
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 13, no. 2, pp. 119–131 (2009)

Vertex Bisection is Hard, too

Ulrik Brandes Daniel Fleischer

Department of Computer & Information Science
University of Konstanz

Abstract

We settle an open problem mentioned in Diaz, Petit, and Serna: A
survey of graph layout problems (ACM Computing Surveys 34:313–356,
2002). Of eight objectives considered in that survey, only the complexity
status of minimum vertex bisection is listed as unknown. We show that
both minimum and maximum vertex bisection are NP-hard, but polyno-
mially solvable on special graph classes such as hypercubes and trees.

Submitted:
December 2005

Reviewed:
April 2006

Revised:
April 2007

Accepted:
February 2009

Final:
February 2009

Published:
April 2009

Article type:
Concise paper

Communicated by:
S. Albers

E-mail addresses: Ulrik.Brandes@uni-konstanz.de (Ulrik Brandes) Daniel.Fleischer@uni-konstanz.de

(Daniel Fleischer)

mailto:Ulrik.Brandes@uni-konstanz.de
mailto:Daniel.Fleischer@uni-konstanz.de

120 U. Brandes, D. Fleischer Vertex Bisection

1 Introduction

We consider simple undirected graphs G = (V,E). A partition (S, V \S) induced
by a proper subset ∅ 6= S (V of the vertices is called a cut. A cut (B, V \B) that
divides the vertex set evenly, i.e. |B| ∈ {b|V |/2c, d|V |/2e}, is called a bisection.

The width of a bisection is measured either in terms of the number of edges
or the number of vertices connecting the two subsets. A bisection (B, V \B) (or
simply called B) has edge width κ(B) = |{{v, w} ∈ E : v ∈ B,w ∈ V \B}| and
vertex width λ(B) = |{v ∈ B : ∃w ∈ V \ B, {v, w} ∈ E}|. Thus, λ(B) counts
the number of vertices in B that have neighbors outside B.

Minimum edge bisections are of interest, e.g., for divide and conquer ap-
proaches in VLSI design [3, 1]. Minimum vertex bisection is relevant, e.g., for
certain forms of gossiping in communication networks [11].

minimum edge bisection, κ(B) = 3 maximum edge bisection, κ(B) = 7

minimum vertex bisection, λ(B) = 2 maximum vertex bisection, λ(B) = 4

Figure 1: Optimum bisections of an example graph. Vertices in B are filled
black (and surrounded grey if and only if there is a neighbor in V \ B). Cut
edges are dashed.

Figure 1 shows bisections of optimum edge and vertex width of an example
graph. While cuts of minimum edge width (and arbitrary size) can be deter-
mined in polynomial time using network-flow techniques [18], the problem of
finding a bisection of minimum edge width is known to be NP-complete [6] and
hence (by using the complementary graph G) the problem of finding a bisection
of maximum edge width is also NP-complete. Algorithms with good average
case performance for bisections with small edge width can be found in e.g. [3].
A polylogarithmic approximation is given in [5]. Determining cuts of maximum
edge width and arbitrary size (i.e. MAXCUT) is alsoNP-complete [9], but there
exists a 0.878 approximation [7].

The complexity status of the remaining variant of determining a bisection of
minimum vertex width is stated as open in [4]. We show that both the minimum
and maximum versions are NP-complete as well, but polynomially solvable for
some graph classes.

JGAA, 13(2) 119–131 (2009) 121

2 Hardness Results

We show that the decision problems associated with minimum and maximum
vertex bisection are NP-complete.

Definition 1 (MIN VERTEX BISECTION) Given an undirected graph
G = (V,E) and k ∈ N, is there a subset B ⊆ V with |B| ∈ {b|V |/2c, d|V |/2e}
and λ(B) ≤ k?

Theorem 1 MIN VERTEX BISECTION is NP-complete.

Proof: Clearly, MIN VERTEX BISECTION is in NP, since we can guess a
subset B with |B| ∈ {b|V |/2c, d|V |/2e} and verify whether λ(B) ≤ k.

We show that 3SAT can be polynomially transformed into MIN VERTEX
BISECTION. Let I = (X,C) be an instance of 3SAT with variables X =
{x1, . . . , x`} and clauses C = {c0, . . . , cm−1}. W.l.o.g. each clause contains only
pairwise different variables. We construct the following graph G = (V,E) with
256m2+14m vertices that are partitioned into 3 sets S, T, U , where S is a 128m2-
clique, T is a (128m2 + 6m)-clique and U consists of 8m vertices. One half of
the vertices of S are called si,j and the other half s̃i,j , where 0 ≤ i, j < 8m.
The vertices of U = {ui : 0 ≤ i < 8m} correspond to a truth assignment of
clause cj , where j = bi/8c and the last three binary digits of i define the truth
assignment (e.g. (0, 1, 1) for i = 19 means the second and third variable of c2 are
set true, etc., see Figure 2). Furthermore, we define the following adjacencies.

{u, t} ∈ E, ∀u ∈ U, t ∈ T , (1)
{ui, s} ∈ E, ∀s ∈ S and ui yields a false clause (2)
{ui, si,j} ∈ E, ∀i, j (3)
{ui, sj,i} ∈ E, ∀i, j and the assignments of the clauses

corresponding to ui, uj do not contradict, (4)
{ui, s̃i,j} ∈ E, ∀i and 0 ≤ j < ηi and ηi is the number of

clause assignments in contradiction to ui. (5)

(fa
lse

,fa
lse

,tr
ue

)

(fa
lse

,fa
lse

,fa
lse

)

(fa
lse

,tr
ue

,tr
ue

)

(fa
lse

,tr
ue

,fa
lse

)

(tr
ue

,tr
ue

,tr
ue

)

(tr
ue

,tr
ue

,fa
lse

)

(tr
ue

,tr
ue

,tr
ue

)

(tr
ue

,tr
ue

,fa
lse

)

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

Figure 2: All truth assignments corresponding to 23 vertices for a clause c2 =
(x1, x2, x3), i.e. vertices u8 to u15. The black vertex corresponds to a false
clause.

122 U. Brandes, D. Fleischer Vertex Bisection

�
�

�
�

'

&

$

%

'

&

$

%
U

S T

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

...

u0 . . . u7 u8 . . . u15 u8m−1

s0,• . . . s7,• s8,• . . . s15,•s8m−1,•

s̃0,• . . . s̃7,• s̃8,• . . . s̃15,• s̃8m−1,•

Figure 3: Example for the adjacencies of type (1)–(5) of vertices u0 and u1 that
do not yield a false clause.

The basic idea is that there will be m vertices u ∈ U that are not in the
optimum B and they correspond to an assignment of the clauses of I. The
adjacencies in (1) assure that T ⊆ V \ B. In (2) we assure that assignments
that yield a false clause (e.g. i = 17 for clause c2, see also Figure 2) are in B.
We say that two clause assignments contradict if they assign different values,
i.e. true and false, to a variable (e.g. clause assignments i = 19, i.e. (0, 1, 1)
for c2 = (x1, x2, x3) and i = 39, i.e. (1, 1, 1) for c4 = (x1, x4, x5) contradict).
Note that the eight clause assignments of a clause cj pairwise contradict. As a
consequence only one of the eight vertices corresponding to these assignments
will not be in the optimum B. The adjacencies in (4) and (5) assure that every
vertex u ∈ U that does not yield a false clause is connected to exactly 16m
vertices of S. See Figure 3.

Assume that I is satisfiable and let Y be a solution consisting of literals
y1, . . . , y` with each yi of the form xi or xi and consider the following partition
BY ∪ (V \BY), where

BY = S ∪{ui ∈ U : the truth assignment corresponding to ui differs from Y } .

The 7m vertices of U ∩ BY contribute 7m to λ(BY). Every vertex of the m
vertices in U \ BY has exactly 16m neighbors in B, but since the clause as-
signments corresponding to these m vertices pairwise do not contradict, they
pairwise share exactly one of the 16m neighbors. Hence, this partition induces

λ(BY) = 7m+
m−1∑
j=0

16m− j = 15.5m2 + 7.5m .

JGAA, 13(2) 119–131 (2009) 123

We show that this is the minimum that can only be achieved if I is satisfiable.
Thus, 3SAT can be solved by the decision problem of finding a bisection B with
λ(B) ≤ 15.5m2 + 7.5m. Clearly, the transformation can be done in polynomial
time and hence MIN VERTEX BISECTION is NP-complete.

It can easily be verified that for the minimum S ⊆ B and T ⊆ V \ B is
required. Assume now that B = S∪U . This partition induces λ(B) = 8m. Then
we have to remove m vertices of U from B. Every vertex of U corresponding to
a false clause cannot be removed since this partition (after m vertices have been
removed from B) yields a value of greater than 128m2 > λ(BY). The removal
of every other vertex u ∈ U contributes (at every step of removing) 16m − 1
minus the number of vertices already removed and not in contradiction to u.
Only if every removed vertex does not contradict to any already removed vertex
the value of 15.5m2 + 7.5m will be achieved and otherwise exceeded. 2

Definition 2 (MAX VERTEX BISECTION) Given an undirected graph
G = (V,E) and k ∈ N, is there a subset B ⊆ V with |B| ∈ {b|V |/2c, d|V |/2e}
and λ(B) ≥ k?

Theorem 2 MAX VERTEX BISECTION is NP-complete.

Proof: Clearly, MAX VERTEX BISECTION is in NP. Since we have no
simple reduction from the minimization problem, we show that 3SAT can be
polynomially transformed into MAX VERTEX BISECTION. Our proof shows
that even the decision problem for k = b|V |/2c is NP-complete. Let I =
(X,C) be an instance of 3SAT with variables X = {x1, . . . , x`} and clauses C =
{c0, . . . , cm−1}. W.l.o.g. each clause contains only pairwise different variables.
We construct the following graph G = (V,E) with 16m2 + 18m vertices, that
are partitioned into 3 sets S, T, U , where S and T are isolated vertices of size
8m2 + 2m and 8m2 + 8m, respectively, and U is an 8m-clique. The vertices of
S are called si,j , where 0 ≤ i < 8m again corresponds to a truth assignment
of clause cbi/8c and 0 ≤ j < m. The remaining 2m vertices of S are called
s′1, . . . , s

′
m and s′′1 , . . . , s

′′
m. The vertices of U = {ui : 0 ≤ i < 8m} again

correspond to a truth assignment of clause cbi/8c. Furthermore, we define the
following adjacencies.

{ui, si′,j} ∈ E, ∀j, bi/8c = bi′/8c, i 6= i′, (6)
{ui, s

′
j}, {ui, s

′′
j } ∈ E, ∀i, j and ui does not yield a false clause, (7)

{ui, si′,bi/8c} ∈ E, ∀i, i′ and the assignments of the clauses
corresponding to ui, ui′ do not contradict. (8)

Again the basic idea is that there will be m vertices u ∈ U that are not in
the optimum B and they correspond to an assignment of the clauses of I.

Assume that I is satisfiable and let Y be a solution consisting of literals
y1, . . . , y` with each yi of the form xi or xi and consider the following partition
BY ∪ (V \BY), where

BY = S ∪ {ui : the truth assignment corresponding to ui differs from Y } .

124 U. Brandes, D. Fleischer Vertex Bisection

�
�

�
�

'

&

$

%

'

&

$

%U

S T

· · ·

· · ·

· · ·
· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

u0 · · · u7 u8 · · · u15u8m−1

s0,• . . . s7,• s8,• . . . s15,•s8m−1,•

s′1
s′′1

s′2
s′′2

Figure 4: Example for the adjacencies of type (6)–(8) of vertex u1,0.

Then every vertex in BY has a neighbor in V \BY . This partition induces

λ(BY) = |V |/2 = 8m2 + 9m .

We show that this value can only be achieved, when I is satisfiable. Thus,
3SAT can be solved by the decision problem of finding a partition B with λ(B) ≥
8m2+9m. Clearly, the transformation can be done in polynomial time and hence
MAX VERTEX BISECTION is NP-complete.

Since all vertices in B must have neighbors in V \ B (otherwise λ(B) <
8m2 + 9m), none of the vertices of T are in B. Vertices s′i and s′′i assure that
exactly one assignment per clause is chosen, otherwise at least one of them
would not have a neighbor in V \B. All vertices of B have neighbors in V \B
if and only if all clause assignments pairwise do not contradict. 2

MIN VERTEX BISECTION can also be found with a slightly different def-
inition. Let B∗ ⊆ V be a separator, whose removal disconnects V into two sets
V1 and V2 of equal size, where |B∗| has to be minimized.

Theorem 1 also holds for this definition, which can be seen by increasing the
size of clique S by 15.5m2 + 7.5m vertices. Analogously modifying Definition 2
does not make sense, since B∗ = V would always be the maximum.

3 Special Graph Classes

Among the graph classes for which there exist efficient algorithms for edge bi-
section are e.g. hypercubes [14], trees [12], cube-connected cycles graphs [13],
some meshes [16], partial k-trees [17] and butterfly networks [2].

We show for two graph classes, hypercubes and trees that vertex bisection
also becomes tractable.

JGAA, 13(2) 119–131 (2009) 125

3.1 Hypercubes

The vertices of the d-dimensional hypercube Qd can be represented by all bit
strings of length d and two vertices are connected if and only if their strings
differ in exactly one position. Let vi denote bit i of a vertex v ∈ Qd and
|v| = |{i : vi = 1}|.

Theorem 3 The minimum vertex bisection width of a d-dimensional hypercube
Qd is

(
d
bd/2c

)
. A minimum cut B = Bd is given by

Bd =

{
{v ∈ Qd : |v| < d/2} , if d is odd,
{v ∈ Qd : |v| < d/2 or (|v| = d/2 and v1 = 0)} , if d is even.

This is a special case of the general isoperimetric problem on hypercubes. Mini-
mum cuts of arbitrary sizes are given by the first vertices of the order <`, where
v <` w if |v| < |w| or |v| = |w| and v precedes w lexicographically. Proofs can
be found in e.g. [8, 10].

3.2 Trees

Theorem 4 The minimum vertex bisection width of trees can be computed in
polynomial time.

Proof: Algorithm 1 computes the minimum vertex bisection width in O(n2),
where n = |T | (= |V |) is the number of vertices of the tree T = (V,E). It is
a dynamic programming approach related to the corresponding algorithm for
edge bisection on k-trees [17]. Let B∗ ⊆ B be the set of vertices in B that
have a neighbor in V \B, i.e. B∗ is the separator. Note that Algorithm 1 does
not only compute the minimum vertex bisection width, but even all minimum
vertex widths λ(B), where |B| = 0, . . . , |T |.

We prove the running time of Algorithm 1 by induction on the height h of
the tree after having picked its root v.
h = 1: T consists of v and its n−1 children. The three minima in the inner loop
have to be computed over 9 times 2 elements altogether, leading to a running
time T (n) ≤ 18(n− 1)(n+ 1) < 18n2.
h > 1: Let n1, . . . , nk be the sizes of the subtrees rooted by children of v, such
that 1+

∑k
i=1 ni = n. The three minima in the first instance of min widths now

have to be computed over at most 9 times ni + 1 elements for the subtree Ti

altogether. A better upper bound is 9 times min{ni + 1, r+ 1, 1− r+
∑i

j=1 nj}.

126 U. Brandes, D. Fleischer Vertex Bisection

Algorithm 1: minimum vertex widths on trees.
Input: tree T = (V,E)
Output: minimum vertex widths λr = λ(B) with |B| = r (r = 0, . . . , |T |)
begin

pick a vertex v as root
set n← |T | as globally known constant
let A1, A2, A3 be arrays with index set {0, . . . , n}, where
A1[r] will denote the minimum λ(B) for |B| = r and the case v ∈ B∗,
A2[r] for the case v ∈ B \B∗ and A3[r] for the case v /∈ B
(A1, A2, A3)← min widths(T, v)
for r = 0, . . . , n do λr ← min{A1[r], A2[r], A3[r]}

end

min widths(T, v)
begin

let A1, A2, A3 be arrays with index set {0, . . . , |T |}
set A3[0]← 0, A2[1]← 0 and all remaining values to n+ 1
if v is a leaf then

return (A1, A2, A3)
else

let M1,M2,M3 be arrays with index set {0, . . . , |T |}
let T1, . . . , Tk be all trees rooted by children v1, . . . , vk of v
for i = 1, . . . , k do

let B1, B2, B3 be arrays with index set {0, . . . , |Ti|}
(B1, B2, B3)← min widths(Ti, vi)
for r = 0, . . . , |T | do

M1[r]← min{A2[x] +B3[y] + 1, A1[x] +B1[y],
A1[x] +B2[y], A1[x] +A3[y] : x+ y = r}

M2[r]← min{A2[x] +B1[y], A2[x] +B2[y] : x+ y = r}
M3[r]← min{A3[x] +B1[y], A3[x] +B2[y] + 1,

A3[x] +B3[y] : x+ y = r}
A1 ←M1, A2 ←M2, A3 ←M3

return (A1, A2, A3)

end

JGAA, 13(2) 119–131 (2009) 127

This yields a running time

T (n) < 18
k∑

i=1

n2
i + 9

k∑
i=1

(ni + 1)
((i−1∑

j=1

nj

)
+ 1
)

≤ 18
k∑

i=1

n2
i + 9

k∑
i=1

ni

(i−1∑
j=1

nj

)
+ 9

k∑
i=1

i−1∑
j=1

nj + 9(n− 1) + 9k

≤ 18
∑
i≤j

ninj + 18(n− 1) < 18n2 .

The correctness of Algorithm 1 follows from the property that the minimum
vertex widths (for cuts B of size r) can first be computed separately for each
subtree on a certain level of the tree (for each subtree separately for the 3 cases
that the root of the subtree is in B∗, in B \B∗ or not in B) and these minimum
vertex widths can then be merged for the next higher level. A minimum cut
of size r on a certain level is the union of the minimum cuts of sizes r1, . . . , rk
of its subtrees T1, . . . , Tk, where r = r1 + . . . + rk (plus 1 for the root in some
cases). 2

Note that Algorithm 1 can easily be modified such that it does not only
return the minimum vertex widths, but also one (or all) corresponding cuts.

When applying Algorithm 1 to some randomly chosen tree T , all minimum
vertex widths will probably be less than 3, since for a random tree it is very
likely that there exist two disjoint subtrees (or even only one) whose sizes add
up to any r = 0, . . . , |T |. This implies a minimum vertex width of less than 3
(or less than 2).

A tree that has some a minimum cut of size r with vertex width of 3 or
greater has to contain at least 4 vertices with degree greater 2. Otherwise it
is easy to verify that there exists a sequence B0 ⊆ B1 ⊆ . . . ⊆ B|T | with
λ(Bi) < 3. An example of a tree with minimum vertex bisection 3 is given in
Figure 5. Theorem 5 states the existence of trees with greater minimum vertex
bisection width.

Figure 5: A tree with minimum vertex bisection width 3.

128 U. Brandes, D. Fleischer Vertex Bisection

Theorem 5 The minimum vertex bisection of a complete d-tree T of height
h > 0 is at least h − x(h), where x(h) = min{x ∈ N :

∑x
k=0(dk + 1) ≥ h}, if

d ≥ 3 odd, and equal to 1, otherwise. Moreover, x(h) ≤ dlogd(h− 1)e for h > 1.

Proof: Minimum vertex bisection can be bounded in a way similar to minimum
edge bisection on trees, see [15]. The case d even is trivial since a minimum
bisection consists of the root together with the left part of T . The case d = 1
or h = 1 is also trivial. For odd d ≥ 3 and h = 2 consider that there is no single
vertex in T that separates the vertex set evenly. For the remaining case d ≥ 3
odd and h > 2 consider Figure 6. Black vertices correspond to vertices in B.
First note that for a minimum bisection we can assume for each level of T that
no grey vertex is followed (from left to right) by a black vertex (by top-down
reordering of subtrees). Hence, given a minimum bisection B, we can define a
number nk for each level k denoting the position of the rightmost black vertex,
such that

∑h
k=0 nk ∈ {bn/2c, dn/2e}. The vertices of the vertical path from the

root downwards denote the center vertices of each level. All vertices on the right
hand side of that path are grey. Dotted lines denote paths delimiting subtrees,
dashed lines denote vertices on the same level. We can assume that

nk−1 ≥ d(nk − 1)/de, (9)

since otherwise rightmost black vertices can be moved (bottom-up) without
increasing the vertex width . Define n′h := (dh − dx(h)+1)/2, i.e. the position of
the vertex of the lowest level directly left of the subtree rooted by the center
vertex of level h−x(h)−1. LetB be a minimum bisection and assume nh > dh/2.
Then Equation (9) already implies |B| > dn/2e. So, let n′h < nh < dh/2.
Equation (9) implies that all vertices denoted by disk-shaped black vertices in
Figure 6 are in B, such that part of the vertices of B, say B′, are already fixed
by this choice of nh. Now, B′ taken alone already induces a vertex width equal
to the lower bound to be proven minus 1. All rightmost vertices of B′ not above
level h− x(h) do not have any grey neighbors, and there are too few vertices in
B \B′ to achieve this for any of the remaining rightmost vertices of B′ (without
creating another black vertex with grey neighbors). For d ≥ 5 it is clear that
since B \B′ 6= ∅ the vertex width of B is at least by one greater than that of B′.
For d = 3 the remaining vertices B \ B′ can be set directly right of the center
vertices of levels 1 to h − x(h) − 2 without changing the vertex width (these
center vertices only have one grey neighbor). But since |B \ B′| ≥ h − x(h)
again the vertex width of B is at least by one greater than that of B′. So,
finally assume that nh ≤ n′h. Since x(h) ≥ logd(h− 1)− 1 it follows

λ(B) ≥
h−1∑
k=0

(
nk − bnk+1/dc

)
≥ bn/2c − nh −

h−1∑
k=0

nk+1/d

≥ bn/2c − n′h − (dn/2e − n0)/d ≥ (1− 1/d)n/2− 1/2− n′h − 1/(2d)

≥ dh+1 − 1
2d

− 1/2− dh/2 + dx(h)+1 − 1/(2d) ≥ h− 11/6,

such that λ(B) ≥ h− x(h), since x(h) ≥ 1 for h > 2. 2

JGAA, 13(2) 119–131 (2009) 129

For odd d ≥ 5 the lower bound given in Theorem 5 is sharp for heights of the
form h :=

∑x
k=0(dk + 1) for some x ∈ N, where a minimum bisection is given

according to Figure 6. Since h is even, the number of vertices n is odd and the
bisection in Figure 6 fulfills |B| = (n− 1)/2. Hence, Theorem 5 remains sharp
also for height h + 1 and h + 2. For d = 3 the given lower bound is sharp in
general. A minimum bisection is given according to Figure 6 plus some of the
vertices directly right of the center vertices of levels 1 to h−x(h)− 1, such that
|B| ∈ {bn/2c, dn/2e}.

level 0

1

h− x− 1

h− x

h
n′h

Figure 6: Minimum bisection of a d-tree of a height h =
∑x

k=0(dk + 1) for some
x ∈ N and some odd d ≥ 3.

4 Discussion

We proved NP-completeness of MIN VERTEX BISECTION and MAX VER-
TEX BISECTION. This completes a list of eight graph layout problems given
in [4], all of which are now classified as NP-complete. For two graph classes
relevant for communication networks, hypercubes and trees, the minimum ver-
tex bisection width can either be given directly or be computed in polynomial
time.

130 U. Brandes, D. Fleischer Vertex Bisection

References

[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A
survey. Integration: the VLSI journal, 19:1–81, 1995.

[2] C. F. Bornstein, A. Litman, B. M. Maggs, R. K. Sitaraman, and T. Yatzkar.
On the bisection width and expansion of butterfly networks. Theory Com-
put. Systems, 34:491–518, 2001.

[3] T. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection
algorithms with good average case behavior. Combinatorica, 7:171–191,
1987.

[4] J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM
Comput. Surv., 34:313–356, 2002.

[5] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the
minimum bisection. In IEEE Symp. Foundations of Computer Science,
pages 105–115, 2000.

[6] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-
complete graph problems. Theor. Comput. Sci., 1:237–267, 1976.

[7] M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. J. Assoc. Comput. Mach., 42:1115–1145, 1995.

[8] L. H. Harper. Optimal numberings and isoperimetric problems on graphs.
J. Comb. Theory, 1(3):385–393, 1966.

[9] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–103, 1972.

[10] G. O. H. Katona. The hamming-sphere has minimum boundary. Studia
Scient. Math. Hungarica, 10:131–140, 1975.

[11] R. Klasing. The relationship between gossiping in vertex-disjoint paths
mode and bisection width. Discrete Appl. Math., 83(1-3):227–244, 1998.

[12] R. M. MacGregor. On Partitioning a Graph: A Theoretical and Empirical
Study, PhD Thesis, University of California, Berkeley, 1978.

[13] Y. Manabe, K. Hagihara, and N. Tokura. The minimum bisection widths of
the cube-connected cycles graph and cube graph. Transactions of the Insti-
tute of Electronics and Communication Engineers of Japan, J67-D(6):647–
654, 1984.

[14] K. Nakano. Linear layouts of generalized hypercubes. Intl. J. Foundations
of Computer Science, 14:137–156, 2003.

JGAA, 13(2) 119–131 (2009) 131

[15] L. Palios. Upper and lower bounds for optimal tree partitions. Technical Re-
port GCG 47, The Geometry Center, University of Minnesota, 1994. Avail-
able from http://www.geom.uiuc.edu/docs/preprints/online/GCG47.
html.

[16] J. Rolim, J. Tvrdik, J. Trdlička, and I. Vrťo. Bisecting de Bruijn and Kautz
graphs. Discrete Applied Mathematics, 85:87–97, 1998.

[17] K. Soumyanath and J. S. Deogun. On the bisection width of partial k-trees.
In Congressus Numerantium, volume 74, pages 25–37, 1990. (Proc. 20th
Southeastern Conf. on Combinatorics, Graph Theory, and Computing).

[18] M. Stoer and F. Wagner. A simple min cut algorithm. In Proc. Europ.
Symp. Algorithms, volume 855 of Springer LNCS, pages 141–147, 1994.

http://www.geom.uiuc.edu/docs/preprints/online/GCG47.html
http://www.geom.uiuc.edu/docs/preprints/online/GCG47.html

	Introduction
	Hardness Results
	Special Graph Classes
	Hypercubes
	Trees

	Discussion

