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Abstract

We present optimal Θ(n log n) time algorithms to solve two tree em-
bedding problems whose solution previously took quadratic time or more:
rooted-tree embeddings and degree-constrained embeddings. In the rooted-
tree embedding problem we are given a rooted tree T with n nodes and
a set of n points P with one designated point p and are asked to find
a straight-line embedding of T into P with the root at point p. In the
degree-constrained embedding problem we are given a set of n points P
where each point is assigned a positive degree and the degrees sum to
2n − 2 and are asked to embed a tree in P using straight lines that re-
spects the degrees assigned to each point of P . In both problems, the
points of P must be in general position and the embeddings must not
have crossing edges.

Communicated by Peter Eades: submitted March, 1996; revised August, 1996.
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1 Introduction

The problem of deciding whether a set of points admits a certain combinatorial
structure, as well as computing an embedding of that structure on the point
set, has been a recurrent theme in many fields. The list of problems falling into
this category is virtually endless. We mention a few of the structures that are
current topics of research.

The triangulation of a point set is a structure that has spurred much re-
search because of its many applications in areas such as finite element methods,
graphics, medical imaging, Geographic Information Systems (GIS), statistics,
scattered data interpolation, and pattern recognition, to name a few [17, 18].

The combinatorial structure of interest in this paper is the tree, which is
well-studied in the literature. For example, the study of spanning trees of a set
of points has a long history. From a graph drawing perspective (see [6] for a
survey of graph drawing), the traditional questions ask whether a (rooted or
free) tree T = (V, E) can be embedded in the plane such that some criterion
is satisfied: e.g., that the area of the resulting embedding is small [5, 11], that
the symmetry present in the tree is revealed in the embedding [13], or that T is
isomorphic to the minimum-weight spanning tree [7, 15] or proximity graph [2, 3]
of the points in which the vertices are embedded. In essence, the tree is given
as input and one needs to construct a set of points in which to embed the tree
such that it satisfies the criterion.

The two tree embedding problems that we study have a slightly different
perspective: the points are given as input, and the tree may or may not be. We
say that an n-node tree T = (V, E) can be straight-line embedded onto a set of
n points P , if there exists a one-to-one mapping φ: V → P from the nodes of T
to the points of P such that edges of T intersect only at nodes. That is, edges
(φ(u1), φ(v1)) ∩ (φ(u2), φ(v2)) = ∅, for all u1v1 6= u2v2 ∈ E. We show, in the
final section, that to obtain a straight-line embedding of any tree in a set of n
points requires Ω(n log n) time.

The first problem, called the rooted-tree embedding problem, was originally
posed by Perles at the 1990 DIMACS workshop on arrangements: Given n
points P in general position and an n-node tree T rooted at node ν, can T be
straight-line embedded in P with ν at a specified point p ∈ P? Perles showed
that this was possible if p was on the convex hull of P , which is the smallest
convex set containing the points P . Pach and Törőcsik [20] showed that such an
embedding is possible if p was not the deepest point of P , obtained by repeatedly
discarding points on the convex hull. Finally, Ikebe et al. [10] showed that there
was always such an embedding. All three algorithms use quadratic time. We
show that one can use a deletion-only convex hull structure [4, 9] to obtain
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O(n log2 n) time and then improve this to Θ(n log n) time. If p is the point with
greatest y-coordinate then the O(n log2 n) algorithm can embed the tree such
that all paths from the root to a leaf are vertically monotone.

The second problem, degree-constrained embedding or dc-embedding, is sim-
ilar, although the tree T is not specified. Consider a point set P = {p1, p2, . . . , pn}
in general position in the plane where each pi is assigned a positive integral
value di as its degree; the degrees satisfy

∑n
i=1 di = 2n− 2. Can some tree T

be straight-line embedded on the set of points P such that a tree node of de-
gree di maps to point pi, for all i? Tamura and Tamura (now Ikebe) [24] showed
that such a tree always exists and presented an O(n2 log n) time algorithm to
compute one. We present an optimal Θ(n logn) time algorithm for this problem.

Similar embedding problems can be posed for planar graph embeddings in
a set of points; the graphs with embeddings into a fixed point set have been
characterised by Gritzmann et al. [8]. They showed that the class of outer-planar
graphs is the largest class of graphs that admits an embedding in any point set
and provided an embedding algorithm that runs in O(n2) time (Castañeda and
Urrutia [16] later rediscovered this result). Recently, Bose [1] presented an
O(n log3 n) time embedding algorithm for this problem. Finding an optimal
O(n log n) time embedding algorithm for embedding these graphs remains an
open problem.

2 Hull Trees

Our algorithms for embedding trees use segments from the convex hull to avoid
intersections between embedded edges. Consequently, we need efficient access to
the convex hull of points. Moreover, we need the ability to delete points from the
convex hull as we embed tree vertices at them. Overmars and van Leeuwen’s [19]
dynamic convex hull structure permits arbitrary insertion into and deletion from
the set of points. We opt for hull trees [4, 9], which provide better amortised
time complexities for point deletions. This section provides a brief introduction
to hull trees.

A hull tree of a set of n points P stores the upper or lower convex hull of P ;
the entire convex hull of P can be represented by two hull trees. A hull tree for
P ’s upper hull is a binary tree in which each leaf is a point of P and internal
nodes represent an edge in the upper hull of the node’s leaves (figure 1). Each
internal node in the tree stores

• the upper hull edge between the convex hull of the point set at leaves in
the node’s left subtree and the node’s right subtree.

• the number of leaves in its subtree.

• in the dc-embedding problem, each leaf has a degree value given in the
problem’s input. An internal node to the hull tree stores the sum of the
degrees of the leaves in its subtree.

We use two of the hull tree operations described by Hershberger and Suri [9]:
point deletion and set partition. The point deletion operation removes a point
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from the hull tree. The hull edges at internal nodes on a path from the point’s
leaf node to the root of the hull tree may need to be recomputed as a result of
the deletion; a bottom-up merge of hulls along the path to the root accomplishes
this task.

In the set partition operation, we are given
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2

Figure 1: Top level of a hull
tree (above) and upper hull
edges (below).

a vertical line and we want to split, or parti-
tion, the hull tree into two parts: one hull tree
for the points left of the vertical line and one
hull tree for the remaining points. Assume
that the vertical line goes through a point q.
The path from the root to the leaf for q in the
hull tree contains all the hull edges that cross
the vertical line. Split the hull tree along this
path, duplicating the path in each part to
maintain connectivity. As with the deletion
operation, recompute the hull edges that ap-
pear along the path in each part to get two
hull trees. Finally, use the point deletion op-
eration to remove the duplicated point from
one of the hull trees as necessary.

The height of the hull tree does not in-
crease with point deletions or set partitions.

Each of the hull tree operations uses O(log n) amortised time over any sched-
ule of O(n) operations. The set partition operation takes O(log n) time to divide
the hull tree into two parts and to duplicate the path. The remaining time in
the set operation is the same as in point deletion; it is the time required to
recompute the hull edges along one path. Create a potential function for the
hull tree by assigning each internal node a value equal to the number of hull
edges that appear above the node’s edge. The initial potential of the tree is
O(n log n). When recomputing the hull edges, we either keep the same edge
or the replacement hull edge has fewer hull edges below it, thus lowering the
overall cost of the tree. If we find the replacement hull edge at a node v by
walking along the two hulls of the left and right subtrees of v then updating
the edges along the path takes O(log n + k) time where k is the number of hull
edges over which we walked and the amount by which the potential function
decreases. Consequently, the path update takes O(log n) amortised time.

3 Embedding a rooted tree with the root on the
convex hull

In this section we give an algorithm for embedding a rooted tree with the root
at a specified point p that is on the convex hull—general specification of p is
discussed in section 4. In this restricted case, we embed the tree and preserve
the order of the children about each tree node. Ikebe et al. [10] and Pach
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and Törőcsik [20] each provide a quadratic time algorithm whose time can be
reduced to O(n log2 n). After briefly sketching this reduction, we present an
O(n log n) algorithm.

Ikebe et al. embed a tree T into a set of points P with the root at a point p
on the convex hull of P by locating rays `0, `1, . . . , `m from p such that there
are exactly |Ti| points between `i−1 and `i where T1, . . . , Tm are the subtrees
of the root of T . The lines `1, . . . , `m are found by linear time median search.
The subtrees T1, . . . , Tm are then recursively embedded in the points between
adjacent `i. This leads to an algorithm with a Θ(n2) worst-case time.

If the points of P are placed in a convex hull maintenance structure that
supports deletions in O(log n) amortised time [4, 9] then we can find the lines `i

without resorting to a full median search. Let TL be the leftmost subtree of T
and let TR be T \ TL. Assume that |TL| ≤ |TR|; reverse the roles of TL and
TR if this is not the case. Delete, one at a time, |TL| points from the convex
hull that appear as the left neighbour of p after reconstructing the convex hull
every time. These are precisely the points between `0 and `1. Rebuild the
convex hull maintenance structure for the deleted points; recursively embed TL

in the new convex hull structure and TR in the convex hull structure left after
the deletions. The revised complexity of the algorithm is O(n log2 n) from the
recurrence T (n) = T (n−k)+T (k)+O(min(k, n− k) log n) where 1 ≤ k ≤ n−1.

This O(n log2 n) embedding algorithm can guarantee that each path in the
embedding from the root ν to each leaf is vertically monotone if p is the highest
point of P . When the algorithm recursively embeds TL, it selects the deleted
point with greatest y-coordinate as the root for TL. Similarly, when the root ν
has unit degree, the algorithm chooses the point of P with second greatest
y-coordinate as the root for the single subtree of ν. The deleted points with
greatest y-coordinate are found in O(|TL|) time; the point of P with second
greatest y-coordinate is found in O(log n) time by keeping the points of P sorted
by y-coordinate in a balanced tree and updating the tree along with the convex
hull maintenance structure. The time recurrence and time complexity for the
algorithm remain unchanged.

Recomputing convex hulls costs us an extra log factor in the above algorithm.
To avoid this, we propose an algorithm that uses the same notion of isolating
the points for one subtree but that uses only vertical separation lines and the
upper hull of the points, assuming that p lies on the upper hull. When the root
of the tree is not in, or immediately adjacent to, the isolated set of points, the
algorithm embeds the tree along a path on the upper hull to reach the subset.
By handling the leftmost or rightmost subtree of the root and then deleting the
points used along the upper hull, the algorithm prevents embedded tree edges
from crossing. Since all division lines are vertical, the set partition operation
on hull trees in section 2 divides the hull tree in O(log n) amortised time and
provides a better time complexity.

In our algorithm, each point has a label whose value is one of left, right, or
any. When the root of the tree is a leaf, the label of the root’s point indicates
the direction along the upper hull where the only neighbour of the root should
be embedded. For a root of higher degree, the algorithm uses recursion to
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Embed a tree T , rooted at node ν, into a set of points P with
distinguished point p on the upper hull of P .
Assume: P is stored in a deletion-only, upper-hull data struc-
ture UH (P ). The initial label for each point is any.

Procedure EmbedinUH(T, ν, P, p)
Let ν′ be the leftmost child of ν,
Let TL be the subtree rooted at ν′, and
Let TR be T \ TL.

1. If node ν has degree zero, then
Embed node ν at point p and end.

2. If node ν has unit degree, then
Embed node ν at point p.
Let r be the neighbour of p on UH (P ) specified by p’s label,

where any allows either neighbour.
Delete p from UH (P ).
EmbedinUH(TL, ν′, P \ {p}, r) and end.

3. Else ν has degree at least two.
Let q be the left neighbour of p on UH (P ), if it exists.
Binary search UH (P ) for a vertical line `

with |TR| − 1 points of P \ {p} to its right.
3a. If line ` intersects edge (p, q) as in figure 2

Partition UH (P ) along ` into two upper hulls,
UH (PL) to the left and UH (PR) to the right of `.

EmbedinUH(TL, ν′, PL, q).
EmbedinUH(TR, ν, PR, p).

3b. Else if line ` is to the left of point q
Label point q with right.
Change the root of T to ν′.
EmbedinUH(T, ν′, P, q).

3c. Else line ` is to the right of point p
Restart at 3 and reverse left and right. That is, embed the
rightmost subtree of ν, reverse the roles of left and right
in the sidedness tests, and use the label left instead
of right in case 3b,

Algorithm 1: Embedding tree T with point p on the upper hull of P
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detach and embed leftmost and rightmost subtrees of the root and the labels
retain path information that leads back to the embedded root of the original
tree. All points are initially assigned the label any before invoking the recursive
algorithm.

Our algorithm appears as procedure EmbedinUH() in Algorithm 1.

Theorem 1 Suppose that we are given an n-node tree T with root node ν and a
set of n points P in general position with the point p on the upper hull UH (P ).
EmbedinUH() straight-line embeds T in P with ν at point p in O(n log n) time.

Proof: We prove the algorithm correct by induction on the number of nodes
in T .

If T has a single node then case 1 embeds ν at p as required.
Suppose that T has n nodes and that the algorithm correctly embeds

trees of n− 1 nodes or less for n ≥ 2.
If ν has unit degree then TR is only ν. Case 2 embeds ν at p as required

and TL is embedded by the induction hypothesis. The edge from ν to TL is
an edge of UH (P ) so it cannot intersect any edge in the embedding of TL.

If ν has degree two or more then there are three possibilities correspond-
ing to cases 3a, 3b, and 3c:

• line ` intersects edge (p, q) as shown in figure 2

• line ` is to the left of point q

• line ` is to the right of point p

If ` intersects edge (p, q) then step 3a embeds TL and TR by the induction
hypothesis and the embeddings are joined by upper hull edge (p, q) that lies
outside the embeddings of TL and TR; no intersections occur.

p

q

`

�

� 0

TL

TR

PR
PL

Figure 2: Divided tree T and point set P .

If ` lies to the left of q then we must ensure that the algorithm eventually
embeds ν at p. In the recursive call of case 3b, TR is rooted as the rightmost
child of ν′ in T and the new dividing line `′ lies to the left of `. Consequently,
either TL\ν′ is embedded completely to the left of the vertical line through q
with ν′ still to be embedded at q, or the root of T is shifted left again
during the embedding of TL. Assume the former case, since the latter case
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eventually leads to it as the root of T continues to shift left. After the
embedding of TL \ ν′, the remaining upper hull to the right of q is identical
to UH (P ) right of q since all deletions occur to the left of q. In particular, p
is still the right neighbour of q on the upper hull. Once TL \ ν′ is embedded,
ν′ is a leaf connected to the root of TR. Case 2 then embeds ν′ at q and the
label at q, still right since the root shifts in T were leftward only, generates a
recursive call to embed TR into the remaining points with ν going to point p.

In the final case, ` lies to the right of p. If R is the rightmost subtree
of ν in T then the vertical line that has exactly |R| nodes to its right lies to
the right of `. Embedding T rooted at ν into P at point p by descending R
rather than TL will not enter case 3c again while embedding R. Instead, one
of cases 3a or 3b will perform the required embedding.

For the complexity, the initial hull tree for UH (P ) is computed in O(n log n)
time and the points of P receive their initial labels in O(n) time.

Each of the algorithm steps is accomplished in O(log n) amortised time.
When the root is a leaf of the tree (case 2), a point gets deleted from the
hull tree in amortised O(log n) time and the height of the hull tree does
not increase. Each of cases 3a and 3b fix the location of an unassigned
tree node ν′ at some point; this can only happen n times. Case 3a takes
O(log n) time to split the hull tree while case 3b takes constant time. The
direction switch of case 3c occurs at most once per subtree of a node—O(n)
times. The O(log n) time search for the vertical line ` at the start of case 3
is always paired with one of cases 3a, 3b, or 3c and is therefore done O(n)
times. Consequently, EmbedinUH() runs in O(n log n) time.

A sample embedding, computed by an Ipe macro [23], appears in figure 3.

(a) (b)

p

(c)

p

�

Figure 3: A rooted tree (a), a point set with distinguished point p (b),
and the embedding of the tree (c).

4 Embedding a rooted tree

In this section we simplify the case analysis of Ikebe et al. [10] and apply our new
algorithm to compute a straight-line embedding of T in P with the root of T
at a specified point. Following Ikebe et al., we no longer attempt to preserve
the ordering of children at a vertex in this embedding. We begin by improving
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a quadratic-time algorithm used by previous researchers [10, 20] to embed trees
with two nodes mapped to adjacent hull vertices.

Theorem 2 Suppose that we are given an n-node tree T with distinguished
nodes ν and η (ν 6= η), and a set of n points P in general position having edge
(p, q) on the convex hull CH (P ). There is an algorithm that, in O(n log n) time,
embeds T in P with ν at p and η at q.

Proof: Assume that we have a convex hull maintenance structure for P
that supports deletions of hull vertices in amortised O(log n) time; such a
structure can be built initially in O(n log n) time [4, 9]. Let Tη be the induced
subtree of T \ ν that contains η and let Tν be the complement, T \ Tη.

We can find a line through p with |Tν | − 1 points on one side and q on
the other side by repeatedly deleting the point of the hull adjacent to p that
is different from q. When done, delete p and apply theorem 1 to embed Tν

in the deleted points with ν at p. This takes O(|Tν | log n) time.
Point q is on the hull of the points that remain. Let p′ be the hull vertex

adjacent to q where the open segment pp′ does not intersect the hull. Let ν′,
the child of ν in subtree Tη, be the root of Tη. Recursively embed Tη with ν′

at p′ and η at q. The total time required for data structure building, point
deletion, and tree embedding is O(n log n).

Tβ

TαTm

η

ν

|Tβ ||Tα|

|Tm|
p

q
r

Figure 4: Partitioning T at a centroid η and embedding in P

Now we can embed a rooted tree T in a point set P with the root at a
chosen point p. The basic idea is illustrated in figure 4: Use a centroid node η
to partition T into a subtree Tm and two forests Tα and Tβ such that we can
find in P the vertices of an empty triangle 4pqr with rays from p, q, and r that
divide P into convex sets in which Tm, Tα and Tβ can be embedded according
to theorems 1 or 2. The partition of the tree influences the partition of the point
set, and vice versa. Some special cases (when the point p is on the convex hull,
the root is a centroid, or a forest is empty) are handled along the way.

Theorem 3 Given an n-node tree T with root node ν and a set of n points P
in general position, we can embed T in P with ν at a chosen point p ∈ P in
O(n log n) time.

Proof: If p is on the convex hull CH (P ), then we can use the algorithm of
theorem 1. Otherwise, sort the points of P radially around p.
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Let η be a centroid node of T—that is, if we remove η and its incident
edges from T , then we are left with connected subtrees with at most |T |/2
nodes [12]. For our purposes, the size of a subtree is the number of nodes
other than ν that it contains. Let subtree Tm be a maximum-size subtree
of T \ η. We now determine forests Tα and Tβ and three rays from p that
form angles ≤ π whose interiors contain |Tα|, |Tm| − 1, and |Tβ | points, as
in figure 5.

First, find a line `p through p that bisects the points—each open halfspace
contains (n−1)/2 points. To see that such a line exists, consider the integer
function D(θ) whose value is the difference between the number of points in
the left and right halfspaces of a line through p at angle θ. By our general
position assumption, the value of D changes by ±1 when the line hits or
passes a point. Since D(θ) = −D(θ + π), the function D(θ) has a zero.

Second, choose a point a 6∈ P on `p

|Tβ ||Tα|

p

b|Tm|

c

`p

a

Figure 5: Find bisector `p, then
⇀
pb and ⇀pc

and a point b ∈ P left of ⇀pa so that
the interior of angle 6 apb is as large as
possible and contains |Tm| − 1 points.
Recall that |Tm| does not count ν if
ν ∈ Tm. There are essentially two
choices—a can be chosen on either
side of p, and then b is determined
as the |Tm|th point counterclockwise
around p from ⇀pa. If there is a point
of P on ⇀pa then perturb a into 6 apb.
When done, the lines←→pa and

←→
pb de-

termine two opposite angles as in fig-
ure 5: angle 6 apb has |Tm| − 1 points
not including b, and the opposite has at least |Tm| points.

Third, enumerate the sizes of subtrees of T \ η as |Tm|, n1, n2, . . . ,
nk, and let N(i) = 1 + n1 + n2 + · · · + ni. Choose a point c in the angle
opposite 6 apb that is the N(i)th point clockwise from ⇀pa, for some 0 ≤ i ≤ k.
Such an index i exists because the angle contains at least |Tm| points and
N(j + 1) − N(j) = nj ≤ |Tm|. Now let Tα consist of the subtrees of T \ η
with sizes n1, . . . , ni and let Tβ be the rest of the subtrees.

In two special cases we can finish the embedding easily: If η = ν, we
embed ν into p and embed Tm, Tα, and Tβ by the algorithm of theorem 1.
If η has degree 2, then Tβ is empty—in this case, we embed η into c and
embed Tα and Tm into their appropriate angles with (c, b) connecting η
to Tm. Whether ν goes with Tα or with Tm, it can be embedded at p
according to theorem 2.

Otherwise, if η 6= ν then determine the convex hull of points inside 6 bpc,
including b and c but not p. We can assume, without loss of generality, that
node ν is in Tm or Tα. Let (q, r) be the hull edge that intersects ⇀ap and is
closer to p. Note that triangle 4pqr is empty of points of P , as in figure 6.
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Finally, determine q′ ∈ P such

|Tβ ||Tα|

p q
r

b

c

|Tm|−1
q 0

r 0

a

Figure 6: Finding (q, r)

that the open region bounded by ⇀pa,

pq, and
⇀
qq′ contains |Tm| − 1 points;

this can be done by sorting points
right of ⇀ap radially around q. The

slope of
⇀
qq′ lies between the slopes of

⇀rq and
⇀
pb for the following reasons:

If q′ is not left of ⇀rq (dotted in fig-
ure 6) then the open region bounded

by ⇀pa, pq, and
⇀
qq′ does not include

any point of P from 6 cpb. If
⇀
qq′ does

not intersect
⇀
pb, then the open region

bounded by ⇀pa, pq, and
⇀
qq′ includes

all points inside 6 apb.
Similarly, determine r′ ∈ P such

that the interior of the open region bounded by ⇀pa, pr, and
⇀
rr′ contains |Tα|

points. The slope of
⇀
rr′ lies between the slopes of ⇀pc and ⇀qr. Thus, the three

unbounded regions defined by 4pqr, ⇀pa,
⇀
qq′, and

⇀
rr′ are convex.

We use theorems 1 or 2 to embed Tα, Tm, and Tβ in the appropriate
regions with ν at p, the root of Tm at q, and η at r. Sorting, computing
convex hull structures, and embedding each take O(n log n) steps.

5 Finding degree-constrained embeddings

A problem similar to the rooted-tree embedding of section 3 is to find a tree
with non-crossing straight line edges in a set of points when the vertex degree
for each point in the plane is given but the tree itself is not provided. Tamura
and Tamura [24] called this a degree-constrained embedding (dc-embedding),
observed that such an embedding exists if and only if the sum of the degrees
for n points is 2n − 2, and provided an algorithm to find a dc-embedding in
O(n2 log n) time. Using hull trees and partitions, we obtain an O(n log n) time
algorithm for the same problem:

Theorem 4 If we are given n points P = {p1, p2, . . . , pn} in general position
where each point pi is labelled with a positive integer di and

∑n
i=1 di = 2n − 2

then there is an algorithm that takes O(n log n) time to find a dc-embedding
on P .

Proof: Create a deletion-only upper hull maintenance structure for the
points of P as described in section 2. For the convenience of the proof, as-
sume that the names of the points in P are sorted by x-coordinate: pi < pj

for i < j. Assume that n > 1. Finally, let S(j) = 2j − 1−∑j
i=1 di.
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The points on the upper hull of P fall into one of three categories:

1. there is a point of unit degree and a point of degree at least two on
the hull

2. all points on the hull have unit degree

3. all points on the hull have degree at least two

(b)

1 1
1

pk

left subproblem right subproblem
(c)

2 3
pk

`

a b

left subproblem right subproblem
(a)

1
2

3

1
2 2

3

Figure 7: Three cases of recursion for the dc-embedding algorithm.

In the first case, there must exist two such points that are adjacent along
the hull. Join these points by an edge, delete the point of unit degree from
the hull, and decrease the degree of the other point by 1 (see figure 7a). The
rest of the dc-embedding is then built recursively.

If all the hull points have unit degree then either n = 2, or d2 ≥ 2, or
there exists an index k such that S(k − 1) > 0 and S(k) ≤ 0. If n = 2
then join the two vertices and stop. If d2 ≥ 2 then join p1 to p2 by a tree
edge, delete p1 from the upper hull UH (P ), decrease d2 by 1, and recurse.
If d2 = 1 then S(2) = 1 > 0 and S(n − 1) = 0 so the third condition holds
for some k with 1 < k < n. By definition, S(k) = S(k − 1) + 2 − dk which
implies that dk ≥ 3. Partition P and UH (P ) at pk with pk belonging to
both smaller sets (see figure 7b). In the left subset, assign pk a degree of
S(k − 1) + 1 which is greater than zero and at most dk − 1. In the right
subset, assign pk the remaining degree from dk. Compute a dc-embedding
for each subset recursively; the resulting trees will be connected through pk.

Finally, if all the hull points have degree at least two then there exists
an index k such that S(k) = 0 since S(1) < 0 and S(n − 1) ≥ 0 and the
difference S(j)−S(j−1) increases by at most 1 whenever pj has unit degree.
Let ` be a vertical line between pk and pk+1 and let a and b be the left and
right endpoints of the upper hull edge of P that intersects ` (figure 7c).
Partition P and its upper hull along `, join points a and b by a tree edge,
decrease the degrees of points a and b by 1 each, and recursively find the
dc-embedding for the subsets of P left and right of `.

The time complexity of each step is O(log n) amortised time. The index k
that satisfies the given conditions is found with a zero-finding search in the
sequence S(1), S(2), . . ., S(n) that is stored in the hull tree. A binary search
in the hull tree finds the index k in O(log n) time. The deletions and hull
partitions of the steps are each done in O(log n) amortised time.
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Each of the steps occurs O(n) times since it either embeds a tree edge or
partitions the convex hull where the partition vertex becomes a leftmost or
rightmost hull vertex and is ineligible for a later partition.

A sample dc-embedding appears in figure 8.

2

5

4

43

2

5

4

43

Figure 8: A sample dc-embedding. Unlabelled vertices have unit degree.

6 Lower Bounds

In this section, we provide Ω(n log n) lower bounds on quadratic algebraic de-
cision trees for computing a straight-line embedding of a tree onto a set of n
points and for computing a dc-embedding on n points. Theorem 5 establishes
the optimality of our algorithms for solving these problems. The same bound
can be established with a reduction to the unit cost RAM model used by Paul
and Simon [21] for their lower bound on sorting.

Theorem 5 Finding a straight-line embedding of any tree T with n nodes into
a set P of n points requires Ω(n log n) time.

Proof: An Euler tour of a tree T embedded into a set of n points gives a
chain on 2n points in which no segments cross. Using such a chain from an
embedding of any tree T into the point set P , a careful implementation of
Melkman’s algorithm [14] will then compute the convex hull of P in O(n)
time. The Ω(n log n) lower bound for computing the convex hull of P [22]
implies the same lower bound for finding any straight-line embedding of T
into P .
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