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Abstract

In this paper we consider the class of binary trees and present the
results of a comprehensive experimental study on the four most repre-
sentative algorithms for drawing trees, one for each of the following tree-
drawing approaches: Separation-Based, Path-based, Level-based,
and Ringed Circular Layout. We establish a simpler, more intuitive
format for storing binary trees in files and create a large suite of randomly-
generated, unbalanced, complete, AVL, Fibonacci, and molecular combi-
natory binary trees of various sizes. Our study is therefore conducted
on randomly-generated, unbalanced, and AVL binary trees with between
100 and 50, 000 nodes, on Fibonacci trees Tn for n = 1, 2, ..., 45, 46 (143 to
46, 367 nodes), on complete binary trees of size 2n−1 for n = 7, 8, ..., 15, 16
(127 to 65, 535 nodes), and on molecular combinatory binary trees with
between 133 and 50, 005 nodes. Our study yields 70 charts comparing
the performance of the drawing algorithms with respect to ten quality
measures, namely Area, Aspect Ratio, Size, Total Edge Length,
Average Edge Length, Maximum Edge Length, Uniform Edge
Length, Angular Resolution, Closest Leaf, and Farthest Leaf.

None of the algorithms has been found to be the best in all categories.
This observation leads us to create an adaptive system that determines
the type of a binary tree and then selects an algorithm to draw the tree
depending upon the specified quality measures. Currently, our adaptive
tree drawing system recognizes all six types of binary trees and all ten
measures included in our experimental study. Under our settings, our
adaptive tree drawing system outperforms any system using a single bi-
nary tree drawing algorithm.
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1 Introduction

Trees are ubiquitous data-structures, arising in a variety of applications such as
Software Engineering (class and module hierarchies), Business Administration
(organization charts), Knowledge Representation (isa hierarchies), and Web-site
Design and Visualization (structure of a Web-site).

Visualizing a tree can enhance a user’s ability in understanding its structure.
Hence, a lot of research has been done on visualizing trees, which has produced
a plethora of tree-drawing algorithms (See for example, [8, 9, 10, 11, 13, 16,
15, 14, 22, 25, 26, 32, 33, 35, 34]). The majority of these algorithms have been
developed with the primary target of minimizing the area of the drawing, so, in
addition to their practical evaluation on area, it is of interest to evaluate how
these algorithms perform on other important aesthetics.

Several experimental studies for drawing graphs are available (See for exam-
ple, [6, 3, 4, 5, 17, 18, 19, 36]). However, we are not aware of any experimental
study done to evaluate the practical performance of tree-drawing algorithms.
Given the importance of trees, and the large amount of research that has been
done on developing techniques to visualize them, we believe that this is a big
omission. As a first step, in this paper, we present an experimental study of
some well-known algorithms for drawing binary trees. These algorithms repre-
sent some of the distinct approaches that have been used to draw binary trees
without distorting or occluding the information.

A binary tree is one where each node has at most two children. In contrast
to graphs, every tree accepts a planar drawing, i.e. without any crossings.
Therefore, most tree-drawing algorithms achieve this aesthetic. A straight-line
drawing has each edge drawn as a single line-segment. Straight-line drawings
are considered more aesthetically pleasing than polyline drawings.

The issue of resolution of a drawing has been extensively studied, motivated
by the finite resolution of physical rendering devices. The resolution of a drawing
is defined as the minimum distance between two vertices. The quality measures
Area, Aspect Ratio, Size, Total Edge Length, Average Edge Length,
Maximum Edge Length, Uniform Edge Length, Angular Resolution,
Closest Leaf, and Farthest Leaf of a drawing depend on its resolution, hence
two drawings can be compared for these measures only if they have the same
resolution. Grid-based algorithms, i.e. algorithms that place all the nodes of
a drawing at integer coordinates, guarantee a minimum of one unit distance
separation between nodes in the final drawings, and allow the drawings to be
displayed in a display surface, such as a computer screen, without any distortions
due to truncation and rounding-off errors.

A drawing of a tree T has the subtree separation property [8] if, for any two
node-disjoint subtrees of T , the enclosing rectangles of the drawings of the two
subtrees do not overlap with each other. Drawings with the subtree separation
property are more aesthetically pleasing than those without the subtree separa-
tion property. The subtree separation property also allows for a focus+context
style [31] rendering of the drawing, so that if the tree has too many nodes to
fit in the given drawing area, then the subtrees closer to focus can be shown in
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detail, whereas those further away from the focus can be contracted and simply
shown as filled-in rectangles.

All algorithms in our experimental study produce planar straight-line grid
drawings and exhibit the subtree separation property.

This work is comprised of an experimental study, which originally appeared
in an abbreviated form in [29], and an adaptive tree drawing system, which
originally appeared in [28]. The contributions of this work can be summarized
as follows:

• We have developed a general experimental setting for comparing the prac-
tical performance of drawing algorithms for binary trees. Our setting
consists of (i) a simpler, more intuitive format for storing binary trees
in files; (ii) save/load routines for generating binary trees to files and
for uploading binary trees from files, respectively; (iii) a large suite of
randomly-generated, unbalanced, complete, AVL, Fibonacci, and molec-
ular combinatory binary trees of various sizes; (iv) ten quality measures:
area, aspect ratio, size, total edge length, average edge length, maximum
edge length, uniform edge length, angular resolution, closest leaf, and far-
thest leaf.

• Within our experimental setting, we have performed a comparative study
of four representative algorithms for planar straight-line grid drawings of
binary trees, one for each of the following distinct approaches: separation-
based algorithm by Garg and Rusu [16], path-based algorithm by Chan
et al. [8], level-based algorithm by Reingold and Tilford [25], and ringed
circular layout algorithm by Teoh and Ma [33]. As the specific algorithms
chosen are intended to be representative of their respective approaches, we
expect the results to generally apply to other algorithms using the same
approach.

• Our comparison highlights how more than twenty years of research in this
field have produced increasingly better algorithms. Our investigations
include some interesting findings:

– A contradiction to the popular belief [20] that, in practice, Reingold-
Tilford algorithm should be generally accepted as the method of
choice for drawing binary trees. Even though this algorithm achieves
some important aesthetics, it scores worse in comparison to the other
chosen algorithms for almost all ten aesthetics considered in our
study.

– The intuition that low average edge length and area go together is
contradicted in only one case.

– The intuitions that average edge length and maximum edge length,
uniform edge length and total edge length [36], and short maximum
edge length and close farthest leaf go together are contradicted for
unbalanced binary trees.
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– The performance of a drawing algorithm on a tree-type is not a good
predictor of the performance of the same algorithm on other tree-
types: some of the algorithms perform best on a tree-type, and worst
on other tree-types.

– For three of the seven types of trees considered, the algorithm with
the best theoretical worst-case bound produces worse area in prac-
tice than algorithms with worse theoretical worst-case bounds, or
algorithms for which no theoretical bounds are available.

– With regards to area, of the four algorithms studied, three perform
best on different types of trees.

– With regards to aspect ratio, of the four algorithms studied, three
perform well on trees of different types and sizes.

– Not all algorithms studied perform best on complete binary trees
even though they have one of the simplest tree structures.

– The level-based algorithm of Reingold-Tilford [25] produces much
worse aspect ratios than algorithms designed using other approaches.

– The path-based algorithm of Chan et al. [8] tends to construct draw-
ings with better area at the expense of worse aspect ratio.

• Using the results of our experimental study we have designed an adaptive
tree drawing system comprised of all four algorithms we experimented.
Since the performance of an algorithm with respect to a specific quality
measure was found to be dependent on the type of binary tree, our sys-
tem analyzes the tree to classify it as a specific type and then selects an
algorithm to draw it with respect to the user-specified quality measures.

The rest of the paper is organized as follows. The four algorithms being
compared are described in Section 2. Details on the experimental setting are
given in Section 3. In Section 4, we summarize our experimental results, and
perform a comparative analysis on each chosen aesthetic of the performance of
the four algorithms. In Section 5, we present our adaptive tree drawing system.
Conclusion and future work are discussed in Section 6.

2 The Drawing Algorithms Under Evaluation

We have tested four different algorithms for producing planar straight-line grid
drawings of binary trees. The four algorithms can be classified into four cate-
gories on the basis of their approach to constructing drawings:

• Separation-Based: In the Separation-Based Approach, a divide-and-
conquer strategy is used to recursively construct a drawing of the tree,
by performing the following actions at each recursive step:
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– Find a Separator Edge or a Separator Node: A separator edge (node)
of a tree T with degree(T ) = d is an edge (node), which, if removed,
divides T into at most d smaller, partial trees. Every tree contains
such an edge or a node [15, 35]. In the first step, these algorithms
find a separator edge or a separator node.

– Divide Tree: Divide the tree into several partial trees by removing
at most two nodes and their incident edges from it (including the
separator edge or the separator node) (See Figure 1(a)).

– Assign Aspect Ratios: Pre-assign a desirable aspect ratio to each
partial tree.

– Draw Partial Trees: Recursively construct a drawing of each partial
tree using its pre-assigned aspect ratio.

– Compose Drawings: Arrange the drawings of the partial trees, and
draw the nodes and edges, that were removed from the tree to divide
it, such that the drawing of the tree thus obtained is a planar straight-
line grid drawing. These drawings of partial trees are arranged either
one next to the other (horizontal composition) as in Figure 1(b), or
one above the other (vertical composition) as in Figure 1(c).

Several separation-based algorithms have been designed [13, 16, 15, 30].
Even though both the algorithms of [13] and [16] achieve the worst-case
theoretical bound of O(n) area, the algorithm of [13], being a top-down
algorithm, always constructs the worst-case drawing. Being algorithms
developed for drawing general trees, [15] and [30] have not been considered.
We have therefore chosen to evaluate the O(n)-area bottom-up algorithm
of [16] (we call it Separation). For our study, we have used the same
implementation as the one used by Garg and Rusu in [16].
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Figure 1: Separation-based approach [16]: (a) General case when the separator
edge (node) is not on the leftmost path. (b) Horizontal composition. (c) Vertical
composition.
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• Path-Based: The Path-Based Approach uses a recursive winding paradigm
as follows: first lay down a small chain of nodes from left to right until
near a distinguished node v, and then recursively lay out the subtrees
rooted at the children of v in the opposite direction.

Several path-based algorithms have been designed [8, 14, 32].

For our study, we have implemented the O(n log log n)-area algorithm de-
veloped by Chan et al. [8] (we call it Path). The reasons we have chosen
this algorithm for our study are that it defines the majority of path-based
techniques, produces the best worst-case theoretical bound on area for
path-based algorithms (near optimal), and provides the user some control
over the aspect ratio without sacrificing area. An illustration of Path’s
drawing techniques is shown in Figure 2.
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Figure 2: Path-based approach [8]: (a) General case: the tree is divided into
subtrees T1, T2, . . . , Tk−2, Tk−1, T

′, T ′′. (b) Non-upward composition.

• Level-Based: The Level-Based Approach is characterized by the fact that
in the drawings produced, the nodes at the same distance from the root
are horizontally aligned [7, 25, 37]. Since the algorithms of [7] and [37]
do not exhibit the subtree separation property, for our study we have
implemented the widely-used recursive algorithm developed by Reingold
and Tilford [25] (we call it Level). This algorithm uses the following steps:
draw the subtree rooted at the left child, draw the subtree rooted at the
right child, place the drawings of the subtrees at horizontal distance 1,
and place the root one level above and halfway between the children. If
there is only one child, place the root at horizontal distance 1 from the
child. An illustrative diagram of how Level places each node is shown in
Figure 3.

• Ringed Circular Layout: The algorithms based on the Ringed Circular
Layout Approach place a node and all its children in a circle [9, 22, 26,
33]. For our study, we have developed and implemented a binary tree
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Figure 3: Grid diagram illustrating an example of drawing a tree with Level.

adaptation of the algorithm developed by Teoh and Ma [33], which was
designed for general trees and is an improvement over the other Rings-
based algorithms (we call it Rings). In the original algorithm, equal-sized
circles corresponding to children are placed in concentric rings inside of
the parent circle, around its center, thus trying to minimize the space
wasted inside of the interior of the parent circle (see Figure 4). Since we
only consider binary trees, we have developed Rings to take advantage of
the basic properties of a binary tree. Rings places the children of a node
in either the same vertical or horizontal channel, starting with the same
horizontal channel at the root (depth 0), and alternates between vertical
and horizontal channel placement for every following depth in the tree. In
addition, the length of the edge connecting a subtree to its parent is set to
depth(subtree(v))+1, where depth(subtree(v)) is the depth of the subtree
rooted at node v. This ensures that enough space is made available to
draw the rest of the subtree, which is consistent with other rings-based
algorithms.

Figure 4: In Rings, the outer rings contain the larger subtrees, and the interior
rings contain the smaller subtrees. For binary trees, nodes are always placed
orthogonally, on the opposite sides of the root.
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3 Experimental Setting

Our experimental setting consists of (i) a simpler, more intuitive format for
storing binary trees in files; (ii) save/load routines for generating binary trees
to files and for uploading binary trees from files, respectively; (iii) a large suite
of randomly-generated, unbalanced, complete, AVL, Fibonacci, and molecular
combinatory binary trees of various sizes; (iv) ten quality measures: area, as-
pect ratio, size, total edge length, average edge length, maximum edge length,
uniform edge length, angular resolution, closest leaf, and farthest leaf.

3.1 Input File Format

Since trees have a simpler structure than graphs, we introduce a simpler, more
intuitive format for storing binary trees in files. Each line in the input file
represents a node, its left, and its right children, in this order, separated from
each other by one space: node leftChild rightChild, where node is the key that
uniquely identifies the node in the tree, leftChild is the key for the left child of
node, or # if node has no left child, and rightChild is the key for the right child
of node, or # if node has no right child. The following restriction applies to all
the nodes, except the root of the tree: a node must occur as a child for another
node before being itself defined.

For example, assume we have a binary tree defined using a preorder traversal
as follows: 0, 1, 3, 4, 2, 5. This tree would be represented in its corresponding
graph file format as follows:

0 —- 1;
0 —- 2;
2 —- 5;
1 —- 3;
1 —- 4;
3;
5;
4;
In our new format, this tree may be represented in its corresponding file in

any of the following two ways:
0 1 2 or 0 1 2
1 3 4 2 5 #
2 5 # 1 3 4
3 # # 3 # #
4 # # 5 # #
5 # # 4 # #
Since the node with key 3 has not occurred as a child of any node before

it was defined as having no children of its own, the following is not a proper
representation of the tree:

0 1 2
2 5 #
3 # #
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4 # #
1 3 4
5 # #
We have implemented in C++ simple load and save routines for transfer-

ring binary trees between the computer memory and files, using the format
described in this subsection. The source code for the save and load routines can
be downloaded at: http://elvis.rowan.edu/segv/BTree Exp Study/.

Because of its simplicity, we skip the details of the pseudocode for these
routines here, but is available in [27].

3.2 Test Suite

We have generated a large test suite consisting of binary trees of various types
and sizes. We define the tree categories such that the trees contained in each
category do not have significant variations, and have rather similar structures.
We then performed our experimental study on this test suite.

Our test suite consists of five binary trees for each of the following types and
sizes:

• Randomly-generated binary trees (see Figure 5):

Each randomly-generated binary tree Tn with n nodes was generated by
generating a sequence T0, T1, . . . , Tn of binary trees, where T0 is the empty
tree, and Ti was generated from Ti−1 by inserting a new leaf vi into it.
The position where vi is inserted in Ti−1 is determined by traversing a
path p = u0u1 . . . um of Ti−1, where u0 is the root of Ti−1, and um has at
most one child. More precisely, we start at the root u0, and in the general
step, assuming that we have already traversed the sub-path u0u1 . . . ui−1,
we flip a coin. If “head” comes up, then if ui−1 has a left child c, then we
set ui = c, and move to ui, otherwise we make vi the left child of ui−1,
and stop. If “tail” comes up, then if ui−1 has a right child c, then we set
ui = c, and move to ui, otherwise we make vi the right child of ui−1, and
stop.

We do not generate equal likely random trees because we want the trees
to have relatively similar structural properties.

• Unbalanced binary trees (see Figure 6):

We consider a binary tree Tn with n nodes as unbalanced if its height is
greater than n/ log n.

A binary tree Tn with n nodes is unbalanced-to-the-left (unbalanced-to-
the-right) if it is unbalanced, and, in addition, the number of left (right)
children in Tn is greater than its number of right (left) children.

Each unbalanced-to-the-left (unbalanced-to-the-right) binary tree Tn with
n nodes was generated in a similar way to the randomly-generated binary
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(a) (b)

(c)

(d)

Figure 5: Drawings of a randomly-generated tree with 100 nodes, generated by the
algorithms in our study: (a) Separation, (b) Path, (c) Level, and (d) Rings. The
root is represented by the triangular node.
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trees. The only difference occurs at the time of coin flipping: the prob-
ability of the coin coming “head” is set to be higher (lower) than the
probability of the coin coming “tail”.

We do not generate trees representative of all unbalanced trees because
we want to have similarly structured unbalanced trees.

• AVL trees (see Figure 7):

An AVL tree is a balanced binary tree where the height of the two subtrees
of a node differs by at most one.

Each AVL tree was generated by randomly inserting nodes in the tree
using the same technique used for randomly-generated trees, and by using
a generic method to maintain the tree’s AVL property after each insertion.

The intuition behind generating random and unbalanced trees is that we
want categories of trees with relatively similar structures, and different then the
known categories of trees. It is highly unlikely that our random tree generation
algorithm would generate an unbalanced tree since the likelihood of going left
or right when inserting a new node is equal in the case of random trees and
is heavily biased (toward right or left) in the case of unbalanced trees. We set
the bias parameter to generate unbalanced trees which are near the unbalanced
criteria (height greater than n/logn). For example, our dataset does not include
trees which are structured as a left or right path.

Being unique trees for each type and size, we generated one tree for each of
the following:

• Complete binary trees (see Figure 8):

A binary tree Tn with n nodes is complete if every non-leaf node of Tn has
exactly two children.

• Fibonacci trees (see Figure 9):

A Fibonacci tree Tn is defined inductively as follows: T0 is the empty tree,
T1 is the tree with one node, and Tn has as left subtree Tn−1, and as right
subtree Tn−2. Note that a Fibonacci tree is the most unbalanced AVL
tree allowed.

• Molecular combinatory binary trees (see Figure 10):

These binary trees have a strong connection to “real-life” applications.
The data was obtained from the study in [21] by Dr. Bruce MacLennan
at the University of Tennessee. Within this research, Dr. MacLennan
used combinatory logic [12], a mathematical formalism based on network
substitution operations suggestive of supramolecular interactions. Binary
trees derive from the networking conventions of combinatory logic and
visualization of these binary trees could improve the investigator’s ability
in interpreting the substitution operations involved in combinatory logic.
The idea is to use molecular processes to implement the combinatory logic
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Figure 6a

(a) (b)

(c)Figure 6d

(d)

Figure 6: Drawings of an unbalanced-to-the-left binary tree with 100 nodes gener-
ated by the algorithms in our study: (a) Separation, (b) Path, (c) Level, and (d)
Rings. For Rings, the tree is of size 25. The root is represented by the triangular
node.
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(a) (b)

(c)

(d)

Figure 7: Drawings of an AVL tree with 100 nodes, generated by the algorithms
in our study: (a) Separation, (b) Path, (c) Level, and (d) Rings. The root is
represented by the triangular node.
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(a) (b)

(c)

(d)

Figure 8: Drawings of the complete tree with 127 nodes, generated by the algo-
rithms in our study: (a) Separation, (b) Path, (c) Level, and (d) Rings. The root
is represented by the triangular node.
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(a) (b)

(c)Figure 9d

(d)

Figure 9: Drawings of the Fibonacci tree with 88 nodes, generated by the algorithms
in our study: (a) Separation, (b) Path, (c) Level, and (d) Rings. The root is
represented by the triangular node.
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(a) (b)

(c)

Figure 10: Drawings of a molecular combinatory binary tree with 133 nodes gen-
erated by the algorithms in our study: (a) Separation, (b) Path, and (c) Level. For
Rings, the area was too large to include. The root is represented by the triangular
node.

tree substitution operations, so that the molecular reorganization of the
trees results in the desired structure or process.

We have generated random, unbalanced-to-the-left, unbalanced-to-the-right,
and AVL binary trees with sizes between 100 and 50, 000, Fibonacci trees Tn

for n = 1, 2, ..., 45, 46 (143 to 46, 367 nodes), complete binary trees of size 2n−1
for n = 7, 8, ..., 15, 16 (127 to 65, 535 nodes), and molecular combinatory binary
trees with between 133 and 50, 005 nodes. All these tree files are available for
download at: http://elvis.rowan.edu/segv/BTree Exp Study/.

3.3 Quality Measures

The following eight well-known quality measures have been considered:

• Area: the number of grid points contained within the smallest rectangle
with horizontal and vertical sides covering the drawing.

• Aspect Ratio: the ratio of the smaller and the longer sides of the smallest
rectangle with horizontal and vertical sides covering the drawing.

• Size: the longest side of the smallest rectangle with horizontal and vertical
sides covering the drawing.

• Total Edge Length: the sum of the lengths of the edges in the drawing.



JGAA, 12(2) 131–195 (2008) 147

• Average Edge Length: the average of the lengths of the edges in the
drawing.

• Maximum Edge Length: the maximum among the lengths of the edges
in the drawing.

• Uniform Edge Length: the variance of the edge lengths in the drawing.

• Angular Resolution: the minimum angle between any two edges in the
drawing.

It is widely accepted [1, 2, 23, 24] that small values of the area, size, total edge
length, average edge length, maximum edge length, and uniform edge length are
related to the perceived aesthetic appeal and visual effectiveness of the drawing.
In addition, an aspect ratio is considered optimal if it is equal to 1.

We have also considered two new quality measures, specially designed for
trees:

• Closest Leaf: the smallest Euclidean distance between the root of the
tree and a leaf in the drawing.

• Farthest Leaf: the largest Euclidean distance between the root of the
tree and a leaf in the drawing.

The aesthetics Closest Leaf and Farthest Leaf help determine whether the
algorithm places leaves close or far from the root. It is important to minimize the
distance between the root and the leaves of the tree, especially in the case when
the user needs to visually analyze the information contained in the levels close
to the root and levels close to the leaves, without the information in between.
Such a case appears in particular for algorithms where a change at the top level
(root) of the tree generates modifications at the bottom levels (leaves) of the
tree (for example, usual operations - find, insert, remove - on binary search
trees, splay trees, or binary B+ trees).

4 Experimental Analysis

Let Tn be a binary tree with n nodes that is provided as input to the algorithms
being evaluated.

Two of the algorithms chosen in this study, namely Separation and Path,
allow user-controlled aspect ratio, i.e. the user may change the aspect ratio
by providing some parameters as input to the algorithms. The other two al-
gorithms, (Level and Rings), generate unique drawings for each value of n. In
order to find the parameters for which Separation and Path perform the best
on each of the aesthetics considered in our study, we used the studies in [16]
and [27], respectively. These parameters were placed in a lookup table and used
to find the best value for each combination of aesthetic, tree-type, and number
of nodes.
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4.1 Comparison Analysis

In order to compare the algorithms, we varied n between 100 and 50, 000 for
randomly-generated, unbalanced-to-the-left, unbalanced-to-the-right, and AVL
binary trees, Tn for n = 1, 2, ..., 45, 46 (143 to 46, 367 nodes) for Fibonacci trees,
2n − 1 for n = 7, 8, ..., 15, 16 (127 to 65, 535 nodes) for complete binary trees,
and between 133 and 50, 005 for molecular combinatory trees. We compared
the performance of the algorithms for each tree-type separately.

The performance of Separation was not evaluated for aspect ratio because
the desired aspect ratio is user configurable.

The performance of Rings was not considered in our comparisons for unbal-
anced and molecular combinatory binary trees because in these cases the area
Rings produces grows exponentially and it quickly becomes prohibitive to use.
For example, for an unbalanced tree with 1, 000 nodes, Rings produces a draw-
ing with area of 7.65 · 107. Also, for molecular combinatory binary trees with
469 nodes, Rings produces a drawing with area of 2.15 · 109.

We do not create separate charts for the quality measure Average Edge
Length because, in a binary tree with n nodes, the average edge length is
always equal to the total edge length divided by n − 1. Therefore, we use the
charts for the quality measure Total Edge Length to analyze the behavior of
the algorithms for this aesthetic.

Figures 15-23 display the performance of Level, Path, Rings, and Separation.
The x-axis of each chart shows the number of nodes.

The analysis of the performance of the four algorithms for each quality mea-
sure, and for each tree-type is summarized below:

• Area: (See Figure 15)

– Complete binary trees: (See Figure 15(a)) Order of performance:
Rings, Separation, Path, Level. While the difference in the areas
produced by Rings and Separation grows slowly, the difference in
the areas produced by Separation and Path grows much faster. The
same behavior is exhibited in Level and Path. For the last value of
n considered (n = 65, 535), Level produces a drawing having an area
almost four times more than the drawing produced by Path.

– AVL trees: (See Figure 15(b)) Order of performance: Rings, Sepa-
ration, Path, Level. Rings and Separation exhibit similar behavior,
with Rings being slightly better. The differences in the areas pro-
duced grow slowly.

– Randomly-generated binary trees: (See Figure 15(c)) Order of per-
formance: Separation, Path, Level, Rings. The performances of all
the algorithms are worse than their respective performances on com-
plete trees. In comparison to its behavior on complete trees, where
it was the best, Rings exhibits the most dramatic change: its be-
havior is now the worst of all four algorithms. The area produced
by Level grows rapidly in comparison to the area produced by Path,
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being already three times more for the last value of n considered
(n = 50, 000).

– Fibonacci trees: (See Figure 15(d)) Order of performance: Separa-
tion, Path, Level, Rings. Rings quickly becomes prohibitive, with
area ten times more than the area of Separation, for 10, 000 nodes.
The difference between the areas produced by Separation and Path
grows slowly, while the difference between the areas produced by Path
and Level grows much faster.

– Unbalanced-to-the-left binary trees: (See Figure 15(e)) Order of per-
formance: Path, Separation, Level, Rings. Level quickly becomes
prohibitive, and it has been only partially plotted. Path slightly out-
performs Separation.

– Unbalanced-to-the-right binary trees: (See Figure 15(f)) Order of per-
formance: Path, Separation, Level, Rings. Path produces excellent re-
sults for this type of tree. This is the worst case for Separation. Level
rapidly becomes prohibitive, and it has been only partially plotted.

– Molecular combinatory binary trees: (See Figure 15(g)) Order of per-
formance: Path, Separation, Level, Rings. Even though Path is the
best performing algorithm on both unbalanced and molecular com-
binatory binary trees, its behavior on molecular combinatory binary
trees is much better: for n = 50, 000, the area of molecular combina-
tory binary trees is almost half then in the case of unbalanced binary
trees. Level rapidly becomes prohibitive to use, producing an area
over 1, 000, 000 for n of about 6, 000. This is the best case for Path.

• Aspect Ratio: (See Figure 16)

– Complete binary trees: (See Figure 16(a)) Order of performance: Sep-
aration, Path, Rings, Level. Quite interestingly, the behavior of Path
and Rings is very similar. Neither algorithm always produces draw-
ings with aspect ratios close to optimal. For example, if n = 214− 1,
the best aspect ratio Path produces is around 0.5. Rings produces
optimal aspect ratios when n = 2i − 1, with i an odd number, and
aspect ratios close to 0.5, with i an even number. The aspect ratios
of the drawings produced by Level are very low (the highest value is
close to 0.06), decreasing rapidly as n increases.

– AVL trees: (See Figure 16(b)) Order of performance: Separation,
Rings, Path, Level. Rings exhibits a very interesting pattern: its
aspect ratios are either 0.5 or optimal. The performances of Path
and Level decrease dramatically, with Level quickly producing very
small aspect ratios, and Path producing aspect ratios less than 0.01
for 50,000 nodes.

– Randomly-generated binary trees: (See Figure 16(c)) Order of per-
formance: Separation, Path, Rings, Level. Level produces drawings
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with better aspect ratios for trees with smaller number of nodes (the
highest value is close to 0.1). Still, its behavior is unsatisfactory, as
the value of aspect ratio decreases rapidly as n increases. Path and
Rings have uneven behaviors. Most of their aspect ratios are over
0.8, and none are under 0.5.

– Fibonacci trees: (See Figure 16(d)) Order of performance: Separa-
tion, Rings, Path, Level. Interestingly, Rings exhibits exactly the
same behavior as in the case of complete binary trees: optimal as-
pect ratios when n = 2i−1, with i an odd number, and aspect ratios
close to 0.5, with i an even number. The behavior of Level is only
significant for trees with small number of nodes.

– Unbalanced-to-the-left binary trees: (See Figure 16(e)) Order of per-
formance: Separation, Path, Level, Rings. Quite surprisingly, Level
produces drawings with better aspect ratios than before and its per-
formance decreases very slowly as n increases. Quite interestingly, the
performance of Path is almost identical with the one for randomly-
generated binary trees, with most of the aspect ratios over or close
to 0.8, and no aspect ratio under 0.6.

– Unbalanced-to-the-right binary trees: (See Figure 16(f)) Order of per-
formance: Separation, Path, Level, Rings. Level exhibits similar be-
havior as in the case of unbalanced-to-the left binary trees. Interest-
ingly, while for small values of n the performance of Path is close to
optimal, it decreases rapidly as n increases. For example, for 50,000
nodes, Level produces better aspect ratios than Path.

– Molecular combinatory binary trees: (See Figure 16(g)) Order of per-
formance: Separation, Path, Level, Rings. Path produces close to
optimal values until n about 6, 000. After this point, the values
plummet, decreasing to 0.1 for n = 50, 005. Very interestingly, Level
always produces values close to 0.1. In our analysis, it was discov-
ered that Level always produces drawings of width equal to n. Hence,
for molecular combinatory binary trees, the height is almost always
one-tenth of the width.

• Size: (See Figure 17)

– Complete binary trees: (See Figure 17(a)) Order of performance:
Rings, Separation, Path, Level. Level grows at an exponential rate
for all categories of binary trees and will not be mentioned. Path,
Rings, and Separation grow fast and then reach an individual point
where rate of growth is comparable.

– AVL trees: (See Figure 17(b)) Order of performance: Separation,
Rings, Path, Level. Strangely, the performances of Rings and Sepa-
ration oscillate as best performance. Separation grows at a constant
rate, while Rings values are scattered about the performance of Sep-
aration. The performance of Path is at its worst, becoming two and
a half times larger than Separation at n = 50, 000.
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– Randomly-generated binary trees: (See Figure 17(c)) Order of perfor-
mance: Separation, Path, Rings, Level. Rings grows much faster than
Path and Separation, in particular for high values of n. Separation
grows at a constant rate and Path grows almost two times faster than
Separation.

– Fibonacci trees: (See Figure 17(d)) Order of performance: Separa-
tion, Path, Rings, Level. Ironically, Path starts as the best, but as n
increases, so too does its rate of growth. Ultimately, the faster rate of
Path enables Separation to outperform all in the end. Rings performs
at its worst compared to all other categories of binary trees.

– Unbalanced-to-the-left binary trees: (See Figure 17(e)) Order of per-
formance: Separation, Path, Level, Rings. The performance of Sepa-
ration and Path are very similar, and as n gets larger Path becomes
slightly worse. Level again exhibits unsatisfactory performance.

– Unbalanced-to-the-right binary trees: (See Figure 17(f)) Order of per-
formance: Path, Separation, Level, Rings. The behavior of Separa-
tion, Path, and Level on this tree type are very similar to that on
unbalanced-to-the-left binary trees.

– Molecular combinatory binary trees: (See Figure 17(g)) Order of per-
formance: Separation, Path, Level, Rings. The performance of Path
starts out as the best algorithm, but is overtaken by Separation at
n about 12, 000. The performance of Path is near linear, becom-
ing two times larger than the results of Separation at approximately
n = 50, 005.

• Total Edge Length and Average Edge Length: (See Figure 18)

– Complete binary trees: (See Figure 18(a)) Order of performance:
Rings, Separation, Path, Level. The similarity between the plots for
total edge length and area fits the intuitive notion that low total edge
length and area generally go together. All of the observations made
for area apply in this case, except when n = 50, 000, Path performs
better than Separation, and is very close to the performance of Rings.

– AVL trees: (See Figure 18(b)) Order of performance: Rings, Sepa-
ration, Path, Level. The results for Rings and Separation are very
similar. Level performs poorly, producing results nearly four times
greater than Rings. The intuition that low total edge length and area
generally go together is confirmed in this case.

– Randomly-generated binary trees: (See Figure 18(c)) Order of perfor-
mance: Separation, Rings, Path, Level. The interesting finding here
is that Rings and Path exhibit almost identical behavior. Separation
performs a little better than these two, and the gap between the per-
formance of Level and the performance of the other algorithms grows
fast. It is also interesting to see that, with lower total edge length
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than Path and Level, Rings constructs larger area then the two, thus
contradicting the intuition linking total edge length and area.

– Fibonacci trees: (See Figure 18(d)) Order of performance: Separa-
tion, Path, Rings, Level. The intuition that low total edge length and
area generally go together is confirmed for the two best-performing
algorithms (Separation and Path), but contradicted for the two worst
performing algorithms (Rings and Level). The performances of Path
and Rings are similar.

– Unbalanced-to-the-left binary trees: (See Figure 18(e)) Order of per-
formance: Path, Separation, Level, Rings. In this situation, the in-
tuition that low total edge length and area go together is confirmed.
For example, Path exhibits better behavior than Separation for total
edge length, which complements the results from area. Also, Level
and Separation exhibit almost identical behavior for total edge length,
while Level produces an area exponentially higher than Separation.

– Unbalanced-to-the-right binary trees: (See Figure 18(f)) Order of per-
formance: Separation, Path, Level, Rings. The intuition that the per-
formance on area and total edge length produce similar results is not
confirmed; Path performed the best for area, here Separation is best.
Within their order of performance, the behavior of the algorithms
individually increase at a constant rate with respect to the number
of nodes.

– Molecular combinatory binary trees: (See Figure 18(g)) Order of per-
formance: Path, Separation, Level, Rings. Again, the intuition in
coupling total edge length and area is confirmed. Within their order
of performance, the behaviors of Path and Separation individually
increase at a constant rate with respect to the number of nodes, and
the performance of Level grows exponentially.

• Maximum Edge Length: (See Figure 19)

– Complete binary trees: (See Figure 19(a)) Order of performance:
Rings, Separation, Path, Level. The performance of Level for maxi-
mum edge length grows very quickly in comparison to the other algo-
rithms. The difference between the maximum edge lengths produced
by Rings and those produced by Separation grows slowly, and the
difference between Separation and Path grows fast for small trees but
narrows rapidly for large trees. For the last value of n (n = 65, 535),
maximum edge length for Path is three times that of Rings and max-
imum edge length for Separation is twice that of Rings.

– AVL trees: (See Figure 19(b)) Order of performance: Rings, Sepa-
ration, Path, Level. The behavior of Path behaves in a non-linear
fashion. Also, Level exhibits behavior much worse than the others.
Separation and Rings produce very good results and the difference
between their performances seem to grow very slowly.
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– Randomly-generated binary trees: (See Figure 19(c)) Order of per-
formance: Separation, Path, Rings, Level. Again, Level produces
unsatisfactory results, and quickly becomes prohibitive to use. The
performance of Rings is better than the performance of Path up to n
at about 30, 000, after which Path outperforms Rings. The behavior
of Separation grows slowly.

– Fibonacci trees: (See Figure 19(d)) Order of performance: Separa-
tion, Path, Rings, Level. Separation and Path have almost identical
behavior and Rings grows much faster. Also, again, Level exhibits
behavior much worse than the others.

– Unbalanced-to-the-left binary trees: (See Figure 19(e)) Order of per-
formance: Level, Path, Separation, Rings. Quite surprisingly, Level
produces almost constant maximum edge length. Moreover, it is very
low. Path also produces steady results. Separation exhibits a much
faster growing behavior.

– Unbalanced-to-the-right binary trees: (See Figure 19(f)) Order of per-
formance: Separation, Level, Path, Rings. Very surprisingly, Separa-
tion, Path, and Level produce similar, low, almost constant maximum
edge lengths.

– Molecular combinatory binary trees: (See Figure 19(g)) Order of per-
formance: Separation, Path, Level, Rings. To this point, the perfor-
mances on molecular combinatory binary trees and unbalanced trees
have been similar. Very interestingly, Level produces the worst max-
imum edge length, but for unbalanced binary trees Level produces
the best results. Initially, Path produces the best results, until about
n = 6, 000, at which point Separation overtakes Path while its own
rate of growth decreases.

• Uniform Edge Length: (See Figure 20)

– Complete binary trees: (See Figure 20(a)) Order of performance:
Rings, Separation, Path, Level. The performances agree with the in-
tuition that the performance for total edge length and uniform edge
length are similar. Rings and Separation produce very low, almost
constant values. Path exhibits a very interesting non-linear behavior,
with significantly worse values for the cases when the tree has 2i − 1
nodes, with i even.

– AVL trees: (See Figure 20(b)) Order of performance: Rings, Sepa-
ration, Path, Level. The performances of Rings and Separation are
very good: they almost mimic their performances on complete binary
trees. The results for Path do not have a consistent rate of change.

– Randomly-generated binary trees: (See Figure 20(c)) Order of perfor-
mance: Rings, Separation, Path, Level. The performances of Rings
and Separation are very similar to those on complete binary trees.
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With respect to the intuition low total edge length and uniform edge
length go together, Path exhibits a contradicting behavior.

– Fibonacci trees: (See Figure 20(d)) Order of performance: Separa-
tion, Path, Rings, Level. Separation outperforms all other algorithms,
while maintaining a nearly constant value. Path slightly outperforms
Rings.

– Unbalanced-to-the-left binary trees: (See Figure 20(e)) Order of per-
formance: Path, Level, Separation, Rings. Path has gone from one
of the poorer performing algorithms for uniform edge length to per-
forming the best. Level and Separation almost perform exactly the
same. Rings again exhibits unsatisfactory performance.

– Unbalanced-to-the-right binary trees: (See Figure 20(f)) Order of per-
formance: Separation, Path, Level, Rings. Surprisingly, Path and
Level seemed to have the same performance as in unbalanced-to-the-
left binary trees, where Separation became noticeably better.

– Molecular combinatory binary trees: (See Figure 20(g)) Order of Per-
formance: Separation, Path, Level, Rings. Level performs very poorly.
Path quickly becomes prohibitive. Interestingly, the intuition that to-
tal edge length and uniform edge length go together is not confirmed
in this case: while the total edge length for Separation is slightly
larger (almost identical) than the one for Path, the uniform edge
length for Path grows much faster than the one for Separation.

• Angular Resolution: (See Figure 21)

– Complete binary trees: (See Figure 21(a)) Order of performance:
Rings, Path, Separation, Level. Path and Rings have not been con-
sidered in the analysis of angular resolution, because Path and Rings
only draw binary trees using 90◦ and 180◦ angles. Separation provides
good angular resolution, because of constant angles of 90◦. Level be-
gins very poorly and as n increases Level angular resolution becomes
more severe.

– AVL trees: (See Figure 21(b)) Order of performance: Rings, Path,
Separation, Level. Similarly, the results resemble closely to complete
binary trees. Once again, Separation reaches the optimal angular
resolution value.

– Randomly-generated binary trees: (See Figure 21(c)) Order of per-
formance: Rings, Path, Separation, Level. Separation produces no
angles less than 45◦. Again, Level is increasingly prohibitive.

– Fibonacci trees: (See Figure 21(d)) Order of performance: Rings,
Path, Separation, Level. Separation has all values of 90◦. The con-
sistency of Level being the worst is confirmed.
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– Unbalanced-to-the-left binary trees: (See Figure 21(e)) Order of per-
formance: Rings, Path, Separation, Level. Separation has good angu-
lar resolution for lower values of n, but then becomes worse for larger
tree sizes. Level again exhibits unsatisfactory performance.

– Unbalanced-to-the-right binary trees: (See Figure 21(f)) Order of per-
formance: Rings, Path, Separation, Level. Results mimic that of its
opposite tree-type unbalanced-to-the-left.

– Molecular combinatory binary trees: (See Figure 21(g)) Order of Per-
formance: Rings, Path, Separation, Level. Similar to unbalanced bi-
nary trees, Level produces poor angular resolution. Also, for Separa-
tion, the angular resolution is good for all sizes of trees, with constant
angular resolution of 45◦.

• Closest Leaf: (See Figure 22)

– Complete binary trees: (See Figure 22(a)) Order of performance:
Rings, Separation, Path, Level. In general, all algorithms place at
least one leaf close to the root. For example, for n = 65, 535, the
longest distance between the root and the closest leaf is 15.03 in the
case of Level. Interestingly, Rings always places a leaf very close to
the root at a constant distance of 1.41. Separation, Path, and Level
place the closest leaf increasingly farther away from the root, grow-
ing at a very slow rate, with the distance between the root and the
closest leaf for Level growing faster than the one for Separation and
Path. Separation and Path exhibit almost identical behavior.

– AVL trees: (See Figure 22(b)) Order of performance: Rings, Path,
Separation, Level. The distance to the closest leaf for Level and Path
slowly increases as n increases. The performance of Separation is
very similar to Path. Also, Level and Path exhibit similar behaviors
as in the case of complete and random binary trees. Again, Rings
always places a leaf at distance 1.41 from the root all of the time.

– Randomly-generated binary trees: (See Figure 22(c)) Order of per-
formance: Path, Separation, Level, Rings. The performances of Path
and Level have similar rates of growth, with Path producing almost
two times better results. Level and Separation provide almost identi-
cal results. In contrast, Rings performs poorly, becoming seven times
larger than Path at n = 30, 000.

– Fibonacci trees: (See Figure 22(d)) Order of performance: Path,
Separation, Level, Rings. Rings places leaf nodes far from the root
compared to the other algorithms, and the performance grows very
quickly. Again, Separation, Level, and Path produce almost constant
results, with Separation and Level exhibiting almost identical behav-
ior.

– Unbalanced-to-the-left binary trees: (See Figure 22(e)) The order of
performance alternates for different tree sizes, but in general is: Path,
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Separation, Level, Rings. All algorithms place the closest leaf at
increasing distance from the root, with their performance non-linear.
The performance of Path and Separation are almost identical, and
that of Level significantly worse.

– Unbalanced-to-the-right binary trees: (See Figure 22(f)) Order of per-
formance: Path, Level, Separation, Rings. The relationship between
the performances of Level, Path, and Separation maintain the same
behavior (good and bad) as n increases. For larger values of n, all
algorithms experience a decrease in rate change.

– Molecular combinatory binary trees: (See Figure 22(g)) Order of per-
formance: Path, Separation, Level, Rings. The performance of Level
becomes worse very fast. Very interestingly, Path always places a
leaf at a distance of 2.24 from the root. Similarly, Separation always
places a leaf at a distance of 3.61 from the root.

• Farthest Leaf: (See Figure 23)

– Complete binary trees: (See Figure 23(a)) Order of performance:
Rings, Separation, Path, Level. While the performances of Path,
Rings, and Separation are very good, with a very slow growth rate,
the performance of Level is unsatisfactory.

– AVL trees: (See Figure 23(b)) Order of performance: Rings, Separa-
tion, Path, Level. The performances of the algorithms on this mea-
sure are almost identical to their respective performances on complete
trees, except Path is slightly worse.

– Randomly-generated binary trees: (See Figure 23(c)) Order of perfor-
mance: Separation, Path, Rings, Level. Surprisingly, both Separation
and Rings perform just slightly worse on randomly-generated binary
trees compared to complete trees. Performances of Path and Rings
are almost identical. Again, the distance to the farthest leaf grows
much faster for Level than for Path, Separation and Rings.

– Fibonacci trees: (See Figure 23(d)) Order of performance: Separa-
tion, Path, Rings, Level. For Separation and Path the same pattern
remains. On the other hand, Rings still remains better than Level,
but the rate of growth in Rings has increased. Level exhibits the
same unsatisfactory behavior.

– Unbalanced-to-the-left binary trees: (See Figure 23(e)) Order of per-
formance: Path, Separation, Level, Rings. Interestingly, the perfor-
mances of the algorithms closely resemble that of the previous two
tree-types.

– Unbalanced-to-the-right binary trees: (See Figure 23(f)) Order of per-
formance: Path, Separation, Level, Rings. A pattern has formed in
the performances of the algorithms. The results in unbalanced-to-
the-left trees closely mimic that of unbalanced-to-the-right trees.
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– Molecular combinatory binary trees: (See Figure 23(g)) Order of per-
formance: Separation, Path, Level, Rings. As the case in all categories
of binary trees, Level rapidly becomes prohibitive. Separation pro-
duces satisfactory results and the behavior of Path is approximately
three times worse than Separation. Very interestingly, the intuition
that short maximum edge length and close farthest leaf go together
is verified in the case of molecular combinatory binary trees, but not
verified in the case of unbalanced trees.

4.2 Conclusions

After evaluating the performances of Level, Path, Rings, and Separation, we
have reached the following conclusions:

• Quality measure Area:

– Separation produces best results for randomly-generated and Fibonacci
trees. The drawings that Separation constructs in these cases, also
achieve optimal aspect ratios.

– Rings produces excellent results for complete binary trees and AVL
trees. Its performance degrades dramatically for other types to trees.
For randomly-generated binary trees, its behavior is the worst of the
four algorithms. For unbalanced binary trees, the area produced was
so large that it could not be used for comparison.

– Path produces excellent results for unbalanced and molecular com-
binatory binary trees. These results come at the expense of a very
low aspect ratio. Path may produce drawings of these types of trees,
with aspect ratio close to optimal, but in this case, its performance
is comparable to that of Separation.

– Level always produces results worse than Path and Separation.

• Quality measure Aspect Ratio:

– Since the aspect ratio of the drawings produced by Separation is
user-controlled, this algorithm always achieves an aspect ratio close
to optimal. This may come at the expense of a slightly larger area.

– Generally, Path produces aspect ratios close to optimal. This comes
at the expense of a larger area. For unbalanced-to-the-right binary
trees, AVL trees, Fibonacci trees, and molecular combinatory trees,
the aspect ratios produced degrade quickly and become unsatisfac-
tory.

– For the cases in which can be plotted (complete, randomly-generated,
AVL, and Fibonacci trees), Rings always produces aspect ratios over
0.5, and many times it achieves optimality.

– Level always produces unsatisfactory results.
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• Quality measure Size:

– Separation performs well on all categories of trees and produces the
best results on randomly-generated, unbalanced-to-the-left, AVL, Fi-
bonacci, and molecular combinatory binary trees.

– Path performs best on unbalanced-to-the-right, well on Fibonacci
trees, and worst on randomly-generated and molecular combinatory
binary trees.

– Rings performs best on complete and unbalanced-to-the-left binary
trees, and worst on randomly-generated and Fibonacci trees.

– Level produces unsatisfactory results for all categories of trees.

• Quality measures Total Edge Length and Average Edge Length:

– Rings produces best results for complete and AVL binary trees.

– Separation produces best results for randomly-generated, Fibonacci,
and unbalanced-to-the-right binary trees.

– Path produces best results for unbalanced-to-the-left and molecular
combinatory binary trees.

– Level produces worst results in all categories except for unbalanced-
to-the-right binary trees.

• Quality measure Maximum Edge Length:

– Separation performs best on randomly-generated, Fibonacci, and molec-
ular combinatory binary trees, and unbalanced-to-the-right binary
trees.

– Path performs worst on randomly-generated binary trees, best on
unbalanced-to-the-left binary trees, and well on the other categories
of trees.

– Level produces very good results for unbalanced binary trees, and
very bad results for all other categories of trees.

– Rings performs best on complete and AVL binary trees, and well
on the other types of trees (with the exception of unbalanced and
molecular combinatory trees where we could not have a plot).

• Quality measures Uniform Edge Length:

– Rings produces very good results for all categories of trees.

– Separation produces good results for all categories of trees, with the
best results on Fibonacci, unbalanced-to-the-right, and molecular
combinatory binary trees.

– Path performs best on unbalanced binary trees, well on random bi-
nary trees, and poorly on Complete and AVL binary trees.
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– Level performs best on unbalanced binary trees, and very poorly on
all other categories of trees.

• Quality measures Angular Resolution:

– Separation performs the best on complete, AVL, Fibonacci, and molec-
ular combinatory binary trees, well on randomly-generated binary
trees, and unsatisfactory on unbalanced binary trees.

– Rings produces optimal results for all trees except unbalanced binary
trees.

– Path produces orthogonal drawings. Therefore, in all cases, the draw-
ings produced by Path have at least a 90◦ separation between the
edges connecting a parent-node to its children.

– Level produces bad results for all categories of trees.

• Quality measure Closest Leaf:

– Path produces excellent results on all types of trees, with its best per-
formance on Fibonacci trees, and its worse performance on complete
binary trees.

– Rings produces excellent results on complete and AVL trees and
worse, unsatisfactory results on Fibonacci and unbalanced binary
trees.

– Separation produces best results for molecular combinatory binary
trees and very good results for all other types of trees, except for
unbalanced-to-the-right binary trees, on which it produces its worse
results.

– Level performs best on unbalanced and Fibonacci trees and worst on
AVL, complete, and randomly-generated binary trees.

• Quality measure Farthest Leaf:

– Separation produces very good results on all categories of trees. Its
best performance is on complete, AVL, and molecular combinatory
binary trees, and its worse performance is on unbalanced-to-the-right
binary trees.

– Path produces good results for tree-types, with its best being for
unbalanced binary trees.

– Rings performs best on complete and AVL trees, and worst on un-
balanced and Fibonacci trees.

– Level performs worse than the other algorithms for all categories of
trees. The performance of Level is not satisfactorily on any category
of trees.
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Overall, if the aspect ratio of the drawing is important, Separation is the
algorithm which achieves best results in the majority of the aesthetics, with the
worst results coming for unbalanced-to-the-right binary trees. This is because
Separation always places the root in the top-left corner, thus making more dif-
ficult to place the rest of the nodes. If the aspect ratio is not important, then
Rings should be the choice for AVL and complete binary trees, Path should be
the choice for unbalanced binary trees, and Separation should be the choice for
Fibonacci and molecular combinatory trees.

5 Adaptive Tree Drawing System

The lack of a single algorithm performing the best for all quality measures has
lead us to design an adaptive system comprised of the four previously mentioned
algorithms. Since it is necessary to know the type of a binary tree before being
able to select an algorithm to draw it, our adaptive tree drawing system first
analyzes the tree to classify it as a specific type and then selects an algorithm
to draw it with respect to user-specified quality measures. The algorithm that
is selected to draw a given tree is based upon the experimental comparison (See
Section 4.1), which orders the performance of the algorithms for each quality
measure. When the selected algorithm is Path or Separation, the system also
uses a lookup table to find the best input parameters for the quality measures.

5.1 System Components

Our system is composed of approximately 5, 000 lines of code, the majority
of which is C++ code. The user interface is implemented in Java. All of
the underlying algorithms, including the tree-type determination algorithm, are
implemented in C++. The Java and C++ portions of the system interact with
each other through a series of system calls.

The four algorithms for producing planar straight-line grid drawings of bi-
nary trees used by our system are described in Section 2. Our binary trees
database consists of the same trees included in Section 3.2, but any other tree is
accepted as input. The quality measures defined in Section 3.3 can be selected
within our system.

5.2 User Interface

Our system provides a simple interface for visualizing binary trees with respect
to user-specified quality measures (See Figure 11).

The first step is to select a tree to visualize. The tree is stored in a file
following the format described in Section 3.1. After selecting a tree, the user
can then choose one, two, or three quality measures that the specified tree should
be drawn with respect to.

The user then submits their selection and a drawing of the specified tree is
displayed (See Figure 12).
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Figure 11: The selection screen with quality measures angular resolution, area,
and closest leaf selected.

Figure 12: The drawing of the specified tree with respect to the specified quality
measures.

5.3 Type Determination Algorithm

We denote by n(v) the number of nodes in the tree rooted at node v, h(v) the
height of the tree rooted at node v, lt(v) the subtree rooted at the left child of
node v, rt(v) the subtree rooted at the right child of node v, l(v) the number of
left children in the tree rooted at node v, and r(v) the number of right children
in the tree rooted at node v.

We give below pseudocode for the type determination algorithm. Our tree-
type determination algorithm is correct since the type tests are based upon the
definition of each of the tree types.

Algorithm DetermineType

Input: An input file containing a binary tree T with root node v stored in the
format described in Section 3.1.

Output: One of the following strings describing the type of the binary tree:
“complete”, “unbalanced left”, “unbalanced right”, “Fibonacci”,
“AVL”, or “random”.

if h(v) = log2(n(v) + 1) then return “complete”.

else if T is AVL-balanced then {
if lt(v) is Tn−1 and rt(v) is Tn−2 then return “Fibonacci”
else return “AVL”
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}
else if n(v)/log2(n(v)) < h(v) then {

if l(v) < r(v) then return “unbalanced right”
else return “unbalanced left”

}
else return “random”;

end Algorithm.
Our system was given each tree in our test suite for identification. The tree

type was correctly identified in every case. If the tree does not fall into any
of the known categories, then the tree is considered random. A more relaxed
criteria for classifying unknown types of trees, such as classifying trees based on
structural similarities (instead of matchings) with known types, has the potential
of producing better results.

Comparing the height of the tree with the value log2(n(v) + 1) takes O(1)
time. Therefore, determining if a given binary tree is complete takes O(1) time.
Determining if a tree is AVL-balanced by checking if the height of the left and
right subtrees of a given binary tree differ by no more than one is O(n(v)) since
every node is visited. The time complexities for the tests for determining if a
given binary tree is a Fibonacci tree is O(n(v)). If a binary tree is determined to
be AVL-balanced, but is not Fibonacci, it is considered an AVL tree. The time
complexities for the tests for determining if a given binary tree is an unbalanced
tree are as follows: Calculating n(v)/log2(n(v)) < h(v) is O(1). Comparing l(v)
and r(v) is O(1). Overall, determining if a given binary tree is unbalanced-to-
the-left or unbalanced-to-the-right takes O(1) time. If a tree is random, then
the complexity to come to this decision is O(1). The time complexity of the
entire tree-type determination algorithm is the sum of the complexities of the
previous tests, O(n(v)).

5.4 Type Determination Results

Once the type of T is determined, one of the four algorithms is chosen to draw
T . The type of the tree and the user-specified quality measures are used to
determine which algorithm to use when creating the drawing of T . When mul-
tiple quality measures are specified, we keep track of a weight (initially 0) for
each algorithm and add to the weight depending upon the order of performance
for the quality measure. Our general weighting function can be defined as fol-
lows: given the type of binary tree and a set of n specified quality measures, the

weight given to a specific algorithm is
n∑

i=0

MAX WEIGHT
2Rank(Algorithm,tree type,quality measures[i]) ,

where Rank(Algorithm, tree type, quality measures[i]) returns the position of
the specified algorithm in the order of performance for the specified tree type
and quality measure. In our case, our system uses four algorithms, so the pos-
sible ranks for a given algorithm are 0, 1, 2, and 3, with 0 being the best rank.
MAX WEIGHT is also determined by the number of algorithms in our system.
In our case, MAX WEIGHT is 8, which ensures a unique weight for every al-
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gorithm for every specified quality measure. A more specific weight function
may be chosen by the user if it pertains to their application. For example,
Rings produces the best area for complete trees, followed by Separation, Path,
and Level, in that order. If one of the specified quality measures was Area, then
the weight associated with Rings would be increased by 8, the weight associated
with Separation would be increased by 4, the weight associated with Path would
be increased by 2, and the weight associated with Level would be increased by
1. Once all specified quality measures are processed, the algorithm with the
largest weight is selected to draw the tree.

In the case of the molecular combinatory trees, each tree was identified as
Random. We took one tree of each of the six types and specified each quality
measure to determine which algorithm the system would choose. The algorithm
with the optimal performance for the specified tree and quality measure was
selected in every case. Also, when more than one quality measure was selected,
the weights for each algorithm chose the algorithm best suited to draw the tree
with respect to all specified quality measures. For example, a complete binary
tree with selected quality measures Aspect Ratio and Size gives Separation a
weight of 12, Path a weight of 6, Level a weight of 3, and Rings a weight of 9,
which results in the tree being drawn using Separation (See Figure 13).

Figure 13: The drawing generated for a complete tree with 127 nodes with user-
specified quality measures of Aspect Ratio and Size. The Separation algorithm
was selected to create this drawing.

Specifying a third quality measure of Closest Leaf results in new weights
of 16 for Separation, 8 for Path, 4 for Level, and 17 for Rings, making Rings the
drawing algorithm of choice (See Figure 14).

6 Conclusion and Future Work

Many years of tree drawing research has produced a diverse setting. Exper-
imental studies are important to determine the performance of tree drawing
algorithms in real-life applications. In our study, we have experimented with
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Figure 14: The drawing generated for a complete tree with 127 nodes with user-
specified quality measures of Aspect Ratio, Size, and Closest Leaf. The Rings
algorithm was selected to create this drawing.

four different algorithms: separation-based algorithm by Garg and Rusu [16],
path-based algorithm by Chan et al. [8], level-based algorithm by Reingold and
Tilford [25], and ringed circular layout algorithm by Teoh and Ma [33]. In gen-
eral, the algorithms under evaluation exhibit various tradeoffs with respect to
the quality measures analyzed, and, in general, none of them perform the best
for all categories. The results of our experimental study allowed us to develop an
adaptive tree drawing system, which outperforms any single drawing algorithm,
by always choosing the best available method of drawing, under the settings of
the experimental study. A single algorithm only performs well on specific tree
types for specific quality measures. Our adaptive tree drawing system, however,
has the potential to perform well on all tree types for a limitless number of
quality measures with further enhancements and additional algorithms to select
from.

We plan to generate other special types of binary trees, such as k-balanced
trees, and extend our study to include algorithms specifically designed for them.
We also plan to implement algorithms specifically designed for AVL and Fi-
bonacci trees. For example, if the tree is Fibonacci, (AVL, complete), [10, 34]
([11, 10], respectively) give algorithms for constructing planar straight-line grid
drawings with linear area. Also, if the tree belongs to a certain category of
balanced trees that includes k-balanced trees, [32] gives an algorithm for con-
structing a planar straight-line drawing in O(n log log n) area, where n is the
number of nodes in the tree.

All four algorithms used in our experimental study use a divide and conquer
methodology in generating drawings for binary trees. Hence, each algorithm
divides the entire tree into smaller subtrees and then draws them recursively.
The algorithms create the drawing of the entire tree by connecting the drawings
for the subtrees back together. The above considerations suggest the notion of a
hybrid strategy that dynamically substitutes different algorithms when drawing
separate subtrees of an entire tree. We plan to implement a hybrid tree drawing
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algorithm and perform an experimental study, then compare its performance
against the four tree drawing algorithms described in this paper.

We believe our approach has the potential of opening a new research area
in graph drawing, in which smarter, and thus better, algorithms may be devel-
oped by drawing parts of a graph based upon what the system infers from the
information stored in the database.
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Figure 15: Comparison charts of the area for Level, Path, Rings, and Separation,
for each tree-type: (a) Complete binary trees, (b) AVL trees, (c) Randomly-
generated binary tree, (d) Fibonacci trees, (e) Unbalanced-to-the-left binary
trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular Combinatory bi-
nary trees.
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(figure continued from the previous page)

(g)

Figure 16: Comparison charts of the aspect ratio for Level, Path, Rings, and
Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees, (c)
Randomly-generated binary tree, (d) Fibonacci trees, (e) Unbalanced-to-the-left
binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular Combina-
tory binary trees.
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Figure 17: Comparison charts of the size for Level, Path, Rings, and Separation,
for each tree-type: (a) Complete binary trees, (b) AVL trees, (c) Randomly-
generated binary tree, (d) Fibonacci trees, (e) Unbalanced-to-the-left binary
trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular Combinatory bi-
nary trees.
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Figure 18: Comparison charts of the total edge length for Level, Path, Rings,
and Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees,
(c) Randomly-generated binary tree, (d) Fibonacci trees, (e) Unbalanced-to-
the-left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular
Combinatory binary trees.
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Figure 19: Comparison charts of the maximum edge length for Level, Path,
Rings, and Separation, for each tree-type: (a) Complete binary trees, (b) AVL
trees, (c) Randomly-generated binary tree, (d) Fibonacci trees, (e) Unbalanced-
to-the-left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular
Combinatory binary trees.
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Figure 20: Comparison charts of the uniform edge length for Level, Path, Rings,
and Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees,
(c) Randomly-generated binary tree, (d) Fibonacci trees, (e) Unbalanced-to-
the-left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular
Combinatory binary trees.
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(figure continued from the previous page)

Figure 21g

(g)

Figure 21: Comparison charts of the angular resolution for Level, Path, Rings,
and Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees,
(c) Randomly-generated binary trees, (d) Fibonacci trees, (e) Unbalanced-to-
the-left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular
Combinatory binary trees.
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Figure 22: Comparison charts of the closest leaf for Level, Path, Rings, and
Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees, (c)
Randomly-generated binary trees, (d) Fibonacci trees, (e) Unbalanced-to-the-
left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular Com-
binatory binary trees.
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Figure 23: Comparison charts of the farthest leaf for Level, Path, Rings, and
Separation, for each tree-type: (a) Complete binary trees, (b) AVL trees, (c)
Randomly-generated binary trees, (d) Fibonacci trees, (e) Unbalanced-to-the-
left binary trees, (f) Unbalanced-to-the-right binary trees, (g) Molecular Com-
binatory binary trees.


