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Abstract

We give an algorithm to morph between two planar drawings of a
graph, preserving planarity, but allowing edges to bend during the course
of the morph. The morph is polynomial size and discrete: it uses a poly-
nomial number of elementary steps, where each elementary step is a linear
morph that moves each vertex along a straight line at uniform speed. Al-
though there are previously-known planarity-preserving morphs that do
not require edge bends, it is an open problem to find polynomial-size dis-
crete morphs. We achieve polynomial size at the expense of edge bends.
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1 Introduction

A morph from one drawing of a planar graph to another is a continuous trans-
formation from the first drawing to the second. This paper is about morphs that
preserve planarity—these exist only if the two drawings have the same faces and
the same outer face. See Figure 1 for some examples. A special kind of morph
is the linear morph of a planar straight-line drawing where every vertex moves
at uniform speed along a straight line. The linear morph does not preserve pla-
narity in general. A morph is discrete if it is composed of a sequence of linear
morphs, i.e. it is piece-wise linear.

Developments in the theory of planar morphing run parallel to the devel-
opments in planar graph drawing, though they lag behind. In particular, the
milestones in the history of planar graph drawing are: the existence results
for straight-line planar drawings due to Wagner, Fáry [11] and Stein; Tutte’s
algorithm to construct such drawings [28]; and, in 1990, the polynomial time
algorithms of de Fraysseix, Pach, Pollack [7] and independently Schnyder [23] to
construct a straight-line drawing of an n-vertex planar graph on an O(n)×O(n)
grid.

Mirroring these, the first result on morphing planar graph drawings was an
existence result: between any two planar straight-line drawings there exists a
morph in which every intermediate drawing is straight-line planar. This was
proved for triangulations, by Cairns [6] in 1944, and extended to planar graphs
by Thomassen [27] in 1983. Both proofs are constructive—they work by repeat-
edly contracting one vertex to another. The morphs are discrete. Unfortunately,
they use an exponential number of linear morphs. In addition, they are horri-
ble for visualization purposes, since the graph contracts to a triangle and then
re-emerges.

The next development was an algorithm to morph between any two pla-
nar straight-line drawings, preserving planarity and straight-line edges, due to
Floater and Gotsman [12] in 1999 for triangulations, and extended to planar
graphs by Gotsman and Surazhsky [25, 26] beginning in 2001. The morphs
are not given by means of explicit vertex trajectories, but rather by means of
“snapshots” of the graph at any intermediate time t. The authors give a poly-
nomial time algorithm to compute the snapshot for any specified t. By choosing
sufficiently many values of t, the morph gives good visual results, but there are
no guarantees. More specifically one would hope that between two consecutive
values of t, a vertex does not change position too much, and follows a relatively
straight path, but there is no guarantee of how fine-grained the set of t’s must
be to ensure this. In particular, the morph is not discrete. Furthermore, the
morph suffers from the same drawbacks as Tutte’s original planar graph draw-
ing algorithm in that there is no nice bound on the size of the grid needed for
the drawings.

The history of morphing planar graph drawings has not progressed to the
analogue of the small grid results of de Fraysseix et al.: It is an open problem
to find a polynomial size discrete morph between two given drawings of a planar
graph.
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Figure 1: Example morphs: (top) a morph preserving planarity and straight-line
edges; (middle) a linear morph (vertex trajectories shown as dashed lines) that
does not preserve planarity; (bottom) a planarity preserving morph allowing
edges to bend

In this paper we solve this problem provided that edges are allowed to bend
during the course of the morph. In other words, we subdivide edges by adding
new vertices that we call bends. We give a polynomial-time algorithm to find
a planarity preserving morph between two drawings of a planar graph on n
vertices, where the morph is composed of a sequence of O(n6) linear morphs.
During the course of the morph, an edge becomes a polygonal path with O(n5)
bends. Between successive linear morphs the drawings lie on an O(n3)×O(n3)
grid.

1.1 Related Work

Morphing is well-studied in graphics (see [16]), though the focus there is often
on image space morphs that transform pixels, as opposed to object space morphs
that operate on geometric objects. For morphing of geometric objects, a main
issue is establishing the right correspondence between the source object and the
target object. In our work we assume that such a correspondence is given. A
more mathematical treatment of morphing can be found in the survey by Alt
and Guibas [2].

In graphics, morphs are primarily sought for animation and visualization
purposes. However, structure-preserving transformations between geometric ob-
jects are useful in many other contexts. In motion planning [20], the goal is often
physical transformation between two configurations, and the prohibition against
self-intersection is inherent. Linkage reconfiguration problems—and unfolding
problems more generally [8]—require in addition that metric properties such as
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edge lengths be preserved.
In medical imaging, the problem of finding 3D interpolations between suc-

cessive 2D slices is a morphing problem in which time becomes the third dimen-
sion [3]. Morphing is also relevant to similarity measures, with the connection
made explicit in work on morphing of polylines [9, 5, 1]. Note that in this work,
the correspondence between source and target is not pre-specified.

We now return to the more specific topic of morphing graph drawings. This
has been addressed in the graph drawing literature by several practical ap-
proaches. Friedrich and Eades [13] formulate criteria for animation between
two graph drawings and give a procedure that partially satisfies these crite-
ria. A subsequent paper [14] augments this with clustering techniques, but
neither method preserves planarity. The Floater-Gotsman-Surazhsky algorithm
discussed above has been enhanced with a preliminary rigid motion stage in [10].

Restricting to special cases permits more theoretical guarantees. In previous
work we gave an algorithm to morph between two planar orthogonal drawings of
a graph, preserving planarity and orthogonality, and using a quadratic number
of linear morphs [22]. For other work on preserving directions while morphing
graph drawings, see [4, 24].

There is a substantial body of research on the special case of polygon mor-
phing. Gotsman and Surazhsky tailor their general algorithm to the case of
polygons [17]. A much stronger result, based on linkage reconfiguration, is
given by Iben et al. [19] who give an algorithm to find intersection-free poly-
gon morphs in which edge lengths change monotonically. There are other ap-
proaches to polygon morphing using a variety of different techniques (see ref-
erences in [19]), but none of them preserve planarity. It would be especially
interesting to have discrete versions of the Gage-Hamilton-Grayson result on
shrinking planar curves [15, 18].

1.2 Terminology

A planar drawing of a graph G = (V,E) assigns to each vertex v ∈ V a distinct
point p(v) in the plane, and to each edge e = (u, v) a path (or curve) from
p(u) to p(v) in such a way that paths intersect only at a common endpoint. A
planar straight-line drawing is a planar drawing in which every edge is drawn
as a straight line segment. A plane graph is one that has a planar drawing.
We assume that graphs are connected. Two planar drawings of a graph are
combinatorially identical if they have the same cyclic order of edges around
vertices and the same outer face.

We will consider drawings in which edges are drawn as polygonal paths. In
other words, we work with straight-line drawings of a subdivided graph in which
every edge has extra vertices added along it, called bends. We use the following
convention: the input graph has “original vertices” and “edges”; the subdivided
graph has “vertices” (original plus bends) and “segments”. Segments are drawn
as straight line segments, and an edge is a sequence of segments.

A morph from a drawing P of a graph G to a drawing Q of G is a continuous
family of drawings P (t), indexed by time t ∈ [0, 1] where each P (t) is a drawing
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of G, and P (0) = P and P (1) = Q. A morph preserves planarity if each P (t) is
planar.

A linear morph has the property that if the initial position of vertex v is
point p(v) and its final position is q(v) then at time t ∈ [0, 1] during the morph,
v is at point tq(v) + (1 − t)p(v). A morph is discrete if it is composed of a
sequence of linear morphs.

2 The Morphing Algorithm

We give an algorithm that takes two combinatorially identical planar straight-
line drawings P and Q of a connected graph G, and finds a planarity-preserving
morph from P to Q using a polynomial number of elementary steps that are
linear morphs. Edges are allowed to bend during the course of the morph.

Conceptually, the morph is simple. Let v1, v2, . . . , vn be the vertices of Q
ordered by increasing x-coordinate, with ties broken by increasing y-coordinate.
We first locate v1 in P—it must be on the outer face—and “pull it out” of the
drawing P until it is at the far left, allowing the edges incident to v1 to bend
in compensation. We then repeat with v2, v3 and so on until the vertices of P
appear in the same x-ordering as those of Q. If the “pulling out” is done with
care, the edges of P will now be polygonal paths monotone in the x direction.
We then perform a linear morph on P to adjust all vertices to the correct y
coordinate, thus straightening all the polygonal paths.

We now introduce some terminology and discuss the morph in more detail.
Throughout the morph, the drawing P changes but we will continue to refer to
it as P . The algorithm begins with a set-up phase in which we discretize the
x coordinates by placing a vertical line through each vertex of P . We also add
n vertical lines Li, 1 ≤ i ≤ n to the left of the drawing of P . See Figure 2.
Line Li will be the eventual home of vertex vi, and when all vertices vi reach
their line Li then the vertices of P will be in the same x-order as those of Q.
Throughout the course of the morph we will have a finite set of vertical lines,
and we will enforce the invariant that every vertex lies on one of the vertical
lines. Furthermore, we expand the definition of a bend : any intersection point
between an edge’s polygonal path and one of the vertical lines is a bend. We
will not consider original vertices to be bends.

The other part of the set-up phase involves planning the route each vertex
of P will follow as we pull it to its eventual position at the left. We augment Q
with an extra vertex v0 at the far left. We also augment Q with extra straight-
line edges so that every vertex vi, i = 1, . . . , n is adjacent to at least one vertex
with smaller x-coordinate. (A triangulation of Q contains such edges.) We
choose one entering edge ei for each vertex vi, i = 1, . . . , n so that ei joins vi to
a vertex of smaller x-coordinate. Observe that if ei = (vj , vi) then j < i, and
observe that the set of entering edges forms a tree rooted at v0. See Figure 2.

We augment P to match the augmented Q and its embedding by routing
each new edge as a polygonal path, preserving planarity (details below). We
add vertical lines through any new bend vertices to maintain the invariant that
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Figure 2: Set up phase. Edges with arrows are the entering edges that form a
tree rooted at vertex 0. The new edge from vertex 0 to vertex 1 is drawn with
a bend in P .

every vertex lies on a vertical line.
In the main body of the algorithm, vertices are pulled to the left one by one.

Figure 3 shows an example. In iteration i = 1, . . . , n, vertex vi is pulled along
the path of its entering edge ei until it reaches line Li. This is accomplished by
repeatedly moving vi along the last segment of ei from the vertical line on which
vi currently lies to an adjacent vertical line—i.e. to the next bend along ei. We
call this the main step of the algorithm, and give details below. Each main step
is preceded by a straightening step that modifies the paths of the edges incident
to vi. This is done in order to enforce certain properties of the drawing in the
vicinity of vi, which we describe in more detail below.

The final phase of the algorithm is a linear morph from P to Q. We prove
that it preserves planarity by proving that, after the main body of the algorithm,
the trapezoidizations of P and Q are combinatorially the same.

We summarize the algorithm as follows:

Algorithm 1: Morph

1 perform set-up phase on P and Q
2 morph P as follows
3 for i = 1 . . . n do
4 repeat
5 perform the straightening step on vi to enforce Property 1 (stated

below)
6 morph to move vi along the last segment of ei
7 until vi is on Li

8 end
9 perform a linear morph on the vertices of P to match Q

We finish this section with a description of the property enforced by the
straightening step of the algorithm, and a discussion of some other invariants
maintained by the algorithm.

We define an edge to be an incoming edge to vi if its other endpoint is
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Figure 3: Example morph (read across the rows). The vertex that is about to
move is drawn with a heavy dot. Several steps are omitted near the end.
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a lower indexed vertex, and an outgoing edge otherwise. Thus the incoming
edges to vi are exactly those incident to the left of (or vertically below) vi
in drawing Q. Note also that the entering edge of vi is one of its incoming
edges. The linear order of incoming edges to vi in Q is the order of incoming
edges counterclockwise around vi from topmost to bottommost. Note that in
the drawing P the incoming edges appear contiguously in the cyclic ordering of
edges around vi.

The straightening step enforces the following property of the drawing P (see
Figure 5).

Property 1
1. Either all incoming edges enter vi strictly from the left of the line through

vi, or they all enter strictly from the right. Furthermore, their ordering—top-
to-bottom if on the left, and bottom-to-top if on the right—matches their linear
order in Q.

2. If l′ is the adjacent vertical line on the side of the incoming edges, there
are no other vertices along l′ between the incoming edges.

We note that the second clause of Property 1.1 is redundant if vi has an
outgoing edge, but in case vi has only incoming edges, it prohibits the possibility
that the cyclic order of incoming edges is broken into different linear orders in
Q and [the straightened] P .

Throughout the algorithm we maintain the following property of drawing P :

Property 2
1. the part of each edge that appears in the interval L1 . . . Ln is a monotone

path
2. a vertical edge segment is never incident to a bend

Properties 2.1 and 2.2 both hold initially and after the set-up phase. Prop-
erty 2.2 is easy to maintain: if morphing ever produces a vertical edge segment
incident to a bend, we can morph the bend away.

The following subsections contain detailed descriptions of the four steps of
the algorithm: set-up; straightening; the main step; and the final linear morph.
The ordering of sections reflects the order of the steps in the algorithm, but the
reader might wish to begin with the main step in Section 2.3. Analysis of the
number of elementary steps and the run time is in Section 3.

2.1 Set-Up

The one set-up issue that warrants further explanation is adding the new en-
tering edges to the drawing P . If entering edge ei is added to Q, then it must
be added to the same face in P . Furthermore, in case ei is added to the outer
face, there are still two ways to do this, and we must choose the one that gives
the same resulting outer face as in Q.

Because planarity must be maintained, a new edge cannot always be drawn
as a straight line segment, and must in general be drawn as a polygonal path
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in P . We give some details about routing these paths. Note that there are at
most n new edges, and each one joins two vertices in a common face, and no
two cross (in the combinatorial sense) because they form a planar augmentation
of drawing Q.

Construct a trapezoidization of P . Note that this is a conventional trape-
zoidization where a vertical segment extended through a vertex stops when it
hits an edge. (In most of the paper, vertical lines extend all the way.) We
obtain O(n) trapezoids. Note that we allow vertically collinear vertices, so a
trapezoid may have more than one vertex on the left or right. For each face of P
the trapezoids are joined in a tree-like fashion. Each new edge ei goes through
a sequence of trapezoids that corresponds to a path. It remains to route the
new edges through the trapezoids. At most O(n) edges cross the vertical line
segment between two adjacent trapezoids—space them nicely along the line seg-
ment. Each trapezoid τ is traversed by at most O(n) [portions of] edges—draw
these as disjoint paths in τ using one or two line segments each. See Figure 4.
Note that each new edge ei is routed as a polygonal path with O(n) bends. In
fact, there is great freedom in routing the new edges, and this bound is the only
thing we need. Remember that we add new vertical lines through any bends.

Figure 4: Routing new edges (dashed) through the trapezoids.

2.2 Straightening Step

In this section we show how to morph P to achieve Property 1 for vertex vi
just prior to each invocation of the main step of the algorithm. Figure 5 (left)
shows an example where both conditions of Property 1 are violated: vertex vi
has an incoming edge from the left and from the right, and vertex p lies between
two incoming edges on line l′. Observe that in both cases there is an edge that
crosses a vertical line twice, forming an empty polygonal area (darkly shaded
in the figure). More formally, a redundant path in a planar graph drawing is a
subpath of an edge that forms a polygonal curve C with initial vertex s and
final vertex t both on vertical line l, and with the property that C plus line
segment st forms a simple polygon; in particular this means that no other part
of the drawing crosses or touches line segment st. Our first goal is to collapse
a redundant subpath using a planarity preserving morph. Following that, we
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prove that eliminating redundant subpaths enforces Property 1, and we show
how to find redundant subpaths.

Li

vi

ei

f

p

ll'

h
g

vi

ei

f

ll'

h
g

Figure 5: (left) Property 1 fails because incoming edge f enters vi at the oppo-
site side from ei, and intervening point p lies on line l′ between the incoming
edges; (right) Property 1 holds after redundant paths (darkly shaded at left)
are morphed away.

Lemma 1 Suppose C is a k-vertex redundant path with initial vertex s and
final vertex t on vertical line l. Let D be the simple polygon formed by C plus
segment st. Then C can be morphed inside polygon D to segment st via a morph
composed of O(k) linear morphs each of which moves one vertex.

Proof: The vertical lines partition D into trapezoids (including triangles as
degenerate trapezoids). The trapezoids are connected in a tree, which we can
root at the trapezoid that has st on its boundary. Starting from the leaves of
this tree, we morph trapezoids away. See Figure 6. In the case of a triangle,
with vertices x and y on one vertical line and z on an adjacent line, we morph
by moving z to x. This is shown in Figure 6(a)–(b), (b)–(c) and (e)–(f). In the
case of a trapezoid with more vertices, we morph by moving one vertex at a
time along its vertical line until we reduce to a triangle. Figure 6(c)–(f) shows
a 5-vertex trapezoid morphed away in three steps. This process uses one linear
morph per vertex, with each linear morph moving one vertex. �

When a redundant path is morphed away, it leaves a vertical segment. If
either endpoint of the vertical segment is a bend, we morph one bend away as
shown in Figure 6 (g)–(h). This is done to maintain Property 2.2.

We now prove that if Property 1 fails, then there are redundant subpaths.
Recall that drawing Q determines a linear order of incoming edges to vi. Let
f = (vj , vi) and g = (vk, vi) be consecutive edges in this linear order. The
entering edges form a tree rooted at v0. Let vr be the least common ancestor of
vj and vk in this tree. Take paths from vr to vj and from vr to vk in the tree.
Adding the edges f and g yields a cycle Bfg in the graph. In drawing Q, this
cycle is drawn as two x-monotone paths, the upper one from vr to vi through
f , and the lower one from vr to vi through g. Note that the two monotone
paths are in fact strictly monotone except that the last edge g may be a vertical
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Figure 6: Morphing away the trapezoids of a redundant path and the final
segment st. The vertex that is about to move is drawn with a heavy dot. Four
steps are omitted between (f) and (g).

edge. Every vertex on or inside the cycle Bfg has index less than i. We now
consider the appearance of this cycle in drawing P during the ith iteration of the
algorithm. With the exception of vi, all vertices on or inside Bfg have already
been pulled to their lines at the far left, to the left of Li. By Property 2.1 all
edges are monotone curves in the interval L1 . . . Li and therefore all edges on
or inside Bfg lie to the left of Li except for f and g, which cross Li once with
f above g. Consider the polygon Dfg formed by the path of f from Li to vi,
the path of g from vi to Li and the line segment on Li between f and g. An
example polygon is lightly shaded in Figure 5. Polygon Dfg is contained in
cycle Bfg and the above discussion implies:

Claim 2 Polygon Dfg contains no other part of the drawing.

We now use this claim to show (in the following two lemmas) that if either
condition of Property 1 fails, then there is a redundant path. We begin with
Property 1.1. Note that although Figure 5 happens to show a case where elim-
ination of redundant paths results in all incoming edges entering from the left,
there is nothing in the following lemma or its proof that refers to left/right.

Lemma 3 Suppose that during iteration i of the algorithm, with vi on line l in
drawing P , Property 1.1 fails. Then there is a redundant path that is a subpath
of one of vi’s incoming edges with one endpoint at vi and the other endpoint on
l.

Proof: We first show that no incoming edge reaches vi via a vertical segment.
The other end of such a segment cannot be a bend because of Property 2.2, and
cannot be an initial vertex because the incoming edges come from vertices that
have already been moved to the L lines in previous iterations of the algorithm.
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The hypothesis implies that the counterclockwise wedge between the first
and last incoming edge to vi does not remain strictly to the left or to the right
of l, and therefore that this wedge must include either the vertical ray above vi
or the vertical ray below vi—suppose the former (the other case is symmetric).
We obtain edges f and g, consecutive in the linear order of incoming edges,
such that the vertical ray above vi starts out strictly inside the polygon Dfg (as
described above). By Claim 2, Dfg is empty. Traversing up line l from vi, we
are at first inside Dfg. The first point where we exit Dfg is a bend vertex of f
or of g, and gives a redundant path in f or g. �

Lemma 4 Suppose that during iteration i of the algorithm, with vi on line l in
drawing P , Property 1.1 holds, with incoming edges arriving from adjacent line
l′, but Property 1.2 fails. Then there is a redundant path that is a subpath of
one of vi’s incoming edges with endpoints on l′, and with one of the endpoints
being a bend joined by a single incoming segment to vi.

Proof: Let B be the set of bends on l′ that are sources of incoming segments
to vi. Let s be the line segment on l′ between the topmost and bottommost
bend of B. By hypothesis, there is an “intervening” vertex b on s that is not
in B. Vertex b lies between two bends of B—suppose they are bends bf and bg
of incoming edges f and g respectively, with f before g in the linear order of
incoming edges, i.e f above g if l′ is to the left of l, and f below g if l′ is to the
right of l. (In Figure 5 intervening bend p lies between consecutive incoming
edges g and ei. Note that in the figure, l′ is to the left of l, but the proof does
not make any such assumption.) Let Dfg be the polygon between f and g as
described above. By Claim 2, Dfg is empty. The empty open triangle bf , vi, bg
lies inside Dfg, and therefore any intervening vertex in the interval bfbg is a
bend of Dfg. Let xf be the intervening vertex closest to f in this interval, and
let xg be the intervening vertex closest to g in this interval (they may be the
same vertex). If xf is part of edge f then endpoints bf and xf form a redundant
subpath of f . Otherwise xf is part of edge g, and, since f and g cannot cross,
therefore xg must also be part of edge g. In this case endpoints bg and xg form
a redundant subpath of g. �

In order to find redundant paths of the types guaranteed in Lemmas 3 and 4
it suffices to be able to find, from any vertex, the next vertex above/below on
the same vertical line. To implement the algorithm, we will store all these sorted
orders. Further discussion of run time can be found in Section 3.

2.3 Main Step of the Algorithm

In the main step of the algorithm, vertex vi is moved from its current vertical line
to an adjacent line along the path of entering edge ei. The main step is invoked
repeatedly during iteration i of the algorithm to move vertex i one bend at a
time along the entering edge ei until vi reaches Li. Iterations 1, . . . , i− 1 have
already moved vertices v1, . . . , vi−1 to lines L1, . . . , Li−1 respectively. When the
main step is called, the straightening step has just enforced Property 1 for vi.
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We also assume that Property 2 holds so far, and prove below (Lemma 6) that
it holds at the end of iteration i.

p
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Figure 7: The main step of the algorithm moves vi along the last segment of
ei. Edges outgoing to l3 acquire new bends on l2. Edges outgoing to l1 may
acquire new bends in-between l1 and l2.

The operation of the main step is local, altering only the position of vi and
the vertices (original or bend vertices) joined to vi by a single segment. These
vertices all lie on line l2, the line of vi, and its predecessor l1 and its successor l3.
Since vertices only occur on vertical lines, portions of edges between adjacent
vertical lines are straight, which makes it possible to use linear morphs. By
Property 1 all incoming edges to vi are contiguous and arrive from the same
side—denote the line on that side (l1 or l3) by l′, and denote the line on the
other side by l′′. By Property 1 there are no vertices along the line l′ between
the incoming edges. Note that all incoming edges come from lower numbered
vertices that have already been pulled to the L lines at the far left. This does
not imply that incoming edges enter from the left—see for example vertex 3 in
Figure 3 which is pulled to the right along its entering edge before eventually
being pulled left. However, it does imply that incoming edges cross l′ at bend
vertices.

Figure 7 shows an example of the main step of the algorithm in the case
where l′ = l1. Notation: Let p be the position of vi on l2 and let q be point
where the last segment of ei from l′ to vi crosses l′. We morph as follows:

Vertex vi moves from p to q.

Incoming edges arrive from bends on l′. Move these bends along l′ to q. (See
edges e1 and e2 in Figure 7.)

Outgoing edges have several cases:
(A) Any edge to l′′ acquires a new bend on l2, initially at p, and with final
positions nicely spaced on l2. (See e5 and e6.)
(B) There may be an edge lying on l2, in which case it goes to an original vertex
(not a bend). Leave the vertex fixed. (See e7.)
(C) Finally, consider an edge to a vertex t on l′. Suppose first that the interval
along l′ between q and t contains only bends connected to vi by a single segment.
If t is a bend then move t to q. (See e8.) If t is an original vertex then t stays



218 Lubiw and Petrick Morphing Planar Graph Drawings

fixed and the edge (vi, t) morphs to lie along l′. (See e3.) For the last case,
suppose that there is an intervening vertex along l′ between q and t. In this
case t stays fixed and the segment (vi, t) morphs to a two-segment path that
bends around the intervening vertex. (See e4 and e5.)

It remains to specify exactly where to place new bends. We will do that
next, and we will show that each main step can be accomplished via two linear
morphs, the dividing point being when the new bends appear in-between l′ and
l2.

Follow the example in Figure 8 (but note that the example shows l′ = l1 and
the text is more general). This figure does not show vi’s incoming edges (other
than ei) because they play no role in the construction. Let bu be the lowest
intervening vertex above q on line l′, and let bl be the highest intervening vertex
below q on line l′. See Figure 8(a). Pick a range C on l2 in which to place the
new bends on the edges that go from vi to l′′. Expand C if necessary to include
any vertices on l2 joined via a single segment to vi. Let W be the wedge from
q to interval C. See Figure 8(b). Choose vertical line l between l′ and l2 such
that the intersection of l and W lies strictly above the horizontal line through bl
and strictly below the horizontal through bu. As described above, we perform a
morph that moves vi from p along the edge ei to q. We divide the morph into
two linear morphs: before and after vi reaches l. Until vi reaches l, the edge
segments from l′ to vi remain straight. When vi reaches l we place a new bend
on every edge segment that crosses the horizontal lines through bu and bl. See
Figure 8(d). These new bends stay fixed as vi moves from l to q.

Observe that this construction maintains planarity. In particular, the edges
that acquire new bends in the strip between l′ and l will not intersect with each
other or with the old outgoing edges of vi (which live in the wedge W ). We
summarize with:

Claim 5 The main step of the algorithm uses 2 linear morphs, maintains pla-
narity, maintains Property 2.2, and shortens ei by one segment.

Recall that the main step of the algorithm is repeated in iteration i of the
algorithm until vi is on Li. The argument that vi eventually reaches Li is not
obvious, since the number of repetitions depends on the number of bends on
ei, and the main step may increase this number. We will bound the number
of repetitions in Section 3. For now, we wrap up assuming that the algorithm
halts:

Lemma 6 At the end of the main loop of the algorithm, drawing P has been
morphed so that vertices v0, . . . , vn lie on lines L0, . . . , Ln respectively, all edges
appear as monotone paths, and the incoming edges at each vertex enter from the
left and in the same linear order (top to bottom) as in Q.

Proof: We prove by induction on i that at the end of iteration i, vertices
v0, . . . , vi lie on lines L0, . . . , Li respectively, Property 2 holds (i.e. all edges
appear as monotone paths in the interval L0, . . . , Ln), and the incoming edges
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Figure 8: How to add new bends: (a) initial situation; (b) placing wedge W
(shaded) and line l; (c) moving vi to l; (d) placing new bends (hollow); (e) final
situation.

at each vertex v1, . . . , vi enter from the left and in the same linear order (top to
bottom) as in Q. The basis case is i = 0.

Consider iteration i ≥ 1. By induction vertices v0, . . . vi−1 lie on lines
L0, . . . , Li−1. By induction and Property 2, the incoming edges to vi form
monotone paths in the interval L1, . . . , Ln.

The main step affects only the vertical strips to the left and right of vi,
so paths in the range L1 . . . Ln are affected only when vi reaches those lines.
Consider the invocation of the main step that moves vi to the line Ln. At this
point, the entering edge ei consists of a monotone path in the interval L1, . . . , Ln

plus one segment from Ln to vi. By Property 1 all the other incoming edges to vi
also arrive at vi from Ln and their top-to-bottom ordering matches their linear
order in Q. Each incoming edge consists of a monotone path in the interval
L1, . . . , Ln plus one segment from Ln to vi.

The invocations of the main step that move vi to Ln, Ln−1, . . . , Li behave
in a particularly simple way. Incoming edges always arrive from the left and
outgoing edges leave to the right. The main step shortens the incoming edges
by one segment and lengthens the outgoing edges by one segment. All of these
edges form monotone paths in the interval L1, . . . , Ln, and the order of incoming
edges to vi does not change. Therefore, when vi reaches Li, Property 2 holds,
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and the incoming edges to vi enter from the left and in the same top to bottom
order as in Q. By induction, the lemma is proved.

�

2.4 Final Linear Morph

The last step of the algorithm is a linear morph from P to Q. We justify
correctness.

After the main loop of the algorithm, the drawing P has been morphed so
that the x-coordinate ordering of the original vertices matches their index order-
ing, which is the x-coordinate ordering in Q with ties broken by y-coordinate.
Furthermore, by Lemma 6, all the edges of P are monotone paths, and the
incoming edges enter each vertex from the left, as in Q, and in the same linear
order as in Q.

Consider the trapezoidization of P determined from the vertical lines and
consider the trapezoidization of a perturbed version ofQ where vertically collinear
vertices are moved slightly apart to match the index ordering. By the above-
mentioned properties, these trapezoidizations are combinatorially the same. A
linear morph applied to a single trapezoid maintains planarity (allowing the
trapezoid to collapse at the end of the morph). Thus the linear morph from P
to Q maintains planarity, since it acts as a linear morph applied simultaneously
to all the trapezoids.

3 Analysis

In this section we give a bound on the number of elementary moves required by
our morph, and on the run time of the algorithm that computes the morph. In
subsection 3.1 we discuss the grid size of intermediate drawings. All analyses
are in terms of n, the number of vertices of the input graph.

We will prove that our morph is composed of O(n6) linear morphs, and that
a complete description of the morph has size O(n6). The second result does not
follow from the first since a single one of our linear morphs may move as many
as n vertices.

We begin by discussing the main ideas and difficulties. The number of linear
morphs used by the algorithm depends directly on the number of bends, but
each step of the algorithm creates new bends. In particular, the final case of the
main step of the algorithm (see the right-hand pane of Figure 7) may introduce
new bends, which require new vertical lines. Each crossing of a new vertical line
by an existing edge counts as a new bend. Thus, eliminating one bend of ei may,
in the worst case, cause a quadratic increase in the number of bends, which is
potentially very dangerous. To circumvent the danger, we focus on turns, which
are bends where the path changes x-direction, and we examine more closely the
straightening step and the main step of the algorithm, and argue that turns are
propagated rather than created. Looking at the big picture, the intuition is that,
since iteration i of the algorithm causes each outgoing edge of vi to follow the
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path of the entering edge ei, thus, at worst, we copy the turns of ei onto all the
outgoing edges of vi.

We begin by defining a turn more precisely. Let e be an edge from vj to
vk with j < k, drawn as some polygonal path. If b is a bend in e (i.e. a point
distinct from vj and vk where e intersects one of the vertical lines) and the two
segments of e incident to b lie on the same side of b (i.e. both to the left or both
to the right) then b is a turn. Furthermore, there is one situation in which we
count the initial endpoint vj of e as a turn: if the entering edge ej arrives at
vj on the same side as the outgoing edge e leaves, then vj is a turn associated
with e. In order to distinguish the two kinds of turns, we will call them internal
turns and endpoint turns respectively.

We first bound the number of turns after the set-up phase.

Lemma 7 After the set-up phase each edge has O(n) turns; in the worst case
there may be Ω(n2) turns in total.

Proof: In a straight-line drawing an edge can have at most one turn, the one
at its initial endpoint. The set-up phase introduces edges with bends, but as
noted in the detailed description in Section 2.1, each new edge is drawn as a
polygonal path of O(n) bends, hence O(n) turns. See Figure 9 for an example
of the lower bound construction. It is easy to see that this can be generalized.

�

Q P

Figure 9: The set-up phase can create Θ(n2) turns: (left) New entering edges
added to Q (shown dashed); (right) Each new entering edge will be drawn with
many turns in P . This can be generalized to Θ(n) entering edges with Θ(n)
turns each.

We now argue that during the course of the main loop of the algorithm,
turns are not created, but only propagated—specifically from ei to the outgoing
edges of vi.

Lemma 8 During iteration i, the only changes to turns are the following: (1)
an internal turn of ei may “propagate” to being an endpoint turn of [some of
the] outgoing edges of vi; (2) an endpoint turn of an outgoing edge of vi may
become an internal turn of that edge; (3) turns may vanish.
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Proof: First consider the straightening step, which eliminates a redundant
subpath of an edge, say e, incoming to vi. No internal turns are created along
e, and all internal turns along the redundant subpath vanish. Note that there is
at least one such turn that vanishes. Thus the changes to e are fine. The only
remaining issue is that eliminating a redundant subpath of e = ei may change
the direction that ei enters vi and thus cause new endpoint turns to appear on
outgoing edges. This is covered by case (1).

Now consider the main step. See Figure 7. Let f be an edge that acquires
a new internal turn (for example e4 and e5 in the figure). Then f originally
leaves vi on the same side as ei and therefore has an endpoint turn at vi.
After the morph, f become incident to vi on the opposite side, so we have case
(2): an endpoint turn of f becomes an internal turn of f . The last thing to
consider is the possibility of new endpoint turns. These only occur: (a) when
an outgoing edge changes its side of incidence to vi; or (b) when ei changes its
side of incidence to vi. Case (a) is fine because no outgoing edge moves from
the opposite side to the same side as the initial ei. Case (b) only occurs if point
q (the target point of vi) was a bend of ei, which is covered by case (1) in the
Lemma statement. �

We now get a bound on the total number of turns, and thus on the total
number of bends.

Lemma 9 Over the course of the morph each edge has O(n2) turns.

Proof: We count the total number of turns that propagate to a particular edge
e = (vj , vk). The entering edges ei form a directed tree T rooted at v0. The
path in T from v0 to vj has at most n edges, and by Lemma 7 each edge has
O(n) original turns that may propagate onward. Thus there are at most O(n2)
turns that can propagate to edge e. Since propagation is the only way that
turns appear, this proves that there are O(n2) turns per edge. �

Lemma 10 Over the course of the morph an edge will have at most O(n5)
bends.

Proof: By Lemma 9 above there are O(n2) turns per edge, thus O(n3) turns
in the whole drawing. Each vertical line goes through a turn or a vertex so
there are O(n3) vertical lines. Now any edge has O(n2) turns, and each section
between consecutive turns can at worst cross all the O(n3) vertical lines. This
gives a total of O(n5) bends per edge. �

To be more rigorous about turns and bends appearing and disappearing we
should really label them. Label each turn with a 3-tuple consisting of: the edge
on which the turn currently lies, the original edge that hosted the turn after
the set-up phase, and the index of the turn (1 . . . n) on that original edge. We
label a bend with the label of the preceding turn along its edge and the label
of the turn whose vertical line created the bend. As the arguments above show,
there are O(n2) turn labels per edge, and O(n5) bend labels per edge. Each
turn/bend has a unique label, and a label never recurs.
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Lemma 11 Over the course of the algorithm the straightening steps use O(n6)
linear morphs in total, and each of these linear morphs moves O(1) vertices.

Proof: By Lemma 1, eliminating a redundant polygon of k bends takes O(k)
linear morphs each moving O(1) bends. Each morph eliminates a bend. By
Lemma 10 there are O(n6) bends in total. This proves the lemma. �

Lemma 12 Let di be the degree of vertex vi. One main step of the algorithm
in iteration i takes 2 linear morphs, each moving at most di + 1 vertices. It can
be described in size O(di).

Proof: Claim 5 justified the use of 2 linear morphs per main step of the algo-
rithm. The main step moves only vi and the vertices joined to vi by a single
segment—hence at most di +1 vertices. A linear morph that moves t points can
be described in size O(t). �

Lemma 13 Over the course of iteration i the main steps of the algorithm use
O(n5) linear morphs in total and can be described in size O(din

5). Over the
course of the whole algorithm the main steps use O(n6) linear morphs and can
be described in that size.

Proof: Iteration i moves vi along ei until it reaches Li. The number of main
steps is equal to the number of bends on ei. Combining Lemmas 10 and 12
gives the result for one iteration. To get the bound for all n iterations note that∑

i di is O(n) for a planar graph. �

Theorem 1 Between any two drawings of an n-vertex planar graph there is a
planarity preserving morph that uses O(n6) linear morphs and has a complete
description of size O(n6). Furthermore, there is an algorithm to compute a
description of the morph that runs in time O(n6).

Proof: The first statement follows from combining Lemma 11 for the straight-
ening steps and Lemma 13 for the main steps.

We now discuss the run time of the algorithm. It suffices to implement
the algorithm in such a way that each elementary step can be found in time
proportional to the number of vertices that are moved, since we have an O(n6)
bound on that. The cost of accessing vi’s neighbours is then covered. The
one thing to worry about is the time spent on finding intervening vertices in the
straightening step and in the main step, and the time spent on finding redundant
paths in the straightening step.

To handle this we will maintain the sorted order of vertices along each verti-
cal line. Then the cost of finding each redundant path in the straightening step
is constant, and the cost of computing one of the main step morphs in iteration
i is proportional to the degree of vi.

After we insert a new vertical line we must explicitly find and store its sorted
list of bends. The list can be found by following the list of bends on an adjacent
vertical line, and the time to do this can be charged against the bends. Thus
we can implement the algorithm to run in time O(n6). �
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3.1 Analysis: Grid Size

Throughout the morph, the number of distinct x-coordinates is equal to the
number of vertical lines, which is O(n3). This is because a vertical line goes
through an original vertex or a turn and there are O(n3) turns by Lemma 9. A
bound on the number of vertical lines is not quite a bound on grid size because
the vertical lines are not equally spaced, but it is easy enough to enhance the
algorithm to maintain the property that the vertical lines are x = 1, x = 2, etc.
Whenever a new vertical line is about to be added, perform a linear morph to
push all later vertical lines one unit to the right. Such a linear morph preserves
planarity of the whole drawing because it preserves planarity of each trapezoid.

We can do a similar thing to force the y-coordinates to a grid. First note
that the number of vertices along any vertical line is O(n3). This is because
each edge crosses the line O(n2) times, once after each turn. We can maintain
the property that vertices along each vertical line lie at consecutive coordinates
y = 1, y = 2, etc. As before, this is done by adding an extra linear morph
before each step of the algorithm to shift the vertices vertically and make room
for new ones.

With these enhancements to the algorithm we can guarantee that the draw-
ings between the linear morphs lie on the grid.

Theorem 2 Between any two drawings of an n-vertex planar graph there is a
planarity preserving morph that uses O(n6) linear morphs and has the property
that every intermediate drawing lies on an O(n3)×O(n3) grid.

Observe that we have lost the property that each linear morph in the main
part of the algorithm moves only a local set of vertices (specifically, those joined
to vi by one segment). It may be possible to keep the description size of the
morph down to O(n6) because the grid-maintaining morphs move sets of vertices
that can be described succinctly, but we do not pursue this idea.

Note that for visualization purposes it may be much better to preserve long
straight subpaths of edges than to do the overly rigid grid-preservation described
above. A practical compromise might be to let the drawing grow naturally for
a while, and then recoup a compact grid every once in a while.

Our morph does not guarantee nice vertex-edge distances: for example an
edge from (1, 1) to (2,M) passes close to a vertex at (1, 2). A consequence of
this is that an edge can become very short during one of our linear morphs,
even though the minimum edge length is 1 when the graph is on the grid.

4 Conclusion

We have given a planarity-preserving morph between any two combinatorially
identical planar drawings of a graph. The main contribution is that our morph
consists of a polynomial-size sequence of linear morphs. However, we had to
add bends to the edges. We leave open the question of finding a morph that
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consists of a polynomial-sized sequence of linear morphs and preserves straight-
line edges.

Short of a new idea to solve this open question, it should still be possi-
ble to improve our results, because the O(n6) bound on the number of linear
morphs seems excessive. One possibility would be to work with a trapezoidiza-
tion (where each vertex extends a vertical segment only to the next edge) rather
than extending vertical lines to form a complete grid. Another possibility would
be to bundle vi’s incoming edges so that they can be handled as one edge—this
might be possible by performing straightening steps in batches ahead of time
rather than deferring them until required.

Another interesting problem would be to analyze the Floater-Gotsman-
Surazhsky algorithm and prove that some efficiently computable set of time
steps t yields a polynomially-bounded discrete morph.

Finally, we have not explored visualization at all. Is our strategy of pulling
successive vertices out of the drawing at all useful for visualization purposes?
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