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Abstract

Given a graph G and positive integers b and w, the black-and-white
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with b vertices colored black and w white, such that there is no edge
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1 Introduction

The Black-and-White Coloring (BWC) problem is defined as follows. Given an
undirected graph G and positive integers b, w, determine whether there exists a
partial vertex-coloring of G such that b vertices are colored black and w vertices
in white (with all other vertices left uncolored), such that no black vertex and
white vertex are adjacent.

One application of the BWC problem is to the problem of storing chemical
products, where certain pairs of places cannot contain different products. (For
other applications see, for example, [1].)

We sometimes refer to the optimization version of this problem, in which we
are given a graph G and a positive integer b, and have to color b of the vertices
in black, so that there will remain as many vertices as possible which are non-
adjacent to any of the b vertices. These latter vertices are to be colored white,
and the resulting coloring is optimal. Note that it may well be the case that,
given an optimal BWC, we can increase the number of black vertices without
decreasing the number of white vertices. Clearly, when referring to a BWC, it
suffices to refer to its black vertices only.

The BWC problem has been introduced and proved to be NP -complete by
Hansen et al. [5]. In the same paper, a polynomial algorithm for trees was
given. A polynomial algorithm for partial k-trees with a fixed k was suggested
by Kobler et al. [7]. Yahalom [11] gave a sub-linear algorithm for the graphs
obtained by the moves of a rook on a chessboard. For an m × n board, this is
in fact the Cartesian product (cf. [10]) Km�Kn of two complete graphs. In [1],
we provided explicit optimal solutions for the graphs obtained by the moves of
a king on a chessboard. Note that, for an m×n board, this is in fact the strong
product (cf. [3]) Pm � Pn of two simple paths.

The algorithm for trees, suggested by Hansen et al., has running time of O(n3).
In this paper we introduce another algorithm, whose running time is O(n2 lg 3n).
We also present an improvement to our algorithm, which works for almost all
labeled trees in time n1+o(1). Note that we simultaneously find, for all b ∈ [0, n],
the corresponding optimal w.

In Section 2 we present formally the problem and state the main theorems.
In Section 3 we find it convenient to pose a more general version of our problem.
The rest of that section is devoted to the solution of the generalized problem.
In Section 4 we present the algorithm which actually colors the given tree.
Section 5 presents possible improvements of our algorithm.

The authors are grateful to A. Melkman for drawing their attention to [6].

2 Main Results

Let T be a tree with n vertices. The attributes of a BWC of T are given by a
pair (b, w), in which b is the number of black vertices and w the number of white
vertices. Thus, by having an array containing the optimal w for each value of b,
we identify the attributes of all optimal BWCs. We refer to a BWC with b black



JGAA, 13(2) 133–152 (2009) 135

and w white vertices as a (b, w)-coloring.

Problem 2.1
Input: A rooted n-vertex tree T .
Output: An array maxW which, for each 0 ≤ b ≤ n, gives the maximal w

such that there exists a (b, w)-coloring of T .

Theorem 1 Problem 2.1 is solved by Algorithm 1 in time O(n2 lg 3n).

Theorem 2 Given a tree T and two integers b and w, Algorithm 4 finds a
(b, w)-coloring for T in time O(n2 lg 3n).

Our proof hinges on the following lemma.

Lemma 1 For any optimal BWC of a tree T on n vertices, the number of
uncolored vertices is at most lgn.

Going over the proof, one readily verifies that, if the upper bound lgn in
the lemma was reduced, we could improve the runtime in Theorems 1 and 2.
Specifically, if lgn could be reduced to some quantity g(n) = o(lgn), then the
runtime could be reduced to O(n2g2(n) lgn). However, after performing some
experiments on complete binary trees, we believe that, in the worst case, the
bound of lgn in Lemma 1 cannot be significantly reduced.

In some cases we can significantly improve Theorems 1 and 2. Given an n-
vertex tree T , a number b ∈ [1, n − 1] is economical if an optimal BWC with b
black vertices contains exactly one uncolored vertex.

Proposition 3 For almost all labeled trees on n vertices:

1. The set of all economical b’s can be found in time n1+o(1).

2. Given an economical b, an optimal BWC with b black vertices can be found
in linear time (after the pre-processing of part 1).

Recall that there exist nn−2 labeled trees on n vertices. The term ‘almost
all trees’ means all trees but a fraction that tends to 0 as n grows.

By Proposition 3, given a tree T and an integer b, we may do the follow-
ing: If the tree is such that all economical b’s are easily found (which happens
when the maximal degree of a vertex of T is relatively small; see the proof of
Proposition 3), then we first check if the given b is economical; if so, we can find
an optimal BWC in a much more efficient way than that of Theorem 2. If T
is not such, or the given b is not economical, we revert to the algorithm of the
theorem.

We performed several tests (see Section 5) in order to investigate the per-
centage of the number of economical b’s. We found that, when increasing n,
the percentage of economical b’s decreases. However, this decrease is very slow;
for example, for n = 1000 there are on the average about 469 economical b’s.
We also noticed that small and large b’s have good chances of being econom-
ical, whereas b’s around n

2 are mostly non-economical. Our experiments are
discussed in detail in Section 5.
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3 Proof of Theorem 1

3.1 A Recursive Approach and a more General Problem

We assume that the input tree T is rooted. For each vertex v, denote by Tv the
subtree rooted at v.

To each vertex v of T we attach a 3 × (|Tv| + 1)-table, v.maxWhite, where
entry (c, b) contains the maximal w for which there exists a (b, w)-coloring of Tv,
with v colored in c. Here c ranges over the set {black, white, uncolored}.
Thus v.maxWhite[black], for example, contains for each value b the maximal
possible w, assuming that v is colored black.

Our algorithm starts by finding a vertex v, which separates the tree into
several subtrees of relatively small sizes. One of these subtrees is the tree ob-
tained from T by removing all vertices of Tv (if v is not the root of T ). All other
subtrees are rooted at the children of v. (In fact, it will be more convenient for
us to adjoin v to each of the latter subtrees, so that they are all rooted at v.)
The algorithm works recursively on each of these smaller subtrees, and finds the
required table for each. The table of Tv is calculated iteratively by taking the
union of larger and larger subtrees of Tv, two at a time.

The vertex v separating the tree may be any vertex which is not a leaf. To
fix ideas, it will be more convenient (although not crucial) for us to select this
vertex as one which separates the tree into as small as possible subtrees. The
existence of such a vertex follows from the following well-known theorem [12].

Theorem 4 Any n-vertex tree can be split in linear time into several connected
components, each with at most n

2 vertices, by removing a single vertex.

Remark 3.1 By [2], Theorem 4 gives rise to a linear time approximation al-
gorithm, which finds a BWC with w ≥ wopt − lgn white vertices, where wopt is
optimal corresponding to the given b.

In the course of the algorithm, after the table attached to the subtree rooted
at some vertex has been found, we do not need that subtree any more. Rather,
the root of the subtree becomes a leaf, and all other vertices are disposed.
However, this new leaf carries with it some non-trivial information, namely the
table corresponding to the subtree rooted at it. Thus, at later stages we need to
deal with instances of the problem in which leaves are equipped with attached
data, which may be of size O(n). Thus, we replace our original problem by the
following, more general one. Denote by L(T ) the set of leaves of T .

Problem 3.1
Input: A rooted n-vertex tree T , with a 3 × (mv + 1)-table v.maxWhite

attached to each leaf v (the mv’s being arbitrary positive integers). For c ∈
{black, white, uncolored} and 0 ≤ b ≤ mv, the number v.maxWhite[c][b] is
the maximal w such that, by coloring v in c, it is possible to be “awarded” with b
black and w white vertices.
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Output: A table root(T ).maxWhite which, for each c ∈ {black, uncolored,
white} and 0 ≤ b ≤ n +

∑
v∈L(T )(mv − 1), provides the maximal w such that

there exists a (b, w)-coloring of T with root(T ) colored c.

In this problem, the table v.maxWhite may be intuitively thought of as
providing the attributes of BWCs of some (perhaps unknown to us) subtree
rooted at v with mv vertices. (This subtree was eventually replaced by its root v
in the course of the recursion.) Thus, for example, each entry (c, b) is at most
mv− b. Moreover (see Lemma 2 below), we assume that b+v.maxWhite[c][b] ≥
mv − lgmv − 2. Note that, for each vertex v, the entries v.maxWhite[black][0]
and v.maxWhite[c][mv] for c 6= black, are meaningless and should be ignored.

Theorem 5 Problem 3.1 is solved by Algorithm 2 in time O(nm lg 3m), where
m = max{n,

∑
v∈L(T ) mv}.

In the course of the performance of the algorithm on the original problem,
some subtrees are reduced to single vertices, namely their root becomes a leaf
of the current tree. At the moment a subtree Tv is reduced, v is provided with
a table of size 3× (mv + 1), where mv = |Tv|+

∑
y∈L(Tv)(my − 1). This table is

attached to v until some subtree containing v will also be reduced and its root
will become a new leaf, at which point the table will be disposed. Notice that,
for each vertex v, we have mv = 1 +

∑
y∈Y my, where Y is the set of children

of v. The runtime of Algorithm 2 depends, besides the number of vertices,
on the size of the tables attached to the leaves. Therefore, it depends on two
parameters, n and m.

In order to find the table root(T ).maxWhite, which provides the attributes
of all optimal BWCs of T , we invoke Algorithm 1. This algorithm transforms
the given instance of the problem into an instance of Problem 3.1 and then
invokes Algorithm 2 to actually find the required table.

3.2 The Algorithm

We begin with
Proof of Lemma 1: The proof is by induction on n. The case n = 1 is trivial.
Assume the lemma is true for all trees with less than n vertices, and let T be a
tree on n vertices. Let C be an optimal BWC of T with B black vertices. We
will find a BWC with B black vertices in which there are at most lgn uncolored
vertices. Therefore, the optimal coloring C also contains at most lgn uncolored
vertices. By Theorem 4, there exists a separation vertex, splitting T into several
connected components, each with at most n

2 vertices. Go over the components
in some order, and color black all vertices of each component whose size is less
than the number of vertices still to be colored black. Denote by b the number of
vertices colored black after this stage. Obviously, each component which is not
colored black contains more than B − b vertices. Therefore, by the induction
hypothesis, coloring B − b vertices black in an optimal way in one of these
components whose size is, say, x produces at most lgx ≤ lg n

2 uncolored vertices.
Thus, the number of uncolored vertices in T is at most 1 + lg n

2 = lgn.
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Lemma 2 For any optimal BWC of a tree T and any vertex v, the number of
uncolored vertices in the subtree Tv is at most lg |Tv|+ 2.

Proof: Let C be an optimal BWC of T in which some subtree Tv contains
more than lg |Tv|+ 2 uncolored vertices. Let bv be the number of vertices in Tv

which are colored black by C. By Lemma 1, there exists a coloring Cv of Tv

with bv + 1 black and at most lg |Tv| uncolored vertices.
Let C ′ be the coloring of T , which coincides with Cv on all vertices of Tv,

except (perhaps) for v itself which is left uncolored, and coincides with C on all
vertices outside Tv. Then C ′ contains either bv or bv + 1 black vertices in Tv.
If v is black in Cv, then the number of black vertices in C ′ is equal to the
number of black vertices in C, and the number of vertices left uncolored in C ′

is strictly smaller than that of vertices left uncolored by C, in contradiction to
the optimality of C. Otherwise, C ′ contains bv + 1 black vertices in Tv. By
turning an arbitrary black vertex of Tv to be uncolored, we get that, again,
the number of black vertices in C ′ is equal to that in C, and the number of
vertices left uncolored in C ′ is strictly smaller than that of C, which leads to a
contradiction. �

Algorithm 1 below constructs the array maxW, providing the maximal w for
each value of b.

TreeBWC(T )
Input: A tree T with n vertices, rooted at r
Output: An array, providing the maximal W for each 0 ≤ b ≤ n

for each leaf v
v.maxWhite[black]← [0] //the array for Tv if v is black
v.maxWhite[white]← [1] //the array for Tv if v is white
v.maxWhite[uncolored]← [0] //the array for Tv if v is uncolored

r.maxWhite ← generateTable(T )
for i← 0 to n

maxW[i] ← max{r.maxWhite[black][i],r.maxWhite[white][i],
r.maxWhite[uncolored][i]}

return maxW

Algorithm 1: Finding the attributes of all BWCs of a tree

Algorithm 2 below separates the tree into smaller parts and works recur-
sively on each of them. If the separator vertex is not the root of the tree, we
deal with the subtree rooted at the separator and then continue dealing with
the rest of the tree. Otherwise, we deal with the subtrees rooted at each child
separately and finally merge their results. In general, after the tables for the
roots of two subtrees T1 and T2, with a common root but otherwise disjoint sets
of vertices, have been generated, the algorithm needs to generate the arrays for
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u A linked list of b-values
0 b0

1 b0
2

1 NULL
2 b2

1 b2
2 b2

3 b2
4

...
...

lgmv + 3 blgmv+3
1

Table 1: A table representing pairs (b, u)

T ′ = T1 ∪ T2. This can be done simply by the following computations [5]. For
any tree T , let BT (WT and UT , resp.) be the array root(T ).maxWhite[black]
(root(T ).maxWhite[white] and root(T ).maxWhite[uncolored], resp.). We have:

BT ′ [b] ← max{BT1 [b1] + BT2 [b2] : b1 + b2 = b + 1},
WT ′ [b] ← max{WT1 [b1] + WT2 [b2]− 1 : b1 + b2 = b},
UT ′ [b] ← max{UT1 [b1] + UT2 [b2] : b1 + b2 = b}.

(1)

In fact, to reduce the runtime, we proceed somewhat differently. As a prepa-
ration to Algorithm 3, which performs these computations, Algorithm 2 below
first translates all the values w in the table attached to each vertex v into the
values u = mv− b−w. By Lemma 2 we shall never need to use u-values exceed-
ing lgmv + 2. Therefore, the algorithm converts the table attached to v into a
3× (lgmv + 3)-table, whose entries are themselves lists, of varying lengths. The
list at entry (c, u′) of the table is composed of a sorted list of all b-values of the
pairs with u = u′, assuming that v is colored c. (See, for example, Table 1.)
This is done by Procedure SortU.

Algorithm 2 performs Algorithm 3 on pairs of lists, until it merges them
all to a single one. In principle, we would like to merge at each step the two
shortest lists; actually, we do not do it in this most economical way, but our
ordering guarantees that we usually merge lists of average sizes. After each
invocation of Algorithm 3 by Algorithm 2, the latter adjusts the resulting values,
i.e., it subtracts 1 from all b-values in listi[black] and from all the u-values in
listi[uncolored], where listi is the current table of lists built. The subtraction
of 1 from the u-values in listi[uncolored] is equivalent to a change of the index u
of each listi[uncolored][u] to u− 1. In order that after this adjustment we still
keep all b-values for each u ≤ lgmv + 2, Algorithm 3 computes these values for
all u ≤ lgmv + 3. After Algorithm 2 finishes dealing with the subtree rooted
at v, it transforms all pairs in the resulting list back to their original form, which
is a table that saves for each value of b and each color of v only the maximal w.

Example 3.1 Consider the tree T0 depicted in Figure 1. Table 2 shows the

content of list1 after each execution of the internal i-th iteration in Algorithm 2,

when performed on the root of T0. Here we show only the pairs (b, u) represented
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Figure 1: The tree T0

PPPPPPPiteration
root color

black white uncolored

0 (2,0) (0,0) (1,1),(0,1)

1 (3,0) (0,0) (2,1),(1,1),(0,1)

2 (4,0) (0,0) (3,1),(2,1),(1,1),(0,1)

Table 2: The lists of pairs obtained by Alg. 2 on the root of T0

by the lists, which are actually saved as shown in Table 1.

At the end of the process, after the algorithm has determined all pairs cor-
responding to optimal BWCs of a subtree Tv for some vertex v, it saves them
in v.maxWhite and deletes all the children of v from the tree, along with their
tables. This deletion is done by a procedure named reduce(T, v).

Algorithm 3 below gets two tables of lists representing pairs (b, u) and com-
putes their pairwise sums by performing the procedure computePairwiseSums
for each possible value of u. This procedure, performed with the parameters
list1[q] and list2[p − q], computes the pairwise sums of the elements of its two
parameters. Seidel (cf. [6]) gave a solution which takes O(m lgm) time, where m
is the total size of the two lists. In fact, replacing each list by the generating
polynomial of the numbers in the list, the set of pairwise sums is the set of
powers for which the product of the two polynomial has a non-zero coefficient.
Since two polynomials of degree m can be multiplied in time O(m lgm), the set
of pairwise sums can be found also in time O(m lgm). For each sum (p, u), en-
try (p, u) of a temporary boolean table becomes true. At the end of the process,
the resulting list contains all the pairs.

Recall that Algorithm 2 translates the pairs in each array from (b, w) to (b, u).
In principle, we could have used the pairs (b, u) from the beginning of Algo-
rithm 1. We prefer having the original kind of pairs (b, w) during the calculation,
so that the values we obtain are more meaningful to the problem.
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generateTable(T )

Input: A tree T rooted at r, with a 3× (mv + 1)-table attached to

each leaf v

Output: The table r.maxWhite

T ′ ← T

if |T ′| ≤ 2

solve the problem directly and return the resulting table

s← findSeparator(T ′)

if s = r

v1, v2, . . . , vd ← all children of s

for i = 1 to d

maxWhitei ← generateTable(Tvi
∪ {s})

for b = 0 to mvi

maxWhitei[b]← mvi
− b−maxWhitei[b] //transform w’s to u’s

listi ← SortU(maxWhitei)

for k ← 0 to dlgde

for i← 1 to d− 2k+1 + 1 by 2k+1

listi[black]← Fusion(listi[black],listi+2k [black])

listi[white]← Fusion(listi[white],listi+2k [white])

listi[uncolored]← Fusion(listi[uncolored],listi+2k [uncolored])

adjust the b-vals in listi[black] and the u-vals in listi[uncolored]

s.maxWhite ← list1 transformed back to its original form

if s 6= r

s.maxWhite ←generateTable(Ts)

T ′ ← reduce(T ′, s) //delete all descendants of s to obtain a reduced tree

r.maxWhite ← generateTable(T ′)

return r.maxWhite

Algorithm 2: Solution of Problem 2
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Input: A 3× (n + 1)-table maxWhite containing u-values

Output: A table containing 3× (lgn + 2) lists of b-values, indexed by u

for u← 0 to lgn + 1

for each c ∈ {black, white, uncolored}

outlist[c][u]← empty list

for b← 0 to n

for each c ∈ {black, white, uncolored}

u←maxWhite[c][b]

outlist[c][u]← outlist[c][u]∪b

return outlist

Procedure:SortU(maxWhite)

3.3 Time Complexity

3.3.1 Runtime of Algorithm 3

The procedure computePairwiseSums(list1[q],list2[p − q]) is performed exactly
once for each p, q with 0 ≤ q ≤ p ≤ lgmv + 3, where mv is the total size of
the two lists. The runtime of this procedure, suggested by Seidel (cf. [6]), is
O(mv lgmv). Therefore, the runtime of Algorithm 3 is O(mv lg 3mv).

3.3.2 Runtime of Algorithm 2

Finding a separator vertex, at the beginning of the algorithm, takes O(n) time.
The transformation of pairs from the original form (b, w) in each maxWhitei

to (b, u), and in the inverse direction in s.maxWhite, are done in O(m) time.
Saving the arrays in a 2-dimensional table, sorted by the value of u, and for

each u sorted by the value of b, is done by Procedure SortU in linear time in m.
The most time-consuming part of Algorithm 2 is the invocation of Algo-

rithm 3.

Lemma 3 For each vertex v having dv children yi, 1 ≤ i ≤ dv, attached with the

tables yi.maxWhite, Algorithm 2 finds the table v.maxWhite in O(mv lg 3mv lgdv)
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Fusion(list1,list2)

Input: Two (lgn + 3)-size arrays of lists – list1 and list2 – containing

u-values

Output: An array of lists containing all maximal pairwise sums of

elements of list1 and list2

tmp ← new boolean[n + 1][lgn + 4] // All entries are initialized to false.

// tmp[b][u] =true iff bi ∈ listi[ui], i = 1, 2, where
∑

i bi = b,
∑

i ui = u.

for p← 0 to lgn + 3

for q ← 0 to p

for each x ∈ computePairwiseSums(list1[q],list2[p− q])

tmp[x][p]← true

for p← 0 to lgn + 3

for i← 0 to n

if tmp[i][p]

outlist[p] ← outlist[p] ∪{i}

return outlist

Algorithm 3: Merging subtrees rooted at siblings
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time.

Proof: To find v.maxWhite, Algorithm 2 invokes Algorithm 3 on adjacent pairs
of children. Therefore, denoting myi

by mi, the runtime is bounded, up to a
constant, by

bdv/2c−1∑
j=0

(
2j+2∑

i=2j+1

mi

)
lg 3

(
2j+2∑

i=2j+1

mi

)
+
bdv/4c−1∑

j=0

(
4j+4∑

i=4j+1

mi

)
lg 3

(
4j+4∑

i=4j+1

mi

)
+ · · ·+

(
dv∑
i=1

mi

)
lg 3
(∑dv

i=1 mi

)
≤ lgdv ·

dv∑
i=1

mi lg 3

(
dv∑
i=1

mi

)
= mv lg 3mv lgdv.

�

In principle, the computations described in this lemma are the most time-
consuming part of Algorithm 2, and therefore we could have estimated here the
runtime of the algorithm. However, we prefer estimating the runtime in a way
which is more suitable to the recursive nature of the algorithm.

The runtime R of Algorithm 2 on a tree Tn,m, with n vertices and m-size
data, satisfies the recursion

R(Tn,m) ≤



R(Tn1,m) + R(Tn−n1+1,m) + c1n, (2 ≤ n1 < n),
n > 2, s 6= r,∑d

i=1 R(Tni,mi
) + c1m + c1m lg 3m lgd,

(
∑

mi = m,
∑

ni = n− 1),
n > 2, s = r,

c2m, n = 2,

for some global constants c2 ≥ 2c1 ≥ 2, where the trees on the right-hand side of
the formula are those attained by the separation, s is a separator vertex, r the
root of Tn,m and d the number of children of r. Recall that m ≥ n ≥ 2. For
the case where n > 2 and s 6= r, the algorithm first finds the separator in O(n)
time, then deals with the subtree rooted at s, turns s into a leaf, and then deals
with the reduced tree Tn−|Ts|+1,m. For the case where n > 2 and s = r, the
algorithm first finds the separator in O(n) time, then deals with all trees Tni,mi

rooted at the children of r, adds r as a new root to each Tni,mi
in O(mi) time,

and finally performs Algorithm 3 to merge all subtrees. By Lemma 3, this takes
O(m lg 3m lgd) time.

3.3.3 Conclusion of the Proof of Theorem 5

It suffices to prove that R(Tn,m) = O(nm lg 3m). We use induction on n. We
actually prove that R(Tn,m) ≤ (c2n − 2c2)m lg 3m. For n = 2, the correctness
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is trivial. Assume the inequality holds for 2 ≤ n′ < n. If s 6= r, then

R(Tn,m) ≤ R(Tn1,m) + R(Tn−n1+1,m) + c1n

≤ (c2 · n1 − 2c2)m lg 3m + (c2(n− n1 + 1)− 2c2)m lg 3m + c1n

= (c2n− 2c2)m lg 3m− c2m lg 3m + c1n

≤ (c2n− 2c2)m lg 3m.

If s = r, then d ≥ 2 and

R(Tn,m) ≤
∑d

i=1 R(Tni,mi) + c1m + c1m lg 3m lgd

≤
∑d

i=1(c2ni − 2c2)mi lg 3mi + 2c1m lg 3m lgd

≤
∑d

i=1(c2ni − 2c2)m lg 3m + 2c1m lg 3m lgd

= m lg 3m(c2(n− 1)− 2c2d + 2c1 lgd)

≤ m lg 3m(c2n− 2c2).

This completes the proof of Theorem 5.

3.3.4 Conclusion of the Proof of Theorem 1

Algorithm 1 runs in linear time, except for the invocation of Algorithm 2. There-
fore, its runtime is O(nm lg 3m) = O(n2 lg 3n).

4 Proof of Theorem 2

Given a tree T and two integers b, w, for which maxW[b]≥ w, we need to find a
(b, w)-coloring of T .

To this end, Algorithm 2 needs to be changed so as to save a stack Sv for
each vertex v. Each time the algorithm invokes Algorithm 3, it saves in the
stack of the current separator the lists found by Algorithm 3. More explicitly,
inside the inner i-loop of Algorithm 2 (after the adjustment of the b- and u-
values), we add the line push(listi, Ss), so that each output list of Algorithm 3
will be saved in the stack of the separator s. Here listi will be saved as an array
of u-values, indexed by the values of b (see Example 4.1). In addition, the stack
of each vertex v which is solved without being a separator (which happens, for
example, if v is the root of the tree and has a single child), will contain the table
of v, saved, again, as an array of u-values. Notice that, in Algorithm 2, except
for the last result obtained for each separator vertex, each listi, obtained by the
invocation of Algorithm 3 in the k-th iteration also plays a role of an input list
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black (4,0)

white (0,0)

uncolored (3,1),(2,1),(1,1),(0,1)

black (3,0)

white (0,0)

uncolored (2,1),(1,1),(0,1)

Table 3: The stack for the root of T0

in the (k + 1)-st iteration. Therefore, while trying to find a BWC for a vertex
with a specific output list, we can simply consider the corresponding two input
lists in the same stack. In order to do so, we simply save pointers from each
list in the stack to the two lists in the stack it was obtained from. The pointers
from the lists, saved in the bottom of the stack Sv, will be to the lists at the
top of the stack Su, where u is a child of v. While each v.maxWhite table is
deleted when a subtree containing v is reduced to a leaf, the stack Sv is saved
till the end of the algorithm.

Example 4.1 Table 3 shows the stack for the root of T0. Here, again, we show

only the pairs (b, u) represented by the lists, which are actually saved as shown

in Table 1. This stack contains only two elements. As we can see, the black list

of the bottom of this stack contains the pair (3, 0). This is due to the fact that

this pair was obtained in the first iteration of Algorithm 2 on the root of T0 (see

Table 2). Since the pair (2, 1) was obtained in the second (and last) iteration of

Algorithm 2 on the root of T0, the uncolored list of the top of this stack contains

it (see Table 2).

Algorithm 4, which finds the required coloring, invokes a new algorithm,
NewTreeBWC, which is identical to Algorithm 1, except that it invokes the above
updated version of Algorithm 2 instead of the original one. Later on, the al-
gorithm translates its input from (b, w)-values to (b, u)-values, and eventually
invokes Algorithm 5, which actually colors the tree. Algorithm 5, in turn, in-
vokes the procedures ColorLeaf and ColorNode to handle the cases where a
vertex is a leaf or has a single child, respectively.

As opposed to the runtime of Algorithm 2, which is not changed, the memory
used is increased from O(n) to O(n2). In fact, whereas in the original algorithm
we kept data only for the leaves, in the updated algorithm we keep O(dn)-size
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ColorTree(T, r, b, w)

Input: A tree T with a root r and two integers b and w

Output: A BWC of T with b black and w white vertices

NewTreeBWC(T )

if r.maxW[b] < w

there exists no BWC as required

else

u← |T | − b− w

Color(T, r, b, u)

Algorithm 4: Main algorithm for finding a BWC

information for each vertex with degree d, and therefore of size O(n2) for the
whole tree.

The runtime T (n) of Algorithm 5, including the calls to ColorLeaf and Col-
orNode, satisfies T (n) = T (a)+T (n−a+1)+n, where 2 ≤ a ≤ n−1 (a being the
size of the left subtree of the root). By induction, we readily get T (n) = O(n2).

Thus, the total runtime of Algorithm 4 is basically the same as that of
Algorithm 1, namely O(n2 lg 3n). This completes the proof.

5 Possible Improvements of Theorems 1 and 2

5.1 Proof of Proposition 3

1. A number b is economical if there exists a vertex v such that, when taking v
as the root of the tree, there exist some subtrees, rooted at children of v,
the sum of whose sizes is b. In this case, v separates the tree into two
parts, of sizes b and n− b− 1. We record that b is economical and that v
is a corresponding separator (which information is saved for the purposes
of part 2). To find all economical b’s, we can simply check all vertices of
the tree. For each vertex v (regarded again as the root of the tree), with k
children, say, we check all 2k possible sums of the sizes of the subtrees
rooted at its children. Each such sum is an economical b. Finding the
sizes of all subtrees, combined over all the vertices of the tree, can be done
in a linear time. For each vertex we find all the sums in time 2k, where k is
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Color(T, r, b, u)

Input: A tree T with a root r and two integers b and u

Output: A BWC of T with b black and |T | − b− u white vertices

v1, . . . , vd ← all children of r

if d = 0

ColorLeaf(r, b, u)

if d = 1

ColorNode(T, r, b, u)

else

uArr ← pop(Sr)

for c← black to uncolored

if uArr[c][b] ≤ u // This condition will be satisfied for at least one c

r.color← c

if c = uncolored

u← u + 1

if c = black

b← b + 1

for i← 0 to b

if uArr.pointer2[c][i]+uArr.pointer1[c][b− i] ≤ u

Color(Tv1 ∪ · · · ∪ Tvd d
2 e
∪ {r}, r, b− i,uArr.pointer1[c][b− i])

Color(Tvd d
2 e+1

∪ · · · ∪ Tvd
∪ {r}, r, i,uArr.pointer2[c][i])

return

Algorithm 5: Finding a BWC as required
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Input: A vertex r and two numbers b, u

Output: A coloring of r

if b = 1

r.color ← black

else if u = 1

r.color ← uncolored

else

r.color ← white

Procedure:ColorLeaf(r, b, u)

Input: A tree T rooted at r, having one child, and two numbers b, u

Output: A coloring of T

v1 ← the child of r

if u = r.maxWhite[black][b]

r.color ← black

b← b− 1

else if u = r.maxWhite[white][b]

r.color ← white

else if u = r.maxWhite[uncolored][b]

r.color ← uncolored

u← u− 1

Color(Tv1 , v1, b, u)

Procedure:ColorNode(T, r, b, u)
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the degree of the vertex. Thus, as long as the maximal degree in the tree
is o(lgn), the runtime for each vertex is at most 2o(lgn) = no(1). By [8], in
almost all trees the maximal degree is clgn

lg lgn for some constant c. Therefore,

in almost all trees the total runtime is at most n · 2
clg n
lg lg n = n1+o(1).

2. Given an economical b, the separator vertex v = v(b), found in the previous
part, will be the only uncolored vertex in the tree. Now we only have to
check all possible sums of sizes of the subtrees rooted at the children of v,
in order to find a collection which adds up to b. All these subtrees should
be colored black. The rest of the vertices in the tree are colored white.
Therefore, after we know all the economical b’s, in order to find a BWC
for an economical b, we know in no(1) time which vertex should be colored
in each color. To actually color each vertex, we need linear time.

5.2 The Statistics of Economical b’s

We first tested the average percentage of economical b’s for trees of sizes n =
50, 100, . . . , 1000. For each such size n, we selected 1000 random n-vertex trees,
and found the average percentage of economical b’s. (These random labeled trees
were generated using Prüfer code [9].) The results are depicted in Figure 2. We
see that the percentage of economical b’s decreases slowly as a function of n.

0

10

20

30

40

50

60

70

80

90

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

��������	�
������

�
��
�
�
��
�
��
�
	�
�
�
�
�
�
�
��
��
��

Figure 2: Percentage of economical b’s in trees of various sizes
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Figure 3 shows the probability of each value of b to be economical. In
order to find it, we tested 1000 random trees with 10000 vertices and, for each
b ∈ [1, 9999], found its probability of being economical. To avoid random jumps,
we actually recorded for each x = 250, 750, . . . , 9750 the average value for all b’s
in the interval [x − 249, x + 250] (excluding b = 10000). The symmetry of the
graph with respect to the line b = 5000 is due to the fact that a value b is
economical if and only if n− b− 1 is such.
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Figure 3: The probability of each b to be economical

6 Conclusion

Given a tree T , all pairs (b, w) representing optimal BWCs can be found by
Algorithm 1 in time O(n2 lg 3n). The coloring for a specific pair can be then
found in O(n2) time. Finding an optimal BWC for an economical b is done in
n1+o(1) time.
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