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Abstract

A straight-line grid drawing of a plane graph G is a planar drawing

of G, where each vertex is drawn at a grid point of an integer grid and

each edge is drawn as a straight-line segment. The height, width and

area of such a drawing are respectively the height, width and area of the

smallest axis-aligned rectangle on the grid which encloses the drawing. A

minimum-area drawing of a plane graph G is a straight-line grid drawing

of G where the area is the minimum. It is NP-complete to determine

whether a plane graph G has a straight-line grid drawing with a given

area or not. In this paper we give a polynomial-time algorithm for find-

ing a minimum-area drawing of a plane 3-tree. Furthermore, we show a

⌊ 2n
3
−1⌋×2⌈n

3
⌉ lower bound for the area of a straight-line grid drawing of

a plane 3-tree with n ≥ 6 vertices, which improves the previously known

lower bound ⌊ 2(n−1)
3

⌋×⌊ 2(n−1)
3

⌋ for plane graphs. We also explore several

interesting properties of plane 3-trees.
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1 Introduction

A plane graph is a planar graph with fixed planar embedding. In a straight-line
grid drawing Γ of a plane graph G, each vertex of G is drawn at a grid point of
an integer grid and each edge of G is drawn as a straight-line segment. The area
of Γ is measured by the size of the smallest rectangle with sides parallel to the
axes which encloses Γ. The width W of Γ is the width of such a rectangle and
the height H of Γ is the height of such a rectangle. The area is usually described
as W ×H . A minimum-area drawing of a plane graph G is a straight-line grid
drawing of G where the area is the minimum. Figure 1(a) depicts a plane graph
G and Figure 1(c) depicts a minimum-area drawing of G.

Wagner [28], Fary [18] and Stein [26] independently proved that every planar
graph G has a straight-line drawing. A natural question arises: what is the
minimum size of a grid required for a straight-line grid drawing? For a given
plane graph G with n ≥ 3 vertices, de Fraysseix et al. [12] and Schnyder [25]
independently showed that G has a straight-line grid drawing on area (2n−4)×
(n−2) and (n−2)×(n−2), respectively. Recently, Brandenburg [7] has improved
the upper bound of straight-line grid drawing to 4

3n× 2
3n area. The problem of

finding minimum-area drawings for plane graphs has been shown to be NP-hard
by Krug and Wagner [22]. Furthermore, they presented an iterative approach to
compactify planar straight-line grid drawings. Frati and Patrignani [20] proved
that 2n2/9+O(n) area is sufficient and n2/9+Ω(n) area is necessary for planar
straight-line grid drawings of “nested triangles graphs”.

Researchers have also concentrated their attention on minimizing one dimen-
sion of the drawing where the other dimension of the drawing is unbounded [1,
10, 15, 19, 27]. Such drawings are known as “layered drawings”. A layered draw-
ing of a plane graph G is a planar drawing of G, where the vertices are drawn
on a set of horizontal lines called layers and the edges are drawn as straight line
segments. A minimum-layer drawing of a plane graph G is a layered drawing
of G where the number of layers is the minimum. Figure 1(a) depicts a plane
graph G and Figure 1(b) depicts a minimum-layer drawing of G. Chrobak and
Nakano [8] gave a linear-time algorithm to obtain a straight-line grid drawing of
a plane graph G with n vertices where one dimension of the drawing is bounded
by ⌊ 2n−1

3 ⌋. So, it is obvious that any plane graph G admits a layered drawing
on ⌊ 2n−1

3 ⌋ layers.

(b) (c)(a)

Figure 1: (a) A plane graph G, (b) a minimum-layer drawing of G and (c) a
minimum-area drawing of G.
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In this paper, we consider the problem of finding minimum-area drawings
of a subclass of planar graphs called “plane 3-trees”. A plane 3-tree Gn with
n ≥ 3 vertices is a plane graph for which the following (a) and (b) hold: (a) Gn

is a triangulated plane graph; (b) if n > 3, then Gn has a vertex whose deletion
gives a plane 3-tree Gn−1. Many researchers have shown their interest on plane
3-trees for a long time [2, 4, 14, 16]. In this paper, we explore some interesting
properties of plane 3-trees which leads to a polynomial-time algorithm to obtain
their minimum-area drawings. We also show that, there exists a plane 3-tree
with n ≥ 6 vertices for which ⌊ 2n

3 − 1⌋ × 2⌈n
3 ⌉ area is necessary for any planar

straight-line grid drawing. As a side result, we give an O(nh4
m) time algorithm

to compute a minimum-layer drawing of a plane 3-tree G, where hm is the
minimum number of layers required for any layered drawing of G. Note that,
Dujmović et al. gave a f(h)×n time algorithm that can decide whether a given
graph G with n vertices admits a planar drawing in h layers or not [15]. The
running time of their algorithm is dominated by the cost of finding a “path
decomposition” of G. To the best of our knowledge, the algorithm currently
known to obtain a “path decomposition” of a graph with “treewidth” ≤ l, takes
at least Ω(n4l+3) time [5]. Clearly, one can obtain minimum-layer drawings for
plane 3-trees using the technique presented in [15] but it takes at least Ω(n15)
time, since the “treewidth” of plane 3-trees is three.

An outline of our algorithm to compute a minimum-layer drawing of a plane
3-tree is presented here. Let Gn be a plane 3-tree with n vertices and h be
a positive integer. Since any plane graph admits a layered drawing on ⌊ 2n−1

3 ⌋
layers [8], we test whether Gn can be drawn on h layers or not, by iterating h
from 1 to ⌊ 2n−1

3 ⌋. For each h from 1 to ⌊ 2n−1
3 ⌋, we use dynamic programming to

test whether Gn has a drawing on h layers. We show that any plane 3-tree Gn

with n > 3 vertices has an inner vertex p which is the common neighbor of all
the three outer vertices of Gn. The vertex p, along with the three outer vertices
of Gn, divides the interior region of Gn into three new regions. We prove that
the subgraphs enclosed by those three regions are also plane 3-trees. For each
feasible y-coordinate assignment of the outer vertices of Gn, these subgraphs
are the three subproblems of our testing problem. We define the result of the
testing problem in terms of the test results of the subproblems. Figure 2(a)
depicts a plane 3-tree G where p is the common neighbor of the three outer
vertices a, b, c of G. Figures 2(b) and (c) show the subproblems of the input
graph G for two different placements of p. We divide and test the subproblems
recursively and store the test results of the subproblems in a table to compute
the minimum number of layers hm among all the possible layered drawings of
G. Figure 2(d) illustrates that G does not admit a layered drawing for the layer
assignment of the vertex p as in Figure 2(b). Figure 2(e) is the drawing of G
corresponding to the drawings of the subproblems illustrated in Figure 2(c). We
can obtain a minimum-area drawing of G in a similar method.

The rest of the paper is organized as follows. Section 2 describes some defi-
nitions and presents preliminary results. Section 3 introduces some interesting
properties of plane 3-trees. Section 4 presents an O(nh4

m) time algorithm to
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Figure 2: Illustration of the algorithm for minimum-layer drawings.

compute a minimum-layer drawing of a plane 3-tree Gn with n vertices where
hm is the minimum number of layers required for any layered drawing of G.
Section 5 illustrates an O(n9 logn) time algorithm to obtain a minimum-area
drawing of Gn. Section 6 gives a lower bound on the area requirements for
straight-line drawings of plane 3-trees. Finally, Section 7 concludes with discus-
sions suggesting future works. An early version of this paper has been presented
at [23].

2 Preliminaries

In this section we give some relevant definitions that will be used throughout
the paper and present some preliminary results.

Let G = (V,E) be a connected simple graph with vertex set V and edge set
E. The degree of a vertex v is the number of neighbors of v in G. We denote
by degree(v) the degree of the vertex v. A subgraph of a graph G = (V,E) is a
graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If G′ contains all the edges
of G that join vertices in V ′, then G′ is called the subgraph induced by V ′. A
graph G is connected if for any two distinct vertices u and v there is a path
between u and v in G. A graph which is not connected is called a disconnected
graph. The connectivity κ(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected graph or a single-vertex graph. We say
that G is k-connected if κ(G) ≥ k. We call a set of vertices in a connected graph
G a separator or a vertex-cut if the removal of the vertices in the set results in
a disconnected or single-vertex graph.

A tree is a connected graph without any cycle. A rooted tree T is a tree in
which one of the vertices is distinguished from the others. The distinguished
vertex is called the root of the tree T and every edge of T is directed away from
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the root. If v is a vertex in T other than the root, the parent of v is the vertex
u such that there is a directed edge from u to v. When u is the parent of v,
v is called a child of u. A vertex in T , which has no children, is called a leaf .
Any vertex which is not a leaf in T is an internal vertex. A descendant of u is
a vertex v other than u such that there is a directed path from u to v. Let i
be any vertex of T . Then we define a subtree T (i) rooted at i as a subgraph of
T induced by vertex i and all the descendants of i. An ordered rooted tree is a
rooted tree where the children of any vertex are ordered counter-clockwise.

A graph is planar if it can be embedded in the plane without edge crossing
except at the vertices where the edges are incident. A plane graph is a planar
graph with a fixed planar embedding. A plane graph divides the plane into
some connected regions called the faces. The unbounded region is called the
outer face and all the other faces are called the inner faces. The vertices on
the outer face are called the outer vertices and all the other vertices are called
the inner vertices. If all the faces of a plane graph G are triangles, then G is
called a triangulated plane graph. For a cycle C in a plane graph G, we denote
by G(C) the plane subgraph of G inside C (including C). A plane graph G
with n ≥ 3 vertices is called a plane 3-tree if the following (a) and (b) hold:

(a) G is a triangulated plane graph;

(b) if n > 3, then G has a vertex x whose deletion gives a plane 3-tree G′ of
n− 1 vertices.

Note that, vertex x may be an inner vertex or an outer vertex of G. We
denote a plane 3-tree of n vertices by Gn. Examples of plane 3-trees are shown
in Figure 3; G6 is obtained from G7 by removing the inner vertex c of degree
three. Then G5 is obtained from G6 by deleting the inner vertex b of degree
three. G4 is obtained from G5 by deleting the outer vertex g of degree three
and G3 is obtained in a similar way.

G7 G6 G5 G4

c

aa
bb ggg

aaa

d
d d

fffff

eeee

G3

dd

Figure 3: Examples of plane 3-trees.

3 Properties of Plane 3-Trees

In this section we introduce some properties of plane 3-trees. The following
results are known on plane 3-trees.
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Lemma 1[4] Let Gn be a plane 3-tree with n vertices where n > 3. Then the
following (a) and (b) hold. (a) Gn has an inner vertex x of degree three such
that the removal of x gives the plane 3-tree Gn−1. (b) Gn has exactly one inner
vertex y such that y is the neighbor of all the three outer vertices of Gn.

By Lemma 1(b) for any plane 3-tree Gn, n > 3, there is exactly one inner vertex
y which is the common neighbor of all the outer vertices of Gn. We call vertex
y the representative vertex of Gn.

A separating triangle of a triangulated plane graphG is a triangle in G whose
interior and exterior contain at least one vertex each. Let Gn be a plane 3-tree
and C be a triangle in Gn, then we prove that Gn(C) is also a plane 3-tree as
in the following lemma.

Lemma 2 Let Gn be a plane 3-tree with n > 3 vertices and C be any triangle
of Gn. Then the subgraph Gn(C) is a plane 3-tree.

We use the following two facts to prove Lemma 2.

Fact 3 [17] Any triangulated graph with more than three vertices is a tricon-
nected graph.

Fact 4 Let Gn be a triangulated plane graph and C be a separating triangle of
Gn where n > 3. Then each of the three vertices on C must have degree at least
four in Gn.

Proof. Since Gn and Gn(C) are triangulated and n > 3, they are triconnected
by Fact 3. Therefore each of the three vertices on C has degree at least three
in Gn(C). Suppose for a contradiction that at least one of the vertices w on
C has degree exactly three in Gn as illustrated in Figure 4. Since Gn(C) is
triconnected with more than three vertices, two of the neighbors of w are on C
and the other neighbor is inside C. Since w has no neighbor outside C, we can
disconnect the exterior vertices of C from the interior vertices of C by deleting
the other two vertices on C except w. This implies that Gn has a vertex-cut of
two vertices, and hence Gn would not be triconnected, a contradiction. �

We are now ready to give a proof of Lemma 2.

C

Gn

w

Figure 4: Illustration for the proof of Fact 4.

Proof of Lemma 2. The proof is trivial for the case when the triangle C is
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not a separating triangle. If C is the outer face of G, then Gn(C) is itself a
plane 3-tree; otherwise C is a triangle whose interior contains no vertex and
Gn(C) is a plane 3-tree by definition. We now consider the case when C is
a separating triangle in G. Since Gn is triangulated, Gn(C) is triangulated.
Then, it is sufficient to prove that we can delete inner vertices of degree three
recursively from Gn(C) to obtain the cycle C. By Lemma 1, Gn has an inner
vertex of degree three whose deletion gives a plane 3-tree Gn−1. We delete such
inner vertices of Gn recursively which are outside of Gn(C). Assume that after
deleting k vertices we have no inner vertex of degree three outside Gn(C) and let
the resulting plane 3-tree be Gn−k. As we never deleted the outer vertices of Gn

and the inner vertices of Gn(C), C is also a separating triangle of Gn−k. There
must be an inner vertex of degree three in Gn−k by Lemma 1. That vertex must
be an inner vertex of Gn−k(C) since each of the three outer vertices of Gn−k(C)
has degree at least four in Gn−k by Fact 4. We now delete all the inner vertices
of degree three of Gn−k(C) recursively in such a way that at each deletion the
resulting graph remains a plane 3-tree. By definition after deleting m such inner
vertices of Gn−k(C) recursively we get a plane 3-tree Gn−k−m. Suppose for a
contradiction that there is no inner vertex of degree three in Gn−k−m(C). We
first consider the case when C has no interior vertex which implies that we have
recursively deleted the inner vertices of degree three of Gn(C) to get the triangle
C and Gn(C) is certainly a plane 3-tree. We next consider the case where C
still contains at least one interior vertex. Then Gn−k−m(C) has more than three
vertices and there is no inner vertex of degree three in Gn−k−m. Hence Gn−k−m

would not be a plane 3-tree by Lemma 1(a), a contradiction. �

Let p be the representative vertex and a, b, c be the outer vertices of Gn.
The vertex p, along with the three outer vertices a, b and c, form three triangles
{a, b, p}, {b, c, p} and {c, a, p} as illustrated in Figure 5. We call those three
triangles the nested triangles around p.

b

C

G

C
c

n

1
3

2C

p

a

Figure 5: Nested triangles around p.

We now define the representative tree of Gn as an ordered rooted tree Tn−3

satisfying the following two conditions (a) and (b).

(a) if n = 3, Tn−3 consists of a single vertex.

(b) if n > 3, then the root p of Tn−3 is the representative vertex of Gn and the
subtrees rooted at the three counter-clockwise ordered children q1, q2 and
q3 of p in Tn−3 are the representative trees of Gn(C1), Gn(C2) and Gn(C3),
respectively, where C1, C2 and C3 are the three nested triangles around p
in counter-clockwise order.
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Figure 6 illustrates the representative tree Tn−3 of the plane 3-tree Gn. Note
that the “4-block trees” [21] and the tree of the “tree decomposition” [5] are
quite similar to the representative trees for the plane 3-trees.

p

Tn−3e

g

d f

Gnb

a

c

d
p

eg
f

Figure 6: Representative tree Tn−3 of Gn.

We now prove that Tn−3 is unique for Gn in the following lemma.

Lemma 5 Let Gn be any plane 3-tree with n ≥ 3 vertices. Then Gn has a
unique representative tree Tn−3 with exactly n− 3 internal vertices and 2n− 5
leaves.

Proof. The case n = 3 is trivial since the representative tree of G3 is a single
vertex. We may thus assume that G has four or more vertices. By Lemma 1(b)
Gn has exactly one representative vertex. Let p be that representative vertex
of Gn and C1, C2, C3 be the three nested triangles around p. By Lemma 2,
Gn(C1), Gn(C2) and Gn(C3) are plane 3-trees. Let n1, n2 and n3 be the number
of vertices in Gn(C1), Gn(C2) and Gn(C3), respectively. Then by the induc-
tion hypothesis, Tn1−3, Tn2−3 and Tn3−3 are the unique representative trees of
Gn(C1), Gn(C2) and Gn(C3), respectively. We now assign p as the parent of
q1, q2 and q3, where q1, q2 and q3 are the roots of Tn1−3, Tn2−3 and Tn3−3,
respectively. Since p is the unique representative vertex of Gn, the choice for
the root of Tn−3 is unique. Since Gn has n vertices and any inner vertex of
Gn except p belongs to exactly one of Gn(C1), Gn(C2) and Gn(C3), the total
number of vertices in Tn1−3, Tn2−3 and Tn3−3 is n1−3+n2−3+n3−3 = n−4.
Thus the new tree Tn−3 with root p has n − 4 + 1 = n − 3 internal vertices.
Since Tn1−3, Tn2−3 and Tn3−3 are ordered trees and q1, q2 and q3 are ordered
counter-clockwise around p, Tn−3 is also an ordered tree. Furthermore one can
easily observe that, the leaves represent only the internal faces of Gn. Since the
number of internal faces of Gn is 2n− 5 by Euler’s Theorem, Tn−3 has 2n− 5
leaves. �

Now we have the following lemma whose proof is immediate from the defi-
nition of the representative tree and from Lemma 5.

Lemma 6 Let Tn−3 be the representative tree of a plane 3-tree Gn with n ≥ 3
vertices and let T (i) be a subtree rooted at a vertex i of Tn−3. Then there exists
a unique triangle C in Gn such that T (i) is the representative tree of Gn(C).

By Lemma 6, for any vertex p of Tn−3, there is a unique triangle in Gn which
we denote as Cp for the rest of this article. Furthermore, if p is the root of Tn−3,
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then Cp is the outer face of Gn; if p is a leaf of Tn−3, then Cp is an inner face
of Gn and if p is an internal vertex in Tn−3, then Cp is a separating triangle in
Gn. Let L be the set of leaves in Tn−3 and let a, b and c be the outer vertices
of Gn. Then Tn−3 − L is a spanning tree of Gn − {a, b, c} where each vertex p
of Tn−3 − L is mapped to the representative vertex of Gn(Cp), as illustrated in
Figure 6. Thus for the rest of this article, we shall often use an internal vertex
p of Tn−3 and the representative vertex of Gn(Cp) interchangeably. We shall
also denote by T (p) the representative tree of Gn(Cp). Figures 7(a) and (b)
illustrate Gn(Cp) and its representative tree T (p), respectively.

Cp
p

(p)

p

T

(a) (b)

q
q

q

Gn C( )p

q

q
q
3

1

2
1

3

2

Figure 7: (a) Illustration of Gn(Cp) and (b) the representative tree T (p).

We now have the following lemma.

Lemma 7 For any plane 3-tree Gn with n ≥ 3 vertices, the representative tree
Tn−3 of Gn can be found in time O(n).

Proof. To construct Tn−3 we first find the representative vertex p of Gn. We
keep a list for each inner vertex u of Gn. For each outer vertex vi of Gn,
i ∈ {1, 2, 3}, we add vi in the list of u if u is adjacent to v. One can easily
observe that, only the list of the representative vertex p will contain the three
outer vertices of Gn. Thus we can find p in time O(

∑3
i=1 degree(vi)). Let

Cq1 , Cq2 , Cq3 be the nested triangles around p. We can find the three children
q1, q2 and q3 of p by updating the lists as follows. Since the lists are already
updated for all the outer vertices of Gn(Cq1 ), Gn(Cq2 ) and Gn(Cq3) except p,
we only need to update the lists by adding p to the list of u if u is adjacent
to p. Thus the three children of p can be found in time O(degree(p)). We
then continue updating the lists recursively to find the other vertices of Tn−3.
Once the lists are updated by a vertex, we do not consider that vertex later
to update the lists. The process of updating the lists for each vertex v takes
O(degree(v)) time and hence the total time of constructing the representative
tree is O(

∑

v∈V degree(v)) = O(n) since Gn is planar. �
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The proof of Lemma 7 leads to a linear-time algorithm to construct the
representative tree of a plane 3-tree.

4 Minimum-Layer Drawings

In this section we consider the problem of finding minimum-layer drawings of
plane 3-trees.

In a layered drawing of a plane graph G, the vertices are drawn on a set of
horizontal lines called layers and the edges are drawn as straight line segments.
We assume that the layers are aligned parallel to the x-axes with different y-
coordinates and the y-coordinates of the layers are defined as follows. We denote
by y(l) the y-coordinate of a layer l. Let {l1, l2, ..., ln} be a set of n layers where
y(l1) < y(l2) < ... < y(ln), then y(li) = i, 1 ≤ i ≤ n. Thus for the rest of this
article, we denote a layer assignment of a vertex v by a y-coordinate assignment
of v.

Chrobak et al. [8] showed that the upper bound for one dimension of a
straight-line grid drawing of any plane graph G with n vertices is ⌊ 2n−1

3 ⌋. So, it
is obvious that any plane 3-tree G admits a layered drawing on ⌊ 2n−1

3 ⌋ layers.
Therefore we assume that, G admits a layered drawing on h layers and iterate
h from 1 to ⌊ 2n−1

3 ⌋. For each iteration, we check whether G is drawable on h
layers or not. The first h within which G is drawable is the minimum number
of layers hm required to draw G.

A brute force approach to solve this problem is to assign all possible combi-
nations of y-coordinates to the vertices of G and check whether there is any edge
crossing. However, if the total number of vertices is n and the number of layers is
h, there are nh different assignments possible. This exponential time makes the
approach impractical for large n and h. We now present a dynamic programming
approach to solve the problem. We first give an algorithm Minimum-Layer
to generate all the feasible y-coordinate assignments of the vertices of G iter-
ating h from 1 to ⌊ 2n−1

3 ⌋. Then we give an algorithm Feasibility-Checking
to check whether G admits a layered drawing on h layers for a particular y-
coordinate assignment of its outer vertices. For convenience, we describe Algo-
rithm Feasibility-Checking before Algorithm Minimum-Layer. At the end
of this section we give pseudocodes for both of the algorithms. We now formally
define the input and the output of the decision problem Feasibility Checking.

Input: A plane 3-tree G and y-coordinate assignments of the three outer
vertices a, b and c of G.

Output: If G admits a layered drawing with the given y-coordinates of a,
b and c, the output is True, and False otherwise.

Let T be the representative tree of a plane 3-tree G and vy be the y-
coordinate of any vertex v. For any vertex p of T , we denote by Γp a layered
drawing of G(Cp) and by Fp(ay, by, cy) the Feasibility Checking problem of p
where ay, by, cy are the y-coordinates of the three outer vertices a, b, c of
G(Cp), respectively. We solve this Feasibility Checking problem using dynamic
programming by characterizing the “optimal substructure” and “overlapping
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subproblems” properties of the problem which are the two key ingredients for
the dynamic programming to be applicable [9]. Characterizing optimal sub-
structure means showing that the optimal solution of the problem consists of
the optimal solutions of the subproblems. To show the optimal substructure
property of the Feasibility Checking problem, we need the following two lem-
mas.

Lemma 8 Let G be a plane 3-tree with representative vertex p. Let Γp be a
layered drawing of G and let Γ(Cp) be the layered drawing of Cp in Γp. Let
Γ′(Cp) be another layered drawing of Cp where a, b and c have the same y-
coordinates as in Γ(Cp). Then G has a layered drawing Γ′

p having Γ′(Cp) as the
drawing of Cp.

Proof. The case for n = 3 is trivial since for this case Γ′

p coincides with Γ′(Cp).
We may thus assume that n is greater than three and the claim holds for any
plane 3-tree of less than n vertices. Let l be the layer that contains vertex p and
let py be the y-coordinate of p in Γp. The layer l intersects Γ

′(Cp) at two points
(x1, py) and (x2, py), x1 6= x2. We place p on l in between x1 and x2 to obtain
Γ′(Cq1 ), Γ

′(Cq2 ) and Γ′(Cq3 ) where Cq1 , Cq2 and Cq3 are the nested triangles
around p. By induction hypothesis G(Cq1), G(Cq2) and G(Cq3 ) admit layered
drawings Γ′

q1 , Γ′

q2 and Γ′

q3 which contain the drawings Γ′(Cq1 ), Γ′(Cq2) and
Γ′(Cq3 ), respectively. Clearly, one can obtain Γ′

p by patching Γ′

q1 , Γ
′

q2 and Γ′

q3
inside Γ′(Cq1), Γ

′(Cq2 ) and Γ′(Cq3), respectively, as illustrated in Figure 8. �
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Figure 8: Illustration for the proof of Lemma 8. (a) Layered drawing Γp of G
and (b) layered drawing Γ′

p of G.

Now we have the following lemma.

Lemma 9 Let G be a plane 3-tree with the representative tree T . Let p be any
internal vertex of T with the three children q1, q2, q3 in T and let a, b, c be the
three outer vertices of G(Cp). Then G(Cp) admits a layered drawing Γp for the
assignment (ay, by, cy) if and only if Γq1 , Γq2 and Γq3 admit layered drawings
for the assignments (ay, by, py), (by, cy, py) and (cy, ay, py), respectively, where
min(ay, by, cy) < py < max(ay, by, cy).

Proof. The necessity is trivial, and proof of the sufficiency can be obtained in
a similar technique as described in the proof of Lemma 8. �
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We can readily find the “overlapping subproblems” property of the Feasibility
Checking problem. Overlapping subproblem occurs when a recursive algorithm
visits the same problem more than once. Figure 9 illustrates this property for the
Feasibility Checking problem where the overlapping subproblems are shown by
dotted rectangles and bold rectangles. We now have the following theorem
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Figure 9: Overlapping Subproblems.

which leads to a recursive solution of the Feasibility Checking problem.

Theorem 4.1 Let G be a plane 3-tree and let p be any vertex of the represen-
tative tree T of G. Let a, b, c be the three outer vertices of G(Cp) and q1, q2, q3
be the three children of p if p is an internal vertex of T . Let Fp(ay, by, cy) denote
the Feasibility Checking problem of p where ay, by, cy are the y-coordinates of
a, b, c. Then Fp(ay, by, cy) has the following recursive formula.

Fp(ay, by, cy) =















































False if {max{ay, by, cy} −min{ay, by, cy} = 0};
True if {max{ay, by, cy} −min{ay, by, cy} ≥ 1}

where p is a leaf;
False if {max{ay, by, cy} −min{ay, by, cy} ≤ 1}

where p is an internal vertex;
∨

py
{Fq1(ay, by, py) ∧ Fq2(by, cy, py) ∧ Fq3(cy, ay, py)}

where {min{ay, by, cy} < py < max{ay, by, cy}},
otherwise.

Proof. Consider the case whenmax{ay, by, cy}−min{ay, by, cy} = 0. Then we
assign Fp(ay, by, cy) = False since a triangle cannot be drawn on a single layer.
The next case is max{ay, by, cy} −min{ay, by, cy} ≥ 1 when p is a leaf. Then
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we assign Fp(ay, by, cy) = True since two layers are sufficient to draw a triangle.
The next case is max{ay, by, cy} − min{ay, by, cy} ≤ 1 when p is an internal
vertex. Then we assign Fp(ay, by, cy) = False for this case since the outer face
needs two layers to be drawn and the inner vertex p cannot be placed on any
of them. The remaining case is max{ay, by, cy} −min{ay, by, cy} > 1 when p is
an internal vertex. Then we define Fp(ay , by, cy) recursively by Lemma 9. �

We associate a table FCi[1:⌊
2n+2

3 ⌋,1:⌊ 2n+2
3 ⌋,1:⌊ 2n+2

3 ⌋] for each vertex i of
the representative tree T of G, where the solution of Fi(ay, by, cy) is stored in
FCi[ay, by, cy]. To store the computed y-coordinates of the vertices of G, we
maintain another table Yi[1:⌊

2n+2
3 ⌋,1:⌊ 2n+2

3 ⌋, 1:⌊ 2n+2
3 ⌋] for each vertex i of T .

Each entry Yi[ay, by, cy] is computed as follows.

Yi[ay, by, cy] =







False if FCi[ay, by, cy] = False;
True if i is a leaf and FCi[ay, by, cy] = True;
iy if i is an internal vertex and FCi[ay, by, cy] = True.

Let G be a plane 3-tree with the outer vertices a, b, c and p be the represen-
tative vertex of G. If Yp[ay, by, cy] is False, then G has no layered drawing for
the given y-coordinate assignment ay, by, cy. If the entry is True, then G has
no inner vertex and G has a layered drawing for the given y-coordinate assign-
ment ay, by, cy. Otherwise, G has a layered drawing for the given y-coordinate
assignment ay, by, cy and the entry Yp[ay, by, cy] contains the y-coordinate of
the representative vertex p.

To obtain the y-coordinate assignment of each internal vertex of G, we check
the entry Yp[ay, by, cy]. If the entry contains a y-coordinate of the representative
vertex p, we check the entries Yq1 [ay, by, py], Yq2 [by, cy, py] and Yq3 [cy, ay, py]
to get the y-coordinates of the three children of p. We push Yq1 [ay, by, py],
Yq2 [by, cy, py] and Yq3 [cy, ay, py] on a stack and pop one entry for further ex-
ploration recursively. This is similar to the traversal of the representative tree
T of G in preorder, that is, first traversing the root of T , then traversing the
left, middle and right subtrees one after another. When the stack is empty,
y-coordinates for all the vertices of G are obtained. Since T has n− 3 internal
vertices by Lemma 5, this process takes O(n) time.

We now describe Algorithm Minimum-Layer which computes the mini-
mum number of layers required to drawG using Algorithm Feasibility- Check-
ing. Let T be the representative tree of the plane 3-tree G. We assume that
G admits a layered drawing on h layers and iterate h from 1 to ⌊ 2n−1

3 ⌋. At
each iteration we traverse T in preorder and for each vertex i of T , Algorithm
Minimum-Layer generates all possible y-coordinate assignments for the outer
vertices a, b and c of G(Ci) within h layers. For each such assignment ay, by
and cy, Algorithm Feasibility-Checking is called to check whether G(Ci) is
drawable. The first h within which G is drawable is the minimum number of
layers hm required to draw G. At the end of this section, formal descriptions of
Algorithm Minimum-Layer and Algorithm Feasibility-Checking are given
in Algorithm 1 and Algorithm 2, respectively.
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Lemma 10 Let T be the representative tree of a plane 3-tree G and i be any
internal vertex of T . Let a, b and c be the outer vertices of G(Ci). Then
Algorithm Minimum-Layer generates all possible y-coordinate assignments
for a, b and c within h layers after the hth iteration.

Proof. We prove the correctness of the algorithm by induction. For h = 1, the
assignment is obvious from Line 3. We may thus assume that h > 1 and all the
y-coordinate assignments within layer 1 to h − 1 have been generated and the
results have been calculated within h − 1 iterations. Now we consider the hth
iteration. In Line 8, ay is assigned layer h and in Line 9 by and cy are assigned
all possible y-coordinates within h. Next, by is assigned layer h in Line 17 and
in Line 18, ay and cy are assigned all possible y-coordinates within h− 1 and h,
respectively. Similarly, cy is assigned layer h in Line 26 and in Line 27, ay and
by are assigned all possible y-coordinates within h− 1.

Suppose for a contradiction that the y-coordinate assignments ay, by and cy
have not been generated after the hth iteration. Clearly max{ay, by, cy} cannot
be less than h, since all the y-coordinate assignments within layer 1 to h−1 have
been generated by induction. We may thus assume that max{ay, by, cy} = h.
One can observe that the hth iteration ensures the generation of all possible
y-coordinate assignments such that max{ay, by, cy} = h, a contradiction. �

We now analyze the complexity of Algorithm Minimum-Layer.

Theorem 4.2 Given a plane 3-tree G with n vertices, Algorithm Minimum-

Layer computes the minimum number of layers hm required to draw G on layers
in O(nh4

m) time.

Proof. To prove the claim we first calculate the number of times Algorithm
Feasibility-Checking is called. Since we iterate the number of layers h from
1 to ⌊ 2n−1

3 ⌋+ 1 and at each iteration we traverse T in preorder, the number of
times all the vertices of T is considered is hm × n. For each internal vertex p,
Algorithm Feasibility-Checking is called for h×h times in Line 11, h×(h−1)
times in Line 20 and (h − 1) × (h − 1) times in Line 29. For all the n − 3
internal vertices of T , in each iteration the total number of calls to Algorithm
Feasibility-Checking by Algorithm Minimum-Layer is

hm × n(h2 + h(h− 1) + (h− 1)2)
= hmn(h2 + h2 − h+ h2 − 2h+ 1)
= hmn(3h2 − 3h+ 1)
= O(nh3

m)
We store the solutions of the subproblems in the FC tables where each entry

of the tables initially contains null to denote that the entry is yet to be filled in.
When the subproblem is first encountered during the execution of the recursive
algorithm Feasibility-Checking, its solution is computed and stored in the
table. Each subsequent time the subproblem is encountered, the value stored in
the table is looked up and returned. The solutions of the subproblems are com-
puted bottom up and each lookup takes O(1) time. Moreover, py can take at
most hm values in Line 5 of Algorithm Feasibility-Checking. Therefore, each
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call to Algorithm Feasibility-Checking takes O(hm) × O(1) = O(hm) time.
Since the total number of times Algorithm Feasibility-Checking is called, in-
cluding the recursive calls, is O(nh3

m) the total running time of this algorithm is
O(nh3

m)×O(hm) = O(nh4
m). We now recall that the construction of the repre-

sentative tree takes O(n) time by Lemma 7. Thus Algorithm Minimum-Layer
takes O(n) + O(nh4

m) = O(nh4
m) time in total. �

Algorithm 1 Minimum-Layer(G)

1: Construct the representative tree T of G
2: for each vertex i of T do
3: FCi[1, 1, 1] = False
4: end for
5: {The outer vertices of G(Ci) are a, b and c}
6: for each h from 2 to ⌊ 2n−1

3 ⌋+ 1 do
7: for each internal vertex i of T in preorder do
8: ay = h
9: for by from 1 to h and cy from 1 to h do

10: if FCi[ay,by,cy] = null then
11: Feasibility-Checking (a,b,c)
12: end if
13: if i = root && FCi[ay,by,cy] = true then
14: return
15: end if
16: end for
17: by = h
18: for ay from 1 to h− 1 and cy from 1 to h do
19: if FCi[ay,by,cy] = null then
20: Feasibility-Checking (a,b,c)
21: end if
22: if i = root && FCi[ay,by,cy] = true then
23: return
24: end if
25: end for
26: cy = h
27: for ay from 1 to h− 1 and by from 1 to h− 1 do
28: if FCi[ay,by,cy] = null then
29: Feasibility-Checking (a,b,c)
30: end if
31: if i = root && FCi[ay,by,cy] = true then
32: return
33: end if
34: end for
35: end for
36: end for
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Algorithm 2 Feasibility-Checking(a,b,c)

1: {The outer vertices of G are a, b and c and p is its representative vertex}
2: if FCp[ay, by, cy] 6= null then
3: return FCp[ay, by, cy]
4: else if (max{ay, by, cy} − min{ay, by, cy} > 1) & (p is an internal vertex)

then
5: for min{ay, by, cy} < py < max{ay, by, cy} do
6: if (Feasibility-Checking(a, b, p) & Feasibility-Checking(b, c, p) &
7: Feasibility-Checking(c, a, p)) then
8: FCp[ay, by, cy] = True , Yp[ay, by, cy] = py , break
9: end if

10: end for
11: else
12: Compute FCp[ay, by, cy] and Yp[ay, by, cy] by Theorem 4.1
13: end if

5 Minimum-Area Drawings

In this section we extend the concept of the dynamic programming technique
of Section 4 to give an algorithm Minimum-Area to obtain a minimum-area
drawing of a plane 3-tree G.

We now present an outline of the algorithm. Since the upper bound of the
area of straight-line grid drawings of planar graphs is kn2 with k ≤ 1, it is ob-
vious that the upper bound for the area of a minimum-area drawing of a plane
3-tree G is at most kn2 with k ≤ 1. Since the minimum number of layers re-
quired for any straight-line grid drawing of G is hm, the upper bound for width
is ⌈n2/hm⌉. Therefore, we assume a height h and a width w and iterate from

1 to n and 1 to min(⌈n2

h ⌉, ⌈ n2

hm

⌉), respectively. At each iteration of h and w we
check whetherG is drawable on a w×h grid or not. AlgorithmMinimum-Area
generates all the possible (x, y)-coordinate assignments for the outer vertices of
G and checks the drawability of G for each such assignment using Algorithm
Area-Checking.

For convenience, we describe Algorithm Area Checking before Algorithm
Minimum-Area. At the end of this section we give pseudocodes for both of
the algorithms. Here we formally define the input and output of the problem
Area Checking.

Input: A plane 3-tree G and (x, y)-coordinate assignments of the three
outer vertices a, b and c of G.

Output: If G admits a drawing with the given (x, y)-coordinates of a, b and
c, the output is True and otherwise it is False.

Like the Feasibility Checking problem for minimum-layer drawing, we can
characterize the optimal substructure for the problem Area Checking. Let G be
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a plane 3-tree with the representative tree T . We denote the x-coordinate and y-
coordinate of a vertex v by vx and vy, respectively. We denote by Ap(a

x
y , b

x
y , c

x
y)

the Area Checking problem of any vertex p of T where axy , b
x
y , c

x
y are the (x, y)-

coordinates of the three outer vertices a, b and c of G(Cp). We denote by Γ′

p a
minimum-area drawing of G(Cp).

We now prove that the Area Checking problem has the following optimal
substructure property.

Lemma 11 Let G be a plane 3-tree with the representative tree T . Let p be any
internal vertex of T with the three children q1, q2, q3 in T and a, b, c be the
outer vertices of G(Cp). Then the Area Checking problems of q1, q2 and q3 are
the three subproblems of the Area Checking problem of p.

Proof. The vertex p is an inner vertex of G and therefore, p must be placed
inside the outer face of G. Since the (x, y)-coordinates of a, b, c are preassigned
and px, py are the same for the drawings Γ′

q1 , Γ
′

q2 and Γ′

q3 , those three drawings
can be combined to get the drawing Γ′

p ofG(Cp) as illustrated in Figure 10. Thus
the solution of the Area Checking problem of p consists of the solutions of the
Area Checking problems of q1, q2 and q3; and hence the Area Checking problems
of q1, q2 and q3 are the three subproblems of the Area Checking problem of p. �
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Figure 10: Illustration for the proof of Lemma 11.

One can easily observe the overlapping subproblem property for the Area
Checking problem in a similar way that we used to show the overlapping sub-
problem property of the Feasibility Checking problem.

By a method similar to the proof of Lemma 10 one can see that Algo-
rithm Minimum-Area generates all possible (x, y)-coordinate assignments of

the outer vertices of G within w ×min(⌈n2

h ⌉, ⌈ n2

hm

⌉) area. We now prove Theo-
rem 5.1 which states the recursive solution of Area Checking problem.

Theorem 5.1 Let G be a plane 3-tree with the representative tree T and p be
any vertex of T . Let a, b, c be the three outer vertices of G(Cp) and q1, q2, q3
be the three children of p when p is an internal vertex of T . Let Ap(a

x
y , b

x
y , c

x
y) be

the Area Checking problem of p where a, b and c have distinct (x, y)-coordinates.
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Then Ap(a
x
y , b

x
y , c

x
y) has the following recursive formula.

Ap(a
x
y , b

x
y , c

x
y) =







































































False if {max{ax, bx, cx} −min{ax, bx, cx} = 0}
∨ {max{ay, by, cy} −min{ay, by, cy} = 0};

True if {{max{ax, bx, cx} −min{ax, bx, cx} ≥ 1}
∧ {max{ay, by, cy} −min{ay, by, cy} ≥ 1}}
∧ p is a leaf;

False if {{max{ax, bx, cx} −min{ax, bx, cx} ≤ 1}
∨ {max{ay, by, cy} −min{ay, by, cy} ≤ 1}}
∧ p is an internal vertex;

∨

px,py
{Aq1(a

x
y , b

x
y , p

x
y) ∧ Aq2(b

x
y , c

x
y , p

x
y) ∧Aq3 (c

x
y , a

x
y , p

x
y)}

where (px, py) is inside the triangle with the
vertices a, b, c, otherwise.

Proof. First we consider the case when max{ax, bx, cx} −min{ax, bx, cx} =
0∨max{ay, by, cy}−min{ay, by, cy} = 0. Then we assign Ap(a

x
y , b

x
y , c

x
y) = False

because a grid of at least area 1×1 is necessary to draw a triangle. The next case
is max{ax, bx, cx}−min{ax, bx, cx} ≥ 1∧max{ay, by, cy}−min{ay, by, cy} ≥ 1
when p is a leaf. Then we assign Ap(a

x
y , b

x
y , c

x
y) = True since area 1 × 1 is suf-

ficient to draw a triangle. The next case is max{ax, bx, cx} −min{ax, bx, cx} ≤
1 ∨ max{ay, by, cy} − min{ay, by, cy} ≤ 1 when p is an internal vertex. We
assign Ap(a

x
y , b

x
y , c

x
y) = False since the width and height of G(Cp) is at most

1 and p cannot be placed inside Cp. The remaining case is max{ax, bx, cx} −
min{ax, bx, cx} > 1∧max{ay, by, cy}−min{ay, by, cy} > 1 when p is an internal
vertex. Then we define Ap(a

x
y , b

x
y , c

x
y) recursively according to Lemma 11. �

We associate a table ACi[1:⌈
n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:n, 1:n, 1:n] for each
vertex i of the representative tree T of G, where the solution of Ai(a

x
y , b

x
y , c

x
y)

is stored in ACi[a
x
y , b

x
y , c

x
y ]. To store the computed (x, y)-coordinates of the

vertices of G, we maintain two tables Xi[1:⌈
n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:n, 1:n, 1:n]

and Yi[1:⌈
n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:⌈ n2

hm

⌉, 1:n, 1:n, 1:n] for each vertex i of T . Each entry
of the two table Xi and Yi is computed as follows.

Xi[ax, bx, cx, ay, by, cy] =























False if ACi[ax, bx, cx, ay, by, cy] = False;
True if i is a leaf and

ACi[ax, bx, cx, ay, by, cy] = True;
ix if i is an internal vertex and

ACi[ax, bx, cx, ay, by, cy] = True.

Yi[ax, bx, cx, ay, by, cy] =























False if ACi[ax, bx, cx, ay, by, cy] = False;
True if i is a leaf and

ACi[ax, bx, cx, ay, by, cy] = True;
iy if i is an internal vertex and

ACi[ax, bx, cx, ay, by, cy] = True.

Let a, b, c be the outer vertices and p be the representative vertex of G.
If Xp[ax, bx, cx, ay, by, cy] or Yp[ax, bx, cx, ay, by, cy] is False, then G has no
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straight-line grid drawing for the given (x, y)-coordinate assignments axy , b
x
y , c

x
y .

If the entries are True, then G has a straight-line grid drawing with the given
(x, y)-coordinate assignments axy , b

x
y , c

x
y . Otherwise, the two entries contain a

x-coordinate and a y-coordinate of the representative vertex p, respectively.
We now describe Algorithm Minimum-Area which gives a drawing of G

with the minimum area, using Algorithm Area-Checking. Let T be the repre-
sentative tree of the plane 3-tree G. We assume a width w and a height h for G.

We iterate h from 1 to n and for each h, we iterate w from 1 to min(⌈n2

h ⌉, ⌈ n2

hm

⌉).
At each iteration we traverse T in preorder. For each internal vertex i of T ,
Minimum-Area generates all possible (x, y)-coordinate assignments for the
outer vertices a, b and c of G(Ci) within area w × h. For each such (x, y)-
coordinate assignment of a, b and c, Algorithm Area-Checking is called to
check whether G(Ci) is drawable. Each time a drawing of G with smaller area
is found, the stored area is replaced by the smaller area and at the end of the
algorithm, the stored area is the minimum. At the end of this section, formal
descriptions of Algorithm Minimum-Area and Algorithm Area-Checking
are given in Algorithm 3 and Algorithm 4, respectively.

We now analyze the complexity of Algorithm Minimum-Area.

Theorem 5.2 Given a plane 3-tree G with n ≥ 3 vertices, Algorithm Minimum-

Area gives a minimum-area drawing of G in O(n9 logn) time.

Proof. We iterate height h from 2 to n and for each h, width w is iterated

from 2 to min(⌈n2

h ⌉, ⌈ n2

hm

⌉) where hm is the minimum number of layers required
to draw G. So the total number of iterations in Line 7 is

hm
n2

hm

+ n2

hm+1 + ...+ n2

n

= n2(1 + 1
hm+1 + ...+ 1

n )

= n2(1 +
∑n

k=hm+1
1
k )

≤ n2 + n2 × log n
hm

= O(n2 log n)

The first time a feasible drawing is found, we store the area w × h for that
drawing. Each subsequent time a feasible drawing is found, we replace the
stored area only if the area w×h for the current values of w and h is smaller or
equal to the stored area. After the algorithm is terminated, the minimum area
required to draw G is returned.

Let the representative tree of G be T . For each iteration we traverse T in
preorder in Line 8 and for each internal vertex of T , Algorithm Area-Checking
is called w2h2, w2h(h−1) and w2(h−1)2 times in Line 12, Line 23 and Line 34,
respectively. Since there are n − 3 internal vertices in T , the total number
of calls to Algorithm Area-Checking by Algorithm Minimum-Area in each
iteration is

n(w2h2 + w2h(h− 1) + w2(h− 1)2)
= nw2(3h2 − 3h+ 1)
= O(nw2h2)

We store the solutions of the subproblems in the AC tables where each entry
of the tables initially contains null to denote that the entry is yet to be filled
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in. When the subproblem is first encountered during the execution of the re-
cursive algorithm Area-Checking, its solution is computed and stored in the
table. Each subsequent time the subproblem is encountered, the value stored
in the table is looked up and returned. The solutions of these subproblems are
computed bottom up and each lookup takes O(1) time. Moreover, pxy can take
at most w × h values in Line 9 of Algorithm Area-Checking. Therefore, each
call to Algorithm Area-Checking takes O(1)×O(wh) = O(wh) time.

Hence for each iteration, the number of times Algorithm Area-Checking is
called including all the recursive calls is O(nw2h2). Therefore, the total running
time of Algorithm Area-Checking is O(nw2h2)×O(wh) = O(nw3h3) = O(n7)
since wh = O(n2). Thus the total time required for all the O(n2 logn) iterations
is O(n2 logn)×O(n7) = O(n9 logn).

We now recall that the construction of the representative tree takes O(n)
time by Lemma 7. Thus AlgorithmMinimum-Layer takes O(n) + O(n9 logn)
= O(n9 logn) time in total. �

6 Lower Bound

In this section we improve the lower bound on area for straight-line grid draw-
ings of plane graphs. We show that there exist plane 3-trees, for which the
improved bound holds.

One of the most famous and long standing conjectures states that any plane
graph G with n vertices can be drawn in ⌈ 2n

3 −1⌉×⌈ 2n
3 −1⌉ area [20]. Frati and

Patrignani [20] showed that this bound neglects at least a linear term. They
showed that there exists a plane graph with n vertices which requires at least
(2n3 −1)×(2n3 ) area where n is a multiple of three. This indicates that the known
(2n3 − 1) × (2n3 − 1) lower bound on area for the straight-line grid drawings of
plane graphs can be improved further. The lower bound on area is known to

be ⌊ 2(n−1)
3 ⌋ × ⌊ 2(n−1)

3 ⌋ area [8] which we improve to ⌊ 2n
3 − 1⌋ × 2⌈n

3 ⌉ area for
n ≥ 6.

Before showing the graphs for which the improved lower bound on area
holds, we describe the “nested triangles graphs”. Dolev et al. first exhibited
the “nested triangles graphs” in 1984, to obtain a lower bound on area (2n3 −
1)× (2n3 −1) for straight-line grid drawings of plane graphs where the outer face
is fixed [13]. Let t1, t2 be two disjoint 3-cycles in a graph G and Γ be a planar
drawing of G. Then t1 is nested in t2 in Γ, if t1 is drawn in the region enclosed
by t2. This relationship is shown by t2 > t1. We call a planar graph Gt with
n ≥ 3 vertices a nested triangles graph if the following (a) and (b) hold:

(a) if n = 3, then Gt is a 3-cycle;

(b) if n > 3, then Gt is a triangulated plane graph with exactly n/3 nested
triangles such that tn/3 > ... > t2 > t1.
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Algorithm 3 Minimum-Area(G)

1: Construct the representative tree T of G
2: for each vertex i of Tn−3 in preorder do
3: ACi[1, 1, 1, 1, 1, 1] = False
4: end for
5: {The outer vertices of G(Ci) are a, b and c; area stores the minimum area}
6: area=n2

7: for each h from 2 to n and each w from 2 to min(⌈n2

h ⌉, ⌈ n2

hm

⌉) do
8: for each vertex i of Tn−3 in preorder do
9: ax = w, ay = h

10: for 1 ≤ bx ≤ w , 1 ≤ by ≤ h , 1 ≤ cx ≤ w , 1 ≤ cy ≤ h do
11: if ACi[ax,bx,cx, ay,by,cy] = null then
12: Area-Checking (a,b,c)
13: end if
14: if i = root && ACi[ax,bx,cx, ay,by,cy] = true then
15: if area ≥ w × h then
16: area=wh
17: end if
18: end if
19: end for
20: bx = w, by = h
21: for 1 ≤ ax ≤ w , 1 ≤ ay ≤ h− 1 , 1 ≤ cx ≤ w , 1 ≤ cy ≤ h do
22: if ACi[ax,bx,cx, ay,by,cy] = null then
23: Area-Checking (a,b,c)
24: end if
25: if i = root && ACi[ax,bx,cx, ay,by,cy] = true then
26: if area ≥ w × h then
27: area=wh
28: end if
29: end if
30: end for
31: cx = w, cy = h
32: for 1 ≤ ax ≤ w , 1 ≤ ay ≤ h− 1 , 1 ≤ bx ≤ w , 1 ≤ by ≤ h− 1 do
33: if ACi[ax,bx,cx, ay,by,cy] = null then
34: Area-Checking (a,b,c)
35: end if
36: if i = root && ACi[ax,bx,cx, ay,by,cy] = true then
37: if area ≥ w × h then
38: area=wh
39: end if
40: end if
41: end for
42: end for
43: end for
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Algorithm 4 Area-Checking(a,b,c)

1: {a, b, c are outer vertices of G and p is the representative vertex}
2: if (max{ax, bx, cx} −min{ax, bx, cx} = 0) || (max{ay, by, cy}−
3: min{ay, by, cy} = 0) then
4: ACp[ax, bx, cx, ay, by, cy] = False
5: Xp[ax, bx, cx, ay, by, cy] = False
6: Yp[ax, bx, cx, ay, by, cy] = False
7: else if (max{ax, bx, cx} −min{ax, bx, cx} > 1) & (max{ay, by, cy}−
8: min{ay, by, cy} > 1) & (p is an internal node) then
9: for all integer points (px, py) inside the triangle with vertices a,b,c do

10: if Area-Checking(a,b,p)& Area-Checking(b,c,p)&
11: Area-Checking(c,a,p) then
12: ACp[ax, bx, cx, ay, by, cy] = True
13: Xp[ax, bx, cx, ay, by, cy] = px
14: Yp[ax, bx, cx, ay, by, cy] = py
15: break
16: end if
17: end for
18: else
19: Compute ACp[ax, bx, cx, ay, by, cy], Xp[ax, bx, cx, ay, by, cy]
20: and Yp[ax, bx, cx, ay, by, cy] by Theorem 5.1
21: end if

Lemma 12 Let Gt be a nested triangles graph with n vertices and t = (n/3)
nested triangles. Then there exists a plane 3-tree G∗

n with n vertices such that
G∗

n contains n/3 nested triangles.

Proof. The case t = 1 is trivial since G1 is a triangle which is the plane
3-tree G∗

3. So suppose that t > 1 and the lemma holds for all nested triangles
graphs having less than t nested triangles. We delete the three outer vertices
of Gt to get Gt−1. By induction hypothesis, there exists a plane 3-tree G∗

n−3

with (n/3) − 1 nested triangles. Let the outervertices of G∗

n−3 be d, e and f .
We put G∗

n−3 inside a triangle {a, b, c} and add the edges (a, e), (a, d), (a, f),
(c, f), (b, f), (b, e) as shown in Figure 11(a). The resulting graph is the required
G∗

n if it is a plane 3-tree and contains n/3 nested triangles. Since G∗

n−3 is a
plane 3-tree, we can delete its interior vertices recursively in such a way that
the resulting graph remains triangulated at each step. We can then delete
the vertices d, e and f one after another to obtain the triangle {a, b, c}. As
illustrated in Figures 11(b)–(d), the deletion of d, e, and f one after another
keeps the resulting graph triangulated at each step. Thus we can always delete
an inner vertex of G∗

n in such a way that at each step the resulting graph remains
a plane 3-tree; and hence, G∗

n is a plane 3-tree. Moreover, since the number of
nested triangles in G∗

n−3 is (n − 3)/3, the number of nested triangles in G∗

n is
n/3 in total. �
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Figure 11: Illustration for the proof of Lemma 12.

Fact 13 [20] Let Γ be any planar drawing of a graph G, and let t2 and t1 be
two disjoint 3-cycles of G such that t2 > t1 in Γ. The height (width) of t2 in Γ
is at least two units bigger than the height (width) of t1.

We denote by G′

6, G′

7 and G′

8 the three plane 3-trees depicted by Fig-
ures 12(a), (b) and (c), respectively.

6
G

7
G

8
G

(a) (b) (c)

Figure 12: Drawings of G′

6, G
′

7 and G′

8.

Fact 14 The minimum-area straight-line grid drawings for G′

6 requires 2×6 or
3× 4 area, G′

7 requires 3× 6 area and G′

8 requires 3× 8 or 4× 6 area.

Proof. We can prove the fact by case study or by Algorithm Minimum-Area
presented in Section 5. �

We now have the following theorem for the lower bound on area of plane
graphs. The proof of the theorem uses G′

6, G
′

7 and G′

8 as the building blocks
for the graphs attaining the lower bound with n ≥ 6 vertices as illustrated in
Figure 12. Note that when n is a multiple of three, this bound is the same as the
one by Frati and Patrignani [20]. In fact, the graph they used as the building
block is G′

6.

Theorem 6.1 For each n≥6, there is a n-vertex plane graph G such that the
area required to obtain a straight-line grid drawing of G is at least ⌊ 2n

3 −1⌋×2⌈n
3 ⌉.
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Proof. As an existential proof, we construct plane 3-trees for which the lower
bound holds. We form those graphs by enclosing G′

6, G′

7 and G′

8 with area
3× 4, 3× 6 and 4× 6 in the innermost triangle of G⋆

n−6, G
⋆
n−7 and G⋆

n−8 where
n = 3m, 3m+ 1 and 3m+ 2 for m ≥ 2, respectively. We enclose the drawings
of Figure 12(a) and (c) with area 3 × 4 and 4 × 6 since drawings enclosing the
alternative drawings of G′

6 and G′

8 will take the same or more area. Therefore
the new lower bound for the areaW×H follows from Fact 13–14 and Lemma 12.

W ×H =







(2n−5
3 )× (2n+4

3 ) if n = 3m+ 1 and m ≥ 2;
(2n−4

3 )× (2n+2
3 ) if n = 3m+ 2 and m ≥ 2;

(2n−3
3 )× (2n3 ) if n = 3m and m ≥ 2.

It can be easily shown that for all n ≥ 6, the lower bound for the area of a
n-vertex plane graph is ⌊ 2n

3 − 1⌋ × 2⌈n
3 ⌉. �

We conclude this section with the conjecture that for n > 6, the ⌊ 2n
3 − 1⌋ ×

2⌈n
3 ⌉ lower bound on the area requirement of plane graphs also hold for the

class of plane 3-trees shown in Figure 13.

. . . .

Figure 13: A class of plane 3-trees.

7 Conclusion

We have shown that for a fixed planar embedding of a plane 3-tree G, a
minimum-area drawing can be obtained in polynomial time. Since a plane
3-tree G has only linear number of planar embeddings, we can compute the
area requirements of all the embeddings of G and determine the planar embed-
ding which gives the best area bound; and thus we can obtain a minimum-area
drawing of G in polynomial time when the embedding of G is not fixed.

Since the area minimization problem for plane 3-trees can be solved in poly-
nomial time, it remains open to investigate whether any other computationally
hard problem in the area of graph drawing can be solved in polynomial time for
plane 3-trees. Many such problems yet to be analyzed can be found in [3, 6, 24].
It is a challenge to find a simpler algorithm for obtaining minimum-area draw-
ings of plane 3-trees and to explore further properties of this subclass of planar
graphs. It is also left as a future work to find other classes of planar graphs for
which the area minimization problem can be solved in polynomial time.

It is well known that if a decision problem on graphs of small “treewidth” can
be defined in “monadic second-order logic”, there is a linear-time algorithm for
testing the problem [11]. Since the “treewidth” of plane 3-trees is bounded by
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three, it would be interesting to study whether the area minimization problem
is definable in “monadic second-order logic” or not.
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