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Abstract

We consider two problems, namely Min Split-coloring and Min Cocol-
oring, that generalize the classical Min Coloring problem by using not only
stable sets but also cliques to cover all the vertices of a given graph. We
prove the NP-hardness of some cases. We derive approximation results
for Min Split-coloring and Min Cocoloring in line graphs, comparability
graphs and general graphs. This provides to our knowledge the first ap-
proximation results for Min Split-coloring since it was defined only very
recently [8, 9, 13]. Also, we provide some results on the approximabil-
ity of Min Cocoloring and comparisons with Min Split-coloring and Min
Coloring.
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1 Introduction

A generalization of the well known vertex coloring problem (Min Coloring) con-
sists in partitioning the vertex set of a given graph into p cliques and k stable
sets. Such a partition is called a (p, k)-coloring. In this paper we deal with two
natural optimization problems in this context, namely Min Cocoloring and Min
Split-coloring.
Given a graph G, the Min Cocoloring problem consists in finding the minimum
number (p + k) of cliques and stable sets covering the vertices of G. The cor-
responding optimal value is called cochromatic number of G and is denoted by
z(G). This problem was first introduced by Lesniak et al. in [23] and extensively
studied since then [8, 15, 17].
The Min Split-coloring, problem defined first in [13], consists in minimizing the
integer max(p, k) for which a (p, k)-coloring of G exists. This is equivalent to
partitioning the vertices of G into a minimum number of split graphs (defined
as graphs whose vertex set can be partitioned into a clique and a stable set).
The optimal value is denoted by χS(G).
Min Coloring consists in minimizing the integer k for which G admits a (0, k)-
coloring, i.e., is k-colorable. The minimum value is called the chromatic number
and is denoted by χ(G); it satisfies χS(G) ≤ z(G) ≤ χ(G). Max Stable and Max
Clique consist in maximizing the size of a stable set and a clique, respectively,
and α(G) is the maximum size of a stable set in G. A clique on p vertices is a
p-clique; it is denoted by Kp.
It is clear that, in general, both Min Cocoloring and Min Split-coloring are
NP-hard. There are numerous articles dealing with such coloring problems in
general graphs [5, 14, 17] or in restricted classes of graphs [9, 8, 15, 20, 22] to de-
tect polynomial cases and to approximate NP-hard cases. In this paper, we first
consider the class of line graphs; given a graph G, in its line graph, denoted by
L(G), edges of G are replaced by vertices and two vertices of L(G) are adjacent
if and only if the corresponding edges are adjacent in G. So, coloring the vertices
of a line graph L(G) is equivalent to coloring the edges of G; an edge coloring is
thus a partition of the edge set of G into matchings. We will observe that Min
Cocoloring is NP-hard in line graphs. In [9], we show that Min Split-coloring is
NP-hard in line graphs of bipartite graphs while Min Cocoloring is polynomial
for this class. Here we approximate Min Split-coloring and Min Cocoloring in
line graphs. Then, we give an improved approximation of Min Split-coloring in
line graphs of bipartite graphs. In addition, noticing that Min Split-coloring is
NP-hard in comparability graphs, we give a 2-approximation algorithm for this
case; this result is the split counterpart of a result for cocoloring in comparabil-
ity graphs [15].
A polynomial algorithm is said to guarantee a (standard) approximation ratio
of ρ if, for every instance x, λ(x)/β(x) is at most (for minimization case) ρ,
where λ(x) denotes the value of a solution of x given by the algorithm and β(x)
the value of an optimal solution of x. If some ambiguity arises, we write λS , βS

(respectively λC , βC) in order to refer the Min Split-coloring (Min Cocoloring).
In what follows, unless otherwise stated, approximation ratio stands for stan-
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dard approximation ratio. Only in the last section, we will refer to another
approximation ratio, called differential approximation ratio.
Differential approximation (which is also called z-approximation [18]) is an alter-
native way of looking at approximation algorithms. Min Coloring, for instance,
is known to be approximable within a constant from this point of view [19, 12]
while it is not the case from the usual point of view. This ratio is extensively
discussed in [11, 10]; many studies in this area have pointed out that both ra-
tios are complementary without trivial links between them, which emphasizes
the interest to systematically study a problem by using both ratios. In the last
section, we recall the definition of this ratio and we study the differential approx-
imation behavior of Min Cocoloring and Min Split-coloring problems in general
graphs. In particular, we show that Min Split-coloring and Min Cocoloring are
better approximable than Min Coloring in terms of differential approximation
ratio since they admit a differential polynomial time approximation scheme.
Let us state in Table 1 the results obtained in this paper; references are given
whenever the results were known before. A “-” in an entry indicates that the
corresponding problem has no meaning. Note that G = {G∪nK2n} is the class
of graphs obtained by taking any arbitrary graph G of size n and adding n
disjoint cliques of size 2n each.
A graph G is a comparability graph if there exists an orientation of its edges
which is transitive (i.e., if [xy], [yz] are arcs of G, then there is also an arc [xz]).
A graph is perfect if for any induced subgraph the chromatic number is equal
to the maximum size of a clique.

Cl. of gr. Pb. Complexity Approx. Non-approx.

L(G) χS NP-hard 7/3 4/3-ǫ if P6=NP
z NP-hard 2

L(l.-perf.) χS NP-hard [9] 2 DFPTAS
z O((m2 + mn) log n) [9] - -

L(Bipart.) χS NP-hard [9] 1.78 DFPTAS
z O((m + n) log n) [9] - -

Compar. χS NP-hard 2 DFPTAS
z NP-hard [26] 1.71 [15] DFPTAS

G = χS O(1) [9] - -
{G ∪ nK2n} z NP-hard [9] 3/2 DFPTAS

General χS NP-hard [5] DPTASa n1/14−ǫ if P6=NP,
z NP-hard [5] n1/2−ǫ

if coRP6=NP,
DFPTAS

aObviously, this result also holds for all subclasses of finite graphs.

Table 1: Summary of the results.

For a given graph G = (V,E) with |V | = n and |E| = m, ∆(G) stands for
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the maximum degree of G, i.e., the largest degree d(x) of a vertex x in G.
Moreover, Γ(x) denotes the set of neighbors of a vertex x and Ḡ stands for
the complementary graph of G. For V ′ ⊂ V , G[V ′] denotes the subgraph of
G induced by V ′ while G \ V ′ = G[V \ V ′]. In general, graphs will be simple
(no loops, no multiple edges). The complement Ḡ of a graph G is a graph
constructed on the same vertex set as G where two vertices are linked if and
only if they are not linked in G. See [4] for graph theoretical definitions not
given here.

2 Preliminary remarks

Let us first mention the following preliminary result on approximation dealing
with standard approximation ratio.

Proposition 1 There is a reduction which preserves approximation between
Min Split-coloring and Min Cocoloring: every r-approximation algorithm for
one of these problems gives a 2r-approximation algorithm for the other one.

Proof: Suppose we have an r-approximation algorithm for Min Cocoloring
giving a solution of value λC(G) for any graph G. Consider the vertex partition
of that solution as a split-coloring of value λS(G). Clearly, we have λS(G) ≤
λC(G) ≤ rz(G) ≤ 2rχS(G) since a minimum split-coloring of G provides a
cocoloring of value 2χS(G).
Similarly, if we have an r-approximation algorithm for Min Split-coloring giving
a solution of value λS(G) for any graph G, then the value of a cocoloring derived
from that solution verifies λC(G) ≤ 2λS(G) ≤ 2rχS(G) ≤ 2rz(G). �

Corollary 1 For every class of graphs for which z(G) (respectively χS(G))
can be computed in polynomial time, Min Cocoloring (respectively Min Split-
coloring) induces a 2-approximation for Min Split-coloring (respectively Min
Cocoloring).

It follows that z(G) can be polynomially approximated within a factor of 2 in the
class of graphs G = {G∪nK2n}. In fact, a better approximation ratio can easily
be obtained. It is shown in [9] that for any G′ ∈ G we have z(G′) = n + z(G)
where G′ = G ∪ nK2n. Therefore, z(G′) ≥ n + 1 and a cocoloring of value
λC(G′) ≤ 3n

2 + 1 can easily be obtained by taking a solution on G of value ⌈n
2 ⌉

(since any pair of vertices forms either a clique or a stable set) and n cliques
covering nK2n. This provides an approximation ratio of 3/2.

3 Line graphs

Given a graph G, Min Split-coloring in L(G) consists in covering the edges of
G by either bundles, i.e., sets of edges adjacent to the same central vertex, or
triangles (cliques in L(G)) and by matchings (stable sets in L(G)). We call Min
Edge Split-coloring in G the Min Split-coloring problem in L(G). The objective
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is to minimize the maximum between the number of triangles or bundles and the
number of matchings covering all edges. The optimal value for G is χ′

S(G) =
χS(L(G)). Analogously, we define Min Edge Cocoloring in G as being Min
Cocoloring in L(G). Here, we minimize the total number of triangles, bundles
and matchings covering all edges. Then the optimal value of edge cocoloring for
G is z′(G) = z(L(G)). Note that a graph is called line-perfect whenever its line
graph is perfect. In what follows, we devise some approximation algorithms for
both Min Edge Split-coloring and Min Edge Cocoloring.

3.1 Complexity results

First, let us mention the following theorem.

Theorem 1 ([9]) In line-perfect graphs, Min Edge Cocoloring is polynomially
solvable in time O((m2 + mn) log n) while Min Edge Split-coloring is NP-hard.

On the other hand, one can show the NP-hardness of both Min Edge Split-
coloring and Min Edge Cocoloring.

Proposition 2 (i) Edge 3-cocolorability is NP-complete.
(ii) Edge 3-split-colorability is NP-complete.

Proof: (i) It is clearly in NP and we prove its NP-completeness by a reduction
from edge 3-colorability (shown to be NP-complete in [21]). Let us consider an
instance G of edge 3-colorability. We transform G into an instance G̃ of edge
3-cocolorability by adding 4 disjoint K1,3, that is 4 bundles of size 3 each. Note

that in any edge 3-cocoloring of G̃, edges of these 4 bundles have to be covered
by 3 matchings. Consequently, G̃ is edge 3-cocolorable if and only if G is edge
3-colorable.
(ii) A similar argument shows that edge 3-colorability also reduces to edge
3-split-colorability. In order to show that, we obtain an instance G̃S of edge 3-
split-colorability from an instance G of edge 3-colorability by adding 3 bundles
of size 4 each. Then it suffices to observe that in any edge 3-split-coloring of
G̃S , edges of 3 disjoint K1,4 have to be covered by 3 bundles. This implies that

G̃S is edge 3-split-colorable if and only if G is 3-edge-colorable. �

Since both Min Edge Split-coloring and Min Edge Cocoloring have integral
values, we can immediately deduce:

Corollary 2 Both Min Edge Split-coloring and Min Edge Cocoloring are not
approximable within a factor of 4

3 − ǫ, unless P=NP.

3.2 Approximation results

First of all, Corollary 1 combined with Theorem 1 allows us to state the following
approximation result.

Proposition 3 Min Edge Cocoloring provides a 2-approximation for Min Edge
Split-coloring in line-perfect graphs in time O((m2 + mn) log n).
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Indeed, an optimal edge cocoloring of an instance is a 2-approximation of the
same instance now viewed as an instance of Min Edge Split-coloring.
It can be easily observed that this bound of 2 is tight for the graph G = pK2p ∪
pKp which is obviously the line graph of a line-perfect graph. More precisely,
we have z(G) = 2p by taking 2p cliques. This solution induces a split-coloring
of value 2p as well. Nevertheless, we have χS(G) = p by choosing p cliques of
size 2p and p stable sets covering the remaining p cliques of size p each.
Let A be a polynomial time algorithm computing a (∆+1)-edge-coloring for any
graph of maximum degree ∆ [24] and an optimal edge-coloring for line-perfect
graphs [7]. We consider the following algorithm for Min Edge Split-coloring:

Greedy Edge Split-coloring

(1) R← ∅;
(2) while |R| < ∆(G)
(3) pick a vertex x of maximum degree in G;

(4) R← R ∪ {x};
(5) remove x from G;

(6) Compute an edge coloring of the remaining edges by A
(The solution is the set of edges incident to vertices in R
completed by that edge coloring.)

The main idea is that, if k = min{d : |{x : d(x) > d}| ≤ d}, then by removing
all vertices of degree greater than k (the maximum degree is at most k in the
remaining graph) and by completing the solution by k + 1 matchings [24], one
finds an edge split-coloring of value k + 1.

Proposition 4 (i) For every graph G, Greedy Edge Split-coloring com-
putes an edge split-coloring of cardinality at most 2χ′

S(G) + 1.
(ii) It provides a 7/3-approximation for Min Edge Split-coloring.
(iii) Greedy Edge Split-coloring provides a 2-approximation for Min Edge
Split-coloring in line-perfect graphs.

Proof: Let us consider a graph G = (V,E), it is straightforward to verify that
Greedy Edge Split-coloring computes a split-coloring of G; we denote by
λGr its value. Let k = min{d : |{x : d(x) > d}| ≤ d}. In what follows, we show
that λGr ≤ k + 1 ≤ 2χ′

S(G) + 1.
(i) Let us first note that if χ′

S(G) = 1, then λGr(G) is either 1 or 2; on the
other hand, if χ′

S(G) = 2, then after 2 iterations of the while-loop the degree is
less than 3 and no more than 3 matchings are used at line (6), computing also
a solution of value 3 or less. In both cases, λGr(G) is at most 2χ′

S(G). In what
follows, we assume that χ′

S(G) ≥ 3.
Note that λGr ≤ |R| + 1 since |R| ≥ ∆(G \ R), where G \ R = G[V \ R]. Let r
be the last vertex introduced in R and R′ = R \ {r}; we have |R′| < ∆(G \ R′)
and consequently d(r) ≥ |R′| + 1 = |R|. Since vertices are introduced in R
in decreasing order of their degree, every vertex in R has degree at least |R|.
Consequently, |{x : d(x) ≥ |R|}| ≥ |R|. It means that |R| < min{d : |{x :



M. Demange et al., Min Split-coloring , JGAA, 10(2) 297–315 (2006) 303

d(x) ≥ d}| < d}. It is straightforward to verify that min{d : |{x : d(x) ≥ d}| <
d} = k + 1 and thus λGr ≤ |R| + 1 ≤ k + 1.
In order to show k ≤ 2χ′

S(G), we prove the following lemma:

Lemma 1 Consider an optimal edge split-coloring of value χ′

S(G) minimizing
the number of triangles among optimal edge split-colorings of G. Denote by T the
set of triangles and by B the set of bundles in this solution (|T |+ |B| ≤ χ′

S(G)).
Let X be the set of vertices of degree at least 2χ′

S(G) + 1 that are not center of
a bundle in B. Then |X| ≤ 3.

Proof: Let x ∈ X, we denote by Tx the set of triangles in T incident to x and
by Bx the set of bundles centered on neighbors of x (by definition of X, x is not
a center of a bundle in B). Since the solution minimizes the number of triangles,
any two triangles in T are edge-disjoint and no center of a bundle in B belongs
to a triangle in T . Consequently, Tx ∪ Bx contains exactly |Bx| + 2|Tx| edges
incident to x. Since only χ′

S(G) edges incident to x can be covered by matchings
in the solution, |Bx| + 2|Tx| ≥ χ′

S(G) + 1. Let us then define a bipartite graph
I = (X,T ∪ B,EI) with xr ∈ EI ⇔ r ∈ Tx ∪ Bx, i.e., x is incident to an edge
of bundle or triangle r. Vertices in T have a degree at most 3 in I and vertices
in B have a degree at most |X| in I. We then have:

∑

x∈X

(|Bx| + 2|Tx|) ≥ (χ′

S(G) + 1)|X| (1)

∑

x∈X

(|Bx| + |Tx|) ≤ 3|T | + |X||B| (2)

We deduce by subtraction:

3|T | ≥
∑

x∈X

|Tx| ≥ (χ′

S(G) − |B| + 1)|X| − 3|T | ≥ (|T | + 1)|X| − 3|T |

Consequently |X| ≤ 5. But, in this case, the number of triangles in T with
degree 3 in I is at most 2 since a third triangle would have two vertices in
common with one of the two other triangles. This contradicts the fact that the
triangles are edge disjoint. Then, if |T | ≥ 2, (2) can be replaced by

∑

x∈X(|Bx|+
|Tx|) ≤ 2|T |+2+ |X||B| implying |X| ≤ 4. By the same argument as previously,
since any graph generated by 2 triangles and at most 4 vertices can be covered by
2 bundles, at most 1 vertex in T has degree 3 in I implying |X|(|T |+1) ≤ 4|T |+2
and thus |X| ≤ 3. Finally if |T | ≤ 1, (2) becomes

∑

x∈X(|Bx|+|Tx|) ≤ 3+|X||B|
implying |X| ≤ 3, which concludes the proof. �

It implies that |{x : d(x) > 2χ′

S(G)}| ≤ χ′

S(G) + 3 ≤ 2χ′

S(G) since χ′

S(G) ≥ 3.
Then, k ≤ 2χ′

S(G) and λGr ≤ 2χ′

S(G) + 1, which concludes the proof of (i).
(ii) If χ′

S(G) ≤ 2, Greedy Edge Split-coloring uses clearly no more than 3
colors. If χ′

S(G) ≥ 3, then by (i) we have λGr(G) ≤ 2χ′

S(G) + 1 ≤ 7χ′

S(G)/3.
(iii) Line-perfect graphs of maximum degree ∆ can be edge colored in polyno-
mial time (by A) with ∆ colors if ∆ ≥ 3 and either with 2 or 3 colors if ∆ = 2.
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If ∆ = 2, Greedy Edge Split-coloring uses at most 3 colors. If ∆ ≥ 3, we
just have to note that, in the proof of (i), λGr ≤ k ≤ 2χ′

S(G). �

Let us finally remark that the bound is tight in bipartite graphs. Consider
namely an integer p, V1 = {xi, i = 1, . . . , 2p}, V2 = {yij , i = 1, . . . , 2p, j =
1, . . . , p + 1} ∪ {ui, i = 1, . . . , p}, E = {(xiyij), i = 1, . . . , 2p, j = 1, . . . , p + 1} ∪
{(xiuj), i = 1, . . . , 2p, j = 1, . . . , p}. Every vertex in V1 is of degree 2p + 1 =
∆(B), d(ui) = 2p, i = 1, . . . , p and vertices yij , i = 1, . . . , 2p, j = 1, . . . , p + 1
are of degree 1. The greedy algorithm removes vertices in V1 (the related value
being 2p) while the optimal value p+1 is achieved by removing u1, . . . , up. The
related ratio is 2−2/(p+1) and consequently the bound is asymptotically tight.
The bound 2 is achieved for the same instance without vertices yi(p+1), but in
this case, if the greedy algorithm makes the bad choices, it may compute a so-
lution of value 2p only.

Proposition 5 Min Edge Cocoloring is 2-approximable.

Proof: Let us consider a minimum cocoloring minimizing the number of tri-
angles. Then it is straightforward to verify that it contains either 2 disjoint
triangles or 1 or none (since all other solutions can be replaced by solutions of
the same value and containing less triangles).
By a similar method as in Greedy Edge Split-coloring, one can compute in
polynomial time k minimizing k + 1 + |{x : d(x) > k}|; then there is an edge
cocoloring consisting in bundles {x : d(x) > k} (represented by their central
vertices) completed by (at most) k + 1 matchings. So we can construct such a
solution with k + 1 + |{x : d(x) > k}| color classes.
Let us first suppose that the fixed minimum edge cocoloring does not contain
any triangle. Then, |{x : d(x) > z′(G)}| ≤ z′(G) since all bundles of size
greater than z′(G) have to be taken as bundles in an optimal solution. More-
over, if |{x : d(x) > z′(G)}| = z′(G), an optimal solution (containing only
bundles) has been detected at a stage of the computation of k. So we can as-
sume |{x : d(x) > z′(G)}| ≤ z′(G) − 1, but in this case, by definition of k we
have:

k + 1 + |{x : d(x) > k}| ≤ z′(G) + 1 + z′(G) − 1 = 2z′(G)

If the optimal solution contains some triangles (one or two), one can consider
all possible triangles in a solution and then apply the previous argument to the
remaining graph. This completes the proof showing that one can compute a
2-approximation of Min Edge Cocoloring in polynomial time. �

Let us now consider Min Edge Split-coloring in bipartite graphs. Given a bipar-
tite graph B = (V1, V2, E) and an integer k, let us denote by d′k(x) = |Γ(x)∩{y :
d(y) ≤ k}| the degree of x in the graph obtained by removing all neighbors of x
of degree greater than k. For i = 1, 2 we also denote by V k

i = {x ∈ Vi : d(x) > k}
and by V ′k,k′

i = {x ∈ Vi : d′
k
(x) > k′}. For instance, V ′k,k′

2 is the set of vertices
in V2 with a degree greater than k′ in the graph obtained by deleting all vertices
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of V1 of degree greater than k. Finally, for i ∈ {1, 2}, we set ī = 3 − i, i.e.,
{1, 2} = {i, ī}. Here A is an algorithm for computing an edge ∆-coloring of a
bipartite graph with maximum degree δ; its complexity is O(∆m) [25].

Bipart. Edge Split-coloring

ǫ← (5−
√

17)/4;
For i = 1, 2 do

(1) for every x ∈ Vi compute d(x);

(2) for every y ∈ Vī and every x ∈ Γ(y), compute d′d(x)
(y);

(3) for every k ∈ {1, . . . , ∆(B)} compute |V k
i | and |V ′

1+ǫ

2−ǫ
k,k

ī
|;

(4) di ← min{k : |V
1+ǫ

2−ǫ
k

i |+ |V ′

1+ǫ

2−ǫ
k,k

ī
| ≤ k}; Si ← V

1+ǫ

2−ǫ
di

i ∪ V ′

1+ǫ

2−ǫ
di,di

ī
;

(5) d0 ← min{k : |V k
1 |+ |V k

2 | ≤ k}; S0 ← V d0
1 ∪ V d0

2 ;

(6) i0 ← argmin{di, i = 0, 1, 2}; S ← Si0;

(7) Compute an edge coloring of the remaining edges by A
(The solution is the set of edges incident to vertices in S
completed by that edge coloring.)

Theorem 2 Bipart. Edge Split-coloring is a O(mn)-algorithm approxi-
mating Min Edge Split-coloring in bipartite graphs within ratio 2−(5−

√
17)/4 ≃

1.78, where m = |E| and n = |V1 ∪ V2|.

Proof: We take ǫ = (5 −
√

17)/4 ≃ 0.22 as defined in the algorithm. It is the
root of 1 + ǫ = 2(1 − ǫ)2 which is smaller than 1. It follows that 2 − ǫ ≃ 1.78
and 1+ǫ

2−ǫ ≃ 0.68 .

Let us first note that d = di0 = min{d0, d1, d2}, where d0 = min{k : |V k
1 ∪V k

2 | ≤
k} and for i = 1, 2, di = min{k : |V k 1+ǫ

2−ǫ

i | + |V ′
k 1+ǫ

2−ǫ
,k

ī
| ≤ k}. Moreover, it is

immediate to verify that Bipart. Edge Split-coloring computes a feasible
edge split-coloring of value d. More precisely, d is such that the graph obtained
by removing at most d vertices is of degree at most d: the maximum degree of
the graph obtained by removing V d0

1 ∪V d0
2 is at most d0 and the graph obtained

by removing V
di

(1+ǫ)
(2−ǫ)

i ∪ V ′
di

(1+ǫ)
(2−ǫ)

,di

ī
has degrees at most di, i = 1, 2 (note that

(1+ǫ)
(2−ǫ) ≤ 1). Concerning the complexity, lines (1), (3), (4) and (5) need O(m)

time, line (7) needs O(∆m) time and finally line (2) needs O(mn).
Let us now analyze the approximation behavior of the algorithm. Denote by
ℓ = χ′

S(B): ∃L1 ⊂ V1, L2 ⊂ V2, |L1| = ℓ1, |L2| = ℓ2, ℓ1 + ℓ2 = ℓ and ∆(B \ (L1 ∪
L2)) ≤ ℓ, where B \ (L1 ∪ L2) = B[(V1 ∪ V2) \ (L1 ∪ L2)]. In the sequel, we
consider the following cases:

(1) ℓ1 ≥ ℓǫ and ℓ2 ≥ ℓǫ

(2) ℓ2 < ℓǫ with 2 sub-cases (2.1)|V ℓ(1+ǫ)
1 | ≥ ℓǫ and (2.2) |V ℓ(1+ǫ)

1 | < ℓǫ

(3) ℓ1 < ℓǫ
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Let us point out the following property (P) which will be useful:
(P) If x ∈ Vi \ Li, i ∈ {1, 2} and d(x) ≥ ℓ + r, then |Γ(x) ∩ Lī| ≥ r where
ī = 3 − i.
This holds because after removal of Lī, vertex x has degree at most ℓ.
Case (1) ℓ1 ≥ ℓǫ and ℓ2 ≥ ℓǫ.

By property (P), V
ℓ+lī
i ⊂ Li; i = 1, 2 and then:

|V ℓ+max(ℓ1,ℓ2)
1 ∪V

ℓ+max(ℓ1,ℓ2)
2 | ≤ |V ℓ+ℓ2

1 |+ |V ℓ+ℓ1
2 | ≤ ℓ1 +ℓ2 = ℓ ≤ ℓ+max(ℓ1, ℓ2)

We deduce d0 ≤ ℓ+max(ℓ1, ℓ2) ≤ ℓ(2− ǫ), where the last inequality holds since
we are considering case (1).
Case (2) ℓ2 < ℓǫ.

By property (P), we have V
ℓ(1+ǫ)
1 ⊂ L1.

Sub-case (2.1) |V ℓ(1+ǫ)
1 | ≥ ℓǫ ⇒ |(L1 \ V

ℓ(1+ǫ)
1 )| ≤ ℓ(1 − ǫ).

Then, property (P) implies that V ′ℓ(1+ǫ),ℓ(2−ǫ)
2 ⊆ L2. It follows from the above

relations that |V ℓ(1+ǫ)
1 ∪V ′ℓ(1+ǫ),ℓ(2−ǫ)

2 | ≤ ℓ ≤ (2−ǫ)ℓ, which implies by definition
of d1 (consider k = ℓ(2 − ǫ) in the definition), d1 ≤ ℓ(2 − ǫ).

Sub-case (2.2) |V ℓ(1+ǫ)
1 | < ℓǫ.

For every x ∈ V2 \L2 such that d′
ℓ(1+ǫ)

(x) > ℓ(2− ǫ), we have by property (P)

|Γ(x) ∩ (L1 \ V
ℓ(1+ǫ)
1 )| ≥ ℓ(1 − ǫ). Then, by considering the number E of edges

between (L1 \ V
ℓ(1+ǫ)
1 ) and (V ′ℓ(1+ǫ),ℓ(2−ǫ)

2 \ L2) we deduce:

(|V ′ℓ(1+ǫ),ℓ(2−ǫ)
2 | − ℓ2)ℓ(1 − ǫ) ≤ E ≤ (ℓ1 − |V ℓ(1+ǫ)

1 |)ℓ(1 + ǫ) ≤ ℓ1ℓ(1 + ǫ)

since the maximum degree of V1 after removing V
ℓ(1+ǫ)
1 is at most ℓ(1 + ǫ).

We deduce:

|V ′ℓ(1+ǫ),ℓ(2−ǫ)
2 | ≤ ℓ(1 + ǫ)

1 − ǫ
= ℓ(2 − 2ǫ)

Consequently |V ℓ(1+ǫ)
1 |+ |V ′ℓ(1+ǫ),ℓ(2−ǫ)

2 | ≤ ℓ(2− ǫ), which implies d1 ≤ ℓ(2− ǫ).
Case (3) ℓ1 < ℓǫ.
It corresponds to the second case by interchanging V1 and V2. So d2 ≤ ℓ(2 − ǫ)
and in all cases, d = min{d0, d1, d2} satisfies the expected ratio. �

4 Comparability graphs

Let us first note the following result allowing us to deduce the hardness of Min
Split-coloring in comparability graphs.

Proposition 6 Let G be a class of graphs closed under addition of disjoint
cliques without link to the rest of the graph and under addition of a complete
k-partite graph completely linked to the rest of the graph. If Min Split-coloring
is polynomial in class G, then so is Min Cocoloring.



M. Demange et al., Min Split-coloring , JGAA, 10(2) 297–315 (2006) 307

Proof: Let us consider a graph G of order n such that z(G) = p + k (where
p is the number of cliques and k is the number of stable sets in an optimum
solution) and let us first assume that p ≤ k. Consider the graph G′ consisting
of G and l = k − p ≤ n disjoint cliques, each of size n + 1, without any link
to the rest of the graph. Note that k − p new cliques completed by p cliques
and k stable sets of the optimal cocoloring of G form a split-coloring of value k,
implying that χS(G′) ≤ k ≤ n. Consequently a minimum split-coloring of G′

necessarily contains the k − p new cliques completed by p′ cliques and k′ stable
sets of G. Since χS(G′) = max((k − p + p′), k′) ≤ k, we have p′ ≤ p and k′ ≤ k.
On the other hand, p′ +k′ ≥ k+p since the restriction to G of the split-coloring
of G′ provides a cocoloring of value p′+k′. So p′+k′ = p+k and this cocoloring
of G is optimal.
If z(G) = p + k with p ≥ k, we show by the same arguments that a minimum
cocoloring of G can immediately be deduced from a minimum split coloring of
G′′, the graph obtained from G by adding p − k ≤ n stable sets, each of size
n + 1 and completely linked to the rest of the graph.
Finally, in both cases, |k − p| ≤ k + p ≤ 2χS(G), consequently, the reduction
runs as follows:

>From Split to Coco

(1) P ← ∅; (*P will contain cocolorings of G*)

(2) compute an optimal split-coloring of G;

(3) store in P the related partition; L← 2χS(G);
(4) for every l ∈ {1, . . . , L} do

(5) construct G′ obtained from G by adding l cliques, each of size

n + 1 without link with the rest of the graph;

(6) compute an optimal split-coloring of G′

and store its restriction to G in P;

(7) construct G′′ obtained from G by adding l stable sets, each of

size n + 1 and completely linked to the rest of the graph;

(8) compute an optimal split-coloring of G′′

and store its restriction to G in P;

(9) Return the best cocoloring stored in P.

�

Corollary 3 Min Split-coloring is NP-hard in comparability graphs.

Proof: Min Cocoloring is NP-hard even in permutation graphs [26] (a graph
G is a permutation graph if G and Ḡ are comparability graphs). This class of
graphs is clearly closed under addition of disjoint cliques and under complemen-
tation and consequently it satisfies the conditions of Proposition 6. Therefore
Min Cocoloring polynomially reduces to Min Split-coloring that is consequently
NP-hard in permutation graphs, and then also in comparability graphs. �

In this section, we show that the method proposed in [15] for approximating Min
Cocoloring in comparability graphs within a factor of 1.71, can be adapted to
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Min Split-coloring with another ratio. Note that a graph G is a cocomparability
graph if Ḡ is a comparability graph.

Theorem 3 Min Split-coloring is 2-approximable for comparability and cocom-
parability graphs in time O(n7/2).

Proof: Let us first establish the split counterpart of Lemma 2 in [15]:

Lemma 2 Let G = (V,E) be a perfect graph of order n and let k satisfy k ≥ √
n,

then χS(G) ≤ k and a split-coloring of size k can be computed in polynomial
time.

Proof: Let G = (V,E) be a perfect graph, we consider a slight modification of
procedure SQRTPartition of [15]. It takes k as input and runs as follows:

SQRT-split-partition

(1) while k 6= 0 and the graph is not empty do

(2) If min{α(G); α(Ḡ)} ≤ k
(3) then compute a k-coloring of G or Ḡ, include each clique

or stable set in the solution and set k ← 0
(4) else find a stable set and a clique of size k + 1

and color the related split graph of size at least

2k + 1 with a new color;

(5) Set k ← k − 1 and remove from G all already colored vertices.

It is straightforward to verify that this procedure runs in polynomial time.
Moreover if line (3) is executed or if the graph becomes empty it computes a
split-coloring of size k . If line (3) is not computed and if k loops are performed,

then at least
∑k−1

i=0 2(k − i) + 1 = k(k + 2) ≥ k2 vertices are covered and
consequently the graph is also covered by k split graphs. �

Let us adapt the algorithm APPROX COCOLOURING of [15] for Min Split-coloring:

Compar.-Split-coloring

(1) compute a maximum r-colorable subgraph (Cr, Er) of Ḡ and a maximum

r-colorable subgraph (Sr, E
′

r) of G such that r
is minimum subject to |Cr|+ |Sr| ≥ n;

(2) introduce in the solution an r-split-coloring of Cr ∪ Sr;

(3) remove Cr ∪ Sr from G;

(4) complete the solution by the split graphs computed by

SQRT-split-partition in the remaining graph.

The complexity of lines (1),(2) and (3) is O(χS(G)n3) ≤ O(n7/2); it follows
from the fact that a maximum r-colorable subgraph of G and Ḡ can be computed
in time O(n3) in comparability graphs [16] and that χS(G) ≤ √

n. Let us
now analyze the complexity of SQRT-split-partition for comparability and
cocomparability graphs. Line (4) of SQRT-split-partition is computed at
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most t times where t is the smallest integer such that (2k + 1) + (2(k − 1) +
1) + . . . + (2(k + 1 − t) + 1) ≥ n or equivalently t2 − (2k + 2)t + n ≤ 0; hence,
recalling that we have k ≥ √

n,

t =

⌈

(2k + 2) −
√

(2k + 2)2 − 4n

2

⌉

=

⌈

4n

2
(

(2k + 2) +
√

(2k + 2)2 − 4n
)

⌉

≤
⌈√

n
⌉

≤
√

n + 1.

Finding a maximum clique and a maximum stable set in a comparability graph
can be done respectively in time O(n+m) and O(nm); therefore, the complexity
of this step is dominated by O(n3/2m). This completes the proof of the overall
complexity.
Since G can be decomposed into χS(G) cliques and χS(G) stable sets, r ≤ χS(G)
where r is as defined in Compar.-Split-coloring. On the other hand, since
|Cr ∩ Sr| ≤ r2, n − |Cr ∪ Sr| ≤ r2 and consequently, by Lemma 2, at most
r ≤ χS(G) split graphs are computed at line (4), the computed split-coloring is
of size at most 2χS(G) and the proof is complete. Note that this result remains
valid for every class of perfect graphs for which subgraphs such as described in
line (1) of Compar.-Split-coloring can be polynomially computed. �

5 General graphs

5.1 Standard approximation ratio

Min Coloring is known to be particularly difficult to approximate since it is not
approximable within n1−ǫ if coRP6=NP and not approximable within n(1/7)−ǫ

if P6=NP [2]. Similar hardness results can immediately be deduced for Min
Split-coloring and Min Cocoloring:

Proposition 7 (i) If Min Cocoloring is n(1/2)−ǫ-approximable for 0 < ǫ < 1/2,
then Min Coloring is n1−ǫ-approximable.
(ii) If coRP 6=NP, then for every ǫ > 0, Min Cocoloring is not approximable
within n(1/2)−ǫ; if P6=NP, then for every ǫ > 0, Min Cocoloring is not approx-
imable within n(1/14)−ǫ.
(iii) The same holds up to a constant factor for Min Split-coloring.

Proof: Let O be an oracle for Min Cocoloring guaranteeing the ratio n(1/2)−ǫ,
with ǫ < 1/2; the reduction constructs G̃ consisting in (⌊n1−ǫ⌋+ 1) copies of G
without link and computes a cocoloring of G̃ by using O. If a copy of G in G̃
is covered only by stable sets, then it outputs this coloring; else it outputs any
greedy coloring.
If χ(G) ≤ nǫ, then z(G̃) ≤ χ(G̃) = χ(G) ≤ nǫ. As the cocoloring computed
by the oracle on G̃ guarantees the ratio n(G̃)(1/2)−ǫ and n(G̃) ≤ n2, it uses at
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most (n2)(1/2)−ǫnǫ = n1−ǫ colors. Consequently at least one copy of G in G̃
is covered only by stable sets in the cocoloring computed by O, which leads to
a coloring of G using at most n1−ǫ colors and the ratio n1−ǫ is guaranteed. If
now χ(G) > nǫ, then any coloring of G guarantees the expected ratio, which
concludes the proof of (i). (ii) follows from hardness results for Min Coloring.
Finally (iii) is immediately deduced by using Proposition 1. �

This hardness result considerably limits the possibilities for approximating Min
Split-coloring or Min Cocoloring in general graphs. A master-slave strategy [1]
enables us to reduce these problems to Max Stable and Max Clique with an
increase of the ratios by a factor O(log n) (the approximation counterpart of
the algorithm GREEDY COCOLOURING of [15]), leading trivially to a O(n/ log n)-
approximation for both problems; but it seems not so easy to reduce these prob-
lems to Min Coloring in order to refine the comparison of their approximation
behavior.

5.2 Differential approximation ratio

The framework of the differential approximation ratio, also called z-approxima-
tion (see for instance [10, 11, 18] for more details about this area) allows such
a comparison. Let x be an instance where the value of an optimum solution is
β(x); given an approximation algorithm, we denote by λ(x) the value of an ap-
proximate solution for the instance x. Let ω(x) be the value of a worst solution;
it is in general obtained by interchanging minimization and maximization. In
some cases ω(x) is trivial to compute. For instance, for a Min Coloring instance
x with n vertices, we have ω(x) = n. Then, the differential approximation ratio
is defined by δ(x) = [ω(x)− λ(x)]/[ω(x)− β(x)] and an algorithm guarantees a
differential ratio of r if, for every instance x, δ(x) ≥ r. Note that δ(x) ∈ [0, 1]
and the larger the ratio is, the better, without distinction between maximization
and minimization problems. Roughly speaking, this ratio gives the position of
the approximated value between the worst and the best one. This ratio has been
used since a long time (see for instance [27]) and is extensively discussed in [11].
In particular, it has the advantage of respecting some affine equivalence such
as the equivalence between maximum stable set and minimum vertex covering
problems while both problems are known to have radically different approxima-
tion behaviors for the usual ratio. Works in this context have pointed out that
it is often interesting to simultaneously consider both points of view since these
ratios provide different pieces of information about combinatorial problems.
For instance, Min Coloring admits constant differential approximation algo-
rithms, the best ratio currently known being 59/72 [12], while it is hard to
approximate from the usual ratio framework. On the other side, it does not
admit any differential PTAS (differential ratio 1 − ǫ, for every ǫ > 0), unless
P=NP ([3]). On the contrary, some other problems are constant approximated
from the usual ratio and hard to approximate from the differential point of view
and, finally, some problems have similar behavior from both points of view.
Moreover, every approximation ratio is more or less appropriate to compare
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the approximation behavior of different given problems. In what follows, we
show that, as for Min Coloring, Min Cocoloring and Min Split-coloring are well
approximated from the differential point of view; moreover they appear to be
better approximated than the Min Coloring problem from this point of view.
More precisely, we devise a differential PTAS for Min Split-coloring and Min
Cocoloring, i.e., a (1 − ǫ)-differential approximation algorithm with complexity
O(n1+3/ǫ), for every 0 < ǫ < 1. On the other hand, a differential FPTAS (the
same ratio with complexity polynomial in 1/ǫ) cannot be guaranteed, unless
P=NP.
For Min Split-coloring, we consider ⌈n(G)/3⌉ as worst value since one can al-
ways assume that each color (except at most one) contains at least 3 vertices
(every set of 3 vertices induces in G a split graph). The ratio associated to G is
δ(G) = [⌈n(G)/3⌉ − λ(G)]/[⌈n(G)/3⌉ − χS(G)]. Similarly, the differential ratio
for Min Cocoloring is [⌈n(G)/2⌉ − λ(G)]/[⌈n(G)/2⌉ − z(G)]. Note that a larger
worst value such as n could be also used, leading to better approximation ratios.
But it is reasonable to consider the little more restrictive values ⌈n(G)/3⌉ and
⌈n(G)/2⌉, respectively, in order to avoid this artificial increasing of the final ra-
tio (see [11] where the notion of worst value is discussed). It simply corresponds
to restrict the analysis to “reasonable” solutions.

Theorem 4 DPTAS-split-coco is a O(n3p+1)-algorithm guaranteeing a differ-
ential approximation ratio of (1 − 1/p) for both Min Split-coloring and Min
Cocoloring.

DPTAS-split-coco

(1) while the current graph contains a 3p-stable or a 3p-clique,
color such a stable set or clique with a new color;

(2) complete the solution by an exhaustive search on the remaining graph.

Proof: For the whole complexity, note that step (2) is computed for a graph
without a stable set or a clique of order 3p and consequently the order of which
is less than the related Ramsey number R2(3p, 3p) ≤ Kp for a constant K [6].
It is straightforward to verify DPTAS-split-coco computes either a split-coloring
or a cocoloring of the instance. The only difference between the two cases arises
in line (2) that computes either an optimal split-coloring or an optimal cocolor-
ing in the remaining graph.
We propose an analysis valid for both problems. The problem being fixed, we
denote respectively by ω(H) and β(H) the worst value and the optimal value
of H, with respect to this problem (consequently β(H) stands either for χS(H)
or for z(H)).
The approximation ratio is proved by induction on n(G) (see also [19]).
If n(G) < 3p, then only step (2) is computed and the algorithm finds an optimal
solution corresponding to a ratio of 1. Let us now assume that the expected
ratio is guaranteed for every graph of order n or less, where n ≥ 3p and consider
a graph Gn+1 of order n + 1. If no clique or stable set of order 3p is detected
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at step (1), then Gn+1 is optimally colored at step (2). Else, the algorithm
attributes a new color either to a stable set or to a clique of size 3p and is then
executed on the graph G′ obtained from Gn+1 by deleting these 3p vertices.
Since G′ is of order less than n, the ratio is guaranteed for G′. Note also that:

λ(Gn+1) = 1 + λ(G′)
β(Gn+1) ≥ β(G′)
ω(Gn+1) ≥ ω(G′) + p ≥ λ(Gn+1)

which implies:

ω(G′) + p − λ(Gn+1) ≥ (1 − 1/p)(ω(G′) − β(G′)) + p − 1
≥ (1 − 1/p)(ω(G′) + p − β(Gn+1))

and then, since ω(Gn+1) ≥ ω(G′) + p and δ is increasing with respect to ω, we
have:

ω(Gn+1) − λ(Gn+1)

ω(Gn+1) − β(Gn+1)
≥ ω(G′) + p − λ(Gn+1)

ω(G′) + p − β(Gn+1)
≥ (1 − 1/p)

which concludes the proof. �

It is straightforward to verify that, since Min Split-coloring (respectively Min
Cocoloring) has integral values and ω(G)− χS(G) is polynomially bounded, an
DFPTAS (differential fully polynomial time approximation scheme) would allow
to solve it polynomially for any finite graph. Moreover, a result of [3] implies
that both problems are PTAS-complete under a Turing reduction preserving
FPTAS.

6 Conclusion

We have essentially considered two extensions of the classical coloring problems,
namely Min Cocoloring and Min Split-coloring. The complexity status of these
problems has been settled for some classes of graphs and approximability has
been studied as well. Further research should examine how the approximation
algorithms sketched here could be improved; in particular the case of edge-
cocoloring could be handled.
Also, subclasses of graphs could be characterized where these problems be-
come polynomially solvable or admit better approximations, like the permuta-
tion graphs which will be studied in a forthcoming paper.
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