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Resource relocation on asymmetric networks

D. Jacob Wildstrom

University of Louisville

Abstract

The necessary information to optimally serve sequential requests at the
vertices of an undirected, unweighted graph with a single mobile resource
is a known result of Chung, Graham, and Saks; however, generalizations
of this concept to directed and weighted graphs present unforeseen and
surprising changes in the necessary lookahead for strategic optimization.
A pair of edges of unequal weights and opposite orientation can serve to
simulate a communication or transportation connection with asymmetric
costs, as may arise in a transportation network from prevailing winds or
elevation changes, or in a communication network from aDSL or a similar
technology.

This research explores the complications introduced by asymmetric
connections within even very small networks. We consider the dynamic
relocation problem on a two-vertex system and find that, even in this
simplest possible asymmetric graph, the necessary lookahead for optimal
relocation may be arbitrarily large. This investigation also gives rise to
a linear-time algorithm to determine the optimizing real-time response to
any request sequence which uniquely determines an optimal response.
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1 Introduction

The dynamic location problem can be viewed as an extension of traditional
problems in resource-location such as the k-median problem and the uncapac-
itated and capacitated resource location problem. These problems have dealt
with selecting the optimal location for one or more servers on a network in
a configuration which minimizes the cost of servicing a set of vertices desig-
nated as clients with the nearest server. Research into this problem in integer
optimization has focused on the algorithmic feasibility of determining optimal
configurations, and the effectiveness of approximation strategies.

By way of contrast, dynamic optimization problems deal not with algorith-
mic efficacy or approximation strategies, but with whether optimal strategies
can be determined at all based on a limited worldview. A question relating to
real-time relocation of a unique resource can be phrased as a choice of vertices
s1, . . . , sn to minimize

n∑
i=1

d(si−1, si) + d(si, ri),

given chosen vertices s0, r1, . . . , rn of a graph. This expression serves to calculate
the costs associated with a resource moving at each timestep and then serving
a request from the new position, assuming that both movement and service-
provision costs are given by distance. Taken as a whole, the minimization of
this cost is a simple combinatorial optimization problem. The dynamic aspect of
this optimization is incorporated via a supplementary question: can an optimal
sequence of location vertices be determined if each si is determined solely as a
function of si−1, ri, ri+1, . . . ,ri+k?

This question, which will henceforth be called the dynamic location prob-
lem, has significance both to algorithmic simplification and to realistic service-
scheduling considerations. The former application results from a simplification
of the strategy-space which must be traversed in determining entries of the
optimal relocation sequence. This algorithmic simplification is particularly ex-
ploitable in median graphs, as proven by Chung, Graham, and Saks [3], and
as presented in an algorithmic context by Knuth [5]. The realistic consider-
ations raised by this question follow directly from the system which it mod-
els; the question of how efficient finite-lookahead optimization can be and how
much lookahead is needed to achieve specific goals, is of importance to service
providers establishing scheduling policies.

The original statement of the dynamic location problem defined a graph
parameter called the window index or windex to describe the minimum necessary
lookahead for optimal choice of si. Thus, we say that the windex of a graph G,
denoted WX(G), is the minimum natural number k yielding a strategy function
f : (V (G)∪{∅})k+1 → V (G) such that, for any initial state s0 and r1, . . . , rn, an
optimal choice of s1, . . . , sn is determined by si+1 = f(si, ri+1, ri+2, . . . , ri+k)
for 0 ≤ i < n. If no such k exists, G has infinite windex, denoted WX(G) =∞.

The windex of undirected, unweighted graphs has been completely charac-
terized by Chung, Graham and Saks [2, 3], making use of a topological construct
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of Hell [4].

One notable case is that of the windex-2 graphs, which are retracts of Qn:
this class of graphs was shown by Bandelt [1] to be identical to the median
graphs.

2 Fundamentals

The conventional approach to dynamic location, as practiced on undirected
graphs, is explicitly constructive: to demonstrate an upper bound on a graph’s
windex, a particular finite-lookahead strategy is shown to yield optimal results
in all cases, and to bound a graph’s windex from below, a particular pair of
request sequences differing only in their final terms is shown to require differ-
ent optimizing strategies from its initial response. These tools, while devel-
oped for undirected, unweighted graphs, are suitable for simple investigations
on weighted graphs.

While the original formulation of the dynamic location problem concerns
relocation on graphs, the most general system to be considered here is that of
an arbitrary distance metric. To maintain consistency of terminology with pre-
vious work, we shall retain the term “vertices” to describe nodes, and continue
to call the metric a “graph”, but rather than describing connectivity between
vertices by means of weighted or directed edges, distances between vertices will
be considered as an arbitrary function d : V × V → R ∪ {∞}. For practical
purposes, we shall limit our consideration to graphs in which each vertex is
reachable from every other vertex, so d(u, v) <∞ for all vertices u and v in our
graph.

A request sequence will be described by a concatenation of vertices as such:
s0r1r2r3 · · · rn, with r1 · · · rn abbreviated ρ. A response sequence s1s2s3 · · · sn,
abbreviated σ, is also a sequence of vertices. The cost of a given response to a
sequence is given by

cost(s0ρ, σ) =

n∑
k=1

d(sk−1, sk) + d(sk, rk)

Then the offline optimal-response cost of a given request is denoted by

OPT(s0ρ) = min
σ∈V (G)n

cost(s0ρ, σ)

One critical consideration in exploring the windex is how a particular re-
sponse sequence’s optimal responses depend on the desired end-state. We thus
explore the concept of an end-constrained optimum, which determines the most
efficient way of responding to a certain request sequence and thereafter moving
to a new state.

OPT(s0ρ; s) = min
σ∈V (G)n

(cost(s0ρ, σ) + d(sn, s))
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Notably, the cost-minimizing choice of σ for OPT(s0ρ; s) may be significantly
unlike the cost-minimizing response for OPT(s0ρ). This distinction explains the
need for long lookahead: if the choice of response, even in the short term, is
dependent on long-term needs, knowledge of the long-term future is necessary
for optimization.

We denote the optimal prefix-set of a request as the set of possible choices
of s1 which are part of a cost-minimizing response to the request:

pref(s0ρ) = {s1 : cost(s0ρ, s1s2 . . . sn) = OPT(s0ρ)}

and similarly define an end-constrained optimal prefix-set:

pref(s0ρ; s) = {s1 : cost(s0ρ, s1s2 . . . sn) + d(sn, s) = OPT(s0ρ; s)}

The relationship between chosen request suffixes and the associated prefixes
of optimal-cost responses to those prefixes is made relevant to the lookahead
problem through a concept of suffix-dependency. A request sequence is said
to be suffix-dependent if there is no prefix which is an optimal response to the
sequence with an arbitrary extension. Symbolically, s0ρ is suffix-dependent if⋂

rn+1∈V (G)

pref(s0ρrn+1) = ∅

Here we have two different notions of “how a sequence ends”: suffix-dependency
utilizes choice of rn+1, whereas end-constraint represents activity after the end
of a sequence with sn+1. Both considerations are useful, and they can be related
simply:

Lemma 1 If s0ρ is suffix-dependent, then
⋂
s∈V (G) pref(s0ρ; s) = ∅.

Proof: Optimal responses to s0ρrn+1 must take on some value of sn+1, and
must be least-cost responses subject to such a choice of sn+1. Thus, for each
rn+1, there is at least one sn+1 such that OPT(s0ρrn+1) = OPT(s0ρ; sn+1) +
d(sn+1, rn+1); since any choice of σ serving for the optimization on the right
side of this equation also serves on the left side, it follows that pref(s0ρ; sn+1) =
pref(s0ρrn+1). Thus, considering such an sn+1 for each rn+1 ∈ V (G), and
assembling them into a set S, it is clear that⋂
sn+1∈V (G)

pref(s0ρ; sn+1) ⊆
⋂

sn+1∈S
pref(s0ρ; sn+1) =

⋂
rn+1∈V (G)

pref(s0ρrn+1) = ∅

�

The converse of this statement is not necessarily true. In the cases we are
considering in this paper, however, the converse will hold.

Corollary 1 In a two-vertex graph, s0ρ is suffix-dependent if and only if the
set
⋂
s∈V (G) pref(s0ρ; s) = ∅.
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Proof: For a given s0ρ, if we assemble S as in the previous lemma, it must
have at least one element by construction. If |S| > 1, then S = V (G) and the
inclusion in the statement of the lemma is thus an equality between the sets⋂
sn+1∈V (G) pref(s0ρ; sn+1) and

⋂
rn+1∈V (G) pref(s0ρrn+1).

If, on the other hand, |S| = 1, then if we denote the vertices S = {u} and
V (G) \ S = {v}, then since u is an optimal choice for sn+1 regardless of the
value of rn+1, it follows that d(u, rn+1) ≤ d(v, rn+1) for all values of rn+1. Since
u is closer to every vertex than v, u is trivially a better state than v regardless of
circumstance and is specifically always a better choice of s1, so that if |S| = 1,
no sequence s0ρ is suffix-dependent and every

⋂
s∈V (G) pref(s0ρ; s) = {u}. �

If s0ρ is not suffix-dependent, it is called suffix-independent, and any element
of
⋂
rn+1∈V (G) pref(s0ρrn+1) is called an unambiguously optimal prefix for s0ρ.

If every request sequence of a certain length has an unambiguously optimal
prefix, then it is easy to show that the windex of the graph does not exceed that
length.

Proposition 1 If s0ρ is suffix-independent for every request sequence |ρ| = k,
then the windex of the graph G is no more than k.

Proof: Given |ρ| = k + `, we demonstrate optimizability via induction on `.
The case ` = 1 follows naturally from the definition of suffix-independence: we
choose s to be an unambiguously optimal prefix for s0r1 . . . rk. Then, since
s ∈ pref(s0ρ), there is an optimal response σ to ρ such that s1 = s, and since
OPT(s0ρ) = d(s0, s1) + d(s1, r1) + OPT(s1r2 . . . rk+1), choices of s2, . . . , sk+1

are yielded by choosing optimal responses to the sequence s1r2 . . . rk+1.
For larger values of `, let us consider the request sequences ρ1 = r1 . . . rk and

ρ2 = rk+2 . . . rk+`. Let s be an unambiguously optimal prefix for s0r1 . . . rk, as
before. Note that

OPT(s0ρ) = OPT(s0ρ1; sk+1) + d(sk+1, rk+1) + OPT(sk+1ρ2)

for some sk+1. Since s ∈ pref(s0ρ1) for every choice of sk+1 and since both sides
of this equation are the cost of the same response, it follows that s ∈ OPT(s0ρ).
Then, assuming a response to s0ρ with s1 = s, we see that

OPT(s0ρ) = d(s0, s) + d(s, r1) + OPT(sρ2)

and by the inductive hypothesis, since |ρ2| = k + `− 1, an optimal response to
sρ2 can be created with lookahead k. �

Conversely, a finite windex precludes long suffix-dependent sequences, and
existence of an unambiguously optimal prefix is unaffected by extension of a
request sequence.

Proposition 2 If graph G has windex k, then any request sequence s0r1 . . . r`
is suffix-independent for ` ≥ k.
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Proof: Let f(si, ri+1, . . . , ri+k) be an optimal k-lookahead strategy on G; in
particular, for some r`+1, and let s1 = f(s0, r1, . . . , rk). Since f is an optimal
strategy, s1 ∈ pref(s0r1r2 . . . r`r`+1). Since s1 does not depend on r`+1, s1 ∈⋂
r`+1

pref(s0r1r2 . . . r`r`+1). �

The following statement, while true in general, will be here proven only for
the two-vertex systems discussed in the next section.

Proposition 3 In a two-vertex graph, if s0ρ is suffix-independent, so is s0ρr
for any r ∈ V (G); likewise, so is s0ρρ

′ for any sequence of vertices ρ′.

Proof:
From Corollary 1, s0ρ is suffix-independent if and only if

⋂
s∈V (G) pref(s0ρ; s) 6=

∅; likewise, s0ρr is suffix-independent if and only if
⋂
s∈V (G) pref(s0ρr; s) 6= ∅.

Since there is a choice of sn+1 such that OPT(s0ρr; s) = OPT(s0ρ; sn+1) +
d(sn+1, r)+d(sn+1, s), using the same response sequence for both optimizations,
it follows that pref(s0ρ; sn+1) = pref(s0ρr; s); collecting the sn+1 associated
with each choice of S into a single set as in Lemma 1, we see that

∅ 6=
⋂

sn+1∈V (G)

pref(s0ρ; sn+1) ⊆
⋂

sn+1∈S
pref(s0ρ; sn+1) =

⋂
rn+1∈V (G)

pref(s0ρr; s)

Thus
⋂
rn+1∈V (G) pref(s0ρr; s) 6= ∅, so s0ρr is suffix-independent. �

In light of the connection between windex and suffix-dependency, we may
rephrase the definition of the windex of a graph in such terms:

WX(G) = max{|σ| : σ is suffix-dependent}

If G admits arbitrarily large suffix-dependent σ, then WX(G) =∞. We may
now use these tools to examine specific directed graphs.

3 Asymmetric paths

While even unweighted directed graphs such as cycles and connected tourna-
ments indicate complexity beyond the traditional undirected case, they are
highly inapplicable results, as unidirectional connections are rare in real-world
networks. A common aspect of networks, however, is asymmetric connection; in
a ground-transportation network, traffic and travel times may be unequal in dif-
ferent directions, while for air-transport, prevailing winds may suggest that one
direction of travel has cost significantly lower than another, and in communi-
cation networks, transmission technologies such as aDSL lines have asymmetric
data transfer rates. Thus, the advantage in allowing arbitrary distance metrics
lies not in the ability to consider unidirectional connections, but in the use of
nonsymmetric distance functions to model asymmetric connections.

We shall begin our investigation into asymmetric paths with the simplest
possible model: a two-vertex graph, with possible fees for remaining in place
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11 22 12 21

111 4a b+ 2c+ d 2a+ b+ c a+ b+ 2c
112 3a+ b b+ c+ 2d 2a+ b+ d 2b+ 2c
121 3a+ b b+ c+ 2d a+ 2b+ c a+ b+ c+ d
122 2a+ 2b b+ 3d a+ 2b+ d 2b+ c+ d

Table 1: Costs of responses to two-request strings on a two-vertex graph

or providing local service. In general, we shall consider a graph whose vertices
are labeled 1 and 2, with distances d(1, 1) = a, d(1, 2) = b, d(2, 1) = c, and

d(2, 2) = d. This may be denoted by the distance matrix D =

[
a b
c d

]
.

On a two-vertex graph, we shall find that suffix-dependent request sequences
are in fact associated with pairs of complementary response sequences; that is
to say, request sequences σ and σ′ such that if si = 1 then s′i = 2, and vice
versa.

Proposition 4 If σr = sr1s
r
2 · · · srn is a cost-minimizing response to s0ρr for

each r ∈ V (G), and s0ρ is suffix-dependent, then for no i are all of the states
sri identical.

Proof: Suppose there is such an i; then we may determine a single si such that
si = sri for all r; let ρ1 = r1r2 · · · ri−1 and ρ2 = ri+1ri+2 · · · rn. Then, since a
minimal-cost response to s0ρr has ith state si, it is the case that OPT(s0ρr) =
OPT(s0ρ1; si)+d(si, ri)+OPT(siρ2), so since an optimal choice of s1 is yielded
by the first term in this sum, it follows that pref(s0ρr) ⊇ pref(s0ρ1; si). Since
r does not appear on the right side of this equality,

⋂
r∈V (G) pref(s0ρr) ⊇

pref(s0ρ1; si) 6= ∅, violating the conditions of suffix-dependency. �

Corollary 2 If G has exactly two vertices 1 and 2, and s0ρ is suffix-dependent,
then s0ρ1 and s0ρ2 have unique complementary response sequences.

3.1 Two-request sequence responses

It is simple to exhaustively consider all possible responses to request sequences
of length two on a two-vertex-graph. Without loss of generality we may consider
the case s0 = 1 to start with, leaving only four possible requests and four possible
responses, whose associated costs are shown in Table 1. In addition, there are
only two simple suffix-dependency possibilities: either 11 or 12 may be suffix-
dependent; if neither of them are, then the windex of the graph in question is
1 or 0. By Corollary 2, we may establish that optimal response sequence pairs
must be one of two conjugate pairs in one of two orders, so each of these cases
comprises four possible subcases, making a total of eight potential results. By
exhaustive consideration of each case, we can show that of the eight possible
suffix-dependent sequences and their optimal responses, two are associated with
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a certain inequality, two are associated with an opposite inequality, and four can
not occur. The four possible cases, labeled Case I, III, V, and VII, are shown
here with the requisite inequalities; the other four appear in an appendix.

Case I: 11 is suffix-dependent: 111 and 112 respectively have unique
optimal response sequences 11 and 22. Thus the unique minima of the first
and second rows of Table 1 are in the first and second columns respectively. In
particular, 4a < b + 2c + d and b + c + 2d < 3a + b, from which it follows that
a+ d < b+ c. This case will be examined in more detail.

Case III: 11 is suffix-dependent: 111 and 112 respectively have
unique optimal response sequences 12 and 21. The unique minima of
the first and second rows of Table 1 must be in the third and fourth columns
respectively. Since 2a + b + c < a + b + 2c and 2b + 2c < 2a + b + d, it can be
established that a+ d > b+ c.

Case V: 12 is suffix-dependent: 121 and 122 respectively have unique
optimal response sequences 11 and 22. The unique minima of the third
and fourth rows of Table 1 are in the first and second columns respectively. In
particular, 3a + b < a + 2b + c and b + 3d < 2b + c + d, from which it follows
that a+ d < b+ c. This case is analyzed alongside Case I.

Case VII: 12 is suffix-dependent: 121 and 122 respectively have
unique optimal response sequences 12 and 21. The unique minima of
the third and fourth rows of Table 1 must be in the third and fourth columns
respectively, so a+2b+c < a+b+c+d implies that b < d; 2b+c+d < a+2b+d
implies that c < a, and thus b+ c < a+ d.

This casewise analysis allows for a natural classification of two-vertex sys-
tems: each possible case is associated with the condition a + d < b + c or
a + d > b + c. The condition a + d = b + c is not associated with any of these
cases and thus leads to a windex of 1 or 0; the other possibilities, each associated
with two of the above cases, are amenable to individual consideration.

3.2 Two-vertex graphs with high parking fees

Since a and d represent the cost of remaining at a vertex, or providing service to
the resource’s current vertex, they may be referred to as parking fees, whereas
b and c represent movement or communication among vertices and therefore
might be called transit fees. The a + d > b + c case is thus one in which
parking fees are large in comparison to transit fees; we thus call this inequality
the high-parking-fee condition. From the casewise analysis in Subsection 3.1,
we find four potential suffix-dependent sequences of length 3: 111, 112, 121,
and 122. As before, we are without loss of generality considering only cases
where s0 = 1. We shall see, via complete enumeration, that none of these
possible sequences are in fact suffix-dependent. We are aided in our endeavor
by the results in Subsection 3.1 indicating that, of the four possible 2-request
response prefixes, only 12 and 21 are utilized. The limitation to these responses
is sensible in consideration of the high-parking-fee criterion: when the choice
si = si−1 incurs high costs, it appears useful to relocate.
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121 212 122 211

1111 3a + b + 2c∗ a + 2b + 3c 2a + b + 3c + d 3a + b + 2c∗
1112 2a + 2b + 2c∗ a + 2b + 2c + d 2a + b + c + 2d 2a + 2b + 2c∗
1121 3a + b + c + d† 3b + 3c 2a + b + c + 2d† 2a + 2b + 2c

1122 2a + 2b + c + d† 3b + 2c + d 2a + b + 3d† a + 3b + 2c

1211 2a + 2b + 2c a + 2b + 2c + d∗ a + 2b + 2c + d∗ 3a + b + c + d

1212 a + 3b + 2c a + 2b + c + 2d∗ a + 2b + c + 2d∗ 2a + 2b + c + d

1221 2a + 2b + c + d∗ 3b + 2c + d a + 2b + c + 2d 2a + 2b + c + d∗
1222 a + 3b + c + d∗ 3b + c + 2d a + 2b + 3d a + 3b + c + d∗

Table 2: Costs of responses to three-request strings on a two-vertex graph

Theorem 1 If G is a two-vertex graph with a+ d > b+ c, then WX(G) ≤ 3.

Proof: This argument proceeds by casewise enumeration as in the two-vertex
case. There are 8 possible 3-request sequences subject to s0 = 1 and 2 pairs
of complementary responses. For a 2-request sequence to be suffix-dependent,
its two extensions must be associated with complementary responses; given four
request sequences of length 2, and four assignments of complementary responses
to each, there are 16 possible suffix-dependencies that can occur. All possible
costs considered in this argument are shown in Table 2. If identical expressions
appear in separate cells of a single row, clearly neither of them is associated with
a unique optimizing response, since two separate responses yield the same cost.
Cells which are thereby forbidden from representing unique optimal responses
are marked with an asterisk in Table 2. In addition, if we make use of the given
condition that a + d > b + c, we furthermore find several cells guaranteed not
to have the minimum value in their rows, denoted with a dagger. Since from
each possible pair of extensions of a two-request sequence we have eliminated
two non-complementary responses as possible unique optima, it is impossible to
choose two request extensions with complementary optimal request sequences;
thus, none of the two-request sequences are suffix-dependent. �

3.3 Two-vertex graphs with low parking fees

In contrast to the aforementioned high-parking-fee case is the case in which
parking fees are lower than transit fees; that is, when a + d < b + c. Much
as the optimal responses in the high-parking-fee case are marked by perpetual
relocation, optimal responses in the low-parking-fee case are marked by staticity,
and, in fact, the conjugate optimal responses associated with a suffix-dependent
request are each, after the first step, completely motionless.

Lemma 2 If G is the two-vertex graph with distances as given above with suffix-
dependent request sequence s0ρ and a+ d < b+ c, then s0ρ1 has unique optimal
response 1n+1 and s0ρ2 has unique optimal response 2n+1.
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1n1 2n2 1n2 2n1

s0ρ1 C1 + 2a C2 + c+ d C1 + b+ c C2 + a+ c
s0ρ2 C1 + a+ b C2 + 2d C1 + b+ d C2 + b+ c

Table 3: Costs of responses to arbitrary-length sequences

Proof: We proceed by induction on |ρ| = n. The base case n = 1 is derived
from the casewise analysis in Subsection 3.1; since a + d < b + c, the only
possible cases are I and V, and so any suffix-dependent sequence s0ρ of length
2 has unique optimal responses of 12 and 22 to s0ρ1 and s0ρ2 respectively.

For the inductive step, let ρ′ be ρ with its last request truncated: since
s0ρ
′ is suffix-dependent, we know by the inductive hypothesis that the optimal

responses to s0ρ
′1 and s0ρ

′2, and thus the end-constrained optimal responses
to s0ρ with end-constraints of 1 and 2, are 1n and 2n respectively. Let the
costs of these responses to s0ρ be C1 and C2 respectively. Then there are 4
plausible responses to s0ρ1 and s0ρ2: these responses are 1n1, 2n2, 1n2, and
2n1. The costs of these responses are summarized in Table 3. Since s0ρ is suffix-
dependent, we know that the optimal responses to s0ρ1 and s0ρ2 are unique and
complementary. We may thus consider each of the four cases, seeing that only
the case given in the statement of this lemma is possible:

Case I: s0ρ1 and s0ρ2 respectively have unique optimal responses
1n1 and 2n2. No contradiction arises from this supposition, and it matches our
expectation from the inductive hypothesis.

Case II: s0ρ1 and s0ρ2 respectively have unique optimal responses
2n2 and 1n1. Since 2n2 is a better response to s0ρ1 than 2n1, it follows that
C2 +c+d < C2 +a+c; likewise, since 1n1 is a better response to s0ρ2 than 1n2,
it follows that C1 +a+ b < C1 + b+d. These two inequalities are contradictory,
as they are respectively equivalent to d < a and a < d.

Case III: s0ρ1 and s0ρ2 respectively have unique optimal responses
1n2 and 2n1. Since 1n2 is a better response to s0ρ1 that 1n1, it follows that
C2 + b+ c < C2 + 2a; likewise, since 2n1 is a better response to s0ρ2 than 2n2,
it follows that C2 + b+ c < C2 + 2d. Adding and simplifying these inequalities
yields b+ c < a+ d, which is contrary to the low-parking-fee condition.

Case IV: s0ρ1 and s0ρ2 respectively have unique optimal responses
2n1 and 1n2. We may derive from this possibility the opposite inequalities as
in Case II; they are still contradictory.

Thus, the only possibility if s0ρ is suffix-dependent in a low-parking-fee graph
is that s0ρ1 and s0ρ2 have respective optimal responses 1n+1 and 2n+1. �

Theorem 2 If G is the two-vertex graph with distances as given above with
a + d < b + c and the request sequence s0ρ consists of k occurrences of 1 and
` occurrences of 2, then s0ρ is suffix-dependent iff every prefix of s0ρ is suffix-
dependent and 2d− a− b < (c+ d− 2a)k + (2d− a− b)` < c+ d− 2a.

Proof: Given s0ρ composed of the given individual requests, we may assign
values to the costs C1 and C2 defined in Lemma 2. Providing service to k
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requests at vertex 1 and ` at vertex 2 has associated costs of (2k + `)a + `b
and kc + (k + 2`)d when served from vertex 1 and 2 respectively. This simple
calculation, however, neglects the necessity that, of the k + ` vertices in the
sequence s0ρ, one is not a request, but s0, which has different associated costs
than those for remote service. If s0 = 1, then C1 = (2k + ` − 2)a + `b and
C2 = b+(k−1)c+(k+2`−2)d, while if s0 = 2, then C1 = (2k+`−2)a+(`−1)b+c
and C2 = kc+(k+2`−2)d. Fortunately, the difference between these two cases
is identical for both costs, so it has no effect on their relative value:

C1 = 2ak + (a+ b)`− 2a− b+ f(s0)

C2 = (c+ d)k + 2d`− 2d− c+ f(s0)

where f(1) = b and f(2) = c.
By Proposition 3, it is clearly necessary that s0ρ’s prefixes be suffix-dependent

in order for s0ρ to be suffix-dependent. By the inductive argument in Lemma 2,
the necessary and sufficient conditions for such a sequence to be itself suffix-
dependent is that C1 + a < C2 + c and C2 + d < C1 + b. Thus, s0ρ is suffix-
dependent iff its prefixes are suffix-dependent and

[2ak + (a+ b)`− 2a− b] + a+ d < [(c+ d)k + 2d`− 2d− c] + c+ d

< [2ak + (a+ b)`− 2a− b] + b+ c

which simplifies to

2d− a− b < (c+ d− 2a)k + (2d− a− b)` < c+ d− 2a

�

This necessary and sufficient criterion for suffix-dependence in two-vertex
systems leads to an easily-comprehended visual schematic for constructing suffix-
dependent sequences in particular two-vertex systems. In this schematic, we
consider k and ` as coordinates in the lattice Z2, and a sequence as a walk up-
wards and right on this lattice from the point (0, 0), with horizontal and vertical
steps representing respective concatenations of 1 and 2 to the request sequence.
Then suffix-dependence criteria can be presented entirely geometrically. Our
base case guarantees that either walk to (1, 1) is suffix-dependent; thereafter,
based on Theorem 2, our walk represents a suffix-dependent sequence if and only
if it lies in the region between the lines (c+ d− 2a)k + (2d− a− b)(`− 1) = 0
and (c+ d− 2a)(k − 1) + (2d− a− b)` = 0.

As an example of this geometrical representation, let us consider the two-

vertex system with distance matrix D =

[
1 13
6 2

]
. The boundaries of the suffix-

dependent region are thus the lines 6k − 10` = −10 and 6k − 10` = 6. These
boundaries, and a lattice walk within it, are shown in Figure 1. For instance, in
this case, we see that there is a pair of suffix-dependent request sequences with
7 requests: {

12121121

21121121
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Figure 1: Coordinate-geometry representation of a suffix-dependent request on
a two-vertex system

Furthermore, since no longer walk in the region shown is possible, these
suffix-dependent request sequences are maximal, and the given two-vertex sys-
tem thus has windex 8. We can generalize these specific results to describe the
number and length of suffix-dependent requests for any two-vertex system.

Proposition 5 For G a low-parking-fee two-vertex system, there are either ex-
actly zero or two suffix-dependent request sequences of length n for every n ≥ 1;
furthermore, the two suffix-dependent request sequences differ only in the choice
of s0 and r1.

Proof: The base cases developed in Subsection 3.1 guarantee this is true for
n = 1, which admits the request sequences 12 and 21. For n > 1, the geometric
representation of a sequence of length n consists of a walk to (1, 1) followed by
an (n−1)-step walk within the region bounded by the lines (c+d−2a)k+(2d−
a−b)(`−1) = 0 and (c+d−2a)(k−1)+(2d−a−b)` = 0. It is sufficient to show
that there is no more than one such walk, which is identical to establishing that
at no point during a walk within this region are both horizontal and vertical
steps feasible. To illustrate this, suppose both possible steps from a point (k, `)
lie within our region: we may extend our path to (k + 1, `) or (k, `+ 1). Thus,
both

2d− a− b < (c+ d− 2a)(k + 1) + (2d− a− b)` < c+ d− 2a

and
2d− a− b < (c+ d− 2a)k + (2d− a− b)(`+ 1) < c+ d− 2a

However, the first assertion is true only if (c + d − 2a)k + (2d − a − b)` < 0,
while the latter is true only if latter is (c+ d− 2a)k + (2d− a− b)` > 0; thus,
since both cannot be satisfied for any (k, `), each point within the region has at
most one possible successor on a walk within the region; note that a point has
no successors if (c+ d− 2a)k + (2d− a− b)` = 0. �

Proposition 6 A low-parking-fee two-vertex system G has a suffix-dependent

sequence of length (b+c−a−d)
gcd(c+d−2a,a+b−2d) − 1 and no longer suffix-dependent se-

quence; thus WX(G) = (b+c−a−d)
gcd(c+d−2a,a+b−2d) .
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Proof: Let p = c+d−2a
gcd(c+d−2a,a+b−2d) and q = a+b−2d

gcd(c+d−2a,a+b−2d) . Then the

boundaries of the region of suffix-dependency are −p < pk − q` < q. There
are thus p + q − 1 possible distinct values for pk − q` in the region, and since
gcd(p, q) = 1, all of these values are attainable; now it is sufficient to show
that no path from (1, 1) within the region can attain the same value of pk − q`
twice. Suppose (k1, `1) and (k2, `2) are two distinct points on a path in the
region of suffix-independence such that pk1 − q`1 = pk2 − q`2, with (k1, `1)
lexicographically less than (k2, `2) and (k2, `2) as small as possible. Then p(k2−
k1) = q(`2 − `1). Since p and q are relatively prime, k2 − k1 and `2 − `1 must
be divisible by q and p respectively, and since (k1, `1) < (k2, `2), it follows that
k2−k1 ≥ q and `2− `1 ≥ q. Thus, there are at least p+ q steps between (k1, `1)
and (k2, `2). If any of these steps (k, `) are such that pk − q` = 0, it is clear
from the argument in the prior proof that (k, `) has no successor in the region;
likewise, if pk − q` = pk1 − q`1, it would contradict our selection of (k2, `2) as
the earliest residue repetition. Thus, the p + q − 1 intermediary steps between
(k1, `1) and (k2, `2) can only take on p + q − 3 distinct values of pk − q`; since
two of them will have the same value, this contradicts our selection of (k2, `2)
as minimal. Thus, the same residue cannot occur twice in a walk from (1, 1)
within this region, and since there are only p + q − 1 distinct residues in this
region, a walk from (1, 1) within the region can only take p+ q− 2 steps, which
together with the sequence prefix 12 or 21, creates a sequence of no more than
p+ q − 1 requests.

To show that a sequence of p+q−1 requests can in fact be constructed, note
from the previous proof that the only non-extensible suffix-dependent request
sequences are those for which pk − q` = 0. The minimal nontrivial solution
to this equation is (k, `) = (q, p), so it is necessarily possible to take at least
p+ q − 2 steps from (1, 1) within the region of suffix-dependence. �

This visual schematic also presents a simple algorithm for determining op-
timal relocation instructions based on limited information: the lattice walk
associated with the sequence siri+1ri+2 . . . ri+k either has all steps beyond the
first within the suffix-dependent region, in which case optimal response to this
request cannot be determined, or some step is outside the suffix-dependent re-
gion, in which case the correct choice is si+1 = 1 if the first step outside the
suffix-dependent region is to the left of the suffix-dependent region, and si+1 = 2
if the first step outside is above the suffix-dependent region.

One peculiar consequence of this analysis of two-vertex systems is that all of
these results developed in a model in which distances must be integral to will also
hold in a model in which distances can be any real number. If the distances are
rational, this extension is not notable inasmuch as rational distances could be
scaled appropriately to become integers, but an unusual effect occurs if the ratio
c+d−2a
a+b−2d is irrational. In such a case, the boundaries of the suffix-dependency
region have irrational slope, and the walk within the region never reaches a
point where termination becomes necessary, since the only integral solution to

(c + d − 2a)k = (a + b − 2d)` is the point (0, 0). For example, if D =

[
0 1
π 0

]
,
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we can produce the arbitrarily long aperiodic sequence:

1222212221222122212221222122212222122212221 . . .

By our known boundaries on the region of suffix-dependence, the number of
occurrences of 2 in this sequence must be bounded between π(k − 1) and πk
after the appearance of k occurrences of 1. Thus, the number of requests at 2
between the kth and (k + 1)th requests at 1 is dπke − dπ(k − 1)e, which is an
aperiodic sequence of clusters of length 3 and 4. The patterns in this sequence
are termwise differences in what is known as the bnαc-sequence, described in
significant detail by Niven [7, 6].

In summary, we find that when c+d−2a
a+b−2d = p

q ∈ Q for positive q and (p, q) = 1,
the windex of the two-vertex system described by these distances is p + q. If
c+d−2a
a+b−2d /∈ Q, then the windex of this two-vertex system is infinite.

Appendix: Impossible situations on length-2 re-
quests

Case II: 11 is suffix-dependent: 111 and 112 respectively have unique
optimal response sequences 22 and 11. The unique minima of the first and
second rows of Table 1 must be in the second and first columns respectively.
Thus b+ 2c+d < 2a+ b+ c and b+ 2c+d < a+ b+ 2c. Adding and simplifying
these inequalities, b+ c+2d < 3a+ b, contradicting the presumption that 3a+ b
is the minimum value in the second row. This case will therefore never occur.

Case IV: 11 is suffix-dependent: 111 and 112 respectively have
unique optimal response sequences 21 and 12. The unique minima of
the first and second rows of Table 1 must be in the fourth and third columns
respectively. If we add the resultant inequalities 2a + b + d < b + c + 2d and
a+ b+ 2c < 2a+ b+ c, it follows that a < d. However, since 2a+ b+ d < 3a+ b
simplifies to d < a, this case is clearly impossible.

Case VI: 12 is suffix-dependent: 121 and 122 respectively have
unique optimal response sequences 22 and 11. The unique minima of
the third and fourth rows of Table 1 must be in the second and first columns
respectively, so b+ c+ 2d < a+ b+ c+ d and 2a+ 2b < a+ 2b+ d; adding these
results in a contradiction, so this case cannot occur.

Case VIII: 12 is suffix-dependent: 121 and 122 respectively have
unique optimal response sequences 12 and 21. The unique minima of
the third and fourth rows of Table 1 must be in the fourth and third columns
respectively, so both a+ b+ c+ d < b+ c+ 2d and a+ 2b+ d < 2a+ 2b, which
add together to yield a contradiction, so this case too is impossible.
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