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Abstract

We present several polynomial-time algorithms for c-planarity testing
for cluster hierarchy C containing clusters of size at most three. The main
result is an O(|C|3 + n)-time algorithm for clusters of size at most three
on a cycle. The result is then generalized to a special class of Eulerian
graphs, namely graphs obtained from a 3-connected planar graph of fixed
size k by multiplying and then subdividing edges. An O(3k · k · n3)-time
algorithm is presented. We further give an O(|C|2 + n)-time algorithm for
general 3-connected planar graphs.
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honza@kam.mff.cuni.cz (Jan Kratochv́ıl) perm@kam.mff.cuni.cz (Martin Pergel) suchy@kam.mff.cuni.cz
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1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situa-
tions one needs to visualize a complicated inner structure of graphs and net-
works. Clustered graphs—graphs with recursive clustering structures over the
vertices—provide a possible model of such a visualization, and as such they find
applications in many practical problems, e.g., management information systems,
social networks or VLSI design tools [7]. However, from the theoretical point
of view, the computational complexity of deciding c-planarity is still an open
problem and it is regarded as one of the challenges of the contemporary graph
drawing. It was listed as problem no. 35 in [1].

Regarding the graph notations, we follow standard notation on finite loopless
graphs. A graph is an ordered pair G = (V,E). By G we denote its edge
complement (i.e., (V,

(
V
2

)
\ E)). For a vertex v ∈ V by N(v) we denote its set

of neighbors. For a set U ⊆ V , by G[U ] we denote the induced subgraph of G
with the vertex set U . The number of vertices of the currently discussed graph
is denoted by n.

Let G = (V,E) be a graph. Throughout the paper we call C ⊆ V a cluster.
A cluster set on G is a set C ⊆ P(V (G)) such that for all C,D ∈ C, either C and
D are disjoint or they are in inclusion. A clustered planar embedding of (G, C)
is a planar embedding emb of G together with a mapping embc that assigns to
every cluster C ∈ C a planar region embc(C) whose boundary is a closed Jordan
curve and such that

• for each vertex v ∈ V and every cluster C ∈ C, it holds that emb(v) ∈
embc(C) if and only if v ∈ C,

• for every two clusters C and D, the regions embc(C) and embc(D) are
disjoint (in inclusion) if and only if C and D are disjoint (in inclusion,
respectively), and

• for every edge e ∈ E and every cluster C ∈ C, the curve emb(e) crosses
the boundary of embc(C) at most once.

The pair (G, C) is called clustered planar (shortly c-planar) if it allows a clus-
tered planar embedding.

It is well known that planar graphs can be recognized in polynomial, even
linear time [11]. For c-planarity, determining the time-complexity of the deci-
sion problem remains open. It is expected that the problem is hard, but no one
managed to prove NP-hardness so far. All what is currently known and pub-
lished are polynomial-time algorithms for various special cases of the problem.
Their significance lies in providing insight into the subtle intricacies of the prob-
lem. And even if the general problem turns out NP-hard, they will still provide
insight into the boundary between polynomial and hard variants of c-planarity.

One possible approach is to restrict connectivity of subgraphs induced by
clusters. For connected clustered graphs (i.e., when all clusters induce con-
nected subgraphs), the problem can be solved in linear time [5]. This work
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was extended to “almost” connected clustered graphs in [9, 10] by designing
an O(n2)-time algorithm. Another important step was achieved by a charac-
terization of completely connected clustered graphs (where each cluster and its
complement induce connected subgraphs): A completely connected clustered
graph is c-planar if and only if the underlying graph is planar [2].

Restrictions may also be posed on edges crossing the boundary of clusters.
There is an O(n3)-time algorithm for “extrovert” clustered graphs [8], and a
linear-time algorithm for clusters with at most four outgoing edges [13].

Several authors consider a fixed embedding of the underlying graph. If the
embedding is fixed and each cluster induces at most two connected components,
then c-planarity can be tested in polynomial time [12]. A linear-time algorithm
for flat cluster hierarchy (i.e., where all clusters are disjoint) in an embedded
graph with small faces was found in [6].

Another approach is to impose even more restrictions on the structure of
the cluster hierarchy. Polynomial-time algorithms exist for flat cluster hierarchy
and the following conditions: the underlying graph is a cycle and clusters are
arranged in a cycle [3]; the underlying graph is a cycle and clusters are arranged
into an embedded plane graph [4].

We propose to study the situation when all clusters are small. This case has
not been considered before and it cannot be solved by explicit application of
any existing algorithm. We thus introduce a new class of polynomial c-planarity
instances.

So far, we have obtained several results for clusters of size at most three.
Our main result is a polynomial-time algorithm for clusters of size at most three
on a cycle. This result complements that of [3] where there is a small number,
namely three, of clusters on a cycle. Similarly to this result, our algorithm is
also surprisingly non-trivial. We further generalize our result to a special class
of Eulerian graphs that can be obtained from vertex-3-connected planar graphs
of fixed size by cloning and subdividing edges.

In Section 2 we remind the notion of saturators and study its meaning in
the case of small clusters. We prove that c-planarity of 3-clusters in vertex-3-
connected planar graphs is solvable in time O(|C|2 + n), where C is the set of
clusters. Section 3 contains the algorithm for 3-clusters on a cycle; it runs in
time O(|C|3 + n). The generalization to k-Rib-Eulerian graphs running in time
O(3k · k · n3) is presented in Section 4.

2 Saturators of small clusters

Cortese et al. introduced the following notion in [3]. A set F is a saturator
of (G, C) if F ⊆ E(G) and for each cluster C ∈ C, the vertices of C induce
a connected subgraph in GF = (V (G), E(G) ∪ F ). The saturator F is called
planar if GF is planar. Note that the definition of planar saturator is slightly
different here than in [3] (we do not require GF to be clustered planar). The
role of saturators is described by the following observation (stated in [3] in an
equivalent formulation).
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Figure 1: Illustration to the proof of Corollary 1

Lemma 1 The pair (G, C) is c-planar if and only if there exists a saturator
F = F (G, C) such that (GF , C) is c-planar.

For a cluster A ∈ C, we call every pair of its vertices a candidate edge. We
say that a candidate edge e is present in a saturator F if e is an element of
F . When it is clear from the context which saturator is considered, we omit its
name and speak about present candidate edges only.

We further explore the meaning of saturators in certain special cases of
graphs G and cluster sets C. In Section 3, we employ this idea in reducing
a special case of c-planarity to the existence of a planar saturator of (G, C),
and then further to the bipartiteness and triangle-freeness of certain auxiliary
graphs.

The following corollary of Lemma 1 is a first step in reducing c-planarity
to the existence of a planar saturator. It states that the existence of a planar
saturator is sufficient for clusters that do not induce a cycle.

Corollary 1 The pair (G, C) is c-planar if and only if there exists a saturator
F such that (GF , C′) is c-planar, where C′ = {C ∈ C : GF [C] contains a cycle}.

Proof: Given a c-planar embedding of (GF , C′), insert regions for clusters in
C \ C′ inductively from the smallest ones. Each time the boundary of the region
emb(C) for C ∈ C \ C′ is drawn to surround the drawing of GF [C] so that it
contains all the subclusters of C (see Fig. 1). We are surrounding close enough
so that emb(C) crosses neither boundaries of other clusters nor undesired edges.

�

While Corollary 1 deals with acyclic clusters, we also need to work with
clusters that do induce cycles. Then the following theorem [7] is useful.
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Theorem 1 Let (G, C) be a pair whose all clusters induce connected subgraphs.
Then (G, C) is c-planar if and only if G is planar and there exists a planar
drawing of G such that for each cluster C of C, all the vertices and edges of
G−G[C] are in the outer face of the drawing of G[C].

In this paper we mostly consider clusters of size at most three. We use the
fact that if clusters are small, then there are only few possibilities of choosing
present candidate edges in a saturator so that each cluster becomes connected.

A highly connected graph imposes other limitations on present candidate
edges. Namely, in a fixed planar embedding of a 3-connected planar graph,
each candidate edge can be drawn in at most one way. If we restrict ourselves
both to 3-connected planar graphs and to clusters of size at most three, then it
is possible to test c-planarity effectively.

Theorem 2 Let G be a 3-connected planar graph and C a cluster set containing
only clusters of size at most three. Then the c-planarity of (G, C) can be decided
in time O(|C|2 + n).

Proof: As the graph is 3-connected, each candidate edge e is either an edge
of G, or there is at most one face that e can be drawn in. Thus the solution
consists only in choosing candidate edges that are present in the sought planar
saturator.

We use a reduction to an instance of 2-SAT. For each candidate edge e we
introduce a boolean variable xe saying if e is present (TRUE) or not (FALSE).
We create four types of clauses:

• Clauses saying that each cluster is connected. For each three-cluster
{a1, a2, a3} ∈ C we create clauses

(x{a1,a2} ∨ x{a2,a3}) ∧ (x{a1,a2} ∨ x{a1,a3}) ∧ (x{a1,a3} ∨ x{a2,a3}),

and for each two-cluster {a1, a2} ∈ C we create the clause (x{a1,a2}).

• Clauses saying that there is no crossing. For candidate edges {a, b} and
{c, d} whose cyclic order along a common face of G is acbd, we create the
clause (¬x{a,b} ∨ ¬x{c,d}).

• We use just candidate edges that can be drawn; we create the clause
(¬x{a,b}) for each candidate edge {a, b} such that a and b do not lie in a
common face of G.

• For each candidate edge {a, b} that is also an edge of G we create the
clause (x{a,b}).

If the formula is not satisfiable, then clearly no saturator exists and (G, C) is
not c-planar. Otherwise, let ν be a satisfying valuation and F = F (ν) the
corresponding set of edges. Let C′ be the set of clusters that induce cycles in
GF .
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By the definition of F , the graph GF is planar. Hence, if C′ is empty, then
by Corollary 1 the pair (G, C) is c-planar.

Suppose that C′ is nonempty and let C ∈ C′. Then C induces a triangle T .
If at least one edge of T is neither an edge of G nor a two-cluster in C, we may
set the variable corresponding to this edge to false, and thus obtain another
satisfying valuation ν for which C′ contains less clusters. We do this for every
such cluster.

It is easy to see that the remaining clusters in C′ induce triangles in GF for
any saturator F . Let F be an arbitrary planar saturator. If there is such a
triangle, say T , that is not a boundary of a face of GF , then both the interior
and exterior of T are non-empty. By the 3-connectivity of G and GF , the same
is true for T in any planar drawing of GF . Then GF cannot be drawn so that
all of G − G[C] is outside G[C], and by Theorem 1, (GF , C′) is not c-planar.
Since we have proved this for an arbitrary planar saturator F , by Corollary 1
the pair (G, C) is not c-planar either.

Otherwise, all triangles induced by clusters of C′ are boundaries of faces of
GF . Since clusters are disjoint, there always exists a face f whose boundary is
not fully contained in a cluster. Let f be the outer face; then the drawing fulfills
the conditions of Theorem 1 and (GF , C′) is c-planar, hence (G, C) is c-planar
as well.

This algorithm runs in time O(|C|2 + n). The formula has O(|C|) variables
and at most O(|C|2) clauses. The clauses can be produced by examining the
vertices of clusters along the boundary of each face, which can be done in total
time O(n), as well as comparing induced triangles with boundaries of faces. The
time needed to solve the instance of 2-SAT is O(|C|2). �

3 Three-clusters on a cycle

In this section we present an algorithm that decides c-planarity for clusters of
size at most three on a cycle. In Subsection 3.1 we describe the crucial part of
the algorithm—the construction of auxiliary graphs. We then characterize the
c-planarity of the input instance by the properties of the auxiliary graphs. This
characterization is then proved in Subsection 3.2 and Subsection 3.3, which also
contains time analysis of the algorithm.

Definition 1 Let G be a cycle and C a set of at most three-element clusters
on V (G). We say that two candidate edges conflict if the cyclic order of their
vertices is abab.

We say that two three-vertex clusters A and B ∈ C
• intersect if the cyclic order of their vertices along G is aabbab,

• alternate if the cyclic order of their vertices along G is ababab.

Given two clusters A and B we say that the vertices a ∈ A and b ∈ B are
consecutive if there exists a path in G from a to b that uses no other vertices of
A or B.
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Lemma 2 If G is a cycle and C contains only clusters of size at most three,
then (G, C) is c-planar if and only if there exists a planar saturator F .

Proof: Note that (regardless of C) any planar drawing of G forms a Jordan
circle with all vertices on its boundary.

To prove the ‘if ’ implication, we take a planar saturator F and use Lemma
1. If the cluster C forms a triangle T in GF with edges e1, e2 and e3, then two
of its edges (without loss of generality e1 and e2) must be represented in the
same face. Now we remove embedding of e3 and we redraw it along the union
of e1 and e2. The cluster containing this triangle is represented by a curve
surrounding this triangle (whose interior is empty). The remaining cases are
covered by Corollary 1. The ‘only if ’ implication is a straightforward corollary
of the Lemma 1. �

3.1 Construction of auxiliary graphs G1, GM
1 , and G2

We are given a pair (G, C), where G is a cycle and C contains only clusters of
size at most three. According to Lemma 2, deciding the c-planarity of (G, C)
amounts to finding a planar saturator F . Thus, we need to pick suitable candi-
date edges for F so that the graph GF makes every cluster connected and has
a planar embedding.

As we want to use the algorithm for finding candidate edges also in more
general setting in subsequent sections we design it to take a pseudocluster set
as an input. A pseudocluster set on G is a set C ⊆ P(V (G)) such that for all
C,D ∈ C, either C and D are disjoint, they are in inclusion or |C| = |D| = 2.
Note that the notion of pseudocluster set differs from the notion of cluster set
just by allowing intersection of clusters of size two with other clusters of size
two.

Since G is a cycle, we only distinguish two ways of drawing a candidate edge
in a planar embedding: inside or outside the cycle G.

Conflicts of candidate edges impose restrictions on their embedding. For two-
vertex clusters, the situation is evident: each candidate edge must be drawn on
one side of the cycle and any conflicting candidate edge must be drawn on the
other side.

For three-vertex clusters the situation is more complicated, because we do
not know in advance which candidate edges are present in the sought saturator
and which are not. However, since F is a saturator, we know that every cluster
C is connected in GF . Hence, out of every pair of candidate edges of C, at least
one is present in F . Thus, we consider pairs of three-vertex-cluster candidate
edges; these become vertices of an auxiliary graph G1. Edges of two-vertex
clusters will become vertices of G1 also.

The formal construction of G1 can be found below. There we also formalize
the correspondence between vertices of G1 and (pairs of) candidate edges. Here,
for convenience, we use the notion of correspondence in an intuitive way.

For some vertex pairs x and y of G1 the following holds: if any candidate edge
corresponding to x is present, then any present candidate edge corresponding
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y

x

y

x

Figure 2: Some of the situations when any candidate edge corresponding to x
must be drawn on the other side of the cycle than any candidate edge corre-
sponding to y.

to y must be drawn on the other side of the cycle. Otherwise, a crossing would
occur. Figure 2 illustrates some of those cases. We represent such a case by the
edge between x and y in G1.

We observe that if a vertex x is non-isolated in G1, then all present candidate
edges corresponding to x must be drawn on a common side of the cycle. For
adjacent vertices the sides are distinct. The idea is to find a bipartition of G1.
If it exists, we may obtain a drawing of all present candidate edges such that
all edges corresponding to vertices in one part will be drawn inside the cycle
and all edges corresponding to the other part will be drawn outside the cycle.
Isolated vertices in G1 are exceptional and we will not consider them to belong
to any bipartity of G1, because their corresponding candidate edges have, in a
sense, more freedom.

The graph G1 does not capture well the restrictions caused by alternating
clusters—there may be several pairwise-alternating clusters that do not give rise
to any edge of G1. Hence, we define another auxiliary graph G2. The vertices
of G2 are three-vertex clusters, and edges {A,B} of G2 express that clusters A
and B alternate. We later prove that, for c-planarity, there may be no triangle
in G2.

In some cases there are vertices of G1 whose corresponding candidate edges
“behave in the same way” in any planar drawing of a saturator: either all present
edges are drawn outside, or all inside, or all may be drawn on both sides. In the
bipartition language, such vertices must either belong to a common bipartity of
G1 in any bipartition, or they must be all isolated. We need to “unify” them.
Hence, we construct the graph GM

1 from G1 by repeated merging of certain
vertex tuples into groups.

The formal construction of the graphs G1, G2 and GM
1 follows. It is illus-

trated in Fig. 3.
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Figure 3: Illustration of rules 1, 2, 3, 4, 5, 6, and 7.
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Algorithm: Construction of G1

Input: G = (V,E), a pseudocluster set C
Output: the graph G1

V (G1) := {xA,v : A ∈ C, |A| = 3, v ∈ A} ∪ {xA : A ∈ C, |A| = 2}
E(G1) := ∅

Rule 1. For every two clusters A = {a1, a2} and B = {b1, b2} whose vertices
have the cyclic order a1, b1, a2, b2, set E(G1) = E(G1) ∪ {{xA, xB}}.

Rule 2. For every two clusters A = {a1, a2} and B = {b1, b2, b3} whose
vertices have the cyclic order a1, b1, a2, b2, b3, set E(G1) = E(G1) ∪
{{xA, xB,b1}}.

Rule 3. For every two clusters A = {a1, a2, a3} and B = {b1, b2, b3} whose
vertices have the cyclic order a1a2b1b2a3b3, set E(G1) := E(G1) ∪
{{xA,a3 , xB,b3}}.

Rule 4. For every two alternating clusters A and B such that the vertices yA

and yB both have degree exactly one in G2, and for every pair of their
vertices ai ∈ A and bj ∈ B that are consecutive and both non-isolated
in G1, set E(G1) := E(G1) ∪ {{xA,ai , xB,bj}}.

Definition of G2

V (G2) := {yA : A ∈ C, |A| = 3}

E(G2) := {{yA, yB} : A and B alternate}.

To formalize the correspondence of clusters and candidate edges with vertices
of G1 and G2, we introduce the following definition.

Definition 2 We say that a candidate edge e = {ai, aj} of a cluster A in G
corresponds to a vertex v of G1 if v = xA,ai

or v = xA,aj
, or if v = xA.

We say that a cluster B corresponds to a vertex u of G2 if u = yB.

The following algorithm “Construction of GM
1 ” constructs the graph GM

1

from G1 together with a mapping g : V (G1) → V (GM
1 ). The vertices of GM

1

will represent groups of vertices of G1 and the mapping g will assign to each
vertex the group to which it belongs. For short, we write gA,ai or gA instead of
g(xA,ai

) or g(xA), respectively.
The algorithm “Construction of GM

1 ” starts with one-vertex groups equal to
vertices of G1 and then merges certain groups using the following procedure.
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Procedure: Merge
Input: vertex groups g1, g2, . . . , gk ∈ V (GM

1 )
Output: modifies GM

1

1. Replace the groups g1, g2, . . . , gk with a newly created vertex group
w, and set the edges in GM

1 so that

N(w) = N(g1) ∪N(g2) ∪ · · · ∪N(gk) \ {g1, g2, . . . , gk}.

2. If there are two indices 1 ≤ i, j ≤ k (not necessarily distinct) such that
gi and gj are adjacent then add a loop {w,w}.

3. For all vertices v in g−1
(
g1 ∪ g2 ∪ · · · ∪ gk

)
set g(v) := w.

Algorithm: Construction of GM
1

Input: the graph G1

Output: the graph GM
1 , a mapping g : V (G1)→ V (GM

1 )
GM

1 := G1, g := id

Rule 5. For each cluster A = {a1, a2, a3} which alternates with at least
two other clusters B = {b1, b2, b3} and C = {c1, c2, c3} in the
way a1, c3, b3, a2, b1, c1, a3, c2, b2, do merge(gA,a1 , gB,b1 , gC,c1),
merge(gA,a2 , gB,b2 , gC,c2), and merge(gA,a3 , gB,b3 , gC,c3).

Rule 6. For every three-vertex cluster A having all corresponding vertices
gA,ai non-isolated in GM

1 , do merge(gA,a1 , gA,a2 , gA,a3).

Rule 7. For every two clusters A′ = {a1, a2} and A = {a1, a2, a3} such that
gA,a1 is not isolated in GM

1 , do merge(gA,a1 , gA′).

Having constructed all the auxiliary graphs G1, GM
1 and G2, it is easy to

decide if the input pair (G, C) is c-planar, as stated in the following theorem.
The theorem is proved in subsections 3.2 and 3.3.

Theorem 3 Let G be a cycle, let C contain only clusters of size at most three,
and let GM

1 and G2 be the graphs constructed for (G, C) using the algorithms
“Construction of G1”, “Construction of GM

1 ”, and “Definition of G2”. Then
the pair (G, C) is c-planar if and only if GM

1 is bipartite and G2 is triangle-free.

3.2 The proof of Theorem 3, part 1: The necessary con-
dition

Lemma 3 Let F be a planar saturator. Then in GF , the following is true:

1. if there is an edge between the vertices x and y in G1, then any present
candidate edge corresponding to x is drawn inside the cycle G, and any
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present candidate edge corresponding to y is drawn outside the cycle G, or
vice versa.

2. the present candidate edges corresponding to vertices in g−1(v) such that
v is non-isolated in GM

1 are drawn either all inside or all outside the cycle
G.

3. if there is an edge between the vertices x and y in GM
1 then any present

candidate edge corresponding to g−1(x) is drawn inside the cycle G, and
any present candidate edge corresponding to g−1(y) is drawn outside the
cycle G, or vice versa.

Proof: We follow the construction of G1 and prove inductively that part 1
holds after every step. Before any rule is applied, there are no edges in G1 and
it holds trivially. Then a step according to rule 1, 2, or 3 adds one new edge,
say, xy. For all these rules, it is not hard to see that if an edge corresponding
to x and an edge corresponding to y are drawn on the same side of the cycle G,
then they cross each other. Hence, after an application of rule 1, 2, or 3, part 1
remains valid.

Let us consider a step according to rule 4. We use the same notation as in
the description of this step, so we have two clusters A and B, and let x = xA,a1

and y = xB,b1 . Note that by definition of rule 4, the vertices x and y are
already non-isolated. Thus all present candidate edges corresponding to x must
be drawn on the same side of the cycle, by induction hypothesis. The same
holds for y.

Assume for contradiction that there are candidate edges corresponding to x
and y both inside the cycle G. Then it must be edges a1a3 and b1b2, because
they are the only pair without a crossing. By the above argument, the edge a1a2

can only be drawn on the same side as a1a3; but that is not possible because of
b1b2. So a1a2 is not present. Then a2a3 is present and drawn outside. Similarly,
b1b3 is not present, and there is no way to draw b2b3, a contradiction.

Part 2 is proved by induction on the number of mergings taken by the al-
gorithm “Construction of GM

1 ”. To simplify the proof, we reorder the mergings
done due to rule 5, so that we first merge the groups that are always non-isolated.
We claim that after all mergings of rule 5 have been applied, the resulting graph
GM

1 depends only on the relative position of the clusters, not on the order of the
mergings. Although this is not hard to see directly, we prove this claim formally
as follows.

For the purpose of this paragraph, consider an equivalence ∼ on vertices of
G1 defined by u ∼ v if and only if g(u) = g(v). Observe that if we know G1

and ∼, then GM
1 is fully determined, since g is surjective and g(u) is adjacent

to g(v) if and only if there are u′, v′ ∈ V (G1) such that u′ ∼ u, v′ ∼ v and u′

is adjacent to v′ in G1 (this is true at the beginning and the procedure Merge
can be easily checked not to break it). Now consider (just for this paragraph)
for any set {v1, v2, . . . , vk} of vertices of G1 a procedure Merge(v1, . . . , vk) that
consists only of a single call of Merge(g(v1), . . . , g(v2)). Any call of Merge in
the algorithm “Construction of GM

1 ” can be easily replaced by a call of Merge.
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Moreover a list of all Merges to be done according to rule 5 can be made before
actually doing any of them, because it only depends on the relative position
of the clusters. Finally, observe that the relation ∼ is the transitive closure of
the relation “being together arguments of a call of Merge”. Since this closure
is unique and the graph GM

1 is determined by ∼, the order of the merges does
not matter.

Now let us get back to the proof of part 2. Before any merging was done, the
claim holds as a consequence of part 1. We prove the validity of the claim after
each merging. We distinguish several cases of merging, using the same notation
as in the description of the steps:

(a) Merging due to rule 5: We distinguish two subcases of the merging and
we reorder the mergings in such a way that all the mergings of type (i)
are done before the first one of type (ii).

(i) Merging of gA,a2 , gB,b2 and gC,c2 , or of gA,a3 , gB,b3 and gC,c3 : consider
the first merge. If g−1(gA,a2) is different from xA,a2 , then gA,a2 has
already been merged with something and it could be only through
a merge of type (i) due to the order of merges. Hence gA,a2 is non-
isolated and by the induction hypothesis we know that it is drawn
on one side. The same holds for gB,b2 and gC,c2 . So it is sufficient
to show that no candidate edge corresponding to xA,a2 and xC,c2 is
drawn outside if there is a candidate edge corresponding to xB,b2

drawn inside.
Assume that there is candidate edge b1b2 drawn inside. If c1c2 is
outside then there is no way to connect a3. If a1a2 is outside then
it is impossible to connect c3. If c2c3 is outside, then we must draw
a2a3 outside in order to connect a3, and a1a2 inside to connect a1.
But then we have no chance to connect b3. With a2a3 outside we
must draw c2c3 outside to connect c3 and the situation is exactly the
same as the previous case.
So let us consider b2b3 inside. If there is a1a2 outside then we can not
connect c3, and the same holds for candidate edge c2c3 outside and
vertex a1. If the candidate edge c1c2 is outside, then a1a2 must be
outside to connect a1, but we already know that this is not possible.
Similarly a2a3 outside forces us to draw c2c3 outside to connect c3.
To sum it up, if there is a candidate edge corresponding to b2 inside
the cycle G then all the edges corresponding to a2 and c2 can only be
drawn inside, too. The proof for the second merge is the same one
with the role of the letters a and b and indices 2 and 3 swapped.

(ii) Merging of gA,a1 , gB,b1 and gC,c1 : If all gA,a1 , gB,b1 and gC,c1 are
isolated in GM

1 then there is nothing to prove. Assume without loss of
generality that gA,a1 is non-isolated. We know that if both candidate
edges corresponding to xA,a1 are present, then they must be on the
same side. Moreover, we know that if any present candidate edge
corresponding to xA,a2 is inside, then any present candidate edge
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corresponding to xA,a3 is outside and vice versa. Then a2a3 can not
be present, and the edges a1a2 and a1a3 are on the opposite sides.
But that is not possible by the restriction on xA,a1 , and the instance
is not c-planar, a contradiction.

(b) Merging due to rule 6: Let A = {a1, a2, a3} be the cluster on which
the step is taken. By the induction hypothesis we know that all present
candidate edges corresponding to gA,a1 , are drawn on one side of the cycle,
because gA,a1 is non-isolated, and the same holds for gA,a2 and gA,a3 . It is
sufficient to show that for their representatives x = xA,a1 , y = xA,a2 and
z = xA,a3 , their present candidate edges must be on the same side. Take
two candidate edges corresponding to a combination of x, y and z. They
meet in one vertex of cluster A, and that forces them to be drawn on the
same side.

(c) Merging due to rule 7: By the induction hypothesis we know that all
present candidate edges corresponding to the group gA,a1 are drawn on
one side of the cycle, because gA,a1 is non-isolated. If g−1(gA′) is different
from xA′ then it was merged in an application of rule 7, so it is non-
isolated. This means that the group gA′ is drawn on one side of the
cycle, too. It is sufficient to show that for their representatives x = xA,a1

and y = xA′ , their present candidate edges must be on the same side.
The candidate edge corresponding to y is one of the two candidate edges
corresponding to x. Thus, if all the edges of x are drawn inside, then so
is y. Similarly, if x is outside, then y is outside, too.

Part 3 is an easy consequence of the first two and the fact that, if there is
an edge between two vertices x and y of GM

1 , then there exists an edge between
two vertices u and v of G1, where u ∈ g−1(x) and v ∈ g−1(y). �

Lemma 4 If there are three clusters A,B,C ∈ C such that A alternates with B
and B alternates with C, then either A alternates with C or A intersects C.

Proof: Vertices of cluster B split the cycle into three segments. As B alternates
both with A and C, each of these three segments contains exactly one vertex of
A and one vertex of C. Therefore there are two possible cyclic orders of vertices
of A and C. Either it is acacac or it is acacca. In the first case, A alternates C,
in the second case, A intersects with C. �

Lemma 5 If G has a planar saturator, then GM
1 is bipartite and G2 is triangle-

free.

Proof: First assume that GM
1 is not bipartite. Then it contains an odd cycle

C, V (C) = {v1, v2, v3...v2k+1}, 0 ≤ k. Without loss of generality we can assume
that candidate edges corresponding to vertices in g−1(v1) are drawn inside the
cycle. By Lemma 3 we know that g−1(v2) is outside, by the same argument
g−1(v3) is inside, etc. But then both g−1(v1) and g−1(v2k+1) are drawn inside,
which is not possible again by Lemma 3, a contradiction.
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If G2 contains a triangle, then there are three pairwise alternating clusters,
say A, B, and C. We use Lemma 2 to do a straightforward case analysis of the
candidate edges present in a planar drawing. If present candidate edges of A are
all drawn on the same side of the cycle, then present candidate edges of B must
be drawn on the other side, and there is no way to draw at least two candidate
edges of C without crossing. The other possibility is that A has one candidate
edge drawn inside and one outside the cycle. Then the same holds for B, and
again, there is no way to draw the candidate edges of C without crossings, a
contradiction. �

3.3 Proof of Theorem 3, part 2: Getting a c-planar draw-
ing from GM

1 and G2

In this section we show that if G2 is without triangles and GM
1 is bipartite, then

G has a planar saturator F ; in other words, we can construct a supergraph GF

of G on the same set of vertices such that GF is planar and for each cluster A ∈ C
the graph G[A] is connected. Actually, we directly construct an embedding of
GF into the plane. To this end, we first need the following Lemma:

Lemma 6 Let GM
1 be bipartite and G2 without triangles. Then for every con-

nected component of G2 with at least three vertices yA1 , . . . , yAk
, one of the

following cases occurs:

• there exist three groups g1, g2, g3 ∈ GM
1 such that for each cluster Ai,

i ∈ {1, . . . , k}, it holds that g(Ai) ∈ {g1, g2, g3}, or

• all the vertices of all clusters A1, . . . , Ak are within a single group in GM
1 .

Proof: First, we show that the statement of the lemma holds for arbitrary three
vertices yA, yB , yC of G2 that induce a connected subgraph in G2. Suppose
without loss of generality that yAyB and yByC are edges in G2. As G2 has no
triangles, we have that yAyC is not an edge of G2. By definition of G2 it follows
that A and B alternate and B and C alternate. Rule 5 causes that a1, b1, c1 are
merged into a group g1, that a2, b2, c2 are merged into a group g2, and a3, b3, c3
are merged into a group g3. Lemma 4 asserts that A and C intersect, and hence
by rule 3 there is an edge g1g3 in GM

1 . If no further merging happens among
g1, g2, g3, and g1, g2, g3 are three distinct groups, we are in the first case. If it
happens that some two of the groups g1, g2, g3 are merged, then it may occur
that g2 is merged with g1 or g3. Then all groups containing vertices of cluster A
become non-isolated and by rule 6 we merge also g1 and g3. The other possibility
is that g1 and g3 are merged, but then GM

1 contains a loop. A contradiction
with the assumption that GM

1 is bipartite.
Application of the argument from the previous paragraph to the connected

component of G2 is now easy. Formally, we prove the statement by induction on
the number of vertices. We actually prove a slightly stronger statement (which is
useful to simplify the induction) that whenever yA1 , . . . , yAk

induce a connected
subgraph in G2, then the statement of the lemma holds for the corresponding
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clusters. For components with three vertices, the statement was shown in the
previous paragraph. So suppose we have k > 3 vertices yA1 , . . . , yAk

that in-
duce a connected subgraph in G2. Clearly, there is some i ∈ {1, . . . , k} such
that the subgraph of G2 induced on vertices yA1 , . . . , yAi−1 , yAi+1 , . . . , yAk

is con-
nected. Therefore, by induction, clusters A1, . . . , Ai−1, Ai+1, . . . , Ak satisfy the
statement of the lemma and their vertices are either merged into three groups
g1, g2, g3 in GM

1 or into a single group G1 of GM
1 . Vertex yAi is connected to

some vertex yAj
, which is also connected to some other vertex yA′j

. Therefore
the argument from the previous paragraph can be applied to yAi

, yAj
, yA′j

, and
we conclude that groups of cluster vertices of Ai, Aj , Aj′ are merged as described
in the statement of the lemma. Therefore the groups of vertices of Ai are also
merged in the groups g1, g2, g3 or in the single group g1, respectively. �

Lemma 7 If G2 is triangle-free and GM
1 is bipartite, then (G, C) has a planar

saturator F .

Proof: Let I be the set of isolated vertices of GM
1 . Let us fix a drawing of

the cycle G into the plane and some bipartition of GM
1 \ I for the rest of this

section. As G is a cycle, any drawing of G has well-defined inner and outer face,
so drawing an edge of GF inside or outside of the cycle is well defined. The idea
behind our drawing is that edges represented by non-isolated vertices of GM

1 in
the first part (we call it the inner part) are drawn inside the cycle and edges
in the second part (called the outer part) are drawn outside the cycle. Vertices
of I do not impose any restriction and therefore the edges represented by them
can be drawn both inside or outside the cycle.

Now we present the construction of GF and its drawing in more detail. We
say a candidate edge a1a2 of GF is consistent with bipartition if:

• Either gA,a1 ∈ I and gA,a2 ∈ I, or

• exactly one of groups gA,a1 , gA,a2 is in I and the other group is in the inner
part and the candidate edge is drawn inside the cycle, or

• exactly one of groups gA,a1 , gA,a2 is in I and the other group is in the
outer part and the candidate edge is drawn outside the cycle, or

• gA,a1 and gA,a2 are in the inner part and the candidate edge is drawn
inside the cycle, or

• gA,a1 and gA,a2 are in the outer part and the candidate edge is drawn
outside the cycle.

Let D be a set of clusters represented by a connected component of G2. We
define graph GF and the drawing of edges in these clusters for the whole com-
ponent at once. We distinguish three cases:

Case 1. |D| = 1: In this case D contains a single cluster A = {a1, a2, a3} that
does not alternate with any other cluster. If gA,a1 = gA,a2 = gA,a3 , we
add to GF candidate edges a1a2 and a2a3 and draw them consistently
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with the bipartition. Otherwise at least one of the vertices gA,a1 , gA,a2

or gA,a3 is isolated. Let it without loss of generality be gA,a3 . In this
case, we add to GF candidate edges a1a3 and a2a3 and draw these edges
consistently with bipartition.

Case 2. |D| = 2: In this case D contains two clusters A = {a1, a2, a3} and
B = {b1, b2, b3} that alternate but no other cluster alternates with any
of them. We distinguish five cases:

2(a) There are ai, bj , with i, j ∈ {1, 2, 3}, such that gA,ai
and gB,bj

are
non-isolated and belong to the same part. Note that ai and bj are
not consecutive because of rule 4. Without loss of generality we set
that i = j = 1, and the ordering of vertices in the cycle is a1, b3, a2,
b1, a3, and b2. If both groups gB,b3 and gA,a2 are non-isolated, then
by rule 4 there would be a path gA,a1 , gB,b3 , gA,a2 , gB,b1 in GM

1 and
hence gA,a1 cannot be in the same part as gB,b1 , a contradiction.
Hence one of gB,b3 and gA,a2 is isolated and by an analogous reason
also one of gB,b2 and gA,a3 is isolated. If both gA,a2 and gA,a3 were
non-isolated, then by rule 6 gA,a1 = gA,a2 = gA,a3 and the group
is connected by an edge with gB,b1 in GM

1 due to rule 4. Again a
contradiction with the fact that gA,a1 and gB,b1 are in the same
part. Similarly, we argue that one of gB,b2 and gB,b3 is isolated.
Therefore we know that there is i ∈ {2, 3} such that gA,ai and gB,bi

are isolated. Without loss of generality we can assume that i = 2.
In this case we add edges a1a2 and b1b2 to GF and draw them
consistently with bipartition. We also add edges a2a3 and b2b3 to
GF and draw them to the other face than a1a2 and b1b2 are drawn.
Note that because of the rule 4 if gA,a2 or gA,a3 (or similarly gB,b2 ,
gB,b3) are non-isolated, then they are in the other part than gA,a1

(or gB,b1 , respectively). Hence the resulting drawing is consistent
with bipartition.

2(b) We are not in case 2(a) and there are ai, bj , i, j ∈ {1, 2, 3} such
that gA,ai

and gB,bj
are non-isolated and belong to the different

parts. Without loss of generality we set that i = j = 1. Because
we are not in case 2(a), all the groups gA,a1 , gA,a2 , gA,a3 (and
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a3

a1
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Figure 4: Drawings resulting from Case 2 and Case 3.
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similarly gB,b1 , gB,b2 , gB,b3) are either isolated or belong to the
same part. In this case we add a1a2, a1a3, b1b2 and b1b3 to GF

and draw them consistently with bipartition.

2(c) Two vertices among gA,a1 , gA,a2 , gA,a3 or among gB,b1 , gB,b2 , gB,b3

are non-isolated and all other vertices are isolated. Without loss
of generality we assume that gA,a1 and gA,a2 are non-isolated and
all other vertices gA,a3 , gB,b1 , gB,b2 , and gB,b3 are isolated. We
can also assume that the ordering of vertices in the cycle is a1,
b3, a2, b1, a3, b2. We add edges a1a3 and a2a3 to GF and draw
them consistently with bipartition. Observe that for each drawing
of a1a3 and a2a3, there is exactly one possibility of drawing edges
b3b1 and b3b2 so that they do not intersect a1a3 or a2a3. Thus we
add these two edges to GF and draw them this way.

2(d) There is exactly one non-isolated vertex among gA,a1 , gA,a2 , gA,a3 ,
gB,b1 , gB,b2 , gB,b3 . Without loss of generality let it be gA,a1 . We
add edges a1a2, a1a3 to GF and draw them consistently with
bipartition. We also add edges b1b2 and b2b3 to GF and draw
them to the other face than a1a2 and a1a3.

2(e) All of the vertices gA,a1 , gA,a2 , gA,a3 , gB,b1 , gB,b2 , gB,b3 are iso-
lated. In this case we add edges a1a2, a1a3 to GF and draw them
inside. We also add edges b1b2, b1b3 to GF and draw them outside.

Case 3. |D| > 2: In this case Lemma 6 asserts that either all the vertices of
all clusters in D are in a single group g1 or they are in three groups
g1, g2, g3. In the first case, for each cluster A = {a1, a2, a3} ∈ D we add
to GF edges a1a2 and a2a3 and draw them consistently with bipartition.
Note that in the second case there is exactly one edge among g1, g2, g3
and one vertex is isolated (by Lemma 4 and due to rule 5). Without
loss of generality g1g2 is the edge and g3 is isolated. Hence we add
edges a1a3 and a2a3 for all a1, a2, a3 such that gA,a1 = g1, gA,a2 = g2
and gA,a3 = g3 to GF and draw them consistently with bipartition.

Finally, if A = {a1, a2} is a cluster of size two, we add a candidate edge a1a2

to GF and draw it consistently with bipartition.
It is easy to check that after adding candidate edges to all clusters by the

above rules, it will hold for all A ∈ C that GF [A] is connected. Hence we need
only to check that the proposed drawing of GF is planar. Note that all the
edges are drawn consistently with bipartition. Suppose that the drawings of
two candidate edges a1a2 and b1b2 from clusters A and B intersect. Clearly,
clusters A and B must either intersect or alternate. If clusters intersect, then
there are i, j ∈ {1, 2} such that there is an edge gA,ai

gB,bj
in GM

1 . Hence gA,ai

and gB,bj
belong to different parts and one of the edges a1a2 or b1b2 is drawn

inconsistently with the bipartition, a contradiction. Suppose that clusters A
and B alternate. If no other cluster alternates with A or B, then we applied
case 2. It is easy to check that in all five subcases we drew edges so that they
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Figure 5: Example of a Rib-Eulerian graph created from K4.

cannot intersect (see Figure 4). Finally, if we applied case 3, it is easy to verify
that by the rule 6 no two edges can intersect (see Figure 4). �

Now we are ready to prove Theorem 3.

Proof: [of Theorem 3] By Lemma 2, a pair (G, C) satisfying the assumptions is
c-planar if and only if it has a planar saturator. Then, Lemma 5 and Lemma 7
provide the rest of the proof. �

Theorem 4 Let G be a cycle and let C contain only clusters of size at most
three. Then the c-planarity of (G, C) can be decided in time O(n+ |C|3).

Proof: The number of clusters is bounded by the number of vertices. We
analyze individual steps of the algorithms.

1. The construction of G2 according to “Definition of G2” takes at most
O(|C|2).

2. The “Construction of G1” takes at most O(|C|2) (we proceed for each pair
of clusters).

3. The “Construction of GM
1 ” takes at most O(|C|3).

4. We may merge at most linearly many times (we have linearly many vertices
in G1). During each merging we are manipulating only with edges incident
to merged vertices, and each vertex has at most linearly many neighbors.

5. Bipartiteness can be checked in time linear to number of edges of checked
graph (which is O(|C|2)).

6. Checking whether G2 is triangle-free takes at most O(|C|3) (we proceed
for each triple of clusters).

�

4 Three-clusters on Rib-Eulerian graphs

The case of a single cycle, solved in Section 3, can be generalized to multiple
cycles—faces of a plane graph. The “outside” of a face is the union of “insides”
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of all neighboring faces. We will bicolor the faces so that the “outside” of a red
face will be blue and vice versa. But, in order for this to work, we need the dual
of the graph to be bipartite. Hence, the graph must be Eulerian.

Another possible obstacle to this approach are candidate edges that can be
drawn into more than two faces. Then, there is no simple “inside” and “outside”
for such an edge. Therefore, we limit the vertices of degree more than two to a
constant number, and we treat them separately.

The suitable class of graphs is defined as follows. Let k be a constant; we
call a graph k-Rib-Eulerian if it is Eulerian, and if it can be obtained from a
3-connected planar graph on k vertices by multiplying some edges, and then
subdividing some edges. Figure 5 gives an example of such a graph.

We say that a path whose inner vertices have degree two and the outer
vertices have degree larger than two is a rib. Thus a k-Rib-Eulerian graph
consists of k vertices of degree at least four that are interconnected by ribs. A
vertex of degree at least four is called a branching vertex. A cluster is called a
branch cluster if it contains a branching vertex and either it has three vertices
or it has two vertices which are both branching. Otherwise we call the cluster
a non-branch cluster.

Let (G, C) be a pair, where G is a Rib-Eulerian graph and C contains clusters
of size at most three. We treat the branch clusters in a special way. Essentially,
we try all the possibilities of choosing saturator edges for branch clusters. If
the chosen edge connects two branching vertices, we add a pair (to preserve
Eulericity) of edges connecting these two vertices to G. Otherwise we add a
cluster of size two containing the two vertices to C. As these clusters of size two
can intersect, the final set C is not a cluster set but a pseudocluster set. For
each choice of the saturator edges in the branch clusters we run the “Planar
Saturator” algorithm on the resulting graph and pseudocluster set from which
we remove all branch clusters. Clearly, the pair (G, C) has a planar saturator
if and only if it has a planar saturator for at least one of the saturator choices.
Since a k-Rib-Eulerian graph has O(k) branch clusters, there is a constant
number of choices to check as long as k is constant.

In the “Planar Saturator” algorithm, we test the planarity of G. If G is
planar, the planar embedding of the underlying 3-connected graph R on the
sphere is unique. In order to find an embedding of G, we want to find the order
of ribs of G originating from a common edge of R. This is done with respect
to clusters in C, because they force adjacencies of certain ribs. In this way, we
obtain a sphere embedding of G.

If a suitable sphere embedding of G is obtained, we want to find a planar
saturator. We utilize the algorithms of Section 3 that deal with cycles. In a
sphere embedding of a Rib-Eulerian graph, the boundary of each face is a cycle.
All the restrictions for candidate edges on a cycle apply in this case as well.
And even more restrictions appear in this case, since “the outside” of faces is
more complex. Basically, we construct the auxiliary graphs G1 and GM

1 for the
whole graph at once, applying the rules from the previous section on (parts
of) clusters lying in the same face. The graph G2 is constructed for each face
separately. We then reduce the existence of a planar saturator of (G, C) to the
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bipartiteness of the graph GM
1 and the triangle-freeness of the graphs G2 for

each face.
Having found a planar saturator, the conditions of Lemma 8 determine

whether a c-planar drawing of (G, C) (in the plane) exists. We remark that
the algorithm may be extended in a straightforward way to return not only the
existential answer, but also a c-planar drawing. This, however, introduces fur-
ther details and technicalities; for simplicity, we present the decision algorithm
only.

Here we give an outline of the algorithm. Sections 4.1 and 4.2 contain more
details of the particular steps, and Section 4.3 contains proofs of the correctness
and the time complexity of the algorithm.

Definition 3 Let G = (V,E) be a k-Rib-Eulerian graph that was obtained from
a 3-connected planar graph R and let C contain only clusters of size at most
three. Let E′ = {A ∈ C : |A| = 2}, G′ = (V,E ∪ E′). We say that A ∈ C is a
malicious triangle if |A| = 3, G′[A] is a triangle and A contains only branching
vertices.

The augmentation of G with respect to C is the graph aug(G, C) created from
G by adding a vertex for each malicious triangle A and connecting this vertex
by a pair of edges to each of the three vertices of A.

Algorithm: C-planarity for Rib-Eulerian Graphs
Input: A Rib-Eulerian graph G; a cluster set C containing only clusters of
size at most three
Output: YES, if the pair (G, C) is c-planar; NO otherwise.

1. Construct the graph H = aug(G, C).

2. Find the underlying 3-connected graph R of H.

3. Test if there is a malicious triangle that is a 3-cut in R. If there is,
return NO.

4. For all possible choices of saturator edges from branch clusters do:

(a) H ′ := H; R′ := R

(b) Let C′ be all non-branch clusters from C.
(c) For all chosen edges do:

i. If the chosen edge connects two branching vertices, add a pair
of edges connecting these two vertices to H ′. Update R′.

ii. Otherwise add a cluster of size two containing the two vertices
to C′.

(d) Run the algorithm “Planar Saturator” on (H ′, R′, C′).
(e) If the algorithm returned YES, then return YES.

5. Return NO.
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Algorithm: Planar Saturator
Input: A Rib-Eulerian graph G; the underlying 3-connected planar graph
R; a pseudocluster set C containing only non-branch clusters of size at most
three
Output: YES, if the pair (G, C) is has a planar saturator; NO otherwise.

1. If G is not planar, return NO.

2. Run the “Rib Ordering” algorithm on (G, C, R) to obtain a sphere
embedding of G (see Subsection 4.1 for details). If it fails, return NO.

3. Check if every cluster vertex shares a face with at least one vertex of
the same cluster. If not, return NO.

4. Run the “Subclustering” algorithm on (G, C) to obtain C′, where C′ ⊇
C. (details in Subsection 4.2)

5. Run the “Construction of G1” algorithm on (G, C′). (see Subsection 3.1
for description and 4.2 for comments on usage)

6. Run the “Forcing” algorithm on (G, G1, C′). (for details, see Subsection
4.2)

7. Run the “Construction of GM
1 ” algorithm. (see Subsection 3.1 for de-

scription and 4.2 for comments on usage)

8. Run the “Construction of G2” for each face separately to construct Gf
2 .

(see details in Subsection 3.1)

9. Check if GM
1 is bipartite and Gf

2 are triangle-free for all faces f . If so,
return YES, otherwise return NO.

4.1 Rib-ordering algorithms

This subsection aims to find a suitable sphere embedding of a planar Rib-
Eulerian graph G with respect to the pseudocluster set C. The reader may
notice that in a possible c-planar embedding of (G, C), the choice of the outer
face is important. Hence a sphere embedding does not suffice in general. But
for the purposes of finding a planar saturator, the choice of the outer face is
irrelevant, so we work with a sphere embedding here.

First we concentrate on Theta graphs, i.e., graphs with two branching ver-
tices only. For less than four ribs the embedding is unique; so let G have ribs
P1, P2, . . . , Ps with s ≥ 4.

We define a graph B0 with vertices {1, 2, . . . , s}, and edges {i, j} for all i 6= j
such that there exists a cluster whose vertices are exactly on Pi and Pj . The
edge {i, j} expresses the fact that Pi and Pj are drawn next to each other.

Then we establish a 3-uniform hypergraph H on the same vertex set. The
hyperedges of H are triples of ribs occupied by a common cluster. These rib
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triples must also be drawn consecutively, in a yet unknown order. Formally, the
hyperedges are {i, j, l} such that there exists a cluster having one vertex on Pi,
one vertex on Pj , and one vertex on Pl.

The algorithm “Rib Ordering for Theta Graphs” constructs a graph B from
B0 by adding new edges based on hyperedges of H. It looks for vertices that
cannot be placed on the middle rib among three ribs determined by a particular
hyperedge. Then it creates an ordering O of V (B) (which defines a rib ordering
of G straightforwardly).

Definition 4 We say that h1 is a corner of a hyperedge {h1, h2, h3} ∈ E(H) if
any of following conditions is satisfied:

• h1 has a neighbor in B different from h2 and h3.

• there is a hyperedge {h1, h4, h5} ∈ E(H) such that {h4, h5}∩{h2, h3} = ∅.

• there is a cluster C in C having one vertex on each path Ph1 , Ph2 and Ph3

and another cluster D ∈ C, such that on Ph1 , two vertices of D surround
the vertex belonging to C.

• h2 and h3 are adjacent in B.

The aim of this notion is to say, given a cluster with vertices spread among
three different ribs, which rib cannot appear between the other two. If a vertex
representing a particular rib becomes a corner of a hyperedge corresponding to
a particular cluster C, it means that this rib cannot be represented as the middle
one among ribs relevant for representing C. This intuition of property of corners
is formally proved in the proof of Proposition 1. Note that the property of being
a corner of a hyperedge depends on the graph B. For the sake of simplicity,
in the following we consider the graph B to be implicit (although we should
always say h is a corner of a particular hyperedge with respect to B). As we are
constructing B only by adding edges, note that once a vertex becomes a corner
of a particular hyperedge, it remains a corner of it, forever.

Proposition 1 Let G be a Theta graph and let C contain only non-branch clus-
ters of size at most three.

1. If the algorithm “Rib Ordering for Theta Graphs” finishes with an ordering
O, then there is a clustered planar embedding of (G, C) if and only if there
is a clustered planar embedding of (G, C) in which the ribs are ordered
according to O.

2. If the algorithm “Rib Ordering for Theta Graphs” fails, then B contains
either a non-Hamiltonian cycle or a vertex of degree greater than two.
Then, (G, C) is not c-planar.

Proof: 1. We prove the “only if” implication because the other one is obvious.
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Algorithm: Rib Ordering for Theta graphs

1. Start with the graph B := B0 and the hypergraph H described above.

2. Apply the following rules as long as possible:

Rule 8. If there are two hyperedges {h1, h2, h3}, {h2, h3, h4} ∈
E(H), h1 6= h4 and s > 4 then add edge {h2, h3} to B.

Rule 9. If h1 is a corner of a hyperedge {h1, h2, h3} ∈ E(H) then add
edge {h2, h3} to B.

Rule 10. If none of the previous rules can be applied and there is a
hyperedge {h1, h2, h3} ∈ E(H) such that B[{h1, h2, h3}] is not
connected, then pick any such hyperedge h with the maximum
number of corners, any two vertices hi 6= hj of h that are non-
adjacent in B, and add edge {hi, hj} to B.

3. Check whether B is a union of vertex disjoint paths or a Hamiltonian
cycle.

If yes, create an arbitrary ordering O of V (B) in which every two
adjacent vertices are consecutive.

If not, return FAIL.

In any clustered planar embedding emb of (G, C), the embedding of each
cluster C must be disjoint with all ribs except for those containing vertices of
C. Hence, the ribs occupied by C must be drawn consecutively for every C.

We first show that there exists a clustered planar embedding of (G, C) in
which, for every edge {i, j} in B, the ribs Pi and Pj are drawn next to each
other. We proceed by induction on the construction of B. If {i, j} is an edge
of B0, then there exists a cluster whose vertices are exactly on Pi and Pj , and
hence the ribs Pi and Pj must be drawn next to each other in the c-planar
embedding which we assume to exist.

Assume that there exists a clustered planar embedding emb in which the
claim holds for all edges added to B before a certain step. There are several
possibilities for the newly added edge {i, j}.

• An edge added by rule 8. If the rib Ph1 was drawn between Ph2 and Ph3 ,
then there would be no way to place Ph2 , Ph3 and Ph4 to make these three
consecutive (because there are more than four ribs). So Ph2 and Ph3 are
next to each other in any clustered planar embedding, hence also in emb.

• An edge added by rule 9. We show that if h1 is a corner of a hyperedge
{h1, h2, h3} then the rib Ph1 cannot be the drawn between the other two
in emb. By Definition 4, if h1 is a corner, then at least one of the following
conditions holds.
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– The vertex h1 has a neighbor hx in B different from h2 and h3. Then,
by the induction assumption, Ph1 is always drawn next to Phx , and
hence it cannot be between Ph2 and Ph3 .

– There is a hyperedge h1, h4, h5 (with h2, h3, h4 and h5 mutually dif-
ferent). Since the ribs of each triple are consecutive in any clustered
planar embedding, Ph1 must be next to at least one of Ph2 and Ph3 ,
and also next to at least one of Ph4 and Ph5 . Hence, it cannot be
between Ph2 and Ph3 .

– There is a cluster C in C having one vertex on each path Ph1 , Ph2

and Ph3 , and a cluster D ∈ C, such that on Ph1 , two vertices d and
d′ of D surround the vertex c belonging to C. The embedding of D
is a connected region containing d and d′. The embedding of C is
a connected region which contains c, one vertex of Ph2 , one of Ph3 ,
and it is disjoint with the embedding of D. If Ph1 is between Ph2

and Ph3 , this is not possible.

– If h2h3 is already an edge in B, then Ph2 and Ph3 are consecutive in
emb by the induction hypothesis.

Hence Ph2 and Ph3 are also consecutive in emb.

• An edge added by rule 10. Let h = {h1, h2, h3} be the hyperedge used in
rule 10. Since B[h] is not connected, there is at most one edge in B[h]
and h has at most one corner.

Assume that h1 is a corner of h. Then {h2, h3} is the only edge of B[h].
Without loss of generality, assume that we chose to add the edge {h1, h2},
while in the embedding emb, the ordering of the three ribs is Ph1 , Ph3 , Ph2

(otherwise emb is the sought embedding).

Suppose that there was a hyperedge h′ containing exactly one of h2, h3

(say, h2). If h′∩h = {h1, h2}, then rule 8 can be applied to add {h1, h2} to
B, which contradicts the assumptions of rule 10. If h′∩h = {h2}, then h2

is another corner of h, which is also a contradiction. Hence, any hyperedge
different from h contains either both or none of h2, h3. Moreover, since
h2 and h3 are not corners, they have no neighbors outside h (in B).

It follows that if any cluster C has a vertex on one of Ph2 and Ph3 , then it
has vertices on both of them. The embeddings of clusters must be disjoint,
so the ordering of the cluster vertices along Ph2 is the same as along Ph3 .

Hence we can obtain another correct clustered planar embedding from emb
by switching the embeddings of Ph2 and Ph3 . Note that these switches
occur for isolated edges {h2, h3}, so they are pairwise disjoint and non-
conflicting.

If h has no corner, then no other hyperedge may have nontrivial intersec-
tion with h. Hence, the vertices of every cluster occupy either all of the
three ribs Ph1 , Ph3 , Ph2 , or none of them.
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Figure 6: The possible cases of adding the third edge xw to a vertex x in B.

Assume again that we chose to add the edge {h1, h2}, while in the embed-
ding emb, the ordering of the two ribs is Ph1 , Ph3 , Ph2 or Ph2 , Ph3 , Ph1 .

Similarly as above, the embeddings of clusters must be disjoint in emb, so
the ordering of cluster vertices along Ph2 is the same as along Ph3 . Hence
we can switch the embedding of the ribs Ph2 and Ph3 and obtain a new
clustered planar embedding from emb in which Ph1 and Ph2 are drawn
next to each other.

Before this application of rule 10, the vertices h2 and h3 are isolated in B.
During the application they become adjacent. Hence the switch of ribs
Ph2 and Ph3 does not conflict with any other rib switches.

Let emb be the clustered planar embedding in which, for all edges of B, the
corresponding ribs are adjacent. Assume that, in emb, there are non-consecutive
ribs Pi and Pj , while i and j are consecutive in O. Then i and j are non-adjacent
inB. If there is any non-edge inB, thenB is a disjoint union of paths. No cluster
contains vertices of more than one path, because rule 10 makes all hyperedge
three-tuples connected.

Hence, the embeddings of rib groups corresponding to connected paths in
B are disjoint (up to the two branching vertices). By switching and reverting
the embeddings of rib groups, the sought clustered planar embedding can be
obtained.

2. If the algorithm fails, then the graph B contains either a non-Hamilton
cycle or a vertex of degree greater than two. For contradiction, let emb be a
clustered planar embedding of (G, C).

First assume that B contains a non-Hamilton cycle. We use the Jordan
curve theorem. A non-Hamilton cycle in B implies a closed curve c (formed
by clusters and parts of ribs) with one branching vertex inside and the other
branching vertex y outside c. The non-Hamiltonicity of the cycle means that
there are more ribs between the branching vertices, but no way to draw them
without crossing c.

Now suppose that there is a vertex x of degree more than two in B. It
follows from the proof of part 1 that for any edge {i, j} of B0, rule 8 or 9, the
ribs Pi and Pj must be drawn next to each other in emb. But clearly no rib can
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be next to more than two ribs.
Hence at most two edges incident with x originate from B0, rule 8 or 9, and

the remaining ones were added by rule 10. We discuss the situation when there
are edges xy, xz, and the third edge wx is added by rule 10 (see Fig. 6).

Assume that there are hyperedges h = {x, y, z} and h′ = {x,w, u}. Assume
also that u = z. The vertex x is a corner of h′ because it is adjacent to y
outside h′. But then, by rule 9, the vertices w and z are also adjacent, so B[h′]
is already connected, which contradicts the condition of rule 10.

So assume that u 6= y, u 6= z. Then x is a corner of h because h∩h′ = {x}. So
y and z are adjacent by rule 9, but then there is a triangle xyz, a contradiction.

The last case is that the three edges of x were added by distinct hyperedges
whose intersection is only {x}. But then, in emb, the rib Px is drawn next to one
other rib of h, one other rib of h′ and one other rib of h′′, which is impossible.

�

Let us consider a Rib-Eulerian graph G, a (pseudo)cluster set C and a sub-
graph H of G. We define H-clusters as those of C whose intersection with
V (H) is non-empty. We further define the restriction of C to H as the set CH
of H-clusters restricted to V (H):

CH = {C ∩ V (H);C ∈ C, C ∩ V (H) 6= ∅}.

Now consider the 3-connected graph R from which G was created. Each
edge of R became a Theta graph in G. The planar embedding of R on the
sphere is unique, hence the only choice for G is the ordering of ribs originating
from each edge of R. That is done by the following algorithm “Rib Ordering”
(see also Fig. 7 for illustration).

Proposition 2 Let R be the 3-connected underlying graph of G and let C con-
tain only non-branch clusters of size at most three. If there is a clustered planar
embedding of (G, C), then the “Rib Ordering” algorithm succeeds, and the re-
sulting embedding can be extended to a c-planar embedding of (G, C).

Proof: Let emb be a clustered planar embedding of (G, C). Clearly, the em-
bedding ϕ of R is contained in emb (with a choice of the outer face).

Let xy be an arbitrary edge of R and let (ϑ, Cϑ) be the instance created by
the “Rib Ordering” algorithm for the edge xy. The graph ϑ consists of ribs P0,
P1, . . . , Ps+1; we denote the non-fake ribs P1, . . . , Ps as ϑ-ribs.

Clearly, the c-planar embedding emb of the whole (G, C) contains a correct
embedding of all ϑ-ribs and clusters on them. As R is 3-connected, there are
exactly two faces f1 and f2 in the embedding emb that are incident both to a
ϑ-rib and a non-ϑ-rib. For both these faces, we now prove that their boundary
in emb is “well represented” by the fake ribs P0 and Ps+1 of ϑ.

Let e be an edge and let r be the e-rib which was selected for ϑ as a part of
a fake rib for the face f1. Our aim is to prove that r is either adjacent to f1 in
emb, or there is a “very similar” rib adjacent to f1 in emb.

Assume that the rib r was selected by criterion 1. Then there is a cluster
C ∈ C having some vertices on a ϑ-rib, some vertices on r and no vertex on any
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Algorithm: Rib Ordering
Input: A Rib-Eulerian graph G; a pseudocluster set C; the 3-connected
planar underlying graph R
Output: A sphere embedding of G, or FAIL if no suitable embedding is
found

1. Find the unique sphere embedding ϕ of R.

2. For each edge {x, y} in R do:

(a) Let P1, P2, . . . , Ps be the ribs between x and y in G. Let P =
G[
⋃s

i=1 Pi \ {x, y}] be the subgraph formed by them.

(b) Let f1 be a face of R incident with {x, y}. For each edge e 6= {x, y}
incident with f1, select a rib r originating from e by the following
criteria:

Criterion 1. If there is a P -cluster having a vertex on a rib r, and
having no vertex on any other rib of e, then select r.

Criterion 2. If there are two ribs r1 and r2 of e such that all the P -
clusters having vertex on some rib of e have vertices
on both r1 and r2, then select r1.

Criterion 3. If the P -clusters have vertices on more than two ribs
of e, or on none of them, then select an arbitrary rib
of e.

Concatenate the selected ribs (while preserving their order along
f1) into a new fake-rib P0.

(c) Let f2 be the other face of R adjacent to {x, y}. In the same way,
select ribs and concatenate them into a new fake-rib Ps+1.

(d) Define a Theta graph ϑ consisting of ribs P0, P1, . . . , Ps, Ps+1,
and let Cϑ be C restricted to ϑ. Call the algorithm “Rib Ordering
for Theta Graphs” for the graph (ϑ, Cϑ) with the edge {0, s + 1}
added to B.

(e) If the algorithm “Rib Ordering for Theta graphs” succeeds, let O
be the returned ordering. Otherwise, return FAIL.

(f) In the new embedding ψ, draw simple curves l1, . . . , ls instead of
the edge {x, y} in ϕ. Draw them close enough so that they do not
interfere with the rest of the embedding ψ.

(g) Assign the ribs P1, . . . , Ps to the curves l1, . . . , ls according to the
ordering O.

3. Return the embedding ψ.
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For each edge {x, y} of R:
enclose the ribs of {x, y} into fake
ribs representing the surrounding
faces

Run the Rib Ordering algorithm
for each Theta graph

Stick together the ordered ribs

Figure 7: The “Rib Ordering” algorithm. Distinct symbols illustrate vertices
of distinct clusters (except for branching vertices which do not belong to any
cluster).
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Figure 8: An illustration to the proof of Proposition 2.

other rib of e. As R is 3-connected, the degree of each vertex in R is at least
three, and hence ribs of e and ϑ-ribs are adjacent to exactly one common face
(say, f1). Thus, it is clear that in emb, the rib r (containing vertices of C) is
also adjacent to f1, otherwise C would not be drawn correctly.

Assume that r was selected by criterion 2. Then there is a rib r2 such that
all ϑ-clusters have one vertex on r and one on r2, and no vertex on any other rib
of e (see Fig. 8). Then, by the above arguments, the rib adjacent to f1 is either
r or r2. If the vertices of ϑ-clusters along r are in a different order than along
r2, then the areas of clusters in emb cannot be disjoint, which is a contradiction.
Hence, r and r2 contain vertices of ϑ-clusters in the same order. We call such a
pair of ribs ϑ-equivalent.

Assume that r was selected by criterion 3. If the ribs of e contain vertices of
more than two ϑ-clusters, then there are at least two ϑ-clusters whose vertices
lie on different ribs of e. But only one rib of e is adjacent to f1 in emb; hence,
emb is not a c-planar embedding, which is a contradiction. Otherwise, ϑ-clusters
do not have any vertex on any e-rib. Then r is ϑ-equivalent to the rib adjacent
to f1 in emb.

Hence, we may easily obtain a c-planar embedding of (ϑ, Cϑ) from the em-
bedding emb by restricting it to ϑ-ribs and boundaries of the faces f1 and f2.
Thus, (ϑ, Cϑ) is c-planar; by Proposition 1, the algorithm “Rib Ordering for
Theta Graphs” succeeds for (ϑ, Cϑ).

We have proved that, under the assumption that (G, C) is c-planar, all calls
of the algorithm “Rib Ordering for Theta Graphs” succeed. Then the “Rib
Ordering” algorithm also succeeds and returns a sphere embedding ψ of G. It
remains to prove that ψ can be extended to a c-planar embedding of (G, C).

Since all calls of the algorithm “Rib Ordering for Theta Graphs” succeed,
it follows from Proposition 1 that a c-planar embedding emb′ϑ exists for every
(ϑ, Cϑ) instance.

The above arguments show that for each graph ϑ, its fake rib is composed
of ribs that are ϑ-equivalent to those adjacent to f1 and f2 in the embedding
emb. Now let Pi be the ϑ-rib adjacent to f1 in the embedding emb′ϑ (created
by Theta Rib Ordering), and let Pj be the ϑ-rib adjacent to f1 in emb. Since
both emb and emb′ϑ contain correct c-planar embeddings of all clusters in Cϑ,
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emb emb′

Figure 9: Combining the embeddings into emb′, a c-planar extension of ψ.

the ribs Pi and Pj are also ϑ-equivalent. For the same reason, they are also
θ-equivalent for other theta graphs θ adjacent to f1.

Hence, the whole boundary of f1 in emb′ϑ is ϑ-equivalent to that in emb for
every ϑ adjacent to f1, and the same holds for f2. This allows us to combine the
embeddings emb′ϑ with emb to obtain a new c-planar embedding emb′ of (G, C)
in the way indicated in Fig. 9. Clearly, emb′ is an extension of ψ returned by
the “Rib Ordering” algorithm, which completes the proof. �

4.2 Construction of auxiliary graphs G1, GM
1 and G2

In the previous subsection we describe how to obtain a suitable sphere embed-
ding of the input graph G. Now we fix such an embedding and seek a planar
saturator of (G, C).

In the embedding, the boundary of each face is a cycle. The restrictions for
candidate edges on a cycle apply here as well. Hence we might construct the
auxiliary graph G1 for each face as in Section 3 and then try to combine the
results.

However, there are candidate edges which may be drawn in any of two ad-
jacent faces. The choice of present candidate edges and the choice of their
placement must be consistent in all faces. Therefore, we construct a single
graph G1 that represents the restrictions of all faces simultaneously.

Recall that in the cycle case, we use a vertex bicoloring of G1 to determine
the placement of present candidate edges. Here we do the same; but “the
inside” does not have the same meaning for all faces. That is why we require
the Eulericity of G.

We fix a proper bicoloring of faces of the fixed embedding of G by red and
blue. Then, a candidate edge corresponding to a red vertex of G1 is drawn in
a red face. Since each candidate edge can be drawn in at most two adjacent
faces (there are no branch clusters any more), and any two adjacent faces have
distinct colors, the placement is well defined.

The constructions of G1 and GM
1 are very similar to that in the cycle case.

One difference is that the rules 1 through 7 deal only with tuples of clusters
whose vertices all share a common face. Hence we introduce the “Subclustering”
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Figure 10: Illustration of rules of Subclustering (S-1 and S-2) and Forcing (F-1
and F-2) algorithms.

algorithm. It creates subclusters from candidate edges of clusters, whose vertices
lie on the boundary of more than two faces.

Another difference in the construction of G1 is that there may be more than
a single face outside the considered face. Cluster edges whose endvertices lie on
distinct ribs can be drawn in one face only. The “Forcing” algorithm represents
this fact by forcing the corresponding vertices of G1 to have a certain color in
any possible bicoloring.

The graphs G2 = Gf
2 are defined for each face f separately in the same way

as in Section 3. This time, the cyclic order of vertices is taken with respect to
the boundary of a face. The graphs G1 and GM

1 are constructed for the whole
graph at once, applying the rules on the clusters lying in each face.

Algorithm: Subclustering

Input: A Rib-Eulerian graph G; a pseudocluster set C containing only non-
branch clusters of size at most three
Output: A pseudocluster set C′ ⊇ C.

Initialization: C′ = C

S-1. For every cluster A = {a1, a2, a3} whose two vertices a2 and a3 lie on
a common rib different from that of a1 (see Figure 10, part S-1), set
C′ = C′ ∪ {{a2, a3}}.

S-2. For every cluster A = {a1, a2, a3} lying in multiple faces so that the
candidate edge {a1, a3} cannot be drawn (see Figure 10, part S-2), set
C′ = C′ ∪ {{a1, a2}, {a2, a3}}.
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Algorithm: Forcing
Input: A Rib-Eulerian graph G; the auxiliary graph G1; a pseudocluster set
C′ containing only non-branch clusters of size at most three
Output: Modifies G1.
Create two adjacent vertices vred and vblue of G1 (the “forcing vertices”).

F-1. For every 2-cluster A whose vertices lie on different ribs, and thus the
candidate edge can be drawn in a unique face f only, create an edge
between the vertex xA of G1 and the forcing vertex of the opposite
color than the color of f (see Figure 10, part F-1).

F-2. For every cluster A = {a1, a2, a3} whose vertex a1 lies on a different rib
than a2 and a3, such that all the vertices lie in a face f , create an edge
between the vertex xA,a1 of G1 and the forcing vertex of the opposite
color than the color of f (see Figure 10, part F-2).

4.3 Main result

First we introduce a lemma that reduces the problem of c-planarity of a k-Rib-
Eulerian graph to the problem of finding its planar saturator.

Lemma 8 Let G = (V,E) be a k-Rib-Eulerian graph that was obtained from
a 3-connected planar graph R and let C contain only clusters of size at most
three. Let H = aug(G, C). Then H is an l-Rib-Eulerian graph, where l = O(k).
Furthermore, (G, C) is c-planar if and only if:

1. There exists a planar saturator F of (H, C) and

2. there does not exist a malicious triangle A that is a 3-cut in R.

Proof: From the definition of augmentation it follows that H is created from G
by adding one vertex and six edges per each malicious triangle. Since malicious
triangles are clusters and hence cannot intersect, it is clear that the number of
malicious triangles does not exceed k, the number of branching vertices. The
vertices added to H are new branching vertices and the added edges are new
ribs. Hence, H is an l-Rib-Eulerian graph, where l = O(k).

Let E′ = {A ∈ C : |A| = 2}, G′ = (V,E ∪ E′) and let C′ be the set of
malicious triangles.

We prove that if (G, C) is c-planar, then statements 1 and 2 hold. Since
(G, C) is c-planar, there exists a planar saturator F by Lemma 1 which is also a
planar saturator of (H, C) (it is certainly a saturator of (H, C) and it is planar
because we can draw each vertex for A ∈ C′ inside the triangle formed by A). If
there was a malicious triangle A ∈ C that is a 3-cut in R, then for each planar
saturator F and every drawing ofGF , the triangle induced by A contains vertices
not belonging to A. Thus every possible representation of cluster A will also
contain vertices not belonging to A, and hence will not form a proper c-planar
drawing. We conclude such cluster A cannot exist.
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Now let us concentrate on the remaining implication—if statements 1 and
2 hold, then (G, C) is c-planar. First we remove redundant edges from F . Let
A ∈ C be such that GF [A] is a triangle. If there is an edge e in GF [A] that
is not in E ∪ E′, then F ′ = F \ {e} is a planar saturator (by removing an
edge we certainly keep planarity, GF ′ [A] still remains connected because GF [A]
was a triangle, and if there is a 2-cluster B ∈ C, B ⊆ A, B is also connected
because e 6∈ E′). Thus we further assume that there are no such edges in F .
Let C′′ = {A ∈ C : GF [A] is a triangle} (note that because F was reduced, these
clusters are exactly the clusters where G′[A] is a triangle). By Corollary 1 it is
enough to create a representation of clusters in C′′. We start by constructing a
sphere embedding φ of GF from a sphere embedding of HF (which is guaranteed
to exist by the definition of F ) by removing additional vertices of H. Each
triangle A ∈ C′′ divides sphere into two connected areas. If both areas contain
some vertices or edges, we call A bad. Because none of A ∈ C′′ is a 3-cut in R,
one of the two areas of sphere can contain only some ribs parallel to one of the
edges of A. Let us call this area fA.

HF φ

Figure 11: A bad triangle with one non-branching vertex in the embedding of
HF and in φ.

If A contains at least one non-branching vertex (see Fig. 11), there is at most
one edge of A from which ribs inside fA could be created and thus we can move
all ribs out of the area creating new sphere embedding φ with less bad clusters.

Otherwise A contains only branching vertices (as in Fig. 12). In this case
H contains an additional vertex connected to vertices of A and our sphere
embedding of HF embedded this vertex to an area fA. Thus there are no edges
between the ribs parallel to different edges of A in fA. Hence we can move all the
ribs out of fA and obtain new sphere embedding φ with less bad clusters. We
conclude that we can construct an embedding φ of GF on the sphere containing
no bad clusters. It only remains to pick proper outer face to obtain a planar
embedding of GF . We pick an arbitrary face that is not in C′′ as an outer face.
In the obtained planar embedding of GF , every cluster in C′′ forms a face and
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HF φ

Figure 12: A malicious triangle in the embedding of HF and in φ.

thus it is easy to create a representation for each cluster in C′′. �

For a pair (G, C) and a face f of the fixed embedding of G, the symbol
(G, C|f ) stands for the graph G and the set of clusters in C whose all vertices
lie on the boundary of f .

We say that the graph GM
1 is sparingly bicolorable if it allows a proper

bicoloring in which the group g(vred) is red, the group g(vblue) is blue, and the
isolated vertices remain uncolored. We call such a coloring a sparing bicoloring.

The following proposition characterizes the pairs (G, C) that have a planar
saturator by means of the auxiliary graphs GM

1 and Gf
2 .

Proposition 3 The pair (G, C) has a planar saturator if and only if GM
1 is

sparingly bicolorable and the graph Gf
2 is triangle-free for every face f .

To prove the proposition, we need several lemmas. The following is an easy
but important observation.

Observation 1 For any fixed planar embedding of G, a candidate edge of a
cluster in C′ can be drawn without crossing in at most two adjacent faces.

The observation holds because of the fact that C′ contains only non-branching
clusters. Lemma 9 below is an analogue of Lemma 3. It shows how the case of
cycles may be generalized to faces of a k-Rib-Eulerian graph.

Lemma 9 Let K be a planar saturator of (G, C′). In a planar embedding of K
into G, the following is true.

1. Let x and y be two adjacent vertices of G1. Then any present candidate
edge corresponding to x is drawn in a red face and any present candidate
edge corresponding to y is drawn in a blue face, or vice versa.

2. For any non-isolated vertex v in V (GM
1 ) \ {vred, vblue}, all present candi-

date edges corresponding to g−1(v) are drawn in faces of the same color.
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3. Let x and y be two adjacent vertices in V (GM
1 ) \ {vred, vblue}. Then any

present candidate edge corresponding to g−1(x) is drawn in a red face and
any present candidate edge corresponding to g−1(y) is drawn in a blue
face, or vice versa.

4. Let z be a vertex in V (GM
1 ) \ {vred, vblue} adjacent to a forcing vertex

vred or vblue. Then any present candidate edge corresponding to g−1(z) is
drawn in a face whose color is blue or red, respectively.

Proof: Note that the notation in the statement is correct, because the vertices
vred and vblue do not belong to a cluster and thus are never merged with other
vertices of GM

1 .
Let f be a face of the planar embedding of G. We say that a rule in the

construction of G1 and GM
1 was applied in f if the cyclic order of vertices in

that rule was taken along this face.
We follow the construction of G1 and prove inductively that part 1 holds

after every step. Before any rule is applied, there are no edges in G1 and it
holds trivially. Then a step according to rule 1, 2, or 3 applied to a face f adds
one new edge, say, xy. For all these rules, it is not hard to see that if an edge
corresponding to x and an edge corresponding to y are drawn both inside f or
both outside f , then they cross each other. Hence, one of them is inside f and
the other one is in a neighboring face, which has the other color. Hence, after
an application of rule 1, 2, or 3, part 1 remains valid.

Let us consider a step according to rule 4 applied to a face f . By Observa-
tion 1, each candidate edge can be drawn in at most two adjacent faces. Hence,
any candidate edge corresponding to x or y is either drawn in f or in an adja-
cent face of the other color. Note that by the definition of rule 4, the vertices x
and y are already non-isolated. Thus, by the validity of part 1 before this step,
all present candidate edges corresponding to x are drawn in faces of the same
color—either inside f , or in faces adjacent to f . The same holds for y. Then
the same case analysis as in the proof of Lemma 3 finishes the proof of part 1.

Part 2 is proved by induction on the number of mergings taken by the con-
struction of GM

1 . Before any merging was done, a non-isolated vertex v is either
adjacent to another vertex of G1, or to one of vred, vblue. In the former case, the
claim holds as a consequence of part 1. In the latter case, it is easy to see that
there is a unique face in which the candidate edges corresponding to v can be
drawn without crossing. Hence, before any merging, the claim holds. We prove
the validity of part 2 after each merging.

By the argument in the proof of Lemma 3, we may change the order of
mergings without modifying the resulting graph GM

1 . Hence, we may assume
that mergings of non-isolated groups were done before the first isolated group
was merged. We analyze several cases.

(a) Merging due to rule 5. We further reorder the mergings so that all merg-
ings of type (i) (see below) are done before the first one of type (ii).

(i) Merging of gA,a2 , gB,b2 and gC,c2 , or of gA,a3 , gB,b3 and gC,c3 . If
g−1(gA,a2) is different from xA,a2 , then gA,a2 has already been merged
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with something and it could be only through a merge of type (i) due to
the order of merges. Hence gA,a2 is non-isolated and by the induction
hypothesis we know that all present cluster edges corresponding to
gA,a2 are drawn in faces of the same color. The same holds for gB,b2

and gC,c2 . By the same arguments as in the proof of Lemma 3 we
prove that if a cluster edge corresponding to b2 is drawn inside f ,
then all present candidate edges corresponding to a2 and c2 can only
be drawn inside, too. Analogously, if a cluster edge corresponding to
b2 is drawn in a face adjacent to f , then all of a2 and c2 is also in
faces adjacent to f . The desired conclusion follows.

(ii) Merging of gA,a1 , gB,b1 and gC,c1 . If all gA,a1 , gB,b1 and gC,c1 are
isolated in GM

1 then there is nothing to prove. Assume without loss
of generality that gA,a1 is non-isolated. We know by the induction
hypothesis that if both candidate edges corresponding to xA,a1 are
present, then they must be on the same side of f . Because gA,a2 and
gA,a3 are now adjacent, we know again by the induction hypothesis
that if any present candidate edge corresponding to xA,a2 is inside
f , then any present candidate edge corresponding to xA,a3 is outside
f and vice versa. Then a2a3 can not be present, and the edges a1a2

and a1a3 are on the opposite sides. But that is not possible by the
restriction on xA,a1 , and the instance is not c-planar, a contradiction.

(b) Merging due to rule 6. All three groups are non-isolated, and by the
induction hypothesis and the same arguments as in the proof of Lemma 3,
all present candidate edges corresponding to these groups are either inside
f , or in faces adjacent to f which have the other color.

(c) Merging due to rule 7. By the induction hypothesis we know that all
present candidate edges corresponding to the group gA,a1 are drawn on
one side of f , because gA,a1 is non-isolated. If g−1(gA′) is different from
xA′ then it was merged in an execution of rule 7, so it is non-isolated.
This means that the group gA′ is drawn on one side of f , too. Analo-
gously as in the proof of Lemma 3, we conclude that present cluster edges
corresponding to gA,a1 and gA′ are drawn in faces of the same color.

Part 3 is an easy consequence of the first two and the fact that, if there is
an edge between two vertices x and y of GM

1 , then there exists an edge between
two vertices u and v of G1, where u ∈ g−1(x) and v ∈ g−1(y).

To prove part 4, let z be a vertex of GM
1 adjacent to vred (without loss of

generality). The group g−1(z) contains a vertex adjacent to vred in G1 after
the “Forcing” algorithm. Let the vertex be x. It is easy to see that there is
a unique face in which the candidate edges corresponding to x can be drawn
without crossing, and the face is blue. As x is non-isolated, the group z in GM

1

is also non-isolated. Hence by part 2, all present candidate edges corresponding
to z are drawn in a blue face. �
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Lemma 10 If (G, C) has a planar saturator, then GM
1 is sparingly bicolorable

and the graphs Gf
2 are triangle-free for all faces f .

Proof: We observe that if the input pair (G, C) has a planar saturator, then
the pair (G, C′) obtained by running the “Subclustering” algorithm has a planar
saturator as well. Indeed, let e be a candidate edge of a two-cluster C added
by the “Subclustering” algorithm to C′. In case of rule S-2 it is clear that e is
present in any planar saturator. In case of rule S-1 assume that e = {a2, a3}
is not present; then the other two candidate edges {a1, a2} and {a1, a3} of C
are drawn in a common face (see Figure 10) and none of them is crossed by
another edge. Moreover, there is no other cluster C2 such that C ∩ C2 = {a1}.
Hence there is no other curve outgoing of the vertex a1, and the edge e can be
drawn by tracing the curves of {a1, a2} and {a1, a3}. Therefore, we may further
consider a planar saturator K of (G, C′).

Let f be a face of G. Consider K restricted to f , i.e., the set of edges of
K that have both endpoints on the boundary of f . Clearly, this is a planar
saturator of (G, C′|f ). Hence, by Lemma 5, the graph Gf

2 is triangle-free, which
proves one part of the Lemma.

To prove the other part, suppose for contradiction that GM
1 is not bipartite.

Let (v1, . . . , v2k+1) be an odd cycle in GM
1 .

First let the cycle contain no forcing vertex. By Lemma 9 the present can-
didate edges corresponding to g−1(v1) are drawn all in the same face f1 of G;
without loss of generality let it be red. Then again by Lemma 9 the present
candidate edges corresponding to g−1(v2) are drawn in a blue face f2 adjacent
to f1, those of g−1(v3) are drawn in a red face f3 adjacent to f2, etc. But then
the present candidate edges corresponding to g−1(v2k+1) are drawn in a red face
adjacent to the red face f1, a contradiction with the proper face bicoloring.

Now let the odd cycle contain forcing vertices; without loss of generality
let v1 = vred and v2 6= vblue. Then by Lemma 9 the edges corresponding to
g−1(v2) are all drawn in a blue face. Analogously, it can be done for vblue

and its neighbors, if vblue is contained in the cycle. By repeated application of
Lemma 9 for all pairs of adjacent vertices along the cycle we get a contradiction
similar to the one above. �

Lemma 11 Let f be a face of the fixed embedding of G. If GM
1 is sparingly

bicolorable and Gf
2 triangle-free, then (G, C′|f ) has a planar saturator.

Proof: Let F be the boundary of the face f .
If GM

1 is sparingly bicolorable, then it is bipartite. We redo the steps of the
proof of Lemma 7 using the auxiliary graphs GM

1 and Gf
2 , and draw all clusters

of C′|f according to the sparing bicoloring. The inner part of f will have the
same color as f ; the outer part will have the other one. Since the faces are
properly bicolored, this is consistent with the face colors—all faces adjacent to
f have the opposite color to the one of f .

Lemma 7 ensures that we get a planar embedding of (F, C′|f ) with a satura-
tor. In the following, we show that we obtain even a correct planar embedding
of (G, C′|f ) with a saturator.
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Suppose that the embedding of saturator edges in (F, C′|f ) is not correct in
(G, C′|f ). In that case, a saturator edge e crosses an edge e′ of G; without loss
of generality let v be one of the endvertices of the edge e′, and let v lie on the
boundary of f .

The vertex v separates f into ribs. Each face contains more than one rib
(because of the properties of G). Then the endvertices of e lie in different ribs
of f , which is either case F-1 or F-2 (see Figure 10). Hence the “Forcing”
algorithm has caused the edge to be drawn in the inner part by connecting a
related vertex to a certain forcing vertex.

But the edge e′ does not belong to face f , it is drawn outside f , hence the
crossing of e and e′ occurs outside of f . A contradiction. �

Proof: [of Proposition 3] The first implication is the statement of Lemma 10.
It remains to prove that if GM

1 is sparingly bicolorable and the graphs Gf
2

are triangle-free for all faces f , then (G, C) has a planar saturator. In the
following, we find a saturator of (G, C′) together with its embedding. Clearly,
every saturator of (G, C′) is a saturator of (G, C) as well.

By Lemma 11, for each face f the pair (G, C′|f ) has a saturator Kf ; the
proof of the Lemma even finds an embedding of each GKf

. We claim that by
simply taking the union of all saturators Kf , we obtain a saturator K of the
whole (G, C′). We verify that for all clusters A, the graph GK [A] is connected.
There are two possibilities for the vertices of A:

• All the vertices of A lie in a common face f . Then the cluster A is
an element of C′|f and Lemma 11 guarantees that the graph GKf

[A] is
connected.

• The vertices of A do not lie in a common face. Then, as the algorithm
“Planar Saturator” has not stopped unsuccessfully in step 3, the cluster
A has three vertices contained in two adjacent faces. One of them, say,
a2, shares a face f with another vertex a1, and it shares another face f ′

with a3. In that case the pairs {a1, a2} and {a2, a3} were made 2-clusters
by rule S-2, and those are connected in GKf

and GKf′
.

In both cases, we conclude that GKf

[A] is indeed connected. It remains to prove
that the saturator K allows a planar embedding of GK . Such an embedding is
obtained by uniting all the embeddings of GKf

and by deleting possible multiple
drawings of edges.

We already know that the edges of any Kf do not cross the edges of G,
hence the edges of K do not cross them either. It remains to verify that the
edges of K do not cross each other.

Suppose that on the contrary, there are two edges e ∈ Kf and e′ ∈ Kf ′ that
cross each other. Then clearly f 6= f ′. Because of the properties of G, no face
is adjacent both to f and f ′; hence the crossing of e and e′ must occur in f or
f ′. Without loss of generality, let it be f .

We distinguish the following cases.
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• Both e and e′ are candidate edges of 2-clusters A and B. Then the cluster
vertices of both clusters lie on the boundary of f , and their cyclic order
along the boundary is abab. Then there is an edge between g(A) and g(A′)
in GM

1 , which is a contradiction with the correctness of the embedding of
GKf

.

• The edge e is a candidate edge of a 2-cluster A and e′ is a candidate
edge of a 3-cluster B. If there exists a 2-cluster C equal to e′, then it is
drawn identically to e′ and we repeat the previous argument for e and the
candidate edge of C.

Otherwise, all the vertices of B lie on the boundary of a common face (be-
cause of rule S-2). If the face was f , then there would be an edge between
g(A) and g(bi) for a certain i, which would contradict the correctness of
the embedding of GKf

. However, all the vertices of B lie on a common rib
of f ′, otherwise e′ would be a 2-cluster (rule S-1); hence all the vertices of
B lie on the boundary of f , a contradiction.

• Both e and e′ belong to 3-clusters and there are no 2-clusters identical to
any of them. Then all the vertices of each of them lie on the boundary of a
common face (because of rule S-2), and it is one of the situations depicted
in Figure 13.

In each of those situations, rule S-2 created a 2-cluster equal to one of the
crossing edges, which is a contradiction.

a1 b1

b2

b3

a3

a2a1 b1

b2

b3a3

a2

a1 b1
b2

b3

a3

a2

Figure 13: The possible cases of a multiple-face cluster conflict.

�

Theorem 5 The c-planarity of (G, C) can be decided in time O(3k · n3) for G
being k-Rib-Eulerian with n vertices and C containing clusters of size at most
3.

Proof: First we check whether the second condition from Lemma 8 is satisfied.
This can be clearly done in time O(|C| · k+n2). If the condition is not satisfied,
we know (G, C) is not c-planar and reject. Otherwise Lemma 8 asserts that
(G, C) is c-planar if and only if H = aug(G, C) has a planar saturator F . The
graph H can be constructed in time O(n).
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When constructing planar saturator, we first deal with branch clusters. We
try all possibilities of choosing saturator edges for branch clusters. If the chosen
edge connects two branching vertices, we add a pair (to preserve Eulericity) of
edges connecting these two vertices to H. Otherwise we add a cluster of size
two containing the two vertices to C. As these clusters of size two can intersect,
the final set C is not a cluster set but a pseudocluster set. For each choice
of the saturator edges in the branch clusters we run the “Planar Saturator”
algorithm on the resulting graph and pseudocluster set from which we remove
all branch clusters. Clearly, if (H, C) has a planar saturator, then at least one of
the choices of edges for branch clusters is its subset. Since there are at most k
branch clusters in H and each branch cluster has at most 3 possible saturators,
the algorithm “Planar Saturator” is called at most O(3k) times.

Before we count the time needed to execute the algorithm “Planar Saturator”
itself, notice that |C| = O(n). The planarity testing of the input graph with
n vertices takes O(n) time (see [11]). The algorithm “Rib Ordering for Theta
Graphs” can be done in O(n2) time. H has at most n hyperedges and B has at
most O(n) edges due to Proposition 1(2). As each of rules 8, 9 and 10 adds some
edge, there can be at most O(n) applications of the rules. All the occurrences
of rule 8 can be applied at once in O(n2) time. Then we decide which vertices
are corners, and this takes O(n2) time. Afterwards, we apply rules 9 and 10;
it always takes O(n) time to find the occurrence, and then O(n) to recount the
corners. The consistence test can obviously be done in linear time.

The “Rib Ordering” algorithm for the entire graph can thus be done in
O(kn2) time. There are at most n paths, and to construct the fake-paths we
need O(nk) time as we try each cluster. The call of the algorithm “Rib Ordering
for Theta Graphs” always takes O(n2) time and we call it at most O(k) times,
because that is the number of edges of the original planar 3-connected graph.
Proposition 2 verifies correctness of this step.

The test for the neighboring cluster vertex in the same face together with
the “Subclustering” and “Forcing” algorithms can be done in O(kn) for each
cluster with the suitable representation of the embedding, thus it takes O(kn2)
together.

As we proved in Theorem 4, the graphs G1, G
M
1 and G2 can be constructed

and tested for the bipartiteness and triangle-freeness in O(n3) time. Proposi-
tion 3 together with the above arguments give us that the algorithm “C-planarity
for Rib-Eulerian Graphs” succeeds if and only if (H, C) has a planar saturator
which (according to Lemma 8) is if and only if (G, C) is c-planar.

Altogether this gives an O(3k ·n3) time complexity for the entire algorithm.
�

5 Conclusion

We have proposed to study the special case of c-planarity when clusters contain
a small number of vertices. We have presented polynomial-time algorithms for
clusters of size at most three in vertex-3-connected planar graphs, on a cycle and



420 Eva Jeĺınková et al. Small Clusters in Cycles and Eulerian Graphs

in Rib-Eulerian graphs. Thus, we have introduced a new class of polynomial
c-planarity instances, which was not considered before. We believe that this
may help to get more insight into the assumed boundary between polynomial
and hard instances of c-planarity.

The algorithm for 3-clusters on a cycle is unexpectedly non-trivial. We
have presented a generalization to the class of Rib-Eulerian graphs. However,
there seems to be no straightforward generalization of this algorithm to a larger
graph class; our method relies on the fact that the dual of the underlying graph
is bipartite.

A possible generalization of our approach may be to larger clusters. Then,
the auxiliary graphs of Section 3 would have to be extended to contain a vertex
for every edge-cut of the candidate edges of each cluster. But then the number
of cases to analyze grows very large. Hence, we suggest that more insight should
be gained instead of generalizing this method straightforwardly.
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Clusters with few outgoing edges. In Proceedings of 16th International
Symposium on Graph Drawing 2008, volume 5417 of LNCS, pages 102–
113. Springer, Heidelberg, 2009.
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