
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 11, no. 1, pp. 61–81 (2007)

The Traveling Salesman Problem

for Cubic Graphs

David Eppstein

Computer Science Department
University of California, Irvine
Irvine, CA 92697-3435, USA

eppstein@ics.uci.edu

Abstract

We show how to find a Hamiltonian cycle in a graph of degree at
most three with n vertices, in time O(2n/3) ≈ 1.260n and linear space.
Our algorithm can find the minimum weight Hamiltonian cycle (traveling
salesman problem), in the same time bound. We can also count or list all
Hamiltonian cycles in a degree three graph in time O(23n/8) ≈ 1.297n. We
also solve the traveling salesman problem in graphs of degree at most four,
by randomized and deterministic algorithms with runtime O((27/4)n/3) ≈
1.890n and O((27/4+ ǫ)n/3) respectively. Our algorithms allow the input
to specify a set of forced edges which must be part of any generated
cycle. Our cycle listing algorithm shows that every degree three graph
has O(23n/8) Hamiltonian cycles; we also exhibit a family of graphs with
2n/3 Hamiltonian cycles per graph.

Article Type Communicated by Submitted Revised

Regular paper J. S. B. Mitchell April 2004

Work supported in part by NSF grant CCR-9912338. A preliminary version of this

paper appeared at the 8th Annual Workshop on Algorithms and Data Structures,

Ottawa, 2003.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 62

1 Introduction

The traveling salesman problem and the closely related Hamiltonian cycle prob-
lem are two of the most fundamental of NP-complete graph problems [7]. How-
ever, despite much progress on exponential-time solutions to other graph prob-
lems such as chromatic number [3, 5, 9] or maximal independent sets [2, 11, 13],
the only worst-case bound known for finding Hamiltonian cycles or traveling
salesman tours is that for a simple dynamic program, using time and space
O(2nnO(1)), that finds Hamiltonian paths with specified endpoints for each in-
duced subgraph of the input graph (D. S. Johnson, personal communication).
Hamiltonian cycle and TSP heuristics without worst case analysis have also
been studied extensively [8, 15]. Therefore, it is of interest to find special cases
of the problem that, while still NP-complete, may be solved more quickly in the
worst case than the general problem.

In this paper, we consider one such case: the traveling salesman problem
in graphs with maximum degree three, which arises e.g. in computer graphics
in the problem of stripification of triangulated surface models [1, 6]. Bounded-
degree maximum independent sets had previously been considered [2] but we are
unaware of similar work for the traveling salesman problem in bounded degree
graphs. More generally, we consider the forced traveling salesman problem in
which the input is a multigraph G and set of forced edges F ; the output is
a minimum cost Hamiltonian cycle of G, containing all edges of F . A naive
branching search that repeatedly adds one edge to a growing path, choosing at
each step one of two edges at the path endpoint, and backtracking when the
chosen edge leads to a previous vertex, solves this problem in time O(2n) and
linear space; this is already an improvement over the general graph dynamic
programming algorithm. One could also use algorithms for listing all maximal
independent sets in the line graph of the input, to solve the problem in time
O(3n/2) ≈ 1.732n. We show that more sophisticated backtracking can solve the
forced traveling salesman problem (and therefore also the traveling salesman
and Hamiltonian cycle problems) for cubic graphs in time O(2n/3) ≈ 1.260n

and linear space. We also provide a randomized reduction from degree four
graphs to degree three graphs solving the traveling salesman problem in better
time than the general case for those graphs. We then consider the problem of
listing all Hamiltonian cycles. We show that all such cycles can be found in time
O(23n/8) ≈ 1.297n and linear space. We can also count all Hamiltonian cycles
in the same time bound. Our proof implies that every degree three graph has
O(23n/8) Hamiltonian cycles; we do not know whether this bound is tight, but
we exhibit an infinite family of graphs with 2n/3 Hamiltonian cycles per graph.

2 The Algorithm and its Correctness

Our algorithm is based on a simple case-based backtracking technique. Recall
that G is a graph with maximum degree 3, while F is a set of edges that must
be used in our traveling salesman tour. For simplicity, we describe a version of

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 63

Figure 1: Left: Case analysis of possible paths a Hamiltonian cycle can take
through a triangle. Edges belonging to the Hamiltonian cycle are shown as
heavier than the non-cycle edges. Right: Cycle of four unforced edges, with two
forced edges adjacent to opposite cycle vertices (step 1j).

the algorithm that returns only the cost of the optimal tour, or the special value
None if there is no solution. The tour itself can be reconstructed by keeping
track of which branch of the backtracking process led to the returned cost; we
omit the details. The steps of the algorithm are listed in Table 1. Roughly, our
algorithm proceeds in the following stages. Step 1 of the algorithm reduces the
size of the input without branching, after which the graph can be assumed to be
cubic and triangle-free, with forced edges forming a matching. Step 2 tests for
a case in which all unforced edges form disjoint 4-cycles; we can then solve the
problem immediately via a minimum spanning tree algorithm. Finally (steps
3–6), we choose an edge to branch on, and divide the solution space into two
subspaces, one in which the edge is forced to be in the solution and one in which
it is excluded. These two subproblems are solved recursively, and it is our goal
to minimize the number of times this recursive branching occurs.

All steps of the algorithm either return or reduce the input graph to one
or more smaller graphs that also have maximum degree three, so the algorithm
must eventually terminate. To show correctness, each step must preserve the
existence and weight of the optimal traveling salesman tour. This is easy to
verify for most cases of steps 1 and 3–6. Case 1i performs a so-called ∆-Y
transformation on the graph; case analysis (Figure 1, left) shows that each edge
of the contracted triangle participates in a Hamiltonian cycle exactly when the
opposite non-triangle edge also participates.

Lemma 1 Let a, b, and c be three edges forming a triangle in a graph G in
which every vertex has degree at most three, and let d be a non-triangle edge
incident to b and c (and opposite a). Then every Hamiltonian cycle of G that
contains a also contains d, and vice versa.

Proof: Let T be the set of endpoints of the triangle. Then a Hamiltonian cycle
must enter and exit T at least once. Each entry-exit pair has two edges with
one endpoint in the cycle, but there are at most three such edges overall in G,
so the cycle can only visit T once: it must enter T at one of its vertices, use
triangle edges to cover a second vertex, and exit T from the third vertex. The
three ways the cycle might do this are shown in Figure 1, left, and it is easy
to see from the figure that the property specified in the lemma holds for each
case. 2

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 64

1. Repeat the following steps until one of the steps returns or none of them applies:

(a) If G contains a vertex with degree zero or one, return None.

(b) If F consists of a Hamiltonian cycle, return the cost of this cycle.

(c) If F contains a non-Hamiltonian cycle, return None.

(d) If F contains three edges meeting at a vertex, return None.

(e) If G contains two parallel edges, at least one of which is not in F , and G has more
than two vertices, then remove from G an unforced edge of the two, choosing the
one with larger cost if both are unforced.

(f) If G contains a self-loop which is not in F , and G has more than one vertex,
remove the self-loop from G.

(g) If G contains a vertex with degree two, add its incident edges to F .

(h) If F contains exactly two edges meeting at some vertex, remove from G that
vertex and any other edge incident to it; replace the two edges by a single forced
edge connecting their other two endpoints, having as its cost the sum of the costs
of the two replaced edges’ costs.

(i) If G contains a triangle xyz, then for each non-triangle edge e incident to a
triangle vertex, increase the cost of e by the cost of the opposite triangle edge.
Also, if the triangle edge opposite e belongs to F , add e to F . Remove from
G the three triangle edges, and contract the three triangle vertices into a single
supervertex.

(j) If G contains a cycle of four unforced edges, two opposite vertices of which are
each incident to a forced edge outside the cycle, then add to F all non-cycle edges
that are incident to a vertex of the cycle.

2. If G \ F forms a collection of disjoint 4-cycles, perform the following steps.

(a) For each 4-cycle Ci in G \ F , let Hi consist of two opposite edges of Ci, chosen
so that the cost of Hi is less than or equal to the cost of Ci \ Hi.

(b) Let H = ∪iHi. Then F ∪ H is a degree-two spanning subgraph of G, but may
not be connected.

(c) Form a graph G′ = (V ′, E′), where the vertices of V ′ consist of the connected
components of F ∪ H. For each set Hi that contains edges from two different
components Kj and Kk, draw an edge in E′ between the corresponding two
vertices, with cost equal to the difference between the costs of Ci \Hi and of Hi.

(d) Compute the minimum spanning tree of (G′, E′).

(e) Return the sum of the costs of F ∪ H and of the minimum spanning tree.

3. Choose an edge yz according to the following cases:

(a) If G \F contains a 4-cycle, two vertices of which are adjacent to edges in F , let y

be one of the other two vertices of the cycle and let yz be an edge of G \ F that
does not belong to the cycle.

(b) If there is no such 4-cycle, but F is nonempty, let xy be any edge in F and yz be
an adjacent edge in G \ F .

(c) If F is empty, let yz be any edge in G.

4. Call the algorithm recursively on G, F ∪ {yz}.

5. Call the algorithm recursively on G \ {yz}, F .

6. Return the minimum of the numbers returned by the two recursive calls.

Table 1: Forced TSP algorithm for graph G and forced edge set F .

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 65

Figure 2: Step 2 of the traveling salesman algorithm. Left: Graph with forced
edges (thick lines), such that the unforced edges form disjoint 4-cycles. In each
4-cycle Ci, the pair Hi of edges with lighter weight is shown as solid, and the
heavier two edges are shown dashed. Middle: Graph G′, the vertices of which
are the connected components of solid edges in the left figure, and the edges of
which connect two components that pass through the same 4-cycle. A spanning
tree of G′ is shown with thick lines. Right: The tour of G corresponding to the
spanning tree. The tour includes Ci \ Hi when Ci corresponds to a spanning
tree edge, and includes Hi otherwise.

This lemma justifies the correctness of adding non-triangle edges to F when
they are opposite forced triangle edges, and of adding the triangle edges’ weights
to the weights of the opposite non-triangle edges. To justify the correctness of
contracting the triangle, we use the same case analysis to prove another lemma:

Lemma 2 Let a, b, and c be three edges forming a triangle in a graph G in which
every vertex has degree at most three, and let graph G′ be formed by removing
those three edges from G and replacing their endpoints by a single supervertex.
Then the Hamiltonian cycles of G′ are in one-to-one correspondence with the
Hamiltonian cycles of G. If C ′ is the set of edges in a cycle in G′ corresponding
to a cycle C in G, then C ′ = C \ {a, b, c}.

We now turn to step 1j. This step concerns a 4-cycle in G, with edges in F
forcing the Hamiltonian cycle to enter or exit on two opposite vertices (Figure 1,
right). If a Hamiltonian cycle enters and exits a cycle in G only once, it does so
on two adjacent vertices of the cycle, so the 4-cycle of this case is entered and
exited twice by every Hamiltonian cycle, and the step’s addition of edges to F
does not change the set of solutions of the problem.

It remains to prove correctness of step 2 of the algorithm.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 66

Lemma 3 Suppose that G, F can not be reduced by step 1 of the algorithm
described in Table 1, and that G\F forms a collection of disjoint 4-cycles. Then
step 2 of the algorithm correctly solves the forced traveling salesman problem in
polynomial time for G and F .

Proof: Let Ci, Hi, H, and G′ be as defined in step 2 of the algorithm. Figure 2,
left, depicts F as the thick edges, Ci as the thin edges, and Hi and H as the
thin solid edges; Figure 2(middle) depicts the corresponding graph G′.

We first show that the weight of the optimal tour T is at least as large as
what the algorithm computes. The symmetric difference T ⊖ (F ∪ H) contains
edges only from the 4-cycles Ci. Analysis similar to that for step 1j shows that,
within each 4-cycle Ci, T must contain either the two edges in Hi or the two
edges in Ci \Hi. Therefore, T ⊖ (F ∪H) forms a collection of 4-cycles which is
a subset of the 4-cycles in G \ F and which corresponds to some subgraph S of
G′. Further, due to the way we defined the edge weights in G′, the difference
between the weights of T and of F ∪ H is equal to the weight of S. S must
be a connected spanning subgraph of G′, for otherwise the vertices in some two
components of F ∪H would not be connected to each other in T . Since all edge
weights in G′ are non-negative, the weight of spanning subgraph S is at least
equal to that of the minimum spanning tree of G′.

In the other direction, one can show by induction on the number of compo-
nents of F ∪ H that, if T ′ is any spanning tree of G′, such as the one shown
by the thick edges in Figure 2(middle), and S′ is the set of 4-cycles in G corre-
sponding to the edges of T ′, then S′⊖ (F ∪H) is a Hamiltonian cycle of G with
weight equal to that of F ∪H plus the weight of T ′ (Figure 2, right). Therefore,
the weight of the optimal tour T is at most equal to that of F ∪ H plus the
weight of the minimum spanning tree of G′.

We have bounded the weight of the traveling salesman tour both above and
below by the quantity computed by the algorithm, so the algorithm correctly
solves the traveling salesman problem for this class of graphs. 2

We summarize our results below.

Theorem 1 The algorithm described in Table 1 always terminates, and returns
the weight of the optimal traveling salesman tour of the input graph G.

3 Implementation Details

Define a step of the algorithm of Table 1 to be a single execution of one of the
numbered or lettered items in the algorithm description. As described, each
step involves searching for some kind of configuration in the graph, and could
therefore take as much as linear time. Although a linear factor is insignificant
compared to the exponential time bound of our overall algorithm, it is never-
theless important (and will simplify our bounds) to reduce such factors to the
extent possible. As we now show, we can maintain some simple data structures
that let us avoid repeatedly searching for configurations in the graph.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 67

Lemma 4 The algorithm of Table 1 can be implemented in such a way that
step 3, and each substep of step 1, take constant time per step.

Proof: The key observation is that most of these steps require finding a con-
nected pattern of O(1) edges in the graph. Since the graph has bounded degree,
there can be at most O(n) matches to any such pattern. We can maintain the set
of matches by removing a match from a set whenever one of the graph transfor-
mations changes one of its edges, and after each transformation searching within
a constant radius of the changed portion of the graph for new matches to add
to the set. In this way, finding a matching pattern is a constant time operation
(simply pick the first one from the set of known matches), and updating the set
of matches is also constant time per operation.

The only two steps for which this technique does not work are step 1b and
step 1c, which each involve finding a cycle of possibly unbounded size in G.
However, if a long cycle of forced edges exists, step 1d or step 1h must be
applicable to the graph; repeated application of these steps will eventually either
discover that the graph is non-Hamiltonian or reduce the cycle to a single self-
loop. So we can safely replace step 1b and step 1c by steps that search for a
one-vertex cycle in F , detect the applicability of the modified steps by a finite
pattern matching procedure, and use the same technique for maintaining sets
of matches described above to solve this pattern matching problem in constant
time per step. 2

To aid in our analysis, we restrict our algorithm so that, when it can choose
among several applicable steps, it gives first priority to steps which immediately
return (that is, step 1a and steps 1b–1d, with the modifications to step 1b and
step 1c described in the lemma above), and second priority to step 1h. The
prioritization among the remaining steps is unimportant to our analysis.

4 Analysis

By the results of the previous section, in order to compute an overall time bound
for the algorithm outlined in Table 1, we need only estimate the number of steps
it performs. Neglecting recursive calls that immediately return, we must count
the number of iterations of steps 1g, 1h–1j, and 3–6.

Lemma 5 If we prioritize the steps of the algorithm as described in the previous
section, the number of iterations of step 1h is at most O(n) plus a number
proportional to the number of iterations of the other steps of the algorithm.

Proof: The algorithm may perform at most O(n) iterations of step 1h prior to
executing any other step. After that point, each additional forced edge can cause
at most two iterations of step 1h, merging that edge with previously existing
forced edges on either side of it, and each step other than step 1h creates at
most a constant number of new forced edges. 2

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 68

Figure 3: Result of performing steps 3–6 with no nearby forced edge: one of
edges yz and yw becomes forced (shown as thick segments), and the removal
of the other edge (shown as dotted) causes two neighboring edges to become
forced.

The key idea of the analysis for the remaining steps is to bound the number
of iterations by a recurrence involving a nonstandard measure of the size of a
graph G: let s(G,F) = |V (G)| − |F | − |C|, where C denotes the set of 4-cycles
of G that form connected components of G \ F . Clearly, s ≤ n, so a bound on
the time complexity of our algorithm in terms of s will lead to a similar bound
in terms of n. Equivalently, we can view our analysis as involving a three-
parameter recurrence in n, |F |, and |C|; in recent work [4] we showed that the
asymptotic behavior of this type of multivariate recurrence can be analyzed by
using weighted combinations of variables to reduce it to a univariate recurrence,
similarly to our definition here of s as a combination of n, |F |, and |C|. Note
that step 1h leaves s unchanged and the other steps do not increase it.

Lemma 6 Let a simple graph G and nonempty forced edge set F be given, and
consider the subproblems resulting from a single step of the algorithm of Table 1.
Then after a constant number of steps, each such subproblem either returns or
is transformed into a simple graph again by application of steps 1e and 1f.

Proof: Each step of the algorithm creates at most a constant number of parallel
edge pairs or self-loops, the only steps that can occur before steps 1e and 1f lead
to immediate returns, and these two steps each remove one parallel edge pair
or self-loop. 2

Lemma 7 Let a simple graph G and nonempty forced edge set F be given in
which neither an immediate return nor step 1h can be performed, and let s(G,F)
be as defined above. Then the algorithm of Table 1, within a constant number
of steps, reduces the problem to one of the following situations:

• a single subproblem G′, F ′, with s(G′, F ′) ≤ s(G,F) − 1, or

• subproblems G1, F1 and G2, F2, with s(G1, F1), s(G2, F2) ≤ s(G,F) − 3,
or

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 69

• subproblems G1, F1 and G2, F2, with s(G1, F1) ≤ s(G,F)−2 and s(G2, F2) ≤
s(G,F) − 5.

Proof: If step 1g or step 1j applies, the problem is immediately reduced to a
single subproblem with more forced edges, and if step 1i applies, the number of
vertices is reduced. Step 2 provides an immediate return from the algorithm. So,
we can restrict our attention to problems in which the algorithm is immediately
forced to apply steps 3–6. In such problems, the input must be a simple cubic
triangle-free graph, and F must form a matching in this graph, for otherwise
one of the earlier steps would apply.

We now analyze cases according to the neighborhood of the edge yz chosen
in step 3. To help explain the cases, we let yw denote the third edge of G
incident to the same vertex as xy and yz. We also assume that no immediate
return is performed within O(1) steps of the initial problem, for otherwise we
would again have reduced the problem to a single smaller subproblem.

• In the first case, corresponding to step 3a of the algorithm, yz is adjacent
to a 4-cycle in G \ F which already is adjacent to two other edges of F .
Adding yz to F in the recursive call in step 4 leads to a situation in which
step 1j applies, adding the fourth adjacent edge of the cycle to F and
forming a 4-cycle component of G \F . Thus |F | increases by two and |C|
increases by one. In step 5, yz is removed from F , following which step 1g
adds two edges of the 4-cycle to F , step 1h contracts these two edges to
a single edge, shrinking the 4-cycle to a triangle, and step 1i contracts
the triangle to a single vertex, so the number of vertices in the graph is
decreased by three.

• In the next case, yz is chosen by step 3b to be adjacent to forced edge
xy, and neither yz nor yw is incident to a second edge in F . If we add
yz to F , an application of step 1h removes yw, and another application
of step 1g adds the two edges adjoining yw to F , so the number of forced
edges is increased by three. The subproblem in which we remove yz from
F is symmetric. This case and its two subproblems are shown in Figure 3.

• If step 3b chooses edge yz, and z or w is incident to a forced edge, then
with y it forms part of a chain of two or more vertices, each incident to
exactly two unforced edges that connect vertices in the chain. This chain
may terminate at vertices with three adjacent unforced edges (Figure 4,
left). If it does, a similar analysis to the previous case shows that adding
yz to F or removing it from G causes alternating members of the chain to
be added to F or removed from G, so that no chain edge is left unforced.
In addition, when an edge at the end of the chain is removed from G, two
adjacent unforced edges are added to F , so these chains generally lead to
a greater reduction in size than the previous case. The smallest reduction
happens when the chain consists of exactly two vertices adjacent to forced
edges. In this case, one of the two subproblems is formed by adding two
new forced edges at the ends of the chain, and removing one edge interior

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 70

Figure 4: Chains of two or more vertices each having two adjacent unforced
edges. Left: chain terminated by vertices with three unforced edges. Right:
cycle of six or more vertices with two unforced edges.

to the chain; it has s(G1, F1) = s(G,F) − 2. The other subproblem is
formed by removing the two edges at the ends of the chain, and adding
to F the edge in the middle of the chain and the other unforced edges
adjacent to the ends of the chain. None of these other edges can coincide
with each other without creating a 4-cycle that would have been treated
in the first case of our analysis, so in this case there are five new forced
edges and s(G2, F2) = s(G,F) − 5.

• In the remaining case, step 3b chooses an edge belonging to a cycle of
unforced edges, each vertex of which is also incident to a forced edge
(Figure 4, right). In this case, adding or removing one of the cycle edges
causes a chain reaction which alternately adds and removes all cycle edges.
This case only arises when the cycle length is five or more, and if it is
exactly five then an inconsistency quickly arises causing both recursive
calls to return within a constant number of steps. When the cycle length
is six or more, both resulting subproblems end up with at least three more
forced edges.

Note that the analysis need not consider choices made by step 3c of the algo-
rithm, as F is assumed nonempty; step 3c can occur only once and does not
contribute to the asymptotic complexity of the algorithm. In all cases, the graph
is reduced to subproblems that have sizes bounded as stated in the lemma. 2

Theorem 2 The algorithm of Table 1 solves the forced traveling salesman prob-
lem on graphs of degree three in time O(2n/3).

Proof: The algorithm’s correctness has already been discussed. By Lemmas
3, 4, 5, 6 and 7, the time for the algorithm can be bounded within a constant
factor by the solution to the recurrence

T (s) ≤ 1 + max{sO(1), T (s − 1), 2T (s − 3), T (s − 2) + T (s − 5)}.

Standard techniques for linear recurrences give the solution as T (s) = O(2s/3).
In any n-vertex cubic graph, s is at most n, so expressed in terms of n this gives
a bound of O(2n/3) on the running time of the algorithm. 2

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 71

Figure 5: Reducing degree four vertices to degree three vertices, by randomly
splitting vertices and connecting the two sides by a forced edge.

5 Degree Four

It is natural to ask to what extent our algorithm can be generalized to higher
vertex degrees. We provide a first step in this direction, by describing a random-
ized (Monte Carlo) algorithm: that is, an algorithm that may produce incorrect
results with bounded probability. To describe the algorithm, let f denote the
number of degree four vertices in the given graph. The algorithm consists of
(3/2)f repetitions of the following: for each degree four vertex, choose randomly
among the three possible partitions of its incoming edges into two sets of two
edges; split the vertex into two vertices, with the edges assigned to one or the
other vertex according to the partition, and connect the two vertices by a new
forced edge (Figure 5). Once all vertices are split, the graph has maximum
degree 3 and we can apply our previous forced TSP algorithm.

It is not hard to see that each such split preserves the traveling salesman
tour only when the two tour edges do not belong to the same set of the partition,
which happens with probability 2/3; therefore, each repetition of the algorithm
has probability (2/3)f of finding the correct TSP solution. Since there are
(3/2)f repetitions, there is a bounded probability that the overall algorithm
finds the correct solution. Each split leaves unchanged the parameter s used
in our analysis of the algorithm for cubic graphs, so the time for the algorithm
is O((3/2)f2n/3) = O((27/4)n/3). By increasing the number of repetitions the
failure probability can be made exponentially small with only a polynomial
increase in runtime.

A hitting set technique due to Beigel (personal communication, 1995) allows
this algorithm to be derandomized. We group the degree four vertices arbitrarily
into groups of k vertices per group. Within each group, a single choice among
the three possible expansions of each degree-four vertex can be described by a
k-digit ternary word w ∈ {0, 1, 2}k. If x = x0x1 . . . xk−1 is a ternary word, let
D(x) = {w0w1 . . . wk−1 ∈ {0, 1, 2}k | for all i,wi 6= xi}. As two of the three
expansions of each vertex preserve the correct traveling salesman solution, the
set of expansions of the group that preserve the TSP solution is a set of the

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 72

form D(x) for some unknown x. We can find one such expansion if we test all
words in a hitting set: that is, a set S of ternary words such that S ∩ D(x) 6= ∅
for all x. In order to find a fast deterministic algorithm, we seek a hitting set
that is as small as possible.

As each set D(x) has the same cardinality 2k, the hitting set problem for
the sets D(x) has a simple fractional solution: assign weight 2−k to each of the
3k possible ternary words. The total weight of this solution is therefore (3/2)k.
By standard results relating integer to fractional solutions of the hitting set
(or equivalently set cover) problem, this implies that there is a hitting set of
cardinality at most (3/2)k lnD = O(k(3/2)k), where D = 3k is the cardinality
of the family of sets D(x).

We use this hitting set H as part of a deterministic search algorithm that
tests each choice of a member of H for each group of k vertices. For each of these
|H|n/k choices, we expand the degree four vertices in each group as specified
by the choice for that group, and then apply our degree-three TSP algorithm
on the expanded graph. At least one choice hits the set D(x) in each group
of expansions preserving the TSP, so the best TSP solution among the |H|n/k

expansions must equal the TSP of the original graph. By choosing a suitably
large constant k, we can achieve time O((27/4 + ǫ)n/3) for any constant ǫ > 0.

We omit further details as this result seems unlikely to be optimal.

6 Listing All Hamiltonian Cycles

Suppose we want not just a single best Hamiltonian cycle (the Traveling Sales-
man Problem) but rather a list of all such cycles. As we show in Table 2, most
of the steps of our traveling salesman algorithm can be generalized in a straight-
forward way to this cycle listing problem. However, we do not know of a cycle
listing analogue to the minimum spanning tree algorithm described in step 2 of
Table 1, and proven correct in Lemma 3 for graphs in which the unforced edges
form disjoint 4-cycles. It is tempting to try listing all spanning trees instead
of computing minimum spanning trees, however not every Hamiltonian cycle of
the input graph G corresponds to a spanning tree of the derived graph G′ used
in that step. Omitting the steps related to these 4-cycles gives the simplified
algorithm shown in Table 2. We analyze this algorithm in a similar way to the
previous one; however in this case we use as the parameter of our analysis the
number of unforced edges U(G) in the graph G. Like s(G), U does not increase
at any step of the algorithm; we now show that it decreases by sufficiently large
amounts at certain key steps.

Lemma 8 If G initially has no parallel edges or self-loops, none are introduced
by the steps of this algorithm.

Proof: The only step that adds a new edge to the graph is step 1e, which
replaces a two-edge path with a single edge. If the graph has no parallel edges
before this step, the step cannot create a self-loop. It can create a multiple

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 73

1. Repeat the following steps until one of the steps returns or none of them applies:

(a) If G contains a vertex with degree zero or one, or if F contains a non-Hamiltonian
cycle or three edges meeting at a vertex, backtrack.

(b) If F consists of a Hamiltonian cycle, output the cycle formed by all edges of the
original input graph that have been added to F and backtrack.

(c) If G contains a vertex with degree two, add its incident edges to F .

(d) If G contains a triangle xyz, and the non-triangle edge incident to x belongs to
F , add edge yz to F .

(e) If F contains exactly two edges meeting at some vertex, remove from G that
vertex and any other edge incident to it, and replace the two edges by a single
edge connecting their other two endpoints. If this contraction would lead to two
parallel edges in G, remove the other edge from G.

2. If F is nonempty, let xy be any edge in F and yz be an adjacent edge in G \ F .
Otherwise, if F is empty, let yz be any edge in G. Call the algorithm recursively on
the two graphs G, F ∪ {yz} and G \ {yz}, F .

Table 2: Forced Hamiltonian cycle listing algorithm for graph G and forced
edges F .

adjacency if the two path edges belong to a triangle, but as part of the step we
immediately detect and eliminate this adjacency. 2

Lemma 9 Let a graph G be given in which neither a backtrack nor step 1e can
be performed, let F be nonempty, and let U(G) denote the number of unforced
edges in G. Then the algorithm of Table 2, within a constant number of steps,
reduces the problem to one of the following situations:

• a single subproblem G′, with U(G′) ≤ U(G) − 1, or

• two subproblems G1 and G2, with U(G1), U(G2) ≤ U(G) − 4, or

• two subproblems G1 and G2, with U(G1) ≤ U(G)−3 and U(G2) ≤ U(G)−
6.

Proof: If step 1c or step 1d applies, the problem is immediately reduced to a
single subproblem with fewer unforced edges. So, we can restrict our attention
to problems in which the algorithm is immediately forced to apply step 2. In
such problems, the input must be a simple cubic triangle-free graph, and F
must form a matching in this graph, for otherwise one of the earlier steps would
apply.

We now perform a case analysis according to the local neighborhood of the
edge yz chosen in step 1d. As in Lemma 7, let yw denote the third edge of G
incident to the same vertex as xy and yz.

• In the first case, neither yz nor yw is incident to a second edge in F . In the
subproblem in which we add yz to F , an application of step 1e removes
yw, and another application of step 1c adds the two edges adjoining yw
to F . Thus, in this case, the number of unforced edges is reduced by four.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 74

The subproblem in which we remove yz from F is symmetric. This case
and the two subproblems it produces are shown in Figure 3.

• If z or w is incident to a forced edge, then with y it forms part of a chain
of two or more vertices, each of which is incident to exactly two unforced
edges that connect vertices in the chain. This chain may terminate at
vertices with three adjacent unforced edges (Figure 4, left). If it does,
a similar analysis to the previous case shows that adding yz to F or
removing it from G causes alternating members of the chain to be added
to F or removed from G as well, so that no chain edge is left unforced.
In addition, when an edge at the end of the chain is removed from G, the
two adjacent unforced edges are added to F . The smallest reduction in
unforced edges happens when the chain consists of exactly two vertices
adjacent to forced edges. In this case, one of the two subproblems is
formed by adding two new forced edges at the ends of the chain, and
removing one edge interior to the chain; it thus has U(G1) = U(G) − 3.
The other subproblem is formed by removing the two edges at the ends
of the chain, and adding to F the edge in the middle of the chain and
the other unforced edges adjacent to the ends of the chain. Thus it would
seem that this subproblem has U(G2) = U(G) − 7, however it is possible
for one unforced edge to be adjacent to both ends of the chain, in which
case we only get U(G2) = U(G) − 6.

• In the remaining case, we have a cycle of four or more unforced edges,
each vertex of which is also incident to a forced edge (Figure 4, right). In
this case, adding or removing one of the cycle edges causes a chain reac-
tion which alternately adds and removes all cycle edges, so both resulting
subproblems end up with at least four fewer unforced edges.

Thus, in all cases, the graph is reduced to two subproblems that have numbers
of unforced edges bounded as in the statement of the lemma. 2

Theorem 3 For any simple graph G with maximum degree 3, set F of forced
edges in G, and assignment of weights to the edges of G from a commutative
semiring, we can list all Hamiltonian cycles in G in O(23n/8) and linear space.

Proof: By the previous lemma, the number of calls in the algorithm can be
bounded within a constant factor by the solution to the recurrence

T (U) ≤ 1 + max{T (U − 1), 2T (U − 4), T (U − 3) + T (U − 6)}.

Standard techniques for linear recurrences give the solution as T (U) = O(2U/4).
In any n-vertex cubic graph, U(G) is at most 3n/2, so expressed in terms of n
this gives a bound of O(23n/8) on the number of operations. As in the previous
algorithm, by the appropriate use of simple data structures we can implement
each step of the algorithm in constant time per step. 2

In order to achieve this time bound, we must output each Hamiltonian cycle
using an implicit representation that changes by a constant amount in each

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 75

Figure 6: Hamiltonian cycle of dual torus mesh, found by our implementation
(courtesy M. Gopi).

step. Explicitly listing the vertices in order in each Hamiltonian cycle would
take O(23n/8 + Kn) where K is the number of Hamiltonian cycles produced by
the algorithm. Appendix A presents an implementation of this algorithm in the
Python language, using such an implicit representation. This implementation
was able to find a Hamiltonian cycle of a 400-vertex 3-regular graph, dual to
a triangulated torus model (Figure 6) in approximately two seconds on an 800
MHz PowerPC G4 computer. However, on a slightly larger 480-vertex graph
dual to a triangulated sphere model, we aborted the computation after 11 hours
with no result.

Corollary 1 We can count the number of Hamiltonian cycles in any cubic
graph in time O(23n/8) and linear space.

Proof: We simply maintain a counter of the number of cycles seen so far, and
increment it each time we output another cycle. The average number of bits
changed in the counter per step is O(1), so the total additional time to maintain
the counter is O(23n/8). 2

A preliminary version of this paper used a similar recursion for counting
Hamiltonian cycles, but returned the counts from each recursive subproblem,
incurring an additional polynomial factor overhead for the arithmetic involved.

7 Graphs with Many Hamiltonian Cycles

The following result follows immediately from Theorem 3:

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 76

Figure 7: Cubic graph with 2n/3 Hamiltonian cycles. Left: four paths through
a six-vertex gadget; right: n/6 gadgets connected into a cycle.

Corollary 2 Every simple n-vertex graph with maximum degree three has at
most 23n/8 Hamiltonian cycles.

For cubic multigraphs, one can show a 2n/2 bound on the number of Hamil-
tonian cycles by choosing one distinguished cycle, and corresponding the other
cycles to subsets of the remaining n/2 edges. This bound is tight as can be
seen by the example of an n-gon with alternating single and double bonds. We
do not know whether our 23n/8 bound is tight, but we exhibit in Figure 7 the
construction for an infinite family of graphs with 2n/3 Hamiltonian cycles per
graph. Each graph in the family is formed by connecting n/6 6-vertex gadgets
into a cycle, where each gadget is formed by removing an edge from the graph
K3,3. A Hamiltonian cycle of a graph formed in this way must pass once through
each gadget, and there are four possible paths through each gadget, so the total
number of Hamiltonian cycles is 2n/3. We note that the n/6 edges connecting
pairs of gadgets in this graph are all forced to occur in any Hamiltonian cycle,
so in terms of the number u of unforced edges the number of Hamiltonian cycles
is 4u/8 = 2u/4, matching the worst-case bound in terms of u for our cycle-listing
algorithm.

We used our cycle listing algorithm to search, unsuccessfully, for a better
gadget among all possible cubic graphs on 20 or fewer vertices, using tables of
these graphs provided online by Gordon Royle [10]. Our experiments support
the conjecture that, in any n-vertex cubic graph, each edge participates in at
most 2⌊n/3⌋ Hamiltonian cycles. This bound is achieved by the graphs of Fig-
ure 7 as well as by similar graphs that include one or two four-vertex gadgets
formed by removing an edge from K4, so if true this bound would be tight.
The truth of this conjecture would imply that any cubic graph has O(2n/3)
Hamiltonian cycles.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 77

References

[1] E. M. Arkin, M. Held, J. S. B. Mitchell, and S. S. Skiena. Hamiltonian
triangulations for fast rendering. The Visual Computer, 12(9):429–444,
1996.

[2] R. Beigel. Finding maximum independent sets in sparse and general
graphs. In Proc. 10th ACM-SIAM Symp. Discrete Algorithms, pages
S856–S857, January 1999.

[3] J. M. Byskov. Chromatic number in time O(2.4023n) using maximal
independent sets. Technical Report RS-02-45, BRICS, December 2002.

[4] D. Eppstein. Quasiconvex analysis of backtracking algorithms. ACM
Trans. Algorithms. To appear.

[5] D. Eppstein. Small maximal independent sets and faster exact graph
coloring. J. Graph Algorithms and Applications, 7(2):131–140, 2003.

[6] D. Eppstein and M. Gopi. Single-strip triangulation of manifolds with
arbitrary topology. Eurographics Forum, 23(3):371–379, 2004.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[8] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a
case study in local optimization. In E. H. L. Aarts and J. K. Lenstra,
editors, Local Search in Combinatorial Optimization, pages 215–310. John
Wiley and Sons, 1997.

[9] E. L. Lawler. A note on the complexity of the chromatic number problem.
Information Processing Letters, 5(3):66–67, August 1976.

[10] B. D. McKay and G. F. Royle. Constructing the cubic graphs on up to 20
vertices. Ars Combinatorica, 21(A):129–140, 1986.

[11] J. M. Robson. Algorithms for maximum independent sets. J. Algorithms,
7(3):425–440, September 1986.

[12] N. Schemenauer, T. Peters, and M. L. Hetland. Simple generators.
Python Enhancement Proposal 255, python.org, May 2001.

[13] R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent
set. SIAM J. Comput., 6(3):537–546, September 1977.

[14] G. van Rossum et al. Python Language Website.
http://www.python.org/.

[15] B. Vandegriend. Finding Hamiltonian Cycles: Algorithms, Graphs and
Performance. Master’s thesis, Univ. of Alberta, Dept. of Computing
Science, 1998.

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 78

Appendix A Implementation of Cycle Listing

Algorithm

We present here an implementation of the O(23n/8) algorithm for listing all
Hamiltonian cycles in a degree three graph, in the Python programming lan-
guage [14]. The yield keyword triggers Python’s simple generator protocol [12],
which creates an iterator object suitable for use in for-loops and similar con-
texts and returns it from each call to HamiltonianCycles. A more elaborate
version of the implementation, which backtracks when it discovers that the cur-
rent graph is not biconnected or its unforced edges have no perfect matching,
and includes code for testing the algorithm on several simple families of 3-regular
graphs, is available for download at http://www.ics.uci.edu/∼eppstein/PADS/
CubicHam.py.

”””CubicHam.py

Generate all Hamiltonian cycles in graphs of maximum degree three.
D. Eppstein, April 2004.
”””

def HamiltonianCycles(G):

”””
Generate a sequence of all Hamiltonian cycles in graph G.
G should be represented in such a way that ”for v in G” loops through
the vertices , and ”G[v]” produces a collection of neighbors of v; for
instance, G may be a dictionary mapping vertices to lists of neighbors.
Each cycle is returned as a graph in a similar representation, and
should not be modified by the caller .
”””

Make a copy of G so we can destructively modify it
G[v][w] is true iff v−w is an original edge of G
(rather than an edge created by a contraction of G).
copy = {}

for v in G:

if len(G[v]) < 2:

return # Isolated or degree one vertex, no cycles exist
copy[v] = dict([(w,True) for w in G[v]])

G = copy

Subgraph of forced edges in the input
forced_in_input = dict([(v,{}) for v in G])

Subgraph of forced edges in current G
forced_in_current = dict([(v,{}) for v in G])

List of vertices with degree two
degree_two = [v for v in G if len(G[v]) == 2]

Collection of vertices with forced edges
forced_vertices = {}

The overall backtracking algorithm is implemented by means of
a stack of actions. At each step we pop the most recent action

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 79

off the stack and call it . Each stacked function should return None or False
normally, or True to signal that we have found a Hamiltonian cycle.
Whenever we modify the graph, we push an action undoing that modification.
Below are definitions of actions and action−related functions.

def remove(v,w):

”””Remove edge v,w from edges of G.”””
was_original = G[v][w]

del G[v][w],G[w][v]

was_forced = w in forced_in_current[v]

if was_forced:

del forced_in_current[v][w],forced_in_current[w][v]

def unremove():

G[v][w] = G[w][v] = was_original

if was_forced:

forced_in_current[v][w] = forced_in_current[w][v] = True

actions.append(unremove)

def now_degree_two(v):

”””Discover that changing G has caused v’s degree to become two.”””
degree_two.append(v)

def not_degree_two():

top = degree_two.pop()

actions.append(not_degree_two)

def safely_remove(v,w):

”””
Remove edge v,w and update degree two data structures.
Returns True if successful , False if found a contradiction.
”””
if w in forced_in_current[v] or len(G[v]) < 3 or len(G[w]) < 3:

return False

remove(v,w)

now_degree_two(v)

now_degree_two(w)

return True

def remove_third_leg(v):

”””
Check if v has two forced edges and if so remove unforced one.
Returns True if successful , False if found a contradiction.
”””
if len(G[v]) != 3 or len(forced_in_current[v]) != 2:

return True

w = [x for x in G[v] if x not in forced_in_current[v]][0]

if len(G[w]) <= 2:

return False

return safely_remove(v,w)

def force(v,w):

”””
Add edge v,w to forced edges.
Returns True if successful , False if found a contradiction.
”””
if w in forced_in_current[v]:

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 80

return True # already forced
if len(forced_in_current[v]) > 2 or len(forced_in_current[w]) > 2:

return False # three incident forced => no cycle exists
forced_in_current[v][w] = forced_in_current[w][v] = True

not_previously_forced = [x for x in (v,w) if x not in forced_vertices]

for x in not_previously_forced:

forced_vertices[x] = True

was_original = G[v][w]

if was_original:

forced_in_input[v][w] = forced_in_input[w][v] = True

def unforce():

”””Undo call to force.”””
for x in not_previously_forced:

del forced_vertices[x]

del forced_in_current[v][w],forced_in_current[w][v]

if was_original:

del forced_in_input[v][w],forced_in_input[w][v]

actions.append(unforce)

return remove_third_leg(v) and remove_third_leg(w) and \

force_into_triangle(v,w) and force_into_triangle(w,v)

def force_into_triangle(v,w):

”””
After v,w has been added to forced edges, check if w
belongs to a triangle , and if so force the opposite edge.
Returns True if successful , False if found a contradiction.
”””
if len(G[w]) != 3:

return True

x,y = [z for z in G[w] if z != v]

if y not in G[x]:

return True

return force(x,y)

def contract(v):

”””
Contract out degree two vertex.
Returns True if cycle should be reported, False or None otherwise.
Appends recursive search of contracted graph to action stack.
”””
u,w = G[v]

if w in G[u]: # about to create parallel edge?
if len(G) == 3: # graph is a triangle?

return force(u,v) and force(v,w) and force(u,w)

if not safely_remove(u,w):

return None # unable to remove uw, no cycles exist

if not force(u,v) or not force(v,w):

return None # forcing the edges led to a contradiction
remove(u,v)

remove(v,w)

G[u][w] = G[w][u] = False

forced_in_current[u][w] = forced_in_current[w][u] = True

del G[v],forced_vertices[v]

D. Eppstein, TSP for Cubic Graphs, JGAA, 11(1) 61–81 (2007) 81

def uncontract():

del G[u][w],G[w][u]

del forced_in_current[u][w],forced_in_current[w][u]

forced_vertices[v] = True

G[v] = {}

actions.append(uncontract)

actions.append(main) # search contracted graph recursively

def handle_degree_two():

”””
Handle case that the graph has a degree two vertex.
Returns True if cycle should be reported, False or None otherwise.
Appends recursive search of contracted graph to action stack.
”””
v = degree_two.pop()

def unpop():

degree_two.append(v)

actions.append(unpop)

return contract(v)

def main():

”””
Main event dispatcher.
Returns True if cycle should be reported, False or None otherwise.
Appends recursive search of contracted graph to action stack.
”””
if degree_two:

return handle_degree_two()

Here with a degree three graph in which the forced edges
form a matching. Pick an unforced edge adjacent to a
forced one, if possible , else pick any unforced edge,
and branch on the chosen edge.
if forced_vertices:

v = iter(forced_vertices).next()

else:

v = iter(G).next()

w = [x for x in G[v] if x not in forced_in_current[v]][0]

def continuation():

”””Here after searching first recursive subgraph.”””
if force(v,w):

actions.append(main)

actions.append(continuation)

if safely_remove(v,w):

actions.append(main)

The main backtracking loop
actions = [main]

while actions:

if actions.pop()():

yield forced_in_input

