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Abstract

In a convex drawing of a plane graph, all edges are drawn as straight-
line segments without any edge-intersection and all facial cycles are drawn
as convex polygons. In a convex grid drawing, all vertices are put on grid
points. A plane graph G has a convex drawing if and only if G is internally
triconnected, and an internally triconnected plane graph G has a convex
grid drawing on an (n− 1)× (n− 1) grid if either G is triconnected or the
triconnected component decomposition tree T (G) of G has two or three
leaves, where n is the number of vertices in G. In this paper, we show
that an internally triconnected plane graph G has a convex grid drawing
on a 2n × n

2 grid if T (G) has exactly four leaves. We also present an
algorithm to find such a drawing in linear time. Our convex grid drawing
has a rectangular contour, while most of the known algorithms produce
grid drawings having triangular contours.
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1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [13]. The most typical drawing of a plane graph is a straight line
drawing, in which all edges are drawn as straight line segments without any
edge-intersection. A straight line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. One can find a convex drawing of a
plane graph G in linear time if G has one [3, 4, 13].

A straight line drawing of a plane graph is called a grid drawing if all vertices
are put on grid points of integer coordinates. This paper deals with a convex grid
drawing of a plane graph. Throughout the paper we assume for simplicity that
every vertex of a plane graph G has degree three or more. Then G has a convex
drawing if and only if G is “internally triconnected,” that is, G can be extended
to a triconnected graph by adding a vertex in the outer face and joining it to
all outer vertices [11, 15]. One may thus assume without loss of generality that
G is internally triconnected. If either G is triconnected or the “triconnected
component decomposition tree” T (G) of G has two or three leaves, then G has
a convex grid drawing on an (n − 1) × (n − 1) grid and such a drawing can be
found in linear time, where n is the number of vertices of G [1, 2, 10]. However,
it has not been known whether G has a convex grid drawing of polynomial size
if T (G) has four or more leaves. Figure 1(a) depicts an internally triconnected
plane graph G, Fig. 2(b) the triconnected components of G, and Fig. 2(c) the
triconnected component decomposition tree T (G) of G, which has four leaves
l1, l2, l3 and l4.

In this paper, we show that an internally triconnected plane graph G has
a convex grid drawing on a 2n × n2 grid if T (G) has exactly four leaves, and
present an algorithm to find such a drawing in linear time. The algorithm is
outlined as follows: we first divide a plane graph G into an upper subgraph Gu

and a lower subgraph Gd as illustrated in Fig. 1(b) for the graph in Fig. 1(a);
we then construct “inner” convex grid drawings of Gu and Gd by a so-called
shift method as illustrated in Figs. 1(c) and (d); we finally extend these two
drawings to a convex grid drawing of G as illustrated in Fig. 1(e). This is
the first algorithm that finds a convex grid drawing of such a plane graph G

in a grid of polynomial size. The size 2n × n2 of our convex grid drawing is
larger than the size (n− 1)× (n− 1) of a convex grid drawing of a triconnected
plane graph obtained by previously known algorithms [1, 2, 5]. It is known
that every triconnected plane graph has a “strict convex grid drawing” of size
O(n7/3)×O(n7/3) in which all facial cycles are drawn as strictly convex polygons
[14]. It is also known that every internally triconnected plane graph has a grid
drawing of size (n − 1) × (n − 2) in which all inner facial cycles are drawn as
convex polygons although the outer facial cycle is not necessarily drawn as a
convex polygon [2, 13]. Our convex grid drawing has a rectangular contour,
while most of the previously known algorithms except those in [8, 12] produce
a grid drawing having a triangular contour [1, 2, 5, 6, 10, 17].

The remainder of the paper is organized as follows. In Section 2 we give
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Figure 1: (a) Plane graph G, (b) upper subgraph Gu and lower subgraph Gd,
(c) inner convex drawing Du of Gu, (d) inner convex drawing Dd of Gd, and (e)
convex grid drawing D of G.



200 Miura, Kamada, Nishizeki Convex Grid Drawings of Plane Graphs...

(a) (b)

(c)

a3

a1

a2

a4

s1 , s8

s2 s3

s4

s5

s6s7

u4

l1 l2

l3l4

Figure 2: (a) Split components of the graph G in Fig. 1(a), (b) triconnected
components of G, and (c) decomposition tree T (G).
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some definitions and known lemmas. In Section 3 we explain an algorithm for
Gu and Gd. In Section 4 we present our convex grid drawing algorithm. Finally
we conclude in Section 5. An early version of the paper was presented at [9].

2 Preliminaries

In this section, we give some definitions and known lemmas.
A W ×H integer grid consists of W +1 regular vertical grid lines and H +1

regular horizontal grid lines, and has a rectangular contour. We call W and H

the width and height of the integer grid, respectively. We denote by W (D) the
width of a minimum integer grid enclosing a grid drawing D of a graph, and by
H(D) the height of D.

We denote by G = (V, E) an undirected connected simple graph with vertex
set V and edge set E. We often denote the set of vertices of G by V (G) and
the set of edges by E(G). Throughout the paper we denote by n the number of
vertices in G. An edge joining vertices u and v is denoted by (u, v). The degree
of a vertex v in G is the number of neighbors of v in G.

A plane graph G divides the plane into connected regions, called faces. The
infinite face is called an outer face, and the others are called inner faces. The
boundary of a face is called a facial cycle. A cycle is represented by a clockwise
sequence of the vertices in the cycle. We denote by Fo(G) the outer facial cycle
of G. A vertex on Fo(G) is called an outer vertex, while a vertex not on Fo(G) is
called an inner vertex. In a convex drawing of a plane graph G, all facial cycles
must be drawn as convex polygons. The convex polygonal drawing of Fo(G) is
called the outer polygon. We call a vertex of a polygon an apex in order to avoid
the confusion with a vertex of a graph.

We call a vertex v of a connected graph G a cut vertex if its removal from
G results in a disconnected graph, that is, G− v is not connected. A connected
graph G is biconnected if G has no cut vertex. We call a pair {u, v} of vertices
in a biconnected graph G a separation pair if its removal from G results in a
disconnected graph, that is, G − {u, v} is not connected. A biconnected graph
G is triconnected if G has no separation pair. A biconnected plane graph G

is internally triconnected if, for any separation pair {u, v} of G, both u and
v are outer vertices and each connected component of G − {u, v} contains an
outer vertex. In other words, G is internally triconnected if and only if it can
be extended to a triconnected graph by adding a vertex in the outer face and
joining it to all outer vertices. If a biconnected plane graph G is not internally
triconnected, then G has a separation pair {u, v} as illustrated in Figs. 3(a)–(c)
and a “split graph” H contains an inner vertex other than u and v; in Fig. 3(a)
both u and v are inner vertices, in Fig. 3(b) one of u and v, say v, is an inner
vertex, and in Fig. 3(c) both u and v are outer vertices but a split graph H

contains no outer vertex other than u and v.
Let G = (V, E) be a biconnected graph, and let {u, v} be a separation pair

of G. Then, G has two subgraphs G′
1 = (V1, E

′
1) and G′

2 = (V2, E
′
2) satisfying

the following two conditions.
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Figure 3: Biconnected plane graphs which are not internally triconnected.

(a) V = V1

⋃

V2, V1

⋂

V2 = {u, v}; and

(b) E = E′
1

⋃

E′
2, E′

1

⋂

E′
2 = ∅, |E′

1| ≥ 2, |E′
2| ≥ 2.

For a separation pair {u, v} of G, G1 = (V1, E
′
1+(u, v)) and G2 = (V2, E

′
2+(u, v))

are called the split graphs of G with respect to {u, v}. The new edges (u, v)
added to G1 and G2 are called the virtual edges. Even if G has no multiple
edges, G1 and G2 may have. Dividing a graph G into two split graphs G1 and
G2 is called splitting. Reassembling the two split graphs G1 and G2 into G is
called merging. Merging is the inverse of splitting. Suppose that a graph G

is split, the split graphs are split, and so on, until no more splits are possible,
as illustrated in Fig. 2(a) for the graph in Fig. 1(a) where virtual edges are
drawn by dotted lines. The graphs constructed in this way are called the split
components of G. The graph in Fig. 1(a) has eleven split components illustrated
in Fig. 2(a). The split components are of three types: a triconnected graph; a
triple bond (i.e. a set of three multiple edges); and a triangle (i.e. a cycle of
length three). The triconnected components of G are obtained from the split
components of G by merging triple bonds into a bond and triangles into a ring,
as far as possible, where a bond is a set of multiple edges and a ring is a cycle.
Thus the triconnected components of G are of three types:

(a) a triconnected graph;

(b) a bond; and

(c) a ring.

The split components of G are not necessarily unique, but the triconnected
components of G are unique [7, 16]. Two triangles in Fig. 2(a) are merged into
a single ring, and hence the graph in Fig. 1(a) has ten triconnected components
as illustrated in Fig. 2(b).

Let T (G) be a tree such that each node corresponds to a triconnected com-
ponent Hi of G and there is an edge (Hi, Hj), i 6= j, in T (G) if and only if Hi

and Hj are triconnected components with respect to the same separation pair,
as illustrated in Fig. 2(c). We call T (G) a triconnected component decomposi-
tion tree or simply a decomposition tree of G [7, 16]. We denote by ℓ(G) the
number of leaves of T (G). Then ℓ(G) = 4 for the graph G in Fig. 1(a). (See
Fig. 2(c).) If G is triconnected, then T (G) consists of a single isolated node and
hence ℓ(G) = 1.
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The following three lemmas are known.

Lemma 1 [7] A decomposition tree T (G) of a graph G can be found in linear
time.

Lemma 2 [11] Let G be a biconnected plane graph in which every vertex has
degree three or more. Then the following three statements are equivalent to each
other:

(a) G has a convex drawing;

(b) G is internally triconnected; and

(c) both vertices of every separation pair are outer vertices, and a node of the
decomposition tree T (G) of G has degree two if it is a bond.

Lemma 3 [11] If a plane graph G has a convex drawing D, then the number
of apices of the outer polygon of D is no less than max{3, ℓ(G)}, and there is a
convex drawing of G whose outer polygon has exactly max{3, ℓ(G)} apices.

Since G is an internally triconnected simple graph and every vertex of G has
degree three or more, by Lemma 2 every leaf of T (G) is a triconnected graph.
Lemmas 2 and 3 imply that if T (G) has exactly four leaves, that is, ℓ(G) = 4
then the outer polygon of every convex drawing of G must have four or more
apices. Our algorithm obtains a convex grid drawing of G whose outer polygon
is a rectangle and hence has exactly four apices, as illustrated in Fig. 1(e).

In Section 3, we will present an algorithm to draw the upper subgraph Gu

and the lower subgraph Gd. (See Fig. 1(b).) The algorithm uses the follow-
ing “canonical decomposition.” Let G = (V, E) be an internally triconnected
plane graph, and let V = {v1, v2, · · · , vn}. Let v1, v2 and vn be three arbi-
trary outer vertices appearing counterclockwise on Fo(G) in this order. We
may assume that v1 and v2 are consecutive on Fo(G); otherwise, add a vir-
tual edge (v1, v2) to the original graph, and let G be the resulting graph. Let
Π = (U1, U2, · · · , Um) be an ordered partition of V into nonempty subsets
U1, U2, · · · , Um, where U1

⋃

U2

⋃

· · ·
⋃

Um = V and Ui

⋂

Uj = ∅ for any indices i

and j, 1 ≤ i < j ≤ m. We denote by Gk, 1 ≤ k ≤ m, the subgraph of G induced
by U1

⋃

U2

⋃

· · ·
⋃

Uk, and denote by Gk, 0 ≤ k ≤ m− 1, the subgraph of G in-
duced by Uk+1

⋃

Uk+2

⋃

· · ·
⋃

Um. Clearly, Gk = G − Uk+1

⋃

Uk+2

⋃

· · ·
⋃

Um

and G = Gm = G0. We say that Π is a canonical decomposition of G (with
respect to vertices v1, v2 and vn) if the following three conditions (cd1)–(cd3)
hold:

(cd1) Um = {vn}, and U1 consists of all the vertices on the inner facial cycle
containing edge (v1, v2).

(cd2) For each index k, 1 ≤ k ≤ m, Gk is internally triconnected.

(cd3) For each index k, 2 ≤ k ≤ m, all the vertices in Uk are outer vertices of
Gk, and
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(a) if |Uk| = 1, then the vertex in Uk has two or more neighbors in Gk−1

and has one or more neighbors in Gk when k < m, as illustrated in
Fig. 4(a); and

(b) if |Uk| ≥ 2, then each vertex in Uk has exactly two neighbors in Gk,
and has one or more neighbors in Gk, as illustrated in Fig. 4(b).

Uk Uk

Gk -1Gk - 1

(a) (b)

Figure 4: (a) Graphs Gk for which |Uk| = 1 and (b) |Uk| ≥ 2.

Although the definition of a canonical decomposition above is slightly dif-
ferent from the one given in [2], they are effectively equivalent with each other.
A canonical decomposition Π = (U1, U2, · · · , U11) with respect to vertices v1, v2

and vn of the graph in Fig. 5(a) is illustrated in Fig. 5(b).
The following lemma is known.

Lemma 4 [10] Assume that G is an internally triconnected plane graph and
ℓ(G) ≤ 3. Then one can find a canonical decomposition Π of G in linear time
if v1, v2 and vn are chosen as follows.
Case 1: ℓ(G) = 3.

In this case, from each of the three triconnected components corresponding
to leaves of T (G), we choose an arbitrary outer vertex of G which is not a vertex
of the separation pair of the component.
Case 2: ℓ(G) = 2.

In this case, we choose two vertices from the two leaves of T (G), similarly
to Case 1 above. We choose an arbitrary outer vertex of G other than them as
the third one.
Case 3: ℓ(G) = 1.

In this case, G is triconnected. We choose three arbitrary outer vertices of
G.

One can easily observe that Lemma 4 holds even if exactly one of the outer
vertices has degree two and the vertex is chosen as vn.

3 Pentagonal drawing

Let G be a plane graph having a canonical decomposition Π = (U1, U2, · · · , Um)
with respect to vertices v1, v2 and vn, as illustrated in Fig. 5(b). In this section,
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Figure 5: (a) An internally triconnected plane graph G(= G′
d
), (b) a canonical

decomposition Π of G, (c) a drawing Dm−1 of Gm−1, and (d) a pentagonal
drawing Dm of G.

we present a linear-time algorithm, called a pentagonal drawing algorithm, to
find a convex grid drawing of G with a pentagonal outer polygon, as illustrated
in Fig. 5(d). The algorithm is based on the so-called shift methods given by
Chrobak and Kant [2] and de Fraysseix et al. [5], and will be used by our convex
grid drawing algorithm to draw the lower subgraph Gd and the upper subgraph
Gu of G in Sections 4.2 and 4.3, respectively.

Let vl be an arbitrary vertex on the path going from v1 to vn clockwise on
Fo(G), and let vr(6= vl) be an arbitrary vertex on the path going from v2 to vn

counterclockwise on Fo(G), as illustrated in Fig. 5(a). Let Vl be the set of all
vertices on the path going from v1 to vl clockwise on Fo(G), and let Vr be the set
of all vertices on the path going from v2 to vr counterclockwise on Fo(G). Our
algorithm obtains a convex grid drawing of G whose outer polygon is a pentagon
with apices v1, v2, vr, vn and vl, as illustrated in Fig. 5(d). The pentagon has a
shape similar to a baseball home plate; the side v1v2 is horizontal, and the two
sides v1vl and v2vr are vertical and contain all vertices in Vl and Vr, respectively.
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(a) (b)
vr = v2v1

vl = vn

vl = v1 vr = v2

vn

Figure 6: (a) Convex grid drawings of G in Fig. 5(a) for the case where vl = v1

and vr = v2, and (b) for the case where vl = vn and vr = v2.

w1 = v1

wf

w2 Gk - 1

wg

wt = v2

Figure 7: Drawing Dk−1 of graph Gk−1.

However, vl may be v1 or vn, and vr may be v2 or vn, and hence the pentagon
may degenerate into a right-angled isosceles triangle as illustrated in Figs. 6(a)
and (b).

For each k, 2 ≤ k ≤ m, let Fo(Gk−1) = w1, w2, · · · , wt, where w1 = v1,
wt = v2, and w1, w2, · · · , wt appear clockwise on Fo(Gk−1) in this order, as
illustrated in Fig. 7.

We first obtain a drawing D1 of the subgraph G1 of G induced by all vertices
in U1. Let Fo(G1) = w1, w2, · · · , wt, w1 = v1, and wt = v2. We draw G1 as
illustrated in Fig. 8, depending on whether (v1, v2) is a real edge or not, w2 ∈ Vl

or not, and wt−1 ∈ Vr or not. (See Appendix for the details.)

Initialize:

Case 1: v1 and v2 are adjacent in an original graph G, that is, (v1, v2) is a real
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edge.

In this case we draw G1 as a trapezoid such that the bottom side has
length 2t− 2 and the two sides other than the top and bottom have slope
±1 or ±∞.

If w2 ∈ Vl and wt−1 6∈ Vr, then draw G1 as in Fig. 8(a);

If w2 6∈ Vl and wt−1 ∈ Vr, then draw G1 as in Fig. 8(b);

If w2 ∈ Vl and wt−1 ∈ Vr, then draw G1 as in Fig. 8(c);

If w2 6∈ Vl and wt−1 6∈ Vr, then draw G1 as in Fig. 8(d);

Case 2: Otherwise, that is, (v1, v2) is a virtual edge.

Draw G1 on a horizontal line segment of length 2t − 2, as in Fig. 8(e).

(b)

(e)

(a) (c) (d)
wtw1

w2

wt = v2w1 = v1

w2

wtw1

w2

wtw1

w2

w1

w2

wt

wt - 1 wt - 1 wt - 1 wt - 1

wt - 1

Figure 8: Drawings D1 of G1 (a)–(d) for Cases 1 and (e) for Case 2.

We then extend a drawing Dk−1 of Gk−1 to a drawing Dk of Gk for each
index k, 2 ≤ k ≤ m. Let Fo(Gk−1) = w1, w2, · · · , wt, w1 = v1, wt = v2, and
Uk = {u1, u2, · · · , ur}. By the condition (cd3) of a canonical decomposition, one
may assume that the vertices u1, u2, · · · , ur in Uk appear clockwise on Fo(Gk) in
this order and that the first vertex u1 and the last one ur in Uk have neighbors
in Gk−1. (See Fig. 4.) Let wp be the leftmost neighbor of u1, that is, wp is the
neighbor of u1 in Gk having the smallest index p, and let wq be the rightmost
neighbor of ur, as illustrated in Fig. 9.

Let wf be the vertex with the maximum index f among all the vertices wi,
1 ≤ i ≤ t, on Fo(Gk−1) that are contained in Vl. Let wg be the vertex with
the minimum index g among all the vertices wi, 1 ≤ i ≤ t, on Fo(Gk−1) that
are contained in Vr . Of course, 1 ≤ f < g ≤ t. We denote by 6 wi the interior
angle of apex wi of the outer polygon of Dk−1. We call wi a convex apex of the
polygon if 6 wi < 180◦. We denote the current position of a vertex v by P (v);
P (v) is expressed by its x- and y-coordinates as (x(v), y(v)). Assume that a
drawing Dk−1 of Gk−1 satisfies the following six conditions (sh1)–(sh6).
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(sh1) P (w1) = (0, 0) and P (wt) = (2nk−1 − 2, 0), where nk−1 = |V (Gk−1)|.

(sh2) x(w1) = x(w2) = · · · = x(wf ), x(wf ) < x(wf+1) < · · · < x(wg), x(wg) =
x(wg+1) = · · · = x(wt), where x(wi) is the x-coordinate of wi.

(sh3) Every edge (wi, wi+1), f ≤ i ≤ g − 1, has slope −1, 0, or 1.

(sh4) The Manhattan distance between any two grid points wi and wj , f ≤
i < j ≤ g, is an even number.

(sh5) Every inner face of Gk−1 is drawn as a convex polygon.

(sh6) Vertex wi, f + 1 ≤ i ≤ g − 1, has one or more neighbors in Gk−1 if wi is
a convex apex.

Indeed D1 satisfies the six conditions above. We extend Dk−1 to Dk so that
Dk satisfies them, as follows.

Before installing Uk to Dk−1, we shift (move to the left or right) some ver-
tices of Gk−1 as illustrated in Figs. 9(a)–(d). We first shift w1, w2, · · · , wp of
Gk−1 and some inner vertices of Gk to the left by distance |Uk|, and then shift
wq, wq+1, · · · , wt of Gk−1 and some inner vertices of Gk to the right by distance
|Uk|. After the operation, we shift all vertices of Gk−1 to the right by distance
|Uk| so that P (w1) = (0, 0). See Appendix for the details.

(d)(c)

(b)(a)

wp

wq

w1 wt

Gk - 1

Gk - 1

Gk - 1

Gk - 1

wg

wf

wp

wq

w1 wt

wg

wf

wp wq

w1 wt

wg

wf

wp wq

w1 wt

wg

wf

u1

u1

u1
u2 ur

u1 u2 ur

Figure 9: (a) Graphs Gk−1 for Case |Uk| = 1, (b) for Case |Uk| ≥ 2, (c) graphs
Gk for Case |Uk| = 1, and (d) for Case |Uk| ≥ 2.

Then, we install Uk to Dk−1 as follows. (See Appendix for the details.)
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Install Uk:

Case 1: |Uk| = 1.
If u1 ∈ Vl, then put the vertex u1 in Uk above wf = wp so that the edge
(u1, wq) has slope −1, as in Fig. 10(a);
If u1 ∈ Vr , then put u1 above wg = wq so that the edge (wp, u1) has slope
+1, as in Fig. 10(b);
If u1 6∈ Vl and u1 6∈ Vr, then put u1 on a grid point so that the edge
(wp, u1) has slope +1 and the edge (u1, wq) has slope −1, as in Fig. 10(c);

(a) (b) (c)

u1

wq

u1

wp

u1

wp wq

w1 wt w1 wt w1 wt

Gk -1 Gk - 1 Gk - 1

wp = wf wg

wf

wq = wg

wf wg

Figure 10: Installing Uk = {u1} to Dk−1.

Case 2: |Uk| ≥ 2.

Case (a): u1 ∈ Vl and ur 6∈ Vr.

If y(wq)− y(wp) is an odd number ≥ 1, then put the vertices u1, u2,

· · · , ur in Uk on a horizontal line of y-coordinate max{y(wp), y(wq)}+
1, as in Fig. 11(a);

Otherwise, put the vertices in Uk on a horizontal line of y-coordinate
max{y(wp), y(wq)} + 2, as in Fig. 11(a′);

Case (b): u1 6∈ Vl and ur ∈ Vr.

If y(wp) − y(wq) is an odd number ≥ 1, then put the vertices in
Uk on a horizontal line of y-coordinate max{y(wp), y(wq)} + 1, as in
Fig. 11(b);

Otherwise, put the vertices in Uk on a horizontal line of y-coordinate
max{y(wp), y(wq)} + 2, as in Fig. 11(b′);

Case (c): u1 ∈ Vl and ur ∈ Vr.

Put the vertices in Uk on a horizontal line of y-coordinate max{y(wp),
y(wq)} + 1, as in Fig. 11(c);

Case (d): u1 6∈ Vl and ur 6∈ Vr.

Put the vertices in Uk on a horizontal line of y-coordinate max{y(wp),
y(wq)} + 1, as in Fig. 11(d).
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(c)

(b)

(a)
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Figure 11: Installing Uk = {u1, u2, · · · , ur}, r ≥ 2, to Dk−1.

Clearly, the drawing Dk of Gk extended from Dk−1 satisfies conditions (sh1),
(sh2) and (sh3). One can prove similarly as in [5] that Dk satisfies condition
(sh4), and prove similarly as in [2] that Dk satisfies conditions (sh5) and (sh6).
One can easily show that the pentagonal drawing algorithm takes linear time.

We finally consider the width W = W (D) and height H = H(D) of the final
drawing D = Dm of G = Gm.

For each k, 1 ≤ k ≤ m, the drawing Dk of Gk satisfies conditions (sh1) and
(sh2), and hence we have

W (Dk) = 2nk − 2

where nk = |V (Gk)|. We thus have

W (D) = W (Dm) = 2n − 2.

Since n1 ≥ 3, we have

H(D1) ≤ 4 ≤ n2
1 − n1 − 2.
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One can easily observe from Figs. 10 and 11 that H(Dk) ≤ H(Dk−1) + W (Dk)
for each k, 2 ≤ k ≤ m. Noting nk = nk−1 + |Uk| ≥ nk−1 +1, one can inductively
prove that

H(Dk) ≤ n2
k − nk − 2.

Therefore we have

H(D) ≤ n2 − n − 2.

We thus have the following lemma.

Lemma 5 For a plane graph G having a canonical decomposition Π = (U1,

U2, · · · , Um) with respect to v1, v2 and vn, the pentagonal drawing algorithm
yields a convex grid drawing of G on a W × H grid with W = 2n − 2 and
H ≤ n2 − n − 2 in linear time. Furthermore, W (Dm−1) = 2nm−1 − 2 and
H(Dm−1) ≤ n2

m−1 − nm−1 − 2.

If vl = v1 and vr = v2, then the outer pentagon degenerates into a right-
angled isosceles triangle with 6 v1vnv2 = 90◦ and H = n − 1, as illustrated in
Fig. 6(a). Such a grid drawing is effectively the same as the one obtained by
the algorithm in [5].

If vl = vn and vr = v2, then the outer pentagon degenerates into a right-
angled isosceles triangle with 6 vnv1v2 = 90◦ and H = 2n − 2, as illustrated in
Fig. 6(b). Such a convex grid drawing is effectively the same as the one obtained
by the algorithm in [2].

Thus our pentagonal drawing algorithm is an extension of both the straight-
line drawing algorithm in [5] and the convex grid drawing algorithm in [2].

Let Π = (U1, U2, · · · , Um) be a canonical decomposition of the plane graph
G in Fig. 12(a). Then |U1| = 3, |U2| = |U3| = · · · = |Um| = 1, and m = n − 2.
Let n be an odd number, vl = vn, and vr = vn−1. Then, the pentagonal drawing
algorithm draws Gk as illustrated in Fig. 12(b), and the width W = 2n− 2 and
height H = n2 − n − 2 of G attains the bounds in Lemma 5.

4 Convex grid drawing algorithm

In this section we present a linear algorithm to find a convex grid drawing D of
an internally triconnected plane graph G whose decomposition tree T (G) has
exactly four leaves. Such a graph G does not have a canonical decomposition,
and hence none of the algorithms in [1], [2], [6] and [10] and the pentagonal
drawing algorithm in Section 3 can find a convex grid drawing of G. Our
algorithm draws the outer facial cycle Fo(G) as a rectangle as illustrated in
Fig. 1(e). The algorithm first divides G into an upper subgraph Gu and a lower
subgraph Gd as illustrated in Fig. 1(b), then draws Gu and Gd by using the
pentagonal drawing algorithm as illustrated in Figs. 1(c) and (d), and finally
combine these two drawings to a convex grid drawing of G as illustrated in
Fig. 1(e).
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(a) (b)

U3

U1

U2

U4

vn

v1 v2

vn-1

G3G1 G2 G4

Figure 12: (a) A graph G, and (b) drawings of G1, G2, G3 and G4.

4.1 Division

We first explain how to divide G into Gu and Gd. (See Figs. 1(a) and (b).)
One may assume that the four leaves l1, l2, l3 and l4 of T (G) appear clockwise

in T (G) in this order, as illustrated in Fig. 13. Clearly, either exactly one node
u4 of T (G) has degree four and each of the other non-leaf nodes has degree two
as illustrated in Fig. 13(a), or exactly two nodes ul3 and ur3 have degree three
and each of the other non-leaf nodes has degree two as illustrated in Fig. 13(b).
One may assume that, in Fig. 13(b), node ul3 is arranged to the left and node
ur3 to the right.

(a) (b)

u4

l1 l2

l3l4

ur3

l1 l2

l3l4

ul3

Figure 13: Decomposition trees T (G) (a) having a node of degree four and (b)
having two nodes of degree three.

Since each vertex of G is assumed to have degree three or more, all the four
leaves of T (G) are triconnected graphs. Moreover, according to Lemma 2, every
triconnected component of G having degree three or four in T (G) is either a
triconnected graph or a ring, while every bond has degree two in T (G). Thus
there are the following six cases (a)–(f) to consider.

(a) Node u4 is a triconnected graph as illustrated in Fig. 14(a);
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(b) Node u4 is a ring as illustrated in Fig. 14(b);

(c) Both of nodes ul3 and ur3 are triconnected graphs as illustrated in Fig. 14(c);

(d) Node ul3 is a triconnected graph and ur3 is a ring, as illustrated in
Fig. 14(d);

(e) Node ul3 is a ring and ur3 is a triconnected graph, as illustrated in Fig. 14(e);

(f) Both of nodes ul3 and ur3 are rings as illustrated in Fig. 14(f).

(a) (b)

(e) (f)

(c) (d)

u4s1

s1 s1

s4

s4

s4

s8

s8 s8

s5

s5

s5

u4

ul3
ur3

ul3
ur3 ul3

ur3

ul3
ur3

s2 s3

s5

s6s7

s8
s1 s4

s2 s3

s6s7

s2 s3

s5

s6s7

s8

s4

s2 s3

s6s7

s8

s1

s2 s3

s5

s6s7

s1 s4

s2 s3

s6s7

a1 a2

a3a4
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a2

a3a4

a1 a2

a3a4

a1 a2

a3a4

a1 a2

a3a4

a1 a2

a3a4

Figure 14: Graph G, decomposition and path P for Cases (a)–(f).

As the four apices of the rectangular contour of G, we choose four outer
vertices ai, 1 ≤ i ≤ 4, of G; let ai be an arbitrary outer vertex in the compo-
nent corresponding to leaf li that is not a vertex of the separation pair of the
component. The four vertices a1, a2, a3 and a4 appear clockwise on Fo(G) in
this order as illustrated in Fig. 1(a).

We then choose eight vertices s1, s2, · · · , s8 from the outer vertices of the
components u4, ul3 and ur3. Among these outer vertices, let s1 be the vertex
that one encounters first when one traverses Fo(G) counterclockwise from vertex
a1, and let s2 be the vertex that one encounters first when one traverses Fo(G)
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clockwise from a1, as illustrated in Figs. 1(a) and 14. (Thus, {s1, s2} is a
separation pair of G, and corresponds either to the edge of T (G) which is incident
to node u4 and lies on the path between u4 and leaf l1 in T (G) or to the edge
of T (G) which is incident to node ul3 and lies on the path between ul3 and l1.)
Similarly, we choose s3 and s4 for a2, s5 and s6 for a3, and s7 and s8 for a4.
Possibly s2 = s3, s4 = s5, s6 = s7, and s8 = s1.

We then show how to divide G into Gu and Gd.

a1
a2

a3a4

s1 , s8

s2 s3

s4

s5

s6s7

G

Figure 15: Graph G.

Consider all the inner faces of G that contain one or more vertices on the
path going from a1 to a2 clockwise on Fo(G). (All these faces for the graph G

in Fig. 1(a) are shaded in Fig. 15.) Let G′ be the subgraph of G induced by all
the vertices on these faces. Then Fo(G

′) is a simple cycle, which is drawn by
thick lines in Fig. 15. Clearly, Fo(G

′) contains vertices s1 and s4 in all Cases
(a)–(f), contains vertex s8 in Cases (b), (e) and (f), and contains vertex s5 in
Cases (b), (d) and (f). For Cases (a) and (c), let P be the path going from s1

to s4 counterclockwise on Fo(G
′), as illustrated in Figs. 1(a), 14(a) and 14(c)

where P is drawn by thick lines. For Cases (b) and (f), let P be the path going
from s8 to s5 counterclockwise on Fo(G

′), as illustrated in Figs. 14(b) and (f).
For Case (d), let P be the path going from s1 to s5 counterclockwise on Fo(G

′),
as illustrated in Fig. 14(d). For Case (e), let P be the path going from s8 to s4

counterclockwise on Fo(G
′), as illustrated in Fig. 14(e).

Let Gd be the subgraph of G induced by all the vertices on P or below
P , and let Gu be the subgraph of G obtained by deleting all vertices in Gd as
illustrated in Fig. 1(b). For every edge e of G that is contained neither in Gu

nor in Gd, one of the ends of e is on Fo(Gu) and the other is on Fo(Gd). Let
nd be the number of vertices of Gd, and let nu be the number of vertices of Gu.
Then nd + nu = n.

4.2 Drawing of Gd

We now explain how to draw Gd.
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Let G′
d

be a graph obtained from G by contracting all the vertices of Gu to
a single vertex w, as illustrated in Fig. 5(a) for the graph G in Fig. 1(a). Then
clearly G′

d
is biconnected. We now claim that G′

d
is internally triconnected.

Suppose for a contradiction that G′
d is not internally triconnected. Then G′

d

has a separation pair {u, v} for which there is a split graph H illustrated in
Figs. 3(a), (b) and (c). Since G is internally triconnected and all the vertices
of G′

d except w are vertices of G, one may assume that u = w and H has a
structure in Fig. 3(b) or (c). We consider only the case where G′

d
has a structure

in Fig. 3(b), because one can similarly give a proof for the other case where G′
d

has a structure in Fig. 3(c). Then G′
d has a structure as illustrated in Fig. 16(a),

and hence G has a structure illustrated in Fig. 16(b) or (c). If G has a structure
in Fig. 16(b), then G is not internally triconnected, a contradiction. If G has a
structure in Fig. 16(c), then all the vertices above the path P (drawn by thick
lines in Fig. 16(c)) should be contracted to a single vertex w in G′

d
and hence

G′
d does not have a structure in Fig. 16(a), a contradiction.

(a) (b) (c)Gd' G G

w

P

a3
a4 a3

a4

a2
a1

a3
a4

a2
a1

Figure 16: (a) Graph G′
d

having a structure in Fig. 3(b), (b) G which is not
internally triconnected, and (c) G and the path P .

The decomposition tree T (G′
d) of G′

d has exactly two leaves l3 and l4, and
a3 and a4 are contained in the triconnected graphs corresponding to the leaves
and are not vertices of the separation pairs. Every vertex of G′

d other than w

has degree three or more, and w has degree two or more in G′
d
. Therefore, G′

d

has a canonical decomposition Π = (U1, U2, · · · , Um) with respect to a4, a3 and
w, as illustrated in Fig. 5(b), where Um = {w}. Let vl be the vertex preceding
w clockwise on the outer face Fo(G

′
d
), and let vr be the vertex succeeding w,

as illustrated in Fig. 5(a). We obtain a pentagonal drawing Dm of G′
d by the

algorithm in Section 3, as illustrated in Fig. 5(d). The drawing Dm−1 of Gm−1

induced by U1

⋃

U2

⋃

· · ·
⋃

Um−1 is our drawing Dd of Gd(= Gm−1). (See
Figs. 1(d) and 5(c).) By Lemma 5, we have W (Dd) = 2nd − 2 and H(Dd) ≤
n2

d
− nd − 2.

4.3 Drawing of Gu

We now explain how to draw Gu. Let G′
u be a graph obtained from G by

contracting all the vertices of Gd to a single vertex w′, as illustrated in Fig. 17(a).
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Similarly to G′
d
, G′

u has a canonical decomposition Π = (U1, U2, · · · , Um) with
respect to a2, a1 and w′, as illustrated in Fig. 17(b), where Um = {w′}. Let
v′r be the vertex succeeding w′ clockwise on the outer face Fo(G

′
u), and let v′l

be the vertex preceding w′, as illustrated in Fig. 17(a). We rotate G′
u by 180◦

as illustrated in Fig. 17(b). We then obtain a drawing Dm−1 of Gu(= Gm−1)
by the algorithm in Section 3, as illustrated in Fig. 17(c) where the clockwise
path from a2 to v′l and the clockwise path from v′r to a1 on Fo(G

′
u) are drawn

as vertical line segments. (The path from v′r to a1 degenerates into a single
path in Fig. 17(c) since v′r = a1.) We finally rotate it to obtain a drawing Du

of Gu, as illustrated in Fig. 1(c). By Lemma 5, we have W (Du) = 2nu − 2 and
H(Du) ≤ n2

u − nu − 2.

(b)

(c)

(a)

a1 = vr a2
s2 s3

w

vl
U3

U2

U8

U4

U1

U7

U6

U5

w

a2
a1

Gu

a1 = vra2

vl

Du

'

'

'

'

'

'

'

Figure 17: (a) Graph G′
u, (b) a canonical decomposition of G′

u, and (c) a drawing
Du of Gu.

4.4 Drawing of G

If W (Dd) 6= W (Du) as in Figs. 1(c) and (d), then we widen the narrow one
of Dd and Du by the shift operation in Section 3 so that both have the same
width. (Since W (Du) = W (Dd) − 2 for Du in Fig. 1(c) and Dd in Fig. 1(d),
we widen Du by shifting vertex a1 to the left by two as illustrated in Fig. 1(e).)
We may thus assume that W (Dd) = W (Du) = max{2nd − 2, 2nu − 2}. Since
we combine the two drawings Dd and Du of the same width to a drawing D of
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G, we have

W (D) = max{2nd − 2, 2nu − 2} < 2n.

We arrange Dd and Du so that y(a3) = y(a4) = 0 and y(a1) = y(a2) =
H(Dd)+H(Du)+W (D)+1, as illustrated in Fig. 1(e). Noting that nd+nu = n

and nd, nu ≥ 5, we have

H(D) = H(Dd) + H(Du) + W (D) + 1

< (n2
d − nd − 2) + (n2

u − nu − 2) + 2n + 1

< n2.

We finally draw, by straight line segment, all the edges of G that are con-
tained in neither Gu nor Gd. This completes the grid drawing D of G. (see
Fig. 1(e).)

4.5 Validity of drawing algorithm

In this section, we show that the drawing D obtained above is a convex grid
drawing of G. Since both Dd and Du satisfy condition (sh5), every inner facial
cycle of Gd and Gu is drawn as a convex polygon in D. Therefore, it suffices to
show that the straight line drawings of the edges not contained in Gu and Gd

do not introduce any edge-intersection and that all the faces newly created by
these edges are convex polygons.

Since Dd satisfies condition (sh3), the absolute value of the slope of every
edge on the path Pd going from vl to vr clockwise on Fo(Gd) is less than or equal
to 1. The path Pd is drawn by thick lines in Fig. 1(d). (Note that Dd may be
widen by the shift operation if W (Dd) < W (Du).) Similarly, the absolute value
of the slope of every edge on the path Pu going from v′r to v′l counterclockwise
on Fo(Gu) is less than or equal to 1. Since H(D) = H(Dd)+H(Du)+W (D)+1,
the absolute value of the slope of every straight line segment that connects a
vertex in Gu and a vertex in Gd is larger than 1. Therefore, all the outer vertices
of Gd on Pd are visible from all the outer vertices of Gu on Pu. Furthermore,
G is a plane graph. Thus the addition of all the edges not contained in Gu and
Gd does not introduce any edge-intersection.

Since Dd satisfies condition (sh6), every convex apex of the outer polygon of
Gd on Pd has one or more neighbors in Gu. Similarly, every convex apex of the
outer polygon of Gu on Pu has one or more neighbors in Gd. Therefore, every
interior angle of a newly formed face is smaller than 180◦. Thus all the inner
faces of G not contained in Gu and Gd are convex polygons in D.

Thus, D is a convex grid drawing of G. Clearly the algorithm takes linear
time. We thus have the following main theorem.

Theorem 1 Assume that G is an internally triconnected plane graph, every
vertex of G has degree three or more, and the triconnected component decompo-
sition tree T (G) has exactly four leaves. Then our algorithm finds a convex grid
drawing of G on a 2n × n2 grid in linear time.



218 Miura, Kamada, Nishizeki Convex Grid Drawings of Plane Graphs...

We finally remark that the grid size is improved to 2n×4n for the case where
either the node u4 of degree four in T (G) is a ring as illustrated in Fig. 14(b)
or T (G) has two nodes of degree three as illustrated in Figs. 14(c)–(f). In such
a case, the paths P and hence Pd, drawn by thick lines in Figs. 1(a), 1(d) and
14(b)–(f), pass through the outer vertices s6 and s7. Clearly y(s6) = y(s7) = 0
in Dd. Therefore, condition (sh3) implies that H(Dd) < W (Dd) = 2nd − 2.
Similarly we have H(Du) < W (Du) = 2nu − 2. Thus we have

H(D) = H(Dd) + H(Du) + W (D) + 1 < 4n.

5 Conclusions

In this paper, we showed that every internally triconnected plane graph G whose
decomposition tree T (G) has exactly four leaves has a convex grid drawing on
a 2n × n2 grid, and we present a linear algorithm to find such a drawing. This
is the first algorithm that finds a convex grid drawing of such a graph G on a
grid of polynomial size. The remaining problem is to obtain an algorithm for an
internally triconnected plane graph whose decomposition tree has five or more
leaves.
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Appendix

[The details of a pentagonal drawing algorithm]

In the appendix we explain the pentagonal drawing algorithm outlined in
Section 3 in detail.

Let G be a plane graph having a canonical decomposition Π = (U1, U2, · · · ,

Um) with respect to vertices v1, v2 and vn, as illustrated in Figs. 5(a) and (b).

Whenever a vertex v is shifted, that is, moved to the left or right, during
the execution of the algorithm, a set L(v) of vertices need to be moved together
with v, similarly as the algorithms in [2] and [5]. Note that v ∈ L(v). (See [13]
for example.)

We denote the current position of a vertex v by P (v); P (v) is expressed by
its x- and y-coordinates as (x(v), y(v)). If the Manhattan distance between two
grid points P (v1) = (x1, y1) and P (v2) = (x2, y2) is an even number, then the
intersection Q(v1, v2) of the straight line with slope +1 through P (v1) and the
straight line with slope −1 through P (v2) is a grid point. Clearly

Q(v1, v2) =

(

1

2
(x1 − y1 + x2 + y2),

1

2
(−x1 + y1 + x2 + y2)

)

.

We say that a vertex v ∈ Uk, 1 ≤ k ≤ m, has rank k. Let Fo(Gk−1) =
w1, w2, · · · , wt for k, 2 ≤ k ≤ m. Then the definition of a canonical decompo-
sition implies that there is a pair of indices a and b, 1 ≤ a < b ≤ t, such that
each of wa and wb has a neighbor in Gk−1 but every vertex wi, a < i < b, is
an inner vertex of G and has no neighbor in Gk−1. Then the path going from
wa to wb clockwise on Fo(Gk−1) is a part of an inner facial cycle F of G; F

contains two edges connecting wa and wb with Gk−1, plus possibly some edges
in Gk−1. Let c, a ≤ c < b, be an index such that wc has the smallest rank
among the vertices wa, wa+1, · · · , wb−1. If there are two or more vertices with
the smallest rank, then let wc be the leftmost one, that is, let c be the smallest
index of these vertices. We denote the index c for a and b by µ+

k (a) and µ−
k (b),

and hence c = µ+

k (a) = µ−
k (b). The superscript + indicates a ≤ c, while the

superscript − indicates c < b. Note that if b = a + 1 then a = µ+

k (a) = µ−
k (b).

We are now ready to describe the pentagonal drawing algorithm in detail.
We first obtain a drawing D1 of the subgraph G1 of G induced by all vertices
of U1 as follows. Let Fo(G1) = w1, w2, · · · , wt, w1 = v1, and wt = v2. We
draw G1 as illustrated in Fig. 8, depending on whether (v1, v2) is a real edge or
not, w2 ∈ Vl or not, and wt−1 ∈ Vr or not. More precisely, we draw G1 as follows.

Initialize:

Set L(wi) = {wi} for each i, 1 ≤ i ≤ t;

Case 1: v1 and v2 are adjacent in an original graph G, that is, (v1, v2) is a real
edge (see Figs. 8(a)–(d)).
Set P (w1) = (0, 0);
Set P (wt) = (2t − 2, 0);
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Case (a): w2 ∈ Vl and wt−1 6∈ Vr (see Fig. 8(a)).
Set P (wi) = (2i − 4, 4) for each i, 2 ≤ i ≤ t − 1;

Case (b): w2 6∈ Vl and wt−1 ∈ Vr (see Fig. 8(b)).
Set P (wi) = (2i, 4) for each i, 2 ≤ i ≤ t − 1;

Case (c): w2 ∈ Vl and wt−1 ∈ Vr (see Fig. 8(c)).
Set P (wi) = (2i − 4, 2) for each i, 2 ≤ i ≤ t − 2;
Set P (wt−1) = (2t − 2, 2);

Case (d): w2 6∈ Vl and wt−1 6∈ Vr (see Fig. 8(d)).
Set P (wi) = (2i − 2, 2) for each i, 2 ≤ i ≤ t − 1;

Case 2: Otherwise, that is, (v1, v2) is a virtual edge (see Fig. 8(e)).
Set P (wi) = (2i − 2, 0) for each i, 1 ≤ i ≤ t.

We then extend a drawing Dk−1 of Gk−1 to a drawing Dk of Gk for each
index k, 2 ≤ k ≤ m, similarly as the algorithm by Chrobak and Kant for
finding a convex grid drawing of a triconnected plane graph [2]. Let Fo(Gk−1) =
w1, w2, · · · , wt, w1 = v1, wt = v2, and Uk = {u1, u2, · · · , ur}. The first vertex
u1 and the last one ur in Uk have neighbors in Gk−1. Let wp be the leftmost
neighbor of u1, and let wq be the rightmost neighbor of ur, as illustrated in
Figs. 10 and 11. Let α = µ+

k (p), and let β = µ−
k (q). If Uk = {u1} and u1 has

three or more neighbors in Gk−1 as illustrated in Fig. 10, then at least one of
the vertices wp+1, wp+2, · · · , wq−1 has a neighbor in Gk−1 and hence α < β;
in fact, wα and wβ will belong to two different inner faces of Gk, to the first
and last faces among those that are created when adding u1 to Gk−1. If either
Uk = {u1} and u1 has exactly two neighbors in Gk or |Uk| ≥ 2 as illustrated in
Fig. 11, then all vertices wp+1, wp+2, · · · , wq−1 belong to the same inner face of
Gk and none of them has a neighbor in Gk−1 and hence α = β.

We extend Dk−1 to Dk, 2 ≤ k ≤ m, so that Dk satisfies the six conditions
(sh1)–(sh6) in Section 3, as follows.

Update:

Set L(wp) =

α
⋃

i=p

L(wi);

Set L(wq) =

q
⋃

i=β+1

L(wi);

Set L(u1) = {u1} ∪

(

β
⋃

i=α+1

L(wi)

)

;

Set L(ui) = {ui} for each i, 2 ≤ i ≤ r;
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Shift:

For each vertex v ∈

p
⋃

i=1

L(wi), set x(v) = x(v) − r;

For each vertex v ∈
t
⋃

i=q

L(wi), set x(v) = x(v) + r;

For each vertex v ∈
t
⋃

i=1

L(wi), set x(v) = x(v) + r;

Install Uk:

Case 1: |Uk| = 1.

Case (a): u1 ∈ Vl (see Fig. 10(a)).
Set P (u1) =

(

x(wp), x(wq) + y(wq)
)

;

Case (b): u1 ∈ Vr (see Fig. 10(b)).
Set P (u1) =

(

x(wq),−x(wp) + y(wp) + x(wq)
)

;

Case (c): u1 6∈ Vl and u1 6∈ Vr (see Fig. 10(c)).
Set P (u1) = Q(wp, wq);

Case 2: |Uk| ≥ 2.

Case (a): u1 ∈ Vl and ur 6∈ VrD

If y(wq) − y(wp) is an odd number ≥ 1 (see Fig. 11(a)),

set y(ui) = max{y(wp), y(wq)} + 1 for each i, 1 ≤ i ≤ r;

Otherwise (see Fig. 11(a′)),

set y(ui) = max{y(wp), y(wq)} + 2 for each i, 1 ≤ i ≤ r;

Set x(ui) = x(wp) + 2(i − 1) for each i, 1 ≤ i ≤ r − 1;
Set x(ur) = x(wq) −

{

y(ur) − y(wq)
}

;

Case (b): u1 6∈ Vl and ur ∈ VrD

If y(wp) − y(wq) is an odd number ≥ 1 (see Fig. 11(b)),

set y(ui) = max{y(wp), y(wq)} + 1 for each i, 1 ≤ i ≤ r;

Otherwise (see Fig. 11(b′)),

set y(ui) = max{y(wp), y(wq)} + 2 for each i, 1 ≤ i ≤ r;

Set x(ui) = x(wp)+
{

y(u1)−y(wp)
}

+2(i−1) for each i, 1 ≤ i ≤ r−1;
Set x(ur) = x(wq);

Case (c): u1 ∈ Vl and ur ∈ Vr (see Fig. 11(c)).

Set y(ui) = max{y(wp), y(wq)} + 1 for each i, 1 ≤ i ≤ r;

Set x(ui) = x(wp) + 2(i − 1) for each i, 1 ≤ i ≤ r − 1;
Set x(ur) = x(wq);
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Case (d): u1 6∈ Vl and ur 6∈ Vr (see Fig. 11(d)).

Set y(ui) = max{y(wp), y(wq)} + 1 for each i, 1 ≤ i ≤ r;

Set x(ui) = x(wp)+
{

y(u1)−y(wp)
}

+2(i−1) for each i, 1 ≤ i ≤ r−1;

Set x(ur) = x(wq) −
{

y(ur) − y(wq)
}

.
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