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Abstract

In boundary labeling, each point site is uniquely connected to a label
placed on the boundary of an enclosing rectangle by a leader, which may
be a rectilinear or straight line segment. To our knowledge, all the results
reported in the literature for boundary labeling deal with the so-called
one-to-one boundary labeling, i.e., different sites are labelled differently.
In certain applications of boundary labeling, however, more than one site
may be required to be connected to a common label. In this case, the
presence of crossings among leaders often becomes inevitable. Minimiz-
ing the total number of crossings in boundary labeling becomes a critical
design issue as crossing is often regarded as the main source of confu-
sion in visualization. In this paper, we consider the crossing minimiza-
tion problem for multi-site-to-one-label boundary labeling, i.e., finding the
placements of labels and leaders such that the total number of crossings
among leaders is minimized. We show the crossing minimization problem
to be NP-complete under certain one-side and two-side labeling schemes.
Subsequently, approximation algorithms or heuristics are derived for the
above intractable problems.
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1 Introduction

In information visualization, cartography, geographic information systems (GIS),
and graph drawing, map labeling is an important task which is concerned with
efficiently placing extra information, in the form of text labels, next to features
(such as points, lines, or areas) in a drawing (map). In order to ensure read-
ability, unambiguity and legibility, it is suggested that the labels be pairwise
disjoint and close to the features to which they belong [13]. A detailed bibliog-
raphy and survey on map labeling can be found in [21], [17], respectively. ACM
Computational Geometry Impact Task Force [7] has identified label placement
as an important area of research. The majority of map labeling problems are
known to be NP-complete [11, 14] in general. (The interested reader is also
referred to [19, 20] for various approximations and heuristics for map labeling.)

Map labeling problems are classified by the following three kinds of graphical
features according to their dimensions, namely, point features, line features, and
area features. For example, in a geographical map, a city (resp., river and lake)
is typically represented by a point (resp., line and area) feature. Note that a
point or a line feature label is normally located next to the associated object,
while an area feature label is usually placed within the boundary of the feature
to be labeled.

Most of the research on map labeling has primarily focused on labeling point
features, and the basic requirement in this case is that all the labels should be
pairwise disjoint. It is clear that such a requirement is difficult to be achieved
in the case where large labels are placed on dense points. In practice, large
labels are usually used in technical drawings or medical atlases where certain
site-features are explained with blocks of texts. To address this problem, Bekos
et al. proposed the so-called boundary labeling [1, 3, 4], in which all labels are
attached to the boundary (four sides) of a rectangle R enclosing all sites, and
each site is connected to a unique label by a leader, which may be a rectilinear
or straight line segment. In such a setting, they investigated how to place the
labels and leaders in a drawing such that there are no crossings among leaders
and either the total leader length or the bends of leaders are minimized under a
variety of constraints. In a recent article, Bekos et al. [2] investigated a similar
problem for labeling polygonal sites under the framework of boundary labeling.

For the work reported in [1, 2, 3, 4] regarding boundary labeling, each label
is uniquely associated with a site (point feature). In practice, however, it is not
uncommon to see more than one site to be associated with the same label. Such
examples include the religion distribution in each state of a country, the language
distribution of the world, or the association or organization composed of some
countries in the world, etc. In view of the above, in this paper we investigate the
multi-site-to-one-label boundary labeling (a.k.a., many-to-one boundary labeling)
in which the mapping from sites to labels is a many-to-one function, i.e., more
than one site is allowed to be connected to a common label and each site is
connected only by a leader. Unlike the conventional boundary labeling, this kind
of labeling inevitably leads to a high possibility of crossings among leaders in the
drawing. Therefore, an important objective for many-to-one boundary labeling
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is to find the placements of labels and leaders such that the total number of
crossings among leaders is minimized. Aside from minimizing the total number
of crossings, we also consider the issue of minimizing the total leader length
under the framework of many-to-one boundary labeling in this paper.

Labeling key components of a motherboard is an example used in [5] for
illustrating the usefulness of the technique of one-to-one boundary labeling.
For motherboards used in servers or parallel computers, it is common to find
multiple copies of components such as CPUs, chipsets, memory DIMMs, I/O
ports, expansion slots, and so on, on the same motherboard. In this case,
placing labels along the sides of a motherboard involves connecting multiple
sites to a single label, suggesting an example to which many-to-one boundary
labeling can apply. Figure 1 gives the boundary labeling of the ASUS KFN5-
Q/SAS motherboard in a many-to-one fashion. For comparison purpose, the
motherboard is also labeled by two other approaches in Figure 2, where area
labeling in Figure 2(a) places a text label within the boundary of each object,
and legend labeling in Figure 2(b) attaches an assigned number to each object
of the same component, and places a legend table with those numbers as well
as the text information of their corresponding components on the right side of
the motherboard.

8 DIMMs 

ATX Power Supply 

2 LAN Ports 

Battery

BIOS

2 Chipsets 

6 SATA Connectors IDE Slot 

PS2 Port 

USB Port 

COM Port 

VGA Port 

4 CPUs 

6 Expansion Slots 

Figure 1: An example of many-to-one boundary labeling.

In comparison with Figure 2(a) (where text labels are of different sizes caus-
ing some of them to be too tiny to read), Figure 1 displays clearer and more
readable text labels on such a dense motherboard, though more space is re-
quired. If the motherboard is colored (as shown in Figure 1), then the area
labeling which places lots of redundant texts inside the motherboard tends to
cause unnecessary confusion in visualization. As for Figure 2(b), the legend
labeling can be viewed as an alternative to many-to-one boundary labeling. In
practice, choosing the right labeling scheme often depends on the application,
and an integrated solution might turn out to be better in some cases.

Conventionally, boundary labeling is identified as k-side labeling with type-t
leaders (where k ∈ {1, 2, 4} and t ∈ {opo, po, s}) if the labels are allowed to be
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1. Four CPUs 

2. Two Chisets 

3. BIOS

4. Eight DIMMs 

5. Six Expansion Slots 

6. Six SATA Connectors 

7. IDE Slot 

8. Two LAN Port 

9. VGA Port 

10. PS2 Port 

11. USB Port 

12. COM Port 

13. ATX Power Supply 

14. Battery

(a) Area labeling. (b) Legend labeling.

Figure 2: Other labeling approaches.

attached to the k sides of the enclosing rectangle R by only type-t leaders. The
parameter t specifies the way a leader is drawn to connect a site to a label. The
opo, po, and s stand for orthogonal-parallel-orthogonal, parallel-orthogonal and
straight-line, respectively, which can easily be understood from the examples
given in Figures 3 (a), (b) and (c). For each type-opo leader, we further assume
that the parallel (i.e., ‘p’) segment lies immediately outside R in the so-called
track routing area, as shown in Figure 3 (a).

R

l1

l2

l3

l4

l5

(a) Type-opo leaders 

Track Routing Area 

(b) Type-po leaders (c) Type-s leaders 

R

l1

l2

l3

l4

l5

R

l1

l2

l3

l4

l5

Figure 3: Illustration of leaders.

Very recently, in order to improve one-side one-to-one boundary labeling
with type-po leaders, Benkert et al. [6] introduced a new notation of so-called
type-do leaders, in which the do stands for diagonal-orthogonal. As shown in
Figure 4, the only difference between type-po and type-do leaders is that the
leader starts with a diagonal segment of fixed angle oriented towards the la-
bel. They suggested to apply type-do leaders to producing smoother shapes of
leaders such that it becomes easier to comprehend the assignment from sites to
labels. Intuitively, we observe from Figure 4 that the model of type-do leaders
can obtain shorter total leader length than that of type-po. Therefore, they
investigated the problem of minimizing the total leader length, without any
crossings of leaders.
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(a) Type-po leaders (b) Type-do leaders 

RR

l2

l3

l4

l5

l1 l1

l2

l3

l4

l5

Figure 4: Comparison between type-do and type-do leaders in one-to-one bound-
ary labeling.

As listed in Table 1, the main contributions of this paper include:

1. Crossing minimization problems for both one-side and two-side many-to-
one labeling with type-opo leaders are proved to be NP-complete (Sec-
tions 3 and 4). We also design approximation algorithms to cope with
such intractable problems.

2. Crossing minimization problems for one-side and two-side many-to-one
labeling with type-po leaders are proved to be NP-complete (Sections 5
and 6). Heuristic algorithms with satisfactory experimental results are
also given for these problems.

3. In Section 7, we discuss the many-to-one labeling with the objective of
minimizing the total leader length to be solvable in polynomial time, along
a similar line of the work of [1].

Table 1: The main contributions of this paper.

number leader time solution
objective of sides type complexity

Minimize the crossing number one opo NPC approximation
Minimize the crossing number two opo NPC approximation
Minimize the crossing number one po NPC heuristic
Minimize the crossing number two po NPC heuristic
Minimize total leader length any opo, po P following [1, 4]

A wide variety of variants of one-to-one boundary labeling have been pro-
posed and studied from an algorithmic viewpoint in the literature. Table 2
summarizes those that are related to our work. By comparing Table 1 with
Table 2, it is interesting to note that in the one-to-one case, minimizing the to-
tal leader length while respecting the no-crossing constraint is always tractable,
whereas in the many-to-one case, minimizing the crossing number becomes in-
tractable. Also note that the total leader length minimization problem remains
solvable in polynomial time even in the many-to-one case.
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Table 2: Variants of one-to-one boundary labeling problems and their complex-
ities.

number leader time
objective of sides type complexity reference

Minimize total leader length∗ one, four s O(n2+ǫ) [3, 4]
Minimize total leader length∗ one opo O(n log n) [3, 4]
Minimize total leader length∗ two opo O(n2) [3, 4]
Minimize total leader length∗ four opo O(n2 log3 n) [1, 4]
Minimize total leader length∗ one, two po O(n2) [3, 4]

∗ All the problems are subject to the constraint that there are no crossings among
leaders; the positions of ports are fixed; each label is of uniform (maximum) size.

In one-to-one boundary labeling, it is always possible to find a layout without
crossings among leaders; in the many-to-one case, however, leader crossings are
inevitable in general. This disparity is exactly the reason why minimizing the
number of crossings is the most critical issue in many-to-one boundary labeling.

2 Preliminaries

A k-side type-t many-to-one boundary labelled map (or k-side type-t map, for
short), where k ∈ {1, 2, 4} and t ∈ {opo, po, s}, is M = (P, L, n1, n2, n3, n4, f)
where

• P = {p1, p2, ..., pN}, pi ∈ R
2, 1 ≤ i ≤ N , is the set of sites (points) on the

plane enclosed in a rectangle R,

• L is the set of labels with |L| = n1 + n2 + n3 + n4,

• n1, n2, n3, n4 ∈ N are the numbers of labels to the East, West, South, and
North, respectively, of the axis-parallel rectangle enclosing all sites in P ,

• f : P → L is an onto function which assigns each site in P to a label in
L. Note that f is a many-to-one function in general.

W.l.o.g., we assume that for k=1 (resp., 2), labels are only placed on the East
side (resp., East and West sides) of the enclosing rectangle of P . Hence, n2 +
n3 + n4 = 0 for k = 1 and n3 + n4 = 0 for k = 2. On the other hand, labels
can be placed on the four sides of the rectangle when k = 4. The parameter t,
t ∈ {opo, po, s}, refers to the type of leaders allowed for connecting sites to labels.
The opo, po, and s stand for orthogonal-parallel-orthogonal, parallel-orthogonal
and straight-line, respectively. See Figure 3 for these three types of leaders.
For notational convenience, we refer to the East, West, South, and North sides
to be the 1st, 2nd, 3rd, and 4th sides throughout the rest of this paper. One
should also note that every label l is connected with |f−1(l)| sites; hence, l has
to have |f−1(l)| ports to which the sites are connected. Although f−1 is not a
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function, the slight abuse of notation is simply for convenience of understanding.
For simplicity, we assume that there are no two sites with the same x- or y-
coordinates, and the locations of ports of each label are predefined (see label l3
with three ports in Figure 3 (a)). Note that if part of a leader is overlapped
with a certain other leader in a boundary labeling, then the overlapping can
be removed by slightly adjusting the location of port of one of the two leaders.
Therefore, it is reasonable to assume that leaders never overlap. In addition,
the leader connecting site u to label l is denoted by ul.

A boundary labeling of a map M is a sequence of labels (l11, ..., l
n1
1 , l12, ...,

ln2
2 , l13, ..., l

n3
3 , l14, ..., l

n4
4 ) such that ∀1 ≤ i ≤ 4, 0 ≤ j ≤ ni, l

j
i ∈ L. W.l.o.g., we

assume that all the labels are different. Intuitively speaking, l1i , ..., l
ni

i is the
sequence of labels along the i-th side. W.l.o.g., for i = 1 and 2 (i.e., East and
West sides, resp.) a top-down ordering is assumed; for i = 3 and 4 (i.e., South
and North sides, resp.) a left-to-right ordering is assumed. Figure 5 illustrates
a 4-side type-s boundary labeling. For simplicity, we assume labels (drawn as
rectangles) along the same side to be of uniform and maximum size; hence, the
ordering of labels along each side is sufficient to determine the exact positions
of labels. As f is a many-one function in general, there might be several sites
connecting to the same label. For example, three sites are connected to label l3
in Figures 3(a) and 3(b). It is easy to observe from that to minimize the number
of crossings (or the total leader length) in the case of type-opo leaders show in
Figure 3(a) (resp., type-po leaders show in Figure 3(b)), the ordering of ports
at which the three leaders touch label l3 (drawn as a rectangle) must respect
the ordering (in increasing order) of the y-coordinates (resp., x-coordinates) of
the three sites connected to label l3. The crossing number is the number of
crossings among leaders in a drawing.

R l4

l2

l5

l8

l10

l1

l3 l7 l12

l11 l6

l9

n1n2

n4

n3

Figure 5: A four-side many-to-one labeling with type-s leaders.

One of the optimization problems considered in this paper is as follows:
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The Crossing Problem for k-Side Many-to-One Labeling with Type-

t (CPkML-t, for short): Given a k-side type-t map M, determine a boundary
labeling for M so that the crossing number is minimized.

Before deriving our main results, we first recall three NP-complete problems,
namely, the Decision Crossing Problem (DCP) [8], the Max-Bisection Problem
[22], and the Min-Bisection Problem for directed graphs [10] that are closely
related to our problems.

Consider a two-layered network G = (L0, L1, E) consisting of disjoint sets L0

and L1 of nodes and a set E ⊆ L0 × L1 of edges. Assume that the nodes in L0

and L1 appear on the vertical lines x = 0 and x = 1, respectively, and the edges
in E are straight line segments joining two nodes from L0 and L1 respectively.
A drawing of G is generated by assigning each node v ∈ Li, i = 0, 1, to a y-
coordinate yi(v). Hence, two edges uv and tw, where u, t ∈ L0 and w, v ∈ L1,
cross in the drawing if and only if (y0(u) − y0(t))(y1(v) − y1(w)) < 0. Let the
number of crossings in a drawing of G specified by y0 and y1 be denoted by
cross(G, y0, y1). In fact, the crossing number is affected only by the ordering of
the nodes of L0 and L1, not by their precise positions; so y0 and y1 are said the
ordering of L0 and L1, respectively. The DCP is stated as follows:

The Decision Crossing Problem (DCP)
Instance: A two-layered network G = (L0, L1, E), an ordering y0 of L0, and an
integer M .
Question: Is there an ordering y1 of L1, so that cross(G, y0, y1) ≤ M?

The Max-Bisection Problem is stated as follows. So far the best approxima-
tion ratio for the Max-Bisection problem is 1.431 [22].

The Max-Bisection Problem: Given an undirected graph G = (V, E) with
non-negative weights wi,j for each edge in E (and wi,j = 0 if (i, j) 6∈ E),
partition the nodes in V into two sets S and V \ S of equal cardinality so that
w(S) :=

∑

i∈S,j∈V \S wi,j is maximized.

Contrary to the Max-Bisection Problem, the Min-Bisection Problem is the
problem of computing a bisection for an input graph G so that w(S) is min-
imized. Note that if the graph is directed, then the objective of the problem
is to minimize w(S) :=

∑

(i,j)∈(S,V \S) wi,j . The problem for undirected graphs

is known to be NP-hard [12], and the problem for directed graphs can be eas-
ily shown to be NP-hard as well [10]. For the case of undirected graphs, an
O(log1.5 n)-approximation algorithm is known [9]. In practice, Kernighan-Lin
heuristic (a.k.a., K-L heuristic) [15] is a well-known algorithm for handling the
problem for undirected case. As for the case of directed graphs, Feige and Ya-
halom [10] showed that the Min-Bisection Problem for directed graphs is not
approximable at all.
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3 The Crossing Problem for One-Side Many-to-

One Labeling with Type-opo Leaders

In this section, we show that the crossing problem for one-side many-to-one
labeling with type-opo leaders (CP1ML-opo) is NP-complete (Subsection 3.1).
We also give an approximation algorithm guaranteed to yield a solution which
is less than or equal to three times the optimal solution (Subsection 3.2). Note
that in the restricted case in which each label is associated with at most two
sides, an analysis used in [16] can be applied to showing the algorithm presented
in Subsection 3.2 to be optimal.

3.1 CP1ML-opo is NP-complete

Consider the case where all the labels are placed on the East side of rectangle R
which encloses all the sites in the given map. Recall that we assume that there
are no two sites with the same x- or y- coordinates. In addition, since every
leader goes from a site through the right borderline of rectangle R orthogonally,
there is no crossing between leaders inside rectangle R. We can arbitrarily adjust
the x-coordinate of the bend of every type-opo leader in the track routing area
(see Figure 3 (a)) so that two leaders cross only when the y-coordinate order
of their corresponding sites is different from that of their corresponding labels.
That is, the crossing number is affected only by the y-coordinate orders of sites
and labels, not by their x-coordinate orders. As a result, if every type-opo
leader is replaced by a straight line segment and all the sites are on a vertical
line, then the problem under consideration is similar to the DCP except our
problem allows more than one site to be connected to a common label. In what
follows, we show the concerned problem to be NP-complete. In the case where
every leader is replaced by a straight line segment and every site is placed on a
vertical line, the decision version of the problem can be captured by the decision
many-to-one crossing problem (DMCP) as follows:

The Decision Many-to-One Crossing Problem (DMCP)
Instance: A two-layered network G = (L0, L1, E) where the mapping from nodes
in L0 to nodes in L1 is a many-to-one function, an ordering y0 of L0, an integer
M .
Question: Is there an ordering y1 of L1, so that cross(G, y0, y1) ≤ M?

Theorem 1 DMCP is NP-complete.

Proof: It is clear that DMCP is in NP because we can guess an ordering of L1

and then check if the crossing number is no more than M in polynomial time.
It remains to show the NP-hardness, which is established by a reduction

from DCP as follows.
DCP differs from DMCP only in the restriction that each node in L0 is

connected only by an edge. From a DCP instance G = (L0, L1, E), M (note
that M refers to both a part of the instance of DCP and the number of crossings
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Figure 6: An example reducing from DCP to DMCP.
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Figure 7: The first category of crossings.
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of DCP), we construct a DMCP instance G′ = (L′
0, L

′
1, E

′), M ′ as follows. Let
L′

1 = L1. We denote the node with the i-th maximal y-coordinate in L0 by pi,
and {l1i , l

2
i , ..., l

k
i } is the set of the nodes in L1 to which pi is connected, i.e., there

are k edges connecting pi to k nodes in L1. For each node pi in L0, we create a
set of 2k nodes, say Pi = {p1

i , p
2
i , ..., p

2k
i }, in L′

0, where pj
i has the j-th maximal

y-coordinate among all. Then for j = 1 to k, we connect pj
i and p2k−j+1

i to lji .
That is, we connect p1

i and p2k
i to l1i , p2

i and p2k−1
i to l2i , ... , and pk

i and pk+1
i

to lki . An example is illustrated in Figure 6.
We denote the cardinality of Pi by |Pi| and the number of the nodes in L0

by |L0|. Let M ′ be
|L0|
∑

i=1

2

(

|Pi|/2

2

)

+ 4M

We show that there exists an ordering y′
1 of L′

1 such that cross(G′, y′
0, y

′
1) ≤ M ′

if and only if there exists an ordering y1 of L1 such that cross(G, y0, y1) ≤ M .
The crossings in G′ can be divided into the following two categories: the

edge incident to a node in Pi crosses the edge incident to a node 1) in the
same Pi or 2) in Pj for i 6= j. For the first category of crossings, as shown in

Figure 7, for i = 1, ..., |L0|, for any two pairs of nodes in Pi, (ps
i , p

2|pi|−s+1
i ) and

(pt
i, p

2|pi|−t+1
i ), s 6= t, there are two crossings regardless of the order of qs and qt,

and hence there are 2
(

|Pi|/2
2

)

crossings for all permutations of selecting 2 from

{p1
i , p

2
i , ..., p

|Pi|
i }. So the crossing number for the first category is

∑|L0|
i=1 2

(

|Pi|/2
2

)

.
For the second category of crossings, as shown in Figure 8, the edge piqt

crosses the edge pjqs in G if and only if there are the four crossings shown in
the right of Figure 8 in G′, regardless of the order of qs and qt. Therefore, there
are 4M crossings for the second category in G′ if and only if G has M crossings.

2

Based on the above, we have the following corollary.

Corollary 1 CP1ML-opo is NP-complete.

Proof: (Sketch) To yield the lower bound, it suffices to show a reduction from
DMCP to CP1ML-opo.

Consider an instance of DMCP, i.e., a two-layered network G = (L0, L1, E),
ordering y0 of L0. With those information, Algorithm 1 constructs a one-side
type-opo map M.

In what follows, we discuss all the possible cases of whether any two leaders,
say palb and pcld, cross in M. W.l.o.g., we assume that the y-coordinate of pa is
greater than that of pc; leaders palb and pcld are not straight-line segments (i.e.,
there are bends on palb and pcld). Note that, in a boundary labeling for type-opo
leaders, we only need to consider the crossings of leaders in track routing area
because all the type-opo leaders go from a site through the right borderline of
rectangle R orthogonally so that there are no crossings inside rectangle R. We
discuss the following two cases: the bends of type-opo leaders palb and pcld are
drawn in 1) the same category; 2) different categories. In the first case, w.l.o.g.,
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Algorithm 1 DMCP-to-CP1ML-opo

Input: A two-layered network G = (L0, L1, E) where the mapping form nodes
in L0 to nodes in L1 is a many-to-one function, ordering y0 of L0, ordering y1

of L1 (e.g., see Figure 9(a)).
Output: A one-side type-opo map M (e.g., see Figure 9(b)).

1: Construct a one-side type-opo map M where every site represents every
node in L0; the locations of sites are determined so that the y-coordinate
order of sites is the same as ordering y0 of L0 while the x-coordinate order
of sites is determined arbitrarily; every label represents every nodes in L1;
the y-coordinate order of labels is the same as ordering y1 of L1.

2: Vertically slice the track routing area of map M into two regions, where the
right (resp., left) region is denoted by T1 (resp., T2), as shown in Figure 9(b).

3: Now we connect each leader in M representing each edge in E. According to
the locations of two endpoints of each leader, all the leaders are classified into
two categories: the first category is denoted by C1, where the corresponding
site of every leader has larger y-coordinate than its corresponding label port;
the second category is denoted by C2, which includes the leaders that are
not in C1.

4: Sort the labels connected by the leaders in each category according to their
y-coordinates.

5: Now we draw every leader as follows. In order not to induce the crossings
among the leaders connected to a common label, one should notice that the
y-coordinate increasing ordering of the ports at which the leaders touch a
label must respect the y-coordinate increasing ordering of the sites connected
to the label. As shown in Figure 9(b), the bends of all the type-opo leaders
in C1 (resp., C2) are drawn in region T1 (resp., T2), and the x-coordinate
increasing order of the bends of the leaders in C1 (resp., C2) respects the
y-coordinate increasing order (resp., y-coordinate decreasing order) of their
corresponding sites.

R

l1

l2

p1

p2

p3

p5

T2 T1

track routing area 

(b)(a)

p4

p1

p2

p3

p4

l1

l2

p5

Figure 9: (a) A instance of two-layered network. (b) The boundary labeling
corresponding to (a).
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we assume the bends of type-opo leaders palb and pcld to be drawn in region
T1. Since from Step 5 of Algorithm 1 the x-coordinate increasing order of the
bends of leaders palb and pcld respects the y-coordinate increasing order of sites
pa and pc, hence, the two leaders must be drawn as Figure 10(a1) or 10(a2).
In the second case, w.l.o.g., we assume the bends of leaders palb and pcld to be
drawn in regions T1 and T2, respectively. By Step 5 of Algorithm 1, the two
leaders must be drawn as Figure 10(b1), 10(b2), or 10(b3). We observe from
Figure 10 that there is one crossing between leaders palb and pcld if and only if
the y-coordinate increasing order of sites pa and pc differs from that of labels lb
and ld. Note that by Algorithm 1 there is at most one crossing between leaders
palb and pcld.

(a2)(a1)

pa

lb

pc

ld

T2 T1

pa

lb

pc

ld

T2 T1

(b2)(b1) (b3) 

pa

lb

pc

ld

T2 T1

pa

lb
pc

ld

T2 T1

pa

lb
pc

ld

T2 T1

Figure 10: (a) All the possible cases where bends of two leaders are drawn in
region T1. (b) All the possible cases where the bend of leader palb (resp., pcld)
is drawn in region T1 (resp., T2).

In light of the above, two edges (leaders) palb and pcld in G (in M) cross if
and only if the y-coordinate increasing order of nodes (sites) pa and pc differs
from that of nodes (labels) lb and ld. Hence, we obtain that two edges palb and
pcld in G cross if and only if there is one crossing between two leaders in M. 2

3.2 An approximation algorithm

Our approximation algorithm is similar to the so-called median algorithm pro-
posed by Eades and Wormald in [8]. The idea of the median algorithm is to
place the labels in “median order”. For convenience and simplicity, we view
the labeling problem as finding an ordering y1 of L1 in a two-layered network
G = (L0, L1, E) such that the crossing number is as small as possible. Define
Nu of u ∈ L1 as the nodes {v1, v2, ..., vj} ∈ L0 incident to u. The median or-
der is, for each node u ∈ L1, to choose the median of the y-coordinates of the
neighbors of u as the y-coordinate of u. Precisely, if Nu = {v1, v2, ..., vj} with
y0(v1) < y0(v2) < y0(v3) < ... < y0(vj), then define med(u) = y0(v⌊j/2⌋). The
median algorithm sets y1(u) = med(u) for each node u ∈ L1, and separates the
two nodes with the same median by an infinitesimal amount.

The crossing number in the output of the median algorithm is denoted by
med(G, y0), while the crossing number in the output of the optimal labeling is
denoted by opt(G, y0).
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Theorem 2 For all two-layered networks G where the mapping from L0 to L1

is a many-to-one function and for all orderings y0, med(G, y0) ≤ 3opt(G, y0).

Proof: Along a similar line of the proof of [8], our proof is given as follows.
Define cuv of u, v ∈ L1 as the number of crossings that the edges incident

to u make with the edges incident to v when y1(u) < y1(v). More formally, for
u 6= v ∈ L1,

cuv = |{{su, tv} ⊆ E : y0(s) > y0(t)}|

and cuu = 0. The degree of u is denoted by du. For proving the theorem , we
claim that if u, v ∈ L1, and med(u) ≤ med(v), then cuv < 3cvu. Divide the
edges incident with u and v into 4 groups α, β, γ, and δ, where

α = {wu : y0(w) ≤ med(u)}, β = {wv : y0(w) ≥ med(v)},

γ = {wv : y0(w) < med(v)}, δ = {wu : y0(w) > med(u)},

v

u

Figure 11: An example for the groups α, β, γ, and δ.

An example is illustrated in Figure 11. Let a = |α|, b = |β|, c = |γ|, d = |δ|.
If med(u) = y1(u) ≤ med(v) = y1(v), then edges in α cannot cross edges in β.
Furthermore, the number of crossings between edges in α and edges in γ is at
most ac, and similarly for crossings between edges in β and edges in δ. Also,
the number of crossings between edges in γ and edges in δ is at most cd. So

cuv ≤ ac + bd + cd.

Furthermore, if u and v are placed so that y1(u) > y1(v), then edges in α
must cross edges in β; hence

cvu ≥ ab.

The claim can be discussed by four cases where du and dv are odd or even. In
the following we only consider the case where du and dv are both odd; the other
cases are similar and simpler.



JGAA, 12(3) 319–356 (2008) 333

a =
du + 1

2
, d =

du − 1

2
, b =

dv + 1

2
, c =

dv − 1

2
⇒ cuv ≤ ac + bd + cd

=
du + 1

2
×

dv − 1

2
+

dv + 1

2
×

du − 1

2
+

dv − 1

2
×

du − 1

2

≤
3

4
(du + 1)(dv + 1),

cvu ≥ ab =
du + 1

2
×

dv + 1

2
=

1

4
(du + 1)(dv + 1)

⇒ cuv ≤ 3cvu

Therefore,

med(G, y0) =
∑

med(u)≤med(v);y1(u)<y1(v)

cuv

≤
∑

u,v∈L1

3 min{cvu, cuv} (Since cuv ≤ 3cvu and cuv ≤ 3cuv)

≤ 3
∑

u,v∈L1

min{cvu, cuv} ≤ 3opt(G, y0)

2

It should be noticed that finding improved approximation algorithms for the
CP1ML-opo problem remains an interesting open question.

An experimental result using the approximation algorithm described earlier
is given in Figure 12, which illustrates the distribution of some wildlife animals
in Taiwan, where leaders are drawn by Algorithm 1. Intuitively many-to-one
boundary labeling is more suitable for static maps, for which the leaders allow
the user to easily trace the corresponding label of each site. When the number
of labels gets larger, such an advantage becomes more obvious.

4 The Crossing Problem for Two-Side Many-to-

One Labeling with Type-opo Leaders

From our previous result that the crossing problem is NP-complete for CP1ML-
opo, the intractability result clearly holds for CP2ML-opo as well. (CP1ML-opo
is a special case of CP2ML-opo with n2 = 0.) In this section, we consider
CP2ML-opo under the restriction that n1 = n2 (i.e., the East and West sides
contain the same number of labels). The reason why such a restriction makes
sense is given as follows. Recall that we assume labels along the same side to be
of equal size. If n1 = n2 (e.g., see Figure 13(a)), then labels on both sides are
of equal size, which may give us a high degree of balance in visibility because
labels on two sides can be viewed as a reflectional symmetry along a vertical
axis, regardless of leaders and sites. On the other hand, if there is a significant
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Legend:

Brown booby

Taiwan hill partridge

Masked palm civet

Hawk

Melogale moschata

Bamboo partridge

Chinese pangolin

Mallard

Taiwan hill 
partridge

Masked 
palm civet

Melogale
moschata

Bamboo 
partridge

Chinese 
pangolin

Mallard

Hawk

Brown
booby

Figure 12: The distribution of some animals in Taiwan, which is represented by
one-side many-to-one labeling with type-opo leaders.
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difference in the number of labels on the two sides, then the texts inside the
labels along the denser side may not be readable as Figure 13(b) shows.

R

(a) n1 = n2 = 5 (b) n1 n2 (n1 = 8, n2 =2) 

l6

l7

l8

l9

l10

l8

l9

R

l1

l2

l3

l4

l5

l2

l3

l10

l4

l1

l5

l7

l6

Figure 13: Two boundary labeling layouts with type-opo leaders for the same
map.

Note that if the number of labels is not even, we can just add a dummy label
to make the number even. In this section, we first show the concerned crossing
problem to be NP-complete, and then provide an approximation algorithm for
the intractable problem.

4.1 CP2ML-opo is NP-complete even when n1 = n2

Since the labeling in this section applies type-opo leaders (which is the same
as the previous section), hence the crossing number is influenced only by the
differences between the y-coordinate orderings of sites and either the labels in
the right side or the labels in the left side, respectively. Therefore, the problem
can be modeled as an analogy of three-layered network, of which definition is
given as follows. A three-layered network G = (L0, LL, LR, E) consists of three
disjoint sets L0, LL, and LR of nodes and a set E ⊆ L0 × LL ∪ L0 × LR of
edges. Assume that the nodes in L0, LL, and LR appear in the vertical lines
x = 0, x = −1, and x = 1, respectively. Similar to the definition of two-layered
network, y0, yL, yR can be defined. Notice that the crossing number in a three-
layered network is influenced by altering the orderings yL and yR or swapping
the nodes in LR with those in LL. In what follows, we show the concerned
labeling problem to be NP-complete. The decision version of the problem can
be stated as follows:

The Decision Three-Layered Many-to-One Crossing Problem with

|LL| = |LR| (D3MCP)
Instance: A three-layered network G = (L0, LL, LR, E) with |LL| = |LR| where
the mapping from the nodes in L0 to the nodes in LR ∪ LL is a many-to-one
function, an ordering y0 of L0, an integer M .
Question: Can we find the orderings yL of LL and yR of LR and swap some
nodes in LR with those in LL, so that the crossing number is no more than M?

Theorem 3 D3MCP is NP-complete.

Proof: It is clear that D3MCP is in NP; to prove its NP-hardness, the reduction
from the DMCP (mentioned in Theorem 1) is established as follows. Starting
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with a DMCP instance G = (L0, L1, E), y0, M , we construct a D3MCP instance
G′ = (L′

0, L
′
L, L′

R, E′), y′
0, M ′. Denote |L0| by N and |L1| by n. Since the

mapping from L0 to L1 is many-to-one, N ≥ n. Assume L0 = {p1, p2, ..., pN}
with y0(p1) > y0(p2) > ... > y0(pN ) and L1 = {r1, r2, ..., rn}. Let L′

0 be
L0 and L′

R be L1, so |L′
R| = n. Then create n nodes, say l1, l2, ..., ln with

y′
L(l1) > y′

L(l2) > ... > y′
L(ln), in L′

L, i.e., |L′
L| = n. For each node li in L′

L,
we add 2

(

N
2

)

+ 2 nodes connected to li into L′
0, i.e., |L′

0| = N + n(2
(

N
2

)

+ 2),

as follows. For each node li in {l1, l2, ..., ln−1}, we add
(

N
2

)

+ 1 nodes between

y′
0(pi−1) and y′

0(pi) in L′
0 and

(

N
2

)

+ 1 nodes between y′
0(pi) and y′

0(pi+1) in L′
0,

and then connect those nodes to li. For the node ln, we add
(

N
2

)

+ 1 nodes

between the y′
0(pn−1) and y′

0(pn) in L′
0 and

(

N
2

)

+ 1 nodes below y′
0(pN ) in L′

0,
and then connect those nodes to ln. The illustration is given in Figure 14. Let
M ′ = M .

2

N
+1

l1

l2

l3

r1

ln

r2

r3

p1

p2

p3

pN

p4l4

rn

r4

pn

2

N
+1

Figure 14: G′(L′
0, L

′
L, L′

R, E′) with |L′
0| = N + n(2

(

N
2

)

+ 2) and L′
R = L1.

In the above construction, for 1 ≤ i ≤ n, the node labeled by li (resp., ri) is
called a type-l (resp., type-r) node. A node u in L′

R is said to be swapped with a
node v in L′

L if u and v are placed at y′
L(v) in L′

L and y′
R(u) in L′

R, respectively.
Similarly, a node in L′

L swapped to a node in L′
R also can be defined.
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In what follows, we prove that G(L0, L1, E) has at most M crossings if and
only if G′(L′

0, L
′
L, L′

R, E′) has at most M crossings.
Suppose that G has at most M crossings. From the above construction of

G′ (see also Figure 14), we observe that crossings in G′ only occur on the right-
hand side (i.e., between L′

0 and L′
R), so the crossing number of G′ is equivalent

to that of G. That is, the crossing number of G′ is also at most M .
Conversely, suppose that G′ has at most M crossings. If M >

(

n
2

)

, then the
crossing number of G with arbitrary ordering y0 must be less than M , because
it must be no more than

(

n
2

)

.

If M ≤
(

n
2

)

, it implies that in G′ the edges incident to a type-l node cannot
cross those incident to any other type-l node as well as those incident to a type-r
node; otherwise, it leads to at least

(

N
2

)

+1 ≥
(

n
2

)

+1 crossings – impossible. Note
that in the converse direction each type-l node in G′ may be placed in either
L′

L or L′
R. No matter how the type-l nodes in G′ are placed, the y-coordinate

ordering of the nodes in {l1, l2, ..., ln} cannot be modified; otherwise, w.l.o.g.,
assuming that the y-coordinate of li is less than that of lj for i < j, there are at

least
(

N
2

)

+1 crossings between the edges incident to li and either those incident
to lj (if li and lj are placed on the same side) or those incident to rj (if li and lj
are placed on different sides) – impossible. Therefore, w.l.o.g., we assume that
the nodes consecutively appear from the topmost to the bottommost in L′

R and
L′

L, respectively, are

l1, l2, ..., li1 , r[i1+1], r[i1+2], ..., r[i2], li2+1, li2+2, ..., li3 , ..., ri[2k]
, ..., li2k+1

, ...

and

r[1], r[2], ..., r[i1], li1+1, li1+2, ..., li2 , r[i2+1], r[i2+2], ..., r[i3], ..., li2k
, ..., ri[2k+1]

, ...,

where r[1], r[2], ..., r[n] is a permutation of {r1, r2, ..., rn} (in which r[i] is the i-
th node of the permutation) so that li and r[i] have the same y-coordinate on
different sides in G′, for every i ∈ {1, ..., n}. Define Rj = {r[ij−1+1], r[ij−1+2],
..., r[ij−1], r[ij ]}. Note that the edges incident to every type-r node in Rj

only cross those incident to the other type-r nodes in Rj ; otherwise, at least
(

N
2

)

+ 1 crossings are generated – impossible. As a result, we can swap all the
type-l nodes in L′

R with their same y-coordinate type-r nodes in L′
L, without

producing new crossings. Now we obtain a new three-layered network where
all the type-l nodes are placed in L′

L, and it has the same crossing number as
the original three-layered network G′. That is, the crossing number of the new
three-layered network is at most M . After deleting all the type-l nodes of the
new three-layered network and their adjacent edges, a two-layered network with
at most M edge crossings can be obtained.

2

Similar to Algorithm 1, we can draw the bends of leaders in the two track
routing areas on two sides so that two edges in G cross if and only if there is
one crossing between two leaders (corresponding to the two edges in G) in M.
As a result, we have the following corollary.

Corollary 2 CP2ML-opo is NP-complete even when n1 = n2.
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4.2 Approximation algorithm with equal number of labels

on two sides

In this subsection, we propose an approximation algorithm for the CP2ML-opo
in the case where the number of labels on the East side is equal to that on the
West side, i.e., n1 = n2 = n/2, n is even.

The approximation algorithm is given in Algorithm 2. Initially in Step 1,
all the n labels are placed in the median order on the East side of R, and the
leaders are drawn by Algorithm 1. Let L0 represent such a layout. The idea is
to choose n/2 labels from the East side and then move them to the West side to
minimize the crossing number. When moving a label from the East side to the
West side, its y-coordinate is retained and all of its leaders are redrawn in a way
that they are reflectionally symmetrical to their original drawings. Suppose we
let {l1, ..., ln} be the set of the n labels, and with respect to a given layout L,
wL

i,j be the number of corssings among leaders connecting sites to li and lj . It
is not hard to observe the following:

(1) If in layout L, li and lj are on the opposite side of R, then wL
i,j=0;

(2) If ogiginally li and lj are on the same side in layout L, and L′ is obtained

from L by moving li and lj simultaneously to the other side, then wL′

i,j =

wL
i,j .

Next, we construct a complete weighted graph G = (V, E) (V = {1, ..., n})
in Step 2, where node i ∈ V corresponds to label li, and the weight wi,j of edge

(i, j) equals wL0

i,j . Suppose we partition V into two disjoint sets S and V \ S of
equal cardinality, and define

w(S) :=
∑

i,j∈S

wi,j +
∑

i,j∈V \S

wi,j .

Due to Observations (1) and (2) above, it is easy to see that w(S) is exactly
equal to the total number of crossings in the layout obtained from the initial
layout L0 by moving all the labels in V \ S to the West. As a result, our
objective in boundary labeling can be equated with finding a cut so that w(S)
is minimized – an instance of the so-called Max-Bisection problem.

Even though the Max-Bisection problem is known to have a 1.431-approxi-
mation solution [22], the algorithm cannot be applied to our problem directly
because the computation of the approximation ratio in the case where w(S) is
zero is incorrect. As a result, our algorithm needs to check in advance whether
there exists a partition such that w(S) is zero. In Step 3, we first create a new
graph G′ that is a duplicate of G, delete the edges with wi,j = 0 in G′, and then
check if the new G′ can be decomposed into some bipartite graphs (where the
number of the bipartite graphs is denoted by m, m ≥ 1). One can easily verify
that the check can be implemented in polynomial time. Note that any bipartite
subgraph of G′ (where the weight of any pair of nodes on the same side is zero)
can easily be transformed into a boundary labeling without any crossings – just
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Algorithm 2 Approx-CP2ML-opo

1: Consider a boundary labeling where all the n labels {l1, l2, ..., ln} are placed
in the median order on the East side of R, and the leaders are drawn by
Algorithm 1.

2: Construct a complete weighted graph G = (V, E) where each node i in V
corresponds to a label li; the weight wi,j of edge (i, j) equals the number
of crossings of the leaders connected to li and lj in the boundary labeling
constructed in Step 1.

3: Check if w(S) =
∑

i,j∈S wi,j +
∑

i,j∈V \S wi,j is zero as follows. Let G′ = G.

Delete the edges with wi,j = 0 in G′. Check if G′ can be partitioned into
some bipartite graphs (where the number of these bipartite graphs is denoted
by m, m ≥ 1). If not (i.e., w(S) 6= 0), then do Step 4; otherwise, call
Procedure 3 to check if the m bipartite graphs can be combined into a new
bipartite graph consisting of two disjoint sets with equal cardinality n/2. If
Procedure 3 returns false (i.e., w(S) 6= 0), then do Step 4; otherwise (i.e.,
w(S) = 0), denote the two disjoint node sets of the combined bipartite graph
by S and V \ S, and then do Step 5.

4: Using G as the input, run the 1.431-approximation algorithm of the Max-
Bisection Problem to partition V into two sets S and V \ S.

5: Output a labeling where the labels corresponding to nodes in S (resp., V \S)
are placed in the median orders of their adjacent sites on the East (resp.,
West) side; the leaders are drawn by Algorithm 1.

Procedure 3 Combine Bipartite(G′)

Input: an n-node graph G′ consisting of m bipartite graphs.
Output: return true if the m bipartite graphs can be combined into a new
bipartite graph consisting of two disjoint sets with equal cardinality n/2; else
return false.

1: We construct an n × n × m table T . Every entry in table T is initially
assigned to zero. Note that each entry only can be 0 or 1.

2: We give the m bipartite graphs in G′ an arbitrary ordering. For j ∈
{1, · · · , m}, let the j-th bipartite graph be denoted by Aj × Bj (i.e., Aj

and Bj are the two disjoint sets of the j-th bipartite graph) and the number

of nodes in Aj (resp., Bj) be denoted by nj
A (resp, nj

B). Initially, in table T ,
both entries T (n1

A, n1
B, 1) and T (n1

B, n1
A, 1) are assigned to 1.

3: For j = 2, 3, ..., m, entry T (p, q, j) = max{T (p − nj
A, q − nj

B, j − 1), T (p −

nj
B, q − nj

A, j − 1)} for any p, q ∈ {1, 2, ...n}. That is, T (p, q, j) = 1 iff the
first to the j-th bipartite graphs can be combined into a new bipartite graph
of two disjoint sets with sizes p and q, respectively.

4: If entry T (n/2, n/2, m) is 1, then return true; otherwise, return false.
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placing two disjoint node sets of the bipartite graph on different sides of R and
then applying the median heuristic and Algorithm 1 to drawing them.

That is, if G′ cannot be decomposed into bipartite graphs, then the crossing
number is nonzero, no matter how to place the labels on two sides. Hence, in
the case, we can apply the 1.431-approximation algorithm of the Max-Bisection
Problem. Otherwise (i.e., G′ can be decomposed into some bipartite graphs),
we use Procedure 3 (dynamic programming) to combine those bipartite graphs
into a new bipartite graph consisting of two disjoint sets with equal cardinality
n/2. If the output of Procedure 3 is true, then G′ can be merged into a bipartite
graph consisting of two disjoint sets with equal cardinality n/2, so the boundary
labeling without any leader crossings can be obtained; otherwise, there does not
exist any boundary labeling with zero leader crossing. Subsequently, if the
crossing number is nonzero, then Step 4 uses graph G as the input of the 1.431-
approximation algorithm of the Max-Bisection Problem to partition V into two
sets S and V \ S. Finally, Step 5 outputs a boundary labeling where the labels
corresponding to S (resp., V \ S) are placed in the median order on the East
(resp., West) side, and the leaders are drawn by Algorithm 1.

Unlike heuristic approaches, Algorithm 2 provides an approximation solution
with a guaranteed approximation ratio for the intractable problem CP2ML-opo.
The approximation ratio depends to the map structure as the following result
indicates:

Theorem 4 For the CP2ML-opo in the case where n1 = n2, there exists a
3(1 + 0.301

c−1 )-approximation algorithm, where c is defined as follows:

if
∑

i,j∈V ;wi,j>0 1 ≤ n2

4 , then c =
∑

i,j∈V wi,j
∑

i,j∈V wi,j−min{wi,j |wi,j>0} .

if
∑

i,j∈V ;wi,j>0 1 > n2

4 , then c =
∑

i,j∈V wi,j

∑ n2/4
k=1 wk

where we sort {wi,j |i, j ∈ V } from minimum to maximum and rename them as
{wk} in which wk is the k-th minimum among all.

Proof: In Algorithm 2, since Step 3 outputs zero if and only if the optimal
crossing number is zero, it suffice to show that the output of Step 4 is as required.
Let MSOPT denote the optimal solution of the Max-Bisection problem. As the
optimal crossing number is nonzero, we discuss the following two cases:

1. If the number of edges with positive weights is less than or equal to the
number of edges of a complete bipartite graph consisting of two disjoint
sets with equal cardinality n/2, i.e.,

∑

i,j∈V ;wi,j>0 1 ≤ (n
2 )2, then MSOPT

is not able to partition all the edges with positive weights since the optimal
crossing number is nonzero. Therefore,

MSOPT ≤
∑

i,j∈V

wi,j − min{wi,j |wi,j > 0}

=⇒

∑

i,j∈V wi,j

MSOPT
≥

∑

i,j∈V wi,j
∑

i,j∈V wi,j − min{wi,j |wi,j > 0}
= c
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2. In the case where
∑

i,j∈V ;wi,j>0 1 > (n
2 )2, MSOPT only can cut at most

(n
2 )2 edges, so

MSOPT ≤

n2/4
∑

k=1

wk

=⇒

∑

i,j∈V wi,j

MSOPT
≥

∑

i,j∈V wi,j
∑n2/4

k=1 wk

= c

Obviously, c > 1. Denote the output of Step 4 of Algorithm 2 by cAPX , and
the minimal crossing number by cOPT . Then

cAPX

cOPT
≤

∑

i,j∈V wi,j −
MSOP T

1.431
∑

i,j∈V wi,j − MSOPT

= 1 +
0.301

∑

i,j∈V wi,j

MSOP T
− 1

≤ 1 +
0.301

c − 1

Recall that we place all the labels in the median order on the East side in
Step 1 of Algorithm 2. Since the median algorithm is a 3-approximation algo-
rithm for one-side many-to-one labeling with opo-leaders, we get a 3(1 + 0.301

c−1 )-
approximation algorithm. 2

It should be noticed that finding improved approximation algorithms for the
CP2ML-opo problem remains an interesting open question.

With respect to the Taiwan map with the same sites and labels as in Fig-
ure 12, we consider the CP2ML-opo in the case where n1 = n2, i.e., we require
that the numbers of labels on both sides are the same. The experimental result
of Algorithm 2 is given in Figure 15, which gives us a higher degree of balance
in visibility in comparison with Figure 12.

5 The Crossing Problem for One-Side Many-to-

One Labeling with Type-po Leaders

In this section, we investigate the crossing problem for one-side many-to-one
labeling with type-po leaders (CP1ML-po).

5.1 CP1ML-po is NP-complete

Different from Section 3, the x-coordinate ordering of sites plays an important
role in the problem discussed in this section, and hence the problem cannot be
represented as a two-layered network. The decision version of this problem is
stated as follows:
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Figure 15: The distribution of some animals in Taiwan, which is represented by
two-side many-to-one labeling with type-opo leaders.

The Decision Crossing Problem for One-Side Many-to-One Labeling

with po-Leaders (DCP1ML-po)
Instance: A one-side type-po map M = (P, L, n, 0, 0, 0, f), an integer M .
Question: Is there a boundary labeling for M such that the crossing number is
no greater than M?

Theorem 5 DCP1ML-po is NP-complete.

Proof: Obviously this problem is in NP because we can guess an ordering of
labels and then check if the crossing number is no more than M . Next we show
that this problem is NP-hard. We can reduce the DMCP mentioned in Section 3
to a special case of DCP1ML-po where the y-coordinate of any site is smaller
than that of the lowest port of the lowest label, as illustrated in Figure 16. One
can easily see that in order not to induce the crossings of the leaders connected
to a common label, the y-coordinate increasing ordering of the ports at which
the leaders tough to the common label must respect the x-coordinate decreasing
ordering of the sites connected to the label.

In this case, two leaders cross only when the x-coordinate increasing order of
any two sites is different from the y-coordinate decreasing order of their corre-
sponding labels (recall that in Section 2 once the position of label is decided, its
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l2

ln

l1

Figure 16: A special case of DCP1ML-po where the y-coordinate of any site is
smaller than that of the lowest port of the lowest label. Note that some of the
edges are not shown in the figure.

port positions also can be decided such that the crossing number is the smallest).
Recall that in DMCP, two edges cross only when the y-coordinate increasing or-
der of any two nodes in L0 is different from the y-coordinate increasing order of
their corresponding nodes in L1. Obviously, the special case of DCP1ML-po and
DMCP are equivalent as counting the crossing number. Therefore, DCP1ML-po
is NP-hard. 2

5.2 A heuristic

We give a polynomial time heuristic for the labeling problem CP1ML-po. Con-
sider a one-side type-po map M = (P, L, n, 0, 0, 0, f), where L = {l1, l2, ..., ln}
and f−1(li) is the set of the sites connected to the common label li. Our
greedy-based heuristic is described in Algorithm 4. As we are concerned about
the reduction of crossings of type-po leaders and the placements of labels on the
East side of R, it is more natural to start the algorithm from the x-coordinates
of sites rahter than from the y-coordinates of sites. Therefore, Steps 1 and 2
preprocess the coordinates of all the sites, and record the leftmost site of those
connected to each label.

Recall that we assume the labels along the same side to be of uniform and
maximum size; the sizes and possible positions of the n labels on the East side
are known. We can image that there are n possible label positions on the East
side of the map to which we allocate the n labels, and the y-coordinate ordering
of the n labels is sufficient to determine the exact positions of the n labels.

The idea behind our algorithm is that ideally the type-po leader between
the leftmost site and the topmost or bottommost label leads to fewer crossings
with the leaders connected to other labels. Thus, each iteration of Step 3 places
the label with the leftmost unconnected sites at the topmost or bottommost
unallocated label position on the East side according to whichever situation
leads to fewer crossings, while the leaders are drawn by Procedure 5. Note that
the leaders connected to a common label do not cross if they are drawn by
Procedure 5.

In order to better understand the algorithm, some immediate steps of Algo-
rithm 4 for an example are given in Figure 17. In the leftmost map of Figure 17,
Step 2 records the leftmost site in f−1(l′i) as p1

i
′
for i = 1 to 4; Step 3(a) con-
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Algorithm 4 Heuristic-CP1ML-po(G)

1: For i = 1 to n, compute and record the x-coordinate and the y-coordinate
increasing orders of the sites in f−1(li), and let p1

i be the site in f−1(li)
with the smallest x-coordinate.

2: {p1
1, p

1
2, ..., p

1
n} are sorted according to their x-coordinates, and rewritten as

{p1
1
′
, p1

2
′
, ..., p1

n
′
} with x(p1

1
′
) < x(p1

2
′
) < ... < x(p1

n
′
). Let l′i denote the label

to which p1
i
′
is connected.

3: Consider that there are n possible label positions on the East side of the
map, to which we allocate labels l′1, l

′
2, ..., l

′
n as follows:

(a) l′1 is placed at the bottommost label position.

(b) Assume that the label positions of l′1, l
′
2, ..., l

′
j have been determined for

some j < n. Note that in this case there are (n− j) unallocated label
positions remaining on the East side of the map. For i = j + 1 to
n, compute the crossing number when label l′j+1 is placed at the top-
most (resp., bottommost) unallocated label position and the leaders
connected to label l′j+1 are drawn by Procedure 5. Subsequently, la-
bel l′j+1 is placed at the topmost or the bottommost unallocated label
position according to whichever case leads to fewer crossings.

Procedure 5 Drawing Type-po Leaders (label li)

Input: We are given the positions of the ports of label li and the sites in f−1(li).
Output: The type-po leaders between the sites in f−1(li) and the ports of li
are drawn.

1: See also Figure 18 for an example. Denote the ports of label li as
{b1, b2, ..., bm} with y(b1) > y(b2) > ... > y(bm), where m is the number
of the ports of label li.

2: Assume that the leaders connected to ports b1, b2, ..., bj have been drawn for
some j < m. For k = j + 1 to m,

(a) if there exists at least one unconnected site with y-coordinate greater
than or equal to that of port bk, we connect to port bk the rightmost
unconnected site with y-coordinate greater than or equal to that of
port bk;

(b) otherwise, we connect to port bk the leftmost unconnected site with
y-coordinate less than that of port bk.
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nects the sites in f−1(l′1) to the bottommost label position on the East side of
the map. Subsequently, if the sites in f−1(l′2) are connected to the topmost la-
bel position (resp., the second label position to the bottom) and their adjacent
leaders are drawn by Procedure 5, then they induce no (resp., one) crossing.
Therefore, as shown in the second map of Figure 17, label l′2 is placed at the
topmost label position, and their adjacent leaders are drawn by Procedure 5.
Similarly, labels l′3 and l′4 are placed, and their adjacent leaders are drawn, as
shown in the rightmost map of Figure 17.

Step 2 & Step 3(a). Step 3(b)-i. Step 3(b)-ii. Step 3(b)-iii.
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Figure 17: An example of executing Algorithm 4, where the sites connected to
a common label are represented by the same icon.

In order to understand how to use Procedure 5 to draw the type-po leaders
between the sites and the ports with fixed positions, we give an example shown
in Figure 18. In the first iteration of Step 2 of Procedure 5, y(a1) ≥ y(b1) and
y(a2) ≥ y(b1), but we have x(a1) > x(a2), so that we connect a1 to b1 (Step 2(a)
of Procedure 5). By using the same discussion, the leaders of b2 – b5 are drawn.
Subsequently, while b6 is concerned, since there is no unconnected site ai for
any i so that y(ai) ≥ y(b6), we connect to port b6 the leftmost unconnected site
a6 (Step 2(b) of Procedure 5). As for b7, y(a7) ≥ y(b7) and y(a8) ≥ y(b7), but
we have x(a7) > x(a8), so that we connect a7 to b7. Similarly, the leaders of b8

and b9 can be drawn.

li

b9

b8

b7

b6

b5

b4

b3

b2

b1

a9

a8 a7
a6

a5

a4

a3

a2 a1

Figure 18: An example of illustrating the type-po leaders drawn by Procedure 5.

One can easily verify the correctness of Procedure 5 by considering the fol-
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lowing simple invariant: after port bk is connected in Step 2 of Procedure 5, it al-
ways guarantees that the later leaders connected to ports in {bk+1, bk+2, ..., bm}
do not cross the existing leaders connected to ports in {b1, b2, ..., bk}.

Recall that N is the number of sites and N ≥ n. Because the x-coordinate
and the y-coordinate orders of the sites in f−1(li) are obtained in Step 1 of
Algorithm 4, each iteration of Step 2 in Procedure 5 can be implemented in
constant time, and hence, Procedure 5 runs in time O(N). If the coordinate
orders of sites are not preprocessed, Procedure 5 runs in time O(N log N). Note
that Procedure 5 (of which objective is to find the one-to-one labeling with no
leader crossings) is different from the O(N2)-time algorithm of [3, 4] used for
finding the one-to-one labeling with no leader crossings as well as the minimal
total leader length. Therefore, Algorithm 4 runs in time O(N2), because Steps
1 and 2 (resp., Steps 3 computing the crossing number) can be implemented in
time O(N log N) (resp., O(N2)).

In what follows, we implement the algorithm and give some experimental
results. The implementation is in C language, and runs on a Pentium M 1.5G
Hz PC with 768 MB memory. The experimental results of three problem sets
are given in Figure 19, where the top (resp., middle; bottom) bar chart shows
the minimal crossing numbers and the crossing numbers of our outputs for
the problems with fixed eight (resp., nine; ten) labels and random numbers of
sites. Note that the coordinates of the input sites for each problem are different
because they are generated randomly. The running times associated with the
experiments in Figure 19 are given in Table 3, where each problem is solved in
less than one second. Comparing the minimal crossing numbers with the outputs
of our algorithm in Figure 19, our algorithm yields layouts of reasonably good
quality. It is of interest to further investigate other experimental settings and
the performances on practical problems.

6 The Crossing Problem for Two-Side Many-to-

One Labeling with Type-po Leaders

Again, from the result in the previous section, CP2ML-po is NP-complete
(CP1ML-po is a special case of CP2ML-po with n2 = 0). In this section, we
investigate CP2ML-po under the restriction that n1 = n2. We first show the
crossing problem to be NP-complete, then a heuristic is given.

6.1 CP2ML-po is NP-complete even when n1 = n2

Similar to Section 5, the decision version of DCP2ML-po is stated as follows:

The Decision Crossing Problem for Two-Side Many-to-One Labeling

with po-Leaders (DCP2ML-po)
Instance: A two-side type-po map M = (P, L, n1, n2, 0, 0, f), an integer M .
Question: Is there a boundary labeling for M such that the crossing number is
no greater than M?
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Figure 19: The experimental results for DCP1ML-po.
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Table 3: Running time for Figure 19.

number of labels = 8 number of labels = 9 number of labels = 10

number running time number running time number running time
of sites (millisecond) of sites (millisecond) of sites (millisecond)

23 20.3 26 31.3 29 39.0
26 26.6 31 43.8 34 50.0
28 34.4 33 46.9 36 53.5
28 34.4 33 46.9 38 60.9
36 50.5 37 62.4 47 92.6
40 67.2 49 119.8 54 137.5
44 87.5 55 146.9 56 142.1
45 89.1 56 155.6 59 162.5
53 120.7 58 158.5 66 212.5
53 120.7 60 164.0 68 225.0
54 124.5 61 165.6 69 234.3
55 126.6 63 170.7 73 238.6
57 148.4 64 182.8 73 238.6
60 171.5 65 195.3 74 256.2
90 367.2 83 309.5 108 553.8

Theorem 6 DCP2ML-po is NP-complete even when n1 = n2.

Proof: Obviously the problem is in NP because we can guess an ordering of
labels and then check if the crossing number is smaller than M . Next we show
that this problem is NP-hard. This proof is similar to the one of DCP1ML-po.
We can reduce the DMCP mentioned in Section 3 to a special case of DCP2ML-
po where the y-coordinate of any site is smaller than that of the lowest port
among all label ports, as illustrated in Figure 20. In order not to induce any
crossing among the leaders connected to a common label, one should notice
that the x-coordinate increasing order of sites should respect the y-coordinate
decreasing (resp., increasing) order of ports while the label is placed on the
East (resp., West) side, e.g., see the leaders connected to label ln2+1 (resp.,
ln2) in Figure 20. Therefore, we reasonably assume that the leaders connected
to a common label never cross. Also recall that leaders never overlap because
overlapping can be easily removed by adjusting the positions of ports slightly
(e.g., see the leaders connected to labels ln2 and ln2+1 in Figure 20).

We define the circular ordering of labels, which sorts all labels according to
their y-coordinates from bottom to up on the West side of map and then from
up to bottom on the East side of map. The details are given as follows. As
shown in Figure 20, we assign l1 to the lowest label on the West side, l2 to
the second lowest label on the West side, and so on until we assign ln2 to the
topmost label on the West side. Next we assign ln2+1 to the topmost label on
the East side, ln2+2 to the second topmost label on the East side, and so on
until we assign ln2+n1 to the lowest label on the East side.
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Figure 20: A special case of DCP2ML-po where the y-coordinate of any site is
smaller than that of the lowest port among the ports of all labels. Note that
some of the edges are not shown in the figure.
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Figure 21: A crossing is produced when the x-coordinate increasing order of
two sites does not respect the circular ordering of their corresponding labels, in
the case where the two sites are connected to (a) the West side, (b) different
sides, and (c) the East side.

In this case, we observe that two leaders cross only when the x-coordinate
increasing order of any two sites is different from the circular ordering of their
corresponding labels, as shown in Figure 21. Recall that in DMCP, two edges
cross only when the y-coordinate increasing order of any two nodes in L0 is
different from that of their corresponding nodes in L1. Obviously, the special
case of DCP2ML-po and DMCP are equivalent as counting the crossing number.
Therefore, DCP2ML-po is NP-hard even when n1 = n2. 2

6.2 A heuristic

In this subsection, we devise a polynomial time heuristic for the labeling problem
CP2ML-po. Our heuristic needs the algorithm for solving the Min-Bisection
Problem for directed graphs, which is not approximable [10]. To our knowledge,
so far there has not been any heuristic for solving the Min-Bisection Problem
for directed graphs. Our heuristic is based on the K-L heuristic [15], which
was designed for solving the Min-Bisection Problem for undirected graphs in
practice. Consider a two-side type-po map M = (P, L, n1, n2, 0, 0, f), where
L = {l1, l2, ..., ln} and f−1(li) is the set of the sites connected to the common
label li. Our heuristic is described in Algorithm 6. In order to better understand
how Algorithm 6 works, see also an example shown in Figure 22.
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Algorithm 6 is explained as follows. In Step 1, we construct a weighted
directed graph G = (V, E), where each node in V represents a label in L and
each arc (li, lj) has a weight which is defined as follows:

wi,j =
∑

x(a)>x(b),a∈f−1(li),b∈f−1(lj)

1.

One should notice that wi,j is different from wj,i. The intuition is that wi,j is
penalized by one unit if label li (resp., lj) is placed on the West (resp., East) side
but site a ∈ f−1(li) (resp., b ∈ f−1(lj)) is located close to the East (resp., West)
side. That is, wi,j can roughly estimate the number of the crossings induced by
placing li and lj on the West and the East sides, respectively.

Subsequently, Steps 2 applies the K-L heuristic in [15] to partitioning graph
G into two subsets A and B = V \ A with equal cardinality so that w(A, B) =
∑

(li,lj)∈A×B wi,j is as small as possible. The objective of Step 2 is to partition all

the labels into two groups (A and B) with equal size so that the crossing number
(w(A, B)) is as small as possible when the two groups (A and B) of sites are
placed on the West and the East sides of the map, respectively. Finally, Step 3
applies Algorithm 4 to determining the positions of the labels corresponding to
the nodes in A and B on the West and the East sides of the map, respectively,
and drawing all the type-po leaders.

Algorithm 6 Heuristic-CP2ML-po(G)

1: Construct a weighted directed graph G = (V, E), where every node
in V corresponds to a label and each arc (li, lj) has a weight wi,j =
∑

x(a)>x(b),a∈f−1(li),b∈f−1(lj)
1. Note that wi,j 6= wj,i.

2: We apply the K-L heuristic of [15] to partitioning graph G into two subsets
A and B = V \A with equal sizes so that w(A, B) =

∑

(li,lj)∈A×B wi,j is as
small as possible.

3: Apply Algorithm 4 to determining the placements of the labels correspond-
ing to the nodes in A and B on the West and the East sides of the map,
respectively, as well as the drawings of the type-po leaders.

Step 2. w(A, B) = 5 

4
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Figure 22: An example for illustrating how Algorithm 6 is executed.
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As for the time complexity of Algorithm 6, Step 1 can be implemented in
time O(N2) in the following way. Initially, an N × N table is used to record
all the wi,j values. We iterate each site pa, of which label is called li, so the
total number of iterations is N . In each iteration, we consider each of the
sites rather than pa, which is denoted by pb and its corresponding label is
called lj. If x(pa) > x(pb), then w(i, j) := w(i, j) + 1. If x(pb) > x(pa), then
w(j, i) := w(j, i) + 1. Therefore, Step 1 can establish the weighted directed
graph in time O(N2).

In addition, Step 2 runs in time O(N2 log N) [15], and Step 3 (Algorithm 4)
runs in time O(N2). As a result, Algorithm 6 runs in time O(N2 log N).

In what follows, we implement the algorithm and give some experimental
results to compare the minimal crossing number and the output of Algorithm 6.
The experimental setting is the same as that used in Subsection 5.2. The ex-
perimental results of two problem sets are given in Figure 23, where the top
(resp., bottom) bar chart shows the minimal crossing numbers and the crossing
numbers of the outputs of our algorithm for the problems with fixed ten (resp.,
eleven) labels and random numbers of sites. In view of the figure, our algorithm
outputs a layout of good quality.

7 Discussions and Conclusions

In this section, we discuss the problem with the objective of minimizing the total
leader length in Subsection 7.1, as well as the problems for type-s leaders in
Subsection 7.2. Some conclusions with future work are given in Subsection 7.3.

7.1 The leader length problem

In our earlier discussion, we have investigated the many-to-one boundary label-
ing with the objective of minimizing the crossing number, regardless of the total
leader length. An alternative objective might be to minimize the total leader
length, regardless of the total crossing number. The concerned problem can be
stated as follows:

The Leader Length Problem for Many-to-One Labeling (LLPML):
Given a k-side type-t map M = (P, L, n1, n2, n3, n4, f), where t ∈ {po, opo},
find a boundary labeling for M such that the total leader length is as small as
possible, regardless of the total crossing number.

In what follows, we show LLPML to be solvable in polynomial time using
an approach originally used in [1]. The algorithm works regardless of the leader
type (opo or po) and the boundary type (one-side, two-side, or four-side).

As crossings among leaders are allowed, leaders can be routed arbitrarily.
Consider a representative label li for some i ∈ {1, · · · , n}. It is easy to see that
if the position of labels li is determined, then routing the leaders connected
to labels li never affects the length of any other leader. It implies that in the
LLPML solution the sum of lengths of the leaders connected to label li must be
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Figure 23: The experimental results for DCP2ML-po.

the minimal. Therefore, we first consider how to route the leaders connected to
label li such that the sum of those leaders is the minimal.

Note that the positions of ports of label li are determined as the position
of label li is determined. The shortest length of a type-opo or type-po leader
between a site u and a port p of label li can be measured by Manhattan distance,
i.e., the shortest distance between site u and port p which is measured along
axes at right angles. For example, in a plane with site u at (x1, y1) and port p
at (x2, y2), the leader length is |x1 − x2| + |y1 − y2|.

Let Ni denote the number of sites in f−1(li), for i ∈ {1, · · · , n}. Hence,
N1 + · · · + Nn = N . It is easy to observe that the leader length minimization
problem of routing the type-opo (resp., type-po) leaders connected to label l can
be viewed as the leader length minimization problem for one-side one-to-one
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boundary labeling (where each port of label li is viewed a label in the one-to-
one boundary labeling), and hence can be solved in time O(Ni log Ni) (resp.,
O(N2

i )) [4]. Note that the leaders connected to label li never cross one another
when the sum of their lengths is the minimal [4].

Subsequently, we consider how to determine the position of each label. Since
the number of labels placed on each side is given, the sizes of labels on each side
are known (fixed). Hence, there are n possible fixed label positions around the
map, in which each position just accommodates one of the n labels. In order
to allocate the n labels to the n possible label positions around the map, we
construct a weighted bipartite graph A × B in which

• each node ai, i ∈ {1, · · · , n}, in A represents label li;

• each node bi, i ∈ {1, · · · , n}, in B represents a possible label position
around the map;

• for any i, j ∈ {1, · · · , n}, the weight of edge aibj is the sum of lengths
of the leaders connected to li in the case where label li is placed at the
position represented by bj .

In the case of type-opo (resp., type-po) leaders, the weighted bipartite graph
can be constructed in time O(nN log N) (resp., O(nN2)). In what follows,
we explain the case of type-opo leaders; the other case is similar. Recall that
the sum of lengths of the leaders connected to label li can be computed in
time O(Ni log Ni). Since label li has n possible label positions, the weights
of the n edges in A × B connected to node ai in A can be computed in time
O(nNi log Ni). Hence, the weights of all the edges in A×B can be computed in
time O(n×(N1 log N1+· · ·+Nn log Nn)) ≤ O(n×(N1 log N +· · ·+Nn log N)) =
O(n × (N1 + · · · + Nn) log N) = O(nN log N).

Finally, like the work in [1], the LLPML solution can be obtained by find-
ing the minimum weighted matching in A × B, which can be solved in time
O(n2 log3 n) [18]. As a consequence, LLPML can be solved in polynomial time.

It is interesting to compare and contrast the results for LLPML under type-
po leaders with those listed in Table 2, which deals with one-to-one boundary
labeling. LLPML for all cases are tractable; however, only the one-side and
two-side one-to-one boundary labeling problems (i.e., excluding the four-side
one) are tractable. The disparity comes from the fact that unlike one-to-one
boundary labeling which requires crossing-free leaders, LLPML allows crossings
among leaders.

7.2 The problems for type-s leaders

About the problems for type-s leaders, one may guess that our NP-hardness
proofs of the problems for type-opo leaders (which are reduced from two- or
three- layered networks) might be used to show the intractable problems for
type-s leaders. However, it is impossible because in the case of type-s leaders
both the x- and y- coordinates of the sites matter, but in the case of type-opo
leaders only the y-coordinates of the sites matter.
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7.3 Conclusions with future work

We have shown the crossing problems for both one-side and two-side many-to-
one labeling with type-opo leaders as well as type-po leaders to be NP-complete.
For such intractable problems, we have also given approximation algorithms or
heuristics with satisfactory performances. A line of future work is to investigate
the crossing problems for four-side many-to-one labeling with either type-opo
or type-po leaders. It is also interesting to investigate the case where sites are
of more complicated shape (such as lines, rectangles) and size, which tend to
cause a large number of crossings.
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