ′ be a non-c-balanced set of vertices whose cut is not covered by F ′. We
need to show that there exists a non-d-balanced cycle in G, which is not cov-
ered by F . Construct a directed graph, ~G = (V, ~E), where ~E is the union of
all the edges obtained from clockwise cycles around the faces corresponding to
U ′. Delete from this graph all anti-parallel edges. Clearly, the remaining set
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of edges can be partitioned into simple directed cycles. Furthermore, since the
sum of distances of the cycles comprising ~G is non-zero by assumption, one of
these simple cycles must have non-zero distance in G. However, the dual of any
edge in this cycle is in the cut, and therefore it is not covered by F ′. Hence, the
edge itself is not covered by F . 2

3 A 2-approximation algorithm

Since the Min c-UBCC Problem is NP-hard even for planar graphs, we de-
velop an approximation algorithm. Our algorithm does not exploit the planarity
property, and therefore it is applicable to general graphs. Hence, and also for
simplicity of notation, we restate the Min c-UBCC Problem for general graphs,
dropping the primes (that were associated with the planar dual graph):

Min c-UBCC Problem: Given a graph G = (V,E) with, for every edge
e ∈ E, a weight w(e) ∈ R

+, and, for every vertex v ∈ V , a charge c(v) ∈ Z,

Minimize over F ⊆ E: w(F ) , (7)

subject to: F is c-UBCC ,

where w(F ) ≡
∑

e∈F w(e) .
All discussion in the remainder of this paper is assumed to be in the con-

text of this problem and its input and notation. We will use the term “feasible
solution” (or simply “solution”) to indicate a set of edges which is c-UBCC,
and “optimal solution” to indicate a minimal-weight feasible solution, i.e., one
which solves the Min c-UBCC problem. Let F ∗ ⊆ E denote an optimal so-
lution to the problem. Given a constant r ≥ 1, a set F ⊆ E is called an
r-approximation if it is a feasible solution and satisfies w(F ) ≤ r w(F ∗). An
algorithm is called an r-approximation algorithm for the problem if it produces
an r-approximation. Evidently, an r-approximation algorithm for this problem
implies an r-approximation algorithm for the original problem, PUP, with the
same time complexity.

We say that a feasible solution F ⊆ E, is “clean” if no proper subset of F
is feasible. Clearly, it suffices to consider clean solutions, because eliminating
unnecessary edges from a non-clean solution cannot increase its weight. Clean
solutions evidently satisfy the following properties.

Proposition 5 Let F be clean, and let GF be the subgraph of G induced by F .
Then,

1. GF is cycle-free (i.e., a forest).

2. Every leaf in GF is charged (i.e., has nonzero charge).

We next turn our attention to the weight function. Our approach will require
us to construct weight functions with the following special property. A weight
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function is called r-effective if every clean solution is an r-approximation with
respect to it. The idea is to decompose the actual weight function w, into a sum
of r-effective weight functions. This process is based on the local-ratio theorem
(see, e.g., [1, 2]):

Theorem 1 Let w1, w2, w be weight functions satisfying w = w1 + w2. Then,
if F is an r-approximation both with respect to w1 and with respect to w2, then
it is also an r-approximation with respect to w.

Proof: Let F ∗
1 , F

∗
2 , and F ∗ be optimal solutions to the problem with respect

to w1, w2, and w, respectively. Then,

w(F ) = w1(F ) + w2(F ) [w = w1 + w2]
≤ r w1(F

∗
1 ) + r w2(F

∗
2 ) [definition of r-approximation]

≤ r w1(F
∗) + r w2(F

∗) [definition of optimality]
= r w(F ∗) [w = w1 + w2]

2

The general idea in applying this theorem is to select an appropriate r-effective
w1, and to use it to reduce w by recursively finding an r-approximate solution
with respect to w2 = w − w1. Thus, the main task is to construct a nontrivial
(i.e., not identically zero) r-effective weight function w1. In our case, the best
(smallest) r achieved is r = 2.

3.1 A 2-effective weight function

A weight function ŵ is said to be homogeneous if, for each edge {u, v}, it satisfies:

ŵ({u, v}) ∈















{0}, if c(u) = c(v) = 0 ,
{1}, if c(u) = 0, c(v) 6= 0 , or c(u) 6= 0, c(v) = 0 ,
[1, 2], if c(u) > 0, c(v) > 0 , or c(u) < 0, c(v) < 0 ,
{2}, if c(u)c(v) < 0 .

(8)

Theorem 2 A homogeneous weight function ŵ is 2-effective.

Proof: Let F be a clean solution, and denote by n(F ) the number of vertices
with non-zero charge in the graph induced by F . To prove the theorem, it is
sufficient to show1

n(F ) ≤ ŵ(F ) ≤ 2n(F ) . (9)

Let T ⊆ F be any tree in the forest induced by F . Clearly, to prove (9), it
suffices to show that

n(T ) ≤ ŵ(T ) ≤ 2n(T ) , (10)

and then sum up over all the trees in the forest induced by F . Since F is
clean, it is sufficient to show (10) for any tree satisfying: (1) All leaves of T are
charged; (2) There exists at least one positive-charged vertex and at least one
with negative charge. We call trees satisfying the latter property heterogeneous.
We prove (10) by induction on n(T ).

1Note that the subgraph induced by F must contain all vertices with non-zero charges,
otherwise F cannot be a clean solution.



R. Bar-Yehuda, I. Yavneh, Factor-Two, JGAA, 10(2) 123–139 (2006) 132

Base: n(T ) = 2. In this case, T must be a tree with exactly two leaves with
opposite-signed charges. Case 1: The two leaves are adjacent via an edge, e,
and therefore, for the homogeneous weight function, ŵ(T ) = ŵ(e) = 2, which
satisfies (10). Case 2: The two leaves are not adjacent, therefore each of the two
edges that are adjacent to the leaves have weight 1, and all other edges have
weight 0. Therefore, ŵ(T ) = 1 + 1 = 2, which again satisfies (10).

Step: n(T ) > 2. Let v0 be a leaf whose removal leaves the tree heterogeneous.
(It is easy to show that such a leaf always exists). Let P = v0, v1, . . . , vt be the
longest path such that all vertices but the endpoints are uncharged and have
degree 2. For the homogeneous weight function, it is easy to show (case by case)
that the sum of all weights in this path is in the interval [1, 2]. Let T ′ be the
tree that is obtained from T by deleting the path (but not vt), that is, deleting
v0 and all the vertices leading from v0 to vt, not including vt itself. Clearly, T ′ is
heterogeneous and all its leaves are charged. Thus, by the induction hypothesis,

n(T ′) ≤ ŵ(T ′) ≤ 2n(T ′) .

Summing this with 1 ≤ ŵ(P ) ≤ 2 yields

n(T ′) + 1 ≤ ŵ(T ′) + ŵ(P ) ≤ 2n(T ′) + 2 .

Now, since n(T ) = n(T ′) + 1 and T = T ′ ∪ {edges of P}, we obtain (10). 2

3.2 The local-ratio algorithm

The construction of the 2-effective weight function ŵ is the essential step in the
development of the 2-approximation algorithm, which is defined as follows.

Algorithm LR(G,w, c)

1. If n(G) = 0, return ∅.

2. If there exists an edge e such that w(e) = 0, do:
3. Let (G′, w′, c′) be the instance obtained by contracting e.

4. F ′ ← LR(G′, w′, c′).
5. If F ′ is a feasible solution with respect to (G,w, c):
6. Return the solution F = F ′.
7. Else: Return the solution F = F ′ ∪ {e}.

8. Else: Let ŵ be any homogeneous weight function w.r.t. (G, c).
9. Let ǫ = min{w(e)/ŵ(e) | ŵ(e) ≥ 1}.

10. Define the weight functions w1(e) = ǫ ŵ(e), w2 = w − w1.

11. Return LR(G,w2, c).
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Figure 3: An example of contraction of an edge, e. The numbers at the vertices
represent charges, with c(z) = c(u) + c(v).

The contraction of an edge, e, in step 3 is performed by deleting e, “fusing”
its two end vertices, u and v, into a single new vertex, z, and defining the charge
of z to be the sum of the charges of u and v. Every edge incident on u or v
becomes incident on z instead. See Figure 3 for an example. The algorithm
exploits the following observation.

Proposition 6 Let (G′, w′, c′) be the instance obtained from (G,w, c) by the
contraction of an edge, e. Then

1. The weight of an optimal solution for (G,w, c) is not less than the weight
of an optimal solution for (G′, w′, c′)2.

2. If F ′ is an optimal solution for (G′, w′, c′), then either F ′ is an optimal
solution for (G,w, c), or else it is infeasible for (G,w, c), but F ′ ∪ {e}3 is
an optimal solution for (G,w, c).

3.3 Tightness of ŵ criteria

In this subsection we show that 2-effectiveness is the best that can be achieved
with the present techniques if the r-effective weight function is locally-defined.
By “locally-defined” we mean that the weight function for an edge e, depends
only on the charges of the vertices at the endpoints of e. Examples are con-
structed in which all the non-zero charges at vertices are equal to each other.
We show then that the homogeneous weight-function (8) is in fact the most
general choice, up to a multiplicative constant of course.

Consider a locally-defined weight function w, assumed to be 2-effective. By
a series of counter-examples, we show that, up to a multiplicative constant, w
must be homogeneous, i.e., satisfy (8). Let w be given by

ŵ({u, v}) =















z, if c(u) = c(v) = 0 ,
a, if c(u) = 0, c(v) 6= 0 , or c(u) 6= 0, c(v) = 0 ,
b, if c(u) > 0, c(v) > 0 , or c(u) < 0, c(v) < 0 ,
c, if c(u)c(v) < 0 ,

2Note that contraction might lead to a multigraph, but this is easy to resolve: self-loops
are omitted, and amongst parallel edges we omit all but the one with the smallest weight.

3Recall that w(e) = 0.
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where z, a, b, and c are fixed independently of the graph. For brevity, we treat
here positive and negative charges symmetrically, but the derivation is equally
valid for the general case. (This only requires considering some of our examples
also with the signs of the charges reversed).

In each of the figures we show two possible solutions for the same graph.
Edges not participating in the solution are omitted for clarity. In each example
we apply the definition of 2-effectiveness to derive a constraint on the parame-
ters, {z, a, b, c}. Figure 4 (left) shows that a must be strictly positive, otherwise,
the total weight of the solution is zero in the case shown, and the algorithm gets
stuck. Without loss of generality, we set a = 1. Next, when we compare the
cost of the left solution to that of the right solution, we find that z must equal
zero, else we could always construct a large enough example such that the right
solution will cost more than twice as much as the left solution. In a similar
fashion, Figures 5 and 6 show that c must be not lesser than 2, and no greater
than 2, respectively. Finally, Figures 7 and 8 show that b must be not greater
than 2, but not lesser than 1, respectively. Together, these constraints show
that w must indeed be homogeneous, and also that it is not possible to achieve
better than 2-effectiveness by a locally-defined weight function.

4 Further Research

The approach introduced in this paper is primarily of theoretical interest at this
point. On the road towards a practical algorithm we would need to address the
following issues.

• The method proposed still leaves several free choices, all leading to factor-
two approximations. In particular, note that the homogeneous weight
function is not defined uniquely. This freedom may be exploited for prac-
tical gain.

• A straightforward implementation of the algorithm yields quadratic time
complexity, which can probably be improved upon, but this requires some
investigation.

• Since the recovered surface is to be applied for estimating relevant infor-
mation in signal processing applications, it would be useful to investigate
just how far our solutions are from optimal solutions to the problem in
various cases, and compare this to the distance between different optimal
solutions (in cases where there is more than one).
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Figure 4: The left and right figures correspond to two different feasible solutions
on the same single graph, with only the relevant edges shown for each. The non-
zero charges at the vertices are marked. If a = 0, then w is trivial (hence useless)
for the left-hand graph. Therefore, a must be strictly positive, and, without loss
of generality, we choose a = 1. Therefore, the cost of the solution on the left
is 2a, while the cost of the right-hand solution is 2a plus an arbitrarily large
number times z. 2-effectiveness requires that the ratio between these costs be
between 1/2 and 2. Therefore, we must have z = 0.
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Figure 5: The left and right figures correspond to two different feasible solutions
on the same single graph, with only the relevant edges shown for each. The
nonzero charges at the vertices are marked. Unmarked edges have weight a = 1.
The cost of the solution depicted on the left is 4n−2, while the cost of the right-
hand solution is cn. 2-effectiveness requires that the ratio between these costs
be between 1/2 and 2. This implies 4n− 2 ≤ 2cn, hence, c ≥ 2− 1/n. Since n
may be arbitrarily large, we obtain the constraint, c ≥ 2.
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Figure 6: The left and right figures correspond to two different solutions on the
same single graph, with only the relevant edges shown for each. The nonzero
charges at the vertices are marked. Unmarked edges have weight a = 1. The cost
of the solution depicted on the left is c(2n+1), while the cost of the right-hand
solution is 2n+ c. 2-effectiveness requires that the ratio between these costs be
between 1/2 and 2. This implies c(2n+1) ≤ 2(2n+ c), hence, c ≤ 2/(1−1/2n).
Since n may be arbitrarily large, we obtain the constraint, c ≤ 2. Together with
the previous example, we obtain c = 2.
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Figure 7: The left and right figures correspond to two different solutions on the
same single graph, with only the relevant edges shown for each. The non-zero
charges at the vertices are marked. Edges connecting opposite-sign charged
vertices have weight 2, due to the previous examples. The cost of the solution
depicted on the left is 2b(n− 1) + 2, while the cost of the right-hand solution is
2n. 2-effectiveness requires that the ratio between these costs be between 1/2
and 2. This implies 2b(n − 1) + 2 ≤ 4n, hence, b ≤ (2n − 1)/(n − 1). Since n
may be arbitrarily large, we obtain the constraint, b ≤ 2.
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Figure 8: The left and right figures correspond to two different solutions on the
same single graph, with only the relevant edges shown for each. The non-zero
charges at the vertices are marked. The cost of the solution depicted on the left
is 2nb + 2, while the cost of the right-hand solution is 4n + 2. 2-effectiveness
requires that the ratio between these costs be between 1/2 and 2. This implies
2nb+ 2 ≥ 1

2 (4n+ 2), hence, b ≥ 1− 1/2n. Since n may be arbitrarily large, we
obtain the constraint, b ≥ 1. Together with the previous example, we obtain
1 ≤ b ≤ 2.


