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Abstract

We introduce a new graph drawing convention for 2.5D hierarchical
drawings of directed graphs. The vertex set is partitioned both into layers
of vertices drawn in parallel planes and into k ≥ 2 subsets, called walls,
and also drawn in parallel planes. The planes of the walls are perpen-
dicular to the planes of the layers. We present a method for computing
such layouts and introduce five alternative algorithms for partitioning the
vertex set into walls which correspond to different aesthetic requirements.
We evaluate our method with an extensive computational study.1
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1 Introduction

The visual representation of hierarchically organised data has applications in
areas such as Social Network Analysis, Bioinformatics, and Software Engineer-
ing, to mention a few. Hierarchies are commonly modeled by directed graphs
(digraphs) and thus visualized by algorithms for drawing digraphs. Most of the
research effort in this area has been related to improvements of various aspects
of the Sugiyama framework method, the most popular method for creating 2D
hierarchical drawings of digraphs [10, 25].

The increasing availability of powerful graphic displays opens the opportu-
nity for developing new methods for 3D graph drawing. There is evidence that
3D graph layouts combined with novel interaction and navigation methods make
graphs easier to comprehend by humans and increase the efficiency of task per-
formance on graphs [26]. Three dimensional graph drawings with a variety of
aesthetics and edge representations have been extensively studied by the graph
drawing community (see [4, 6, 9, 18, 11, 23]). Examples include algorithms
for 3D orthogonal drawing with a limited number of bends, 3D straight-line
grid drawing algorithms with good resolution (volume), and 3D graph drawing
algorithms that maximise symmetry.

There has been relatively little research on drawing digraphs in 3D. One of
the known approaches is the method of Ostry which consists of first computing
a 2D hierarchical layout of the digraph and then wrapping it around either a
cone or a cylinder [22]. Another approach is the one taken by the graph draw-
ing system GIOTTO3D [17]. GIOTTO3D employs a simple 3-phase method,
conceptually different from the Sugiyama framework, for 3D hierarchical di-
graph drawing. In the first phase the digraph is drawn in 2D by a planarisation
method; in the second phase vertices are assigned z-coordinates so that all edges
point into the same direction and the total edge span is minimized; and at the
third phase the shape of the vertices and the edges is determined.

In the present paper we propose and evaluate a 2.5D hierarchical graph
drawing based on the Sugiyama framework for 2D hierarchical graph drawing.
A 2.5D graph drawing is a drawing where the graph is partitioned into sub-
graphs, and each subgraph is drawn in a bounded plane in 2D. The Sugiyama
framework is a method for drawing digraphs in 2D as hierarchies with the ad-
ditional property that vertices are grouped in layers. Typically layers occupy
either parallel lines, or concentric circles. In the case of parallel lines as many
edges as possible point into the same direction, and in the case of concentric cir-
cles as many edges as possible point away from the origin. The work presented
in this paper considers the case of layers occupying parallel lines.

The Sugiyama framework method consists of four phases or steps. The first
step is to remove all directed cycles from the digraph by converting the direction
of some edges. In the second step, the vertices of the digraph are partitioned
into layers. In the third step, a linear order is established for the vertices in
each layer. The last step assigns x-coordinates to all vertices and determines the
shape of the edges. Various algorithms, which emphasize on different properties
of the drawing, have been suggested for each step of the Sugiyama method [7].
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We propose an extra step between the layer-assignment and the vertex-
ordering steps in the Sugiyama framework for 2.5D drawing. The new step
consists of partitioning the vertex set into subsets, called walls. Any subset
of the vertex set can be a wall. Layers occupy parallel planes with all edges
pointing into the same direction; walls also occupy parallel planes which are
perpendicular to the planes of the layers. Each pair of a wall and a layer
intersect into a set of vertices placed along the line which is the intersection
of the corresponding wall and layer planes. That is, each wall contains a 2D
hierarchical drawing. We propose five different wall partitioning algorithms
based on different criteria. Examples of such layouts can be seen in Figure 1;
all drawings are made with the visual analysis tool GEOMI [1].

The motivation behind the proposed drawing convention is summarized in
the following points:

• 2.5D hierarchical drawings of digraphs allow the employment of specific
3D navigation and interaction techniques. For example, each wall can be
viewed separately, the camera may move along edges between the walls,
etc. [2]

• By grouping the vertices in layers and walls, we decrease the negative
effect of occlusion which is a typical obstacle in 3D visualisation.

• The partition of the hierarchy into a set of walls, each containing a smaller
2D hierarchy, allows us to

– draw the smaller 2D hierarchies efficiently with fast heuristics or even
exact algorithms which generally would perform worse if employed
for drawing the whole graph as a 2D hierarchy.

– utilize the extensively developed techniques for drawing hierarchies
in 2D.

Our method can be applied to any digraph, such as a class hierarchy that
originates from a software engineering application, or a hierarchical relationship
in a social network, for example. In particular, we report the results from a
computational study with the digraphs in the Rome data set [8].

The paper is organised as follows: in the next section, we introduce some
definitions and in Section 3 we describe our method and five alternative meth-
ods for assigning vertices to walls. The wall-assignment methods are evaluated
and compared in an extensive computational study presented in Section 4. In
Section 5, we draw conclusions from this work.

2 Terminology

Let G = (V,E) be a digraph without directed cycles. We denote the set of
all immediate predecessors of vertex v by N−(v) = {u : (u, v) ∈ E}, and the
set of all its immediate successors by N+(v) = {u : (v, u) ∈ E}. A layering
of G is defined as an ordered partition L = {L1, L2, ..., Lh} of its vertex set
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(a) 2D

(b) 2.5D: view 1

(c) 2.5D: view 2

(d) 2.5D: view 3

Figure 1: A 2D and three 2.5D hierarchical drawings of the same graph.
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into h subsets, called layers, such that (u, v) ∈ E with u ∈ Li and v ∈ Lj

implies j < i. A digraph with a layering is a layered digraph. A layering
is proper if all edges are between vertices in adjacent layers. If this is not
the case, then after the second step of the Sugiyama method dummy vertices
which subdivide long edges, i.e. edges which connect vertices in non-adjacent
layers, are introduced. Formally, for each edge e = (u, v) with u ∈ Li, v ∈ Lj ,
and j < i − 1, we introduce i − j − 1 dummy vertices de

j+1, d
e
j+2, . . . , d

e
i−1

into layers Lj+1, Lj+2, . . . , Li−1, respectively. We also replace edge e by edges
(u, de

i−1), (d
e
i−1, d

e
i−2), . . . , (d

e
j+2, d

e
j+1), (d

e
j+1, v).

3 2.5D Hierarchical Drawing of Directed Graphs

In this section, we propose a framework for 2.5D hierarchical graph drawing
based on the Sugiyama method. In summary, we introduce a new step called
wall assignment which further partitions the layer into a set of k > 1 subsets,
called walls, after the layering step. Our method is outlined in Algorithm 1.

Algorithm 1 2.5D Hierarchical Digraph Drawing

Step 1 (Cycle Removal): Remove all directed cycles by reversing the direction
of some edges.

Step 2 (Layer Assignment): Partition the vertex set into h layers,
L1, L2, . . . , Lh with h ≥ 2.

Step 3 (Wall Assignment): Partition the vertices in each layer Li into k
subsets, L1

i , L
2
i , . . . , L

k
i with k ≥ 2.

Step 4 (Vertex Ordering): Compute a linear order of the vertices which belong
to the same layer and wall.

Step 5 (Coordinate Assignment): Assign x-, y-, and z-coordinates to each
vertex.

Layers occupy parallel planes and each layer Li is partitioned into k subsets,
L1

i , L
2
i , . . . , L

k
i . The vertices placed in the jth group of each layer form a wall.

That is, the set W j = {Lj
1, L

j
2, . . . , L

j
h} is the jth wall. There are k walls in

total and they occupy k parallel planes which are perpendicular to the h planes
of the layers. In addition, we require all dummy vertices along the same long
edge to be in a wall that contains at least one of the endpoints of the edge in
order to avoid more than one edge bend along that edge outside the walls.

Since we perform the wall-assignment step after the introduction of dummy
vertices, we assume that G = (V,E) is a proper layered digraph with a layering
L = {L1, L2, ..., Lh}, i.e. each edge connects vertices in adjacent layers. By
partitioning the vertices into k ≥ 2 walls, we partition the edge set of a digraph
into two subsets: intra wall edges and inter wall edges. Intra wall edges are
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edges with both endpoints in the same wall, and inter wall edges are edges with
endpoints in different walls. The span of an inter wall edge is the absolute
value of the difference between the numbers of the two walls which contain the
endpoints of that edge. Note that each inter wall edge has at least one endpoint
which is not a dummy vertex because we require all dummy vertices along the
same long edge to be in the same wall.

The partition of the original vertex set into k walls may originate from the
digraph’s application domain. They might be the clusters of a given clustered
digraph. If no such partition is given, then the vertex set can be partitioned
into k walls according to the following optimization criteria:

• C1. Even distribution of vertices among walls, i.e. balanced partition of
the vertex set into walls.

• C2. Minimum number of inter wall edges for avoiding occlusion in the 3D
space.

• C3. Minimum number of crossings between inter wall edges in the pro-
jection of the drawing into a plane which is orthogonal to both the layer
planes and the wall planes. This criterion expresses the desire that inter
wall edges to be grouped in planes which can only intersect in the walls.

• C4. Minimum total edge length of inter wall edges.

These criteria are designed to express the properties of layouts with low
visual complexity. They give rise to some hard optimization problems which
require the development of efficient algorithms. In the remainder of this section,
we propose a few alternative wall-assignment algorithms which are designed to
satisfy different subsets of the listed optimization criteria.

3.1 Two-Wall Partitions Based on Minimum Bisection

The minimum number of walls in a 2.5D hierarchical layout is two. The special
case of having only two walls is interesting because it combines the advantages
of our 2.5D drawing convention with a simple presentation that helps to pre-
vent occlusion. In this and the following sections, we propose two alternative
approaches to two-wall assignment according to different optimization criteria.

To find a partition of the vertex set into two walls according to criteria C1

and C2 is a special case of the well-known minimum b-balanced cut problem
for b = 1/2. For a given undirected graph G = (V,E) and a subset of vertices
C ⊆ V , the cut (C, V \ C) is the set of all edges with one endpoint in C and
one endpoint in V \ C. Let w : V → N and c : E → N be a vertex-weight
and an edge cost function, respectively. The minimum b-balanced cut problem
is the problem of finding a cut (C, V \ C) with the minimum total edge cost,
such that min{w(C), w(V − C)} ≥ b.w(V ) for a given positive b ≤ 1/2. When
b = 1/2 and c(e) = 1 for each e ∈ E, the problem is also known as the minimum
bisection problem. This is the same problem that has to be solved if the vertex
set is partitioned into two walls according to criteria C1 and C2.
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The minimum bisection problem is NP-hard [16]. Various heuristic and ap-
proximation algorithms have been proposed for solving it (see [21, 14, 24, 13]) the
latest of which is the divide and conquer algorithm by Feige and Krauthgamer
which finds a bisection with a cost within ratio of O(log1.5 n) from the minimum
in polynomial time [12].

The first wall-assignment algorithm that we propose solves the minimum
bisection problem heuristically. It is a simplistic approach to minimum bisection
compared to the algorithm of Feige and Krauthgamer, but it is specifically
designed for use within the Sugiyama framework. When assigning vertices to
walls according to C1 and C2, additional requirements may take higher priority
than the exact separation of the vertex set into two equal-size halves with the
exact minimum number of edges between them. Such an additional requirement,
for example, is to have all dummy vertices along the same edge assigned to the
same wall. It is also very important for a wall-assignment algorithm to run fast
because it is only a part of a five-step framework.

We propose to assign vertices to walls layer by layer starting with the first
layer. For this purpose, we define the minimum one-layer bisection problem as
follows.

Minimum One-Layer Bisection Problem

Consider two adjacent layers Li−1 and Li. Let Li−1 be partitioned into subsets
Ai−1 and Bi−1. Find a partition of Li into subsets Ai and Bi such that
||Ai| − |Bi|| ≤ 1 and the number of edges between Ai−1 and Bi plus the
number of edges between Ai and Bi−1 is the minimum.

We propose a greedy algorithm, Algorithm 2, which solves the one-layer
bisection problem optimally. It has two phases; at the first phase each vertex in
layer Li is assigned to the wall that contains the biggest number of its immediate
successors; at the second phase some vertices are moved from one wall to the
other in order to achieve a balanced partition.

Theorem 1 For given i, Ai−1, and Bi−1, Algorithm 2 partitions layer Li into
Ai and Bi so that:

Property 1: |Ai| = |Bi| if |Li| is even, and ||Ai| − |Bi|| = 1 if |Li| is odd.
Property 2: The number of inter wall edges between Ai−1∪Ai and Bi−i∪Bi

is the minimum for a partition with Property 1.

Proof: Property 1 is trivially implied by the while loop. Assume there exists
another partition of layer Li into subsets A′

i and B′
i which satisfy both Prop-

erty 1 and Property 2. We will show that the partition defined by A′
i and B′

i

must have the same number of inter wall edges as the partition defined by Ai

and Bi.
Without loss of generality, assume that |Ai| ≥ |Bi| before the while loop

in Algorithm 2 and let Ci be the set of vertices moved from Ai to Bi after the
execution of the while loop. Let also Abefore

i and Aafter
i denote Ai before and

after the while loop, respectively. Similarly, let Bbefore
i and Bafter

i denote Bi

before and after the while loop, respectively.
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Algorithm 2 One-layer-bisection(i)

Ai ← φ
Bi ← φ
for all v ∈ Li do

if |N+(v) ∩Ai−1| > |N
+(v) ∩Bi−1| then

Ai ← Ai ∪ {v}
else if |N+(v) ∩Bi−1| > |N

+(v) ∩Ai−1| then

Bi ← Bi ∪ {v}
else

if |Ai| < |Bi| then

Ai ← Ai ∪ {v}
else

Bi ← Bi ∪ {v}
end if

end if

end for

if |Ai| > |Bi| then

X = A and x = B
else

X = B and x = A
end if

while (|Li| is even and |Xi| > |xi|) or (|Li| is odd and |Xi| > |xi|+ 1) do

move vertex v ∈ Xi with the minimum |N+(v)∩Xi−1| − |N
+(v)∩ xi−1| to

xi

end while
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Figure 2: A 2.5D hierarchical layout with a wall partition based on minimum
bisection.

Case 1. There is a vertex v ∈ A′
i ∩Bbefore

i . By moving v to B′
i, we subtract

from the number of inter wall edges |N+(v) ∩Bi−1| − |N
+(v) ∩Ai−1| ≥ 0. Let

A′′
i = A′

i \ {v} and B′′
i = B′

i ∪ {v}. If A′′
i and B′′

i do not satisfy Property 1

because B′′
i is too large, then clearly |B′′

i | > |Bbefore
i | and there is a vertex

u ∈ B′′
i ∩ Abefore

i which can be moved to A′′
i to satisfy Property 1 without

increasing the number of inter wall edges. If the number of inter wall edges
decreases, this will contradict the assumption that the partition (A′

i, B
′
i) has

the minimum number of inter wall edges. Otherwise we can repeat the same
considerations until we end up with A′′

i ∩ Bbefore
i = φ. Then we continue with

the considerations in case 2.
Case 2. A′

i ⊆ Abefore
i . If A′

i is different from Aafter
i , then B′

i ∩ Aafter
i is

not empty. Let v ∈ B′
i ∩ Aafter

i . By moving v to A′
i, we will subtract from

the number of inter wall edges α = |N+(v) ∩ Ai−1| − |N
+(v) ∩ Bi−1| ≥ 0.

(Note that Aafter ⊆ Abefore.) Let A′′
i ← A′

i ∪ {v} and B′′
i ← B′

i \ {v}. If
A′′

i and B′′
i do not satisfy Property 1 because A′′

i is too large, then clearly

|A′′
i | > |Aafter

i | and there is a vertex u ∈ Ci ∪ A′′
i which is different from v

and β = |N+(u) ∩ Ai−1| − |N
+(u) ∩ Bi−1| ≤ α. Let A′′′

i ← A′′
i \ {u} and

B′′′
i ← B′′

i ∪ {u}. The partition (A′′′
i , B′′′

i ) has α− β ≥ 0 fewer inter wall edges

than the partition (A′
i, B

′
i). If A′′′

i is different from Aafter
i , we can repeat the

considerations for A′′′
i and B′′′

i . Since this procedure cannot repeat forever, it

will eventually end up with A′′′
i = Aafter

i . 2

For partitioning the whole vertex set into two walls, we propose to partition
the first layer into two halves randomly and then apply Algorithm 2 for all layers
from L2 to Lh layer by layer. An example layout is shown in Figure 2.

The for loop takes O(|V |+ |E|) time in total because each vertex and edge
are scanned once. The while loop can take additional O(|V | log |V |) time in
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total if Ai and Bi are sorted lists implemented efficiently, e.g. by Fibonacci
heaps. Thus, the total worst-case time complexity of running Algorithm 2 for
all layers from L2 to Lh is O(|V | log |V |+ |E|).

Lemma 1 The total worst-case time complexity of running Algorithm 2 for all
layers from L2 to Lh is O(|V | log |V |+ |E|).

Since some layers may have an odd number of vertices, Algorithm 2 cannot
guarantee that the vertices will be equally split between the two walls. However
the balance is good enough for the purpose of hierarchical digraph drawing
and our computational study in Section 4 shows evidence that the algorithm
guarantees a relatively low total number of inter wall edges by working optimally
on the two-layer scale.

Note that the described method does not necessarily place all dummy ver-
tices along the same edge in the same wall. In order to enforce it, we need to
forbid the movement of dummy vertices in the while loop in Algorithm 2. That
may worsen the balance of the partition, but it may also reduce the number of
inter wall edges.

3.2 Two-Wall Partitions with Specific Arrangements of

Inter Wall Edges

The following two algorithms for partitioning the vertex set into two walls are
designed to have all inter wall edges arranged in a particular pattern such that
C3 is satisfied. We call them zig-zag wall partition and dominating-wall parti-
tion respectively.

Both algorithms scan all layers one by one from bottom to top and partition
each of them into two subsets. We start with a random balanced partition
of the first layer. Each next layer Li is partitioned into L1

i and L2
i such that

L1
i ∪ L2

i = Li and L1
i ∩ L2

i = φ based on the partition of layer Li−1.
In both algorithms this is performed by the procedure DIVIDELAYER(i, x, y)

which sets Lx
i ← {v ∈ Li : N+(v) ∩ Ly

i−1 = φ} and Ly
i ← Li \ Lx

i .
Algorithm 3 presents the zig-zag wall partition, and algorithm 4 presents the

dominating-wall partition. Example layouts are shown in Figures 3 and 4.

Algorithm 3 Zig-zag wall partition

Partition L1 randomly into two halves.
for i = 2..h do

if i mod 2 = 0 then

DIVIDELAYER(i, 1, 2)
else

DIVIDELAYER(i, 2, 1)
end if

end for
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Figure 3: A 2.5D hierarchical layout with a zig-zag wall partition.

In the dominating-wall partition all the inter wall edges have their origins
in the same wall, which we call the dominating wall, while in the zig-zag wall
partitioning both walls may contain origins of inter wall edges.

Algorithm 4 Dominating wall partition

Partition L1 randomly into two halves.
for i = 2..h do

DIVIDELAYER(i, 2, 1)
end for

It is easy to see that both the zig-zag wall partition and the dominating-
wall partition place all dummy vertices along edge e into the same wall. Both
algorithms take O(|V |+ |E|) time because each vertex is examined once and for
each vertex, all its immediate successors are also examined.

Lemma 2 Both the zig-zag wall partition and the dominating-wall partition al-
gorithms assign all dummy vertices along an edge to the same wall and partition
the vertex set of the graph into two subsets in linear time.

3.3 k-Wall Partitions

The next algorithm we present is for partitioning the vertex set into k ≥ 2 walls
according to C4. That is, an algorithm that keeps the sum of spans of inter
wall edges small.

Similar to the algorithms described above, all the layers are scanned one by
one from bottom to top. The first layer is partitioned randomly and each next
layer Li is partitioned on the basis of the partition of layer Li−1.
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Figure 4: A 2.5D hierarchical layout with a dominating-wall partition.

For partitioning layer Li into k subsets such that the total span of inter wall
edges is small, we apply Algorithm 5. In summary, for each vertex u ∈ Li,
all its immediate successors are considered, and u is placed in the wall whose
number is the closest integer to the average of the wall numbers of the immediate
successors of u. In other words, the wall u is placed in the barycenter of the
walls its immediate successors are placed in. An example layout is shown in
Figure 5.

When k = 2, Algorithm 5 is basically the same Algorithm 2 without the bal-
ancing while loop at the end. There is only a slight difference in the treatment
of the case when a vertex has the same number of immediate successors in both
walls. While Algorithm 2 will distribute those vertices evenly between the two

Figure 5: A 2.5D hierarchical layout with a k-wall partition.
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Algorithm 5 Barycenter k-wall partition of layer Li

for all j = 1..k do

Lj
i ← φ

end for

for all u ∈ Li do

if |N+(u)| = 0 then

Let b be a number such that |Lb
i | = min{|L1

i |, |L
2
i |, . . . , |L

k
i |}

else

for all j = 1..k do

neighbours[j]← |N+(u) ∩ Lj
i−1|

end for

b←
⌊

∑ k
j=1

j∗neighbours[j]
∑

k
j=1

neighbours[j]
+ 0.5

⌋

end if

Lb
i ← Lb

i ∪ {u}
end for

walls, Algorithm 5 will place all of them in the same wall.
Clearly, the proposed algorithm while keeping the number of inter wall edges

low does not guarantee balanced distribution of the vertices among the walls.
The problem of balanced partitioning the vertex set of a graph into k ≥ 2 subsets
with the minimum number of edges between the subsets is a generalization of the
NP-hard minimum bisection problem discussed in Section 3.1. It is known as the
(k, ν)-balanced partitioning problem where each subset is required to have size

at most ν∗ |V |
k

. In a recent study, Andreev and Räcke have shown that the (k, 1)-
balanced partitioning problem has no polynomial time approximation algorithm
with finite approximation factor unless P = NP , and propose a polynomial
time algorithm for solving the (k, 1 + ǫ)-balanced partitioning problem with an
O(log2 |V |/ǫ4) approximation ratio [3].

In order to achieve a more even distribution of vertices between the walls,
i.e. to satisfy C1, we propose a technique which is simpler compared to the
algorithm of Andreev and Räcke [3], but it runs in linear time and our com-
putational study gives evidence that it achieves a good enough balance. Our
method is the following. When computing the barycenter value b, we alternate
it for giving preference to the walls with fewer number of vertices.

The implementation of such a procedure is presented in Algorithm 6, which
is a generalised version of Algorithm 5. Now the wall for vertex u is computed
as

b =

⌊

∑k

j=1 j ∗max{0, neighbours[j]− |Lj
i |}

∑k

j=1 max{0, neighbours[j]− |Lj
i |}

+ 0.5

⌋

. (1)

in the case
∑k

j=1 max{0, neighbours[j] − |Lj
i |} > 0. Otherwise, u is placed in

the wall with the fewest number of vertices in the current layer. An example
layout is shown in Figure 6.

It is easy to see that Algorithm 5 guarantees that all dummy vertices along
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Figure 6: A 2.5D hierarchical layout with a balanced k-wall partition.

Algorithm 6 Balanced barycenter k-wall partition of layer Li

for all j = 1..k do

Lj
i ← φ

end for

for all u ∈ Li do

if u is a dummy vertex then

Let b be the number such that the only immediate successor of u is
assigned to Lb

i−1.
else

for all j = 1..k do

neighbours[j]← |N+(v) ∩ Lj
i−1|

end for

if
∑k

j=1 max{0, neighbours[j]− |Lj
i |} > 0 then

b←

⌊

∑ k
j=1

j∗max{0,neighbours[j]−|Lj

i
|}

∑

k
j=1

max{0,neighbours[j]−|Lj

i
|}

+ 0.5

⌋

else

Let b be a number such that |Lb
i | = min{|L1

i |, |L
2
i |, . . . , |L

k
i |}

end if

end if

Lb
i ← Lb

i ∪ {u}
end for
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an edge belong to the same wall. However, this is no longer guaranteed with
the balancing technique in Algorithm 6. Thus, when applying the balancing
technique, we first need to check whether u is dummy and if it is then assign it
to the wall of its immediate successor.

The time complexity of the proposed k-wall partitioning algorithm is also
O(|V |+ |E|) because each vertex and each edge are scanned once.

Lemma 3 Both versions of the k-wall partition algorithm assign all dummy
vertices along an edge to the same wall, and partition the vertex set of the graph
into k ≥ 2 subsets in linear time.

4 Computational Results

In our experimental work we used 5911 DAGs from the well-known Rome graph
dataset introduced by di Battista et al. in their experimental studies [8] and
available at the GDToolkit website2. The copy of the Rome graph set we have
consists of 11,530 graphs in LEDA3 format. Since, by default, a graph in LEDA
format is directed, we accepted the default direction of the edges given by the
LEDA format and filtered out the graphs with directed cycles. We also filtered
out the unconnected graphs leaving 5911 DAGs. The graphs have vertex count
between 10 and 100. The x-axis in all the plots below represents the number
of original vertices in a graph. We have partitioned all DAGs into groups by
vertex count. Each group covers an interval of size 5 on the x-axis, except the
last group which represents only the graphs with 100 vertices. We display the
average result for each group. Partitioning the DAGs into groups by edge count
reveals the same results because the DAGs typically have twice as many edges
as vertices.

The objective of our computational study was to compare the different wall
assignment techniques introduced in Section 3. Note that the k-wall partition
techniques can be applied for two-wall partitioning as well when k = 2. The first
part of our computational study compares the two-wall partition techniques, and
the second compares k-wall partitions for different values of k ≥ 2.

To each of the test DAGs, we applied our method (Algorithm 1) with the
same algorithms for all steps except the wall-assignment step. Since the test
digraphs are acyclic, we did not have to remove cycles. For the layer-assignment
step, we used the network-simplex layering algorithm introduced by Gansner et
al. [15]. To be able to compare the number of edge crossings between intra wall
edges we had to adapt the vertex-ordering step in order to take into account
the multiple walls.

For the vertex-ordering step, we applied layer-by-layer sweep with the bary-
center heuristic for two-layer crossing minimization. In our extended abstracts,
we considered ordering the vertices in each wall both independently from other
walls and taking into account the neighbours of each vertex in other walls. Our

2http://www.dia.uniroma3.it/∼gdt/
3http://www.algorithmic-solutions.de/enleda.htm
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pilot study gave some evidence that the number of crossings between intra wall
edges is slightly lower when the vertices in each wall are ordered independently
from other walls [20, 19]. Thus, in the present computational study, we apply the
layer-by-layer sweep for each wall independently. For the computational results
presented below, we did not have to perform the coordinate assignment step.
The example drawings in this paper were made with applying the Brandes-Köpf
algorithm for each wall independently [5].

4.1 Two-Wall Partitions

First we compare the proposed methods for partitioning the vertex set into two
walls. Here we also include the two k-wall methods with k = 2. In the plots,
we use the following two-letter references to the wall-assignment methods.

• MB Two Wall-partition based on minimum bisection (Algorithm 2).

• ZZ Zig-zag wall assignment (Algorithm 3).

• DW Dominating-wall assignment (Algorithm 4).

• KW k-wall partition (Algorithm 5).

• BW Balanced k-wall partition (Algorithm 6).

The plot in Figure 7 compares the standard deviation of the distribution of
vertices between the walls. We divided the standard deviation for each DAG
by its original vertex count (i.e. before introducing dummy vertices) in order to
normalize it. Similar normalization is applied in all other plots.

As we expected MB and BW have the lowest values which means that
they have the most balanced distribution of vertices between the walls. The
same wall-assignment algorithms behave best in terms of distribution of intra
wall edges as shown in Figure 8. Figures 7 and 8 also demonstrate that the
distribution of vertices and intra wall edges is not too unbalanced for ZZ, DW,
and KW on average. We did not particularly expect this result.

Figure 9 shows that BW has a significantly higher number of inter wall
edges than any of the other wall-assignment algorithms. KW has the lowest
number of inter wall edges as we expected, but it is very closely followed by ZZ

and DW. This figure shows that the balancing technique employed by BW is
too simplistic as it fails to keep the number of inter wall edges low.

Finally, Figure 10 compares the number of crossings between intra wall edges
for all wall assignment methods and the 2D case (i.e. without partitioning into
walls). The low number of edge crossings for BW is due to the high number
of inter wall edges. In general, Figure 10 gives evidence that by partitioning a
hierarchy into two walls by any of the proposed methods, the number crossings
between intra wall edges can be reduced at least twice.
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Figure 7: Standard deviation of the distribution of vertices between the walls
divided by the number of original vertices.
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Figure 8: Standard deviation of the distribution of intra wall edges between the
walls divided by the number of original edges.
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Figure 9: Number of inter wall edges divided by the number of original edges.
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Figure 11: Standard deviation of the distribution of vertices between the walls
divided by the number of original vertices.

4.2 k-Wall Partitions

Our study for k = 2 as well as our practical experience with k > 2 showed
evidence that BW while achieving balanced partitioning has a higher number
of inter wall edges than KW. In this section we study the behavior only of KW

for different values of k.
Figures 11 and 12 demonstrate that the distribution of vertices and intra wall

edges does not depend on the number of walls too heavily. It can be expected
that the distribution becomes more balanced with increasing the number of
walls. However, with the growth of the number of walls, grows the number of
inter wall edges and their total span, as seen in Figures 13 and 14. Based on
this evidence, we would suggest partitioning of digraphs with up to 100 vertices
into no more than four walls. Figure 15 shows the maximum number of edges
between adjacent walls, i.e. the maximum edge density between the walls. It can
be observed that it does not depend on the number of walls for the considered
dataset and values of k.

We also experimented with partitioning the vertex set of each DAG into
walls whose count depends on the size of the vertex set. For this purpose, we
set the number of walls at max{2, n/30}, where n is the total number of original
and dummy vertices in the DAG. Figure 16 presents the average number of walls
for our dataset. Figure 17 shows an interesting result. It compares the number
of crossings between intra wall edges in KW to the number of edge crossings in
2D layouts. While the average number of edge crossings grows with the growth
of the size of the graph in the 2D layouts, it is virtually constant in the KW

layouts when the number of walls depends on the size of the graph.
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Figure 12: Standard deviation of the distribution of intra wall edges between
the walls divided by the number of original edges.
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Figure 13: Number of inter wall edges divided by the number of original edges.
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Figure 14: Total span of the inter wall edges divided by the number of original
edges.
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Figure 15: Maximum number of edges between adjacent walls divided by the
number of original edges.
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the DAG.
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KW layouts with number of walls dependent on the size of the DAG.
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5 Conclusions

We introduce a framework for 2.5D hierarchical graph drawing based on the
Sugiyama method. We propose to partition the vertex set into k ≥ 2 parallel
planes, called walls; each wall containing a 2D drawing of a layered digraph. This
is done by introducing an additional wall assignment step into the Sugiyama
method after the layer assignment step.

We propose five alternative fast wall-assignment algorithms and evaluate
them in an extensive computational study with a large dataset. The choice of
a particular wall assignment algorithm may highly depend on the interaction
and navigation techniques used for visualizing the layout [2]. We were able to
show evidence that four of the proposed wall-assignment methods perform well
in practice in terms of various properties of the corresponding 2.5D layouts.

Additional improvement in the proposed 2.5D layouts may come from vertex-
ordering and coordinate-assignment algorithms specifically developed for 2.5D
hierarchical layouts. Another direction of future research might be related to
defining new optimization problems arising from 3D drawing aesthetic criteria.
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P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing: Proceed-
ings of 9th International Symposium, GD 2001, volume 2265 of Lecture
Notes in Computer Science, pages 189–204. Springer-Verlag, 2002.

[19] S.-H. Hong and N. S. Nikolov. Hierarchical layouts of directed graphs in
three dimensions. In P. Healy and N. S. Nikolov, editors, Graph Drawing,
13th International Symposium, GD 2005, volume 3843 of Lecture Notes in
Computer Science, pages 251–261. Springer-Verlag, 2005.

[20] S.-H. Hong and N. S. Nikolov. Layered drawings of directed graphs in three
dimensions. In S.-H. Hong, editor, Information Visualisation 2005: Asia-
Pacific Symposium on Information Visualisation (APVIS2005), volume 45,
pages 69–74. CRPIT, 2005.

[21] B. W. Kernigham and S. Lin. An efficient heuristic procedure for parti-
tioning graphs. Bell System Technical Journal, 49(2):291–308, 1970.

[22] D. Ostry. Some three-dimensional graph drawing algorithms. Master’s
thesis, University of Newcastle, 1996.

[23] J. Pach, T. Thiele, and G. Toth. Three-dimensional grid drawings of graphs.
In G. Di Battista, editor, Graph Drawing: Proceedings of 5th International
Symposium, GD 1997, volume 1353 of Lecture Notes in Computer Science,
pages 47–51. Springer-Verlag, 1998.

[24] H. Saran and V. V. Vazirani. Finding k cuts within twice the optimal.
SIAM J. Comput., 24(1):101–108, 1995.



S. Hong et al., 2.5D Hierarchical Drawing , JGAA, 11(2) 371–396 (2007) 396

[25] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transaction on Systems, Man, and
Cybernetics, 11(2):109–125, February 1981.

[26] C. Ware and G. Franck. Viewing a graph in a virtual reality display is three
times as good as a 2D diagram. In IEEE Conference on Visual Languages,
pages 182–183, 1994.


