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Abstract

We show how to test whether a graph with n vertices and m edges is a
partial cube, and if so how to find a distance-preserving embedding of the
graph into a hypercube, in the near-optimal time bound O(n2), improving
previous O(nm)-time solutions.
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1 Introduction

A partial cube is an undirected and unweighted graph that admits a simple
distance-labeling scheme: one can label its vertices by bitvectors in such a way
that the distance between any two vertices equals the Hamming distance be-
tween the corresponding labels (Figure 1). That is, the graph can be isometri-
cally embedded into a hypercube.

Graham and Pollak [26] were the first to discuss partial cubes, for an appli-
cation involving communication networks. Since then, these graphs have been
shown to model a large variety of mathematical systems:

• In computational geometry, the adjacencies between the cells in any hyper-
plane arrangements (represented as a graph with a vertex per cell and an
edge between any two cells that share a facet) forms a partial cube [21,35].
As a second geometric example, the flip graphs of triangulations of certain
point sets also form partial cubes, a fact that can be used to compute flip
distance efficiently for these triangulations [19].

• In order theory, the family of total orders over a finite set (with adjacency
defined by transpositions), the family of linear extensions of a finite par-
tially ordered set (again with adjacency defined by transpositions), the
family of partial orders of a finite set (with adjacency defined by inclu-
sion or removal of an order relation between a single pair of items), and
the family of strict weak orders on a finite set (with adjacency defined by
inclusion or removal of a separation of the items into two subsets, one of
which is less than the other in the weak order) all form partial cubes [21].
For instance, the permutohedron shown in Figure 1 can be interpreted as
the graph of total orders of a four-element set.

• In the combinatorial study of human learning, antimatroids (called in this
context “learning spaces”) form a standard model of the sets of concepts
that a student could feasibly have learned: they are defined by the axioms
that such a set may be learned a single concept at a time, and that the
union of two feasible sets is another feasible set. In this context, the state
space of a learner (a graph with a vertex for each feasible set and an edge
connecting any two sets that differ in a single concept) forms a partial
cube [13,21].

• In organic chemistry, the carbon backbones of certain benzenoid molecules
form partial cubes [36], and partial cube labelings of these graphs can be
applied in the calculation of their Wiener indices [31].

Partial cubes admit more efficient algorithms than arbitrary graphs for sev-
eral important problems including unweighted all-pairs shortest paths [20], and
are the basis for several graph drawing algorithms [14,16,18,22].
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Figure 1: A partial cube, with labeled vertices. The distance between any pair
of vertices equals the Hamming distance between the corresponding labels, a
defining property of partial cubes.

1.1 New Results

In this paper we study the problem of recognizing partial cubes and assigning
labels to their vertices. We show that both problems can be solved in time
O(n2), where n is the number of vertices in the input graph. Our algorithm has
two phases:

• In the first phase, we assign bitvector labels to each vertex. It would be
straightforward, based on previously known characterizations of partial
cubes, to assign a single coordinate of each of these labels by perform-
ing a single breadth-first search of the graph; however, the labels may
require as many as n− 1 coordinates, and performing n− 1 breadth-first
searches would be too slow. To speed this approach up, we use the bit-level
parallelism inherent in computer arithmetic to assign multiple coordinate
values in a single breadth-first pass over the graph. This part of our al-
gorithm depends on a RAM model of computation in which integers of
at least log n bits may be stored in a single machine word, and in which
addition, bitwise Boolean operations, comparisons, and table lookups can
be performed on log n-bit integers in constant time per operation. The
constant-time assumption is standard in the analysis of algorithms, and
any machine model that is capable of storing an address large enough to
address the input to our problem necessarily has machine words with at
least log n bits.
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• In the second phase, we verify that the labeling we have constructed is
indeed distance-preserving. The labels produced in the first phase can be
guaranteed to have a Hamming distance that is either equal to the graph
distance, or an underestimate of the graph distance; therefore, in order to
verify that the labeling is distance-preserving, it suffices to construct paths
between each pair of vertices that are as short as the Hamming distance
between their labels. To find these paths, we modify an algorithm from
previous work with the author and Falmagne [20] that computes all pairs
shortest paths in unweighted partial cubes. The modified algorithm either
produces paths that are as short as the Hamming distance for each pair
of vertices, verifying that the distance labeling is correct, or it detects an
inconsistency and reports that the input graph is not a partial cube.

Our running time, O(n2), is in some sense close to optimal, as the output of
the algorithm, a partial cube labeling of the input graph, may consist of Ω(n2)
bits. For instance, labeling a tree as a partial cube requires n− 1 bits per label.
However, in our computational model, such a labeling may be represented in
O(n2/ log n) words of storage, so the trivial lower bound on the runtime of our
checking algorithm is Ω(n2/ log n). Additionally, in the case of partial cubes
that have labelings with few bits per label, or other forms of output than an
explicit bitvector labeling of the vertices, even faster runtimes are not ruled
out. We leave any further improvements to the running time of partial cube
recognition as an open problem.

1.2 Related Work

Partial Cube Recognition. Since the time they were first studied, it has
been of interest to recognize and label partial cubes. Djokovic [12] and Win-
kler [38] provided mathematical characterizations of partial cubes in terms of
certain equivalence relations on the edges; their results can also be used to de-
scribe the bitvector labeling of the vertices of a partial cube, and to show that it
is essentially unique when it exists. As Imrich and Klavžar [29] and Aurenham-
mer and Hagauer [2] showed, these characterizations can be translated directly
into algorithms for recognizing partial graphs in time O(mn), where m and n
are respectively the number of edges and vertices in the given graph.1 Since
then there has been no improvement to the O(mn) time bound for this problem
until our work.

Special Subclasses of Partial Cubes. Several important families of graphs
are subclasses of the partial cubes, and can be recognized more quickly than
arbitrary partial cubes:

• Every tree is a partial cube [34], and obviously trees can be recognized in
linear time.

1As we discuss later, for partial cubes, m ≤ n log2 n; the time bound claimed in the title
of Aurenhammer and Hagauer’s paper is O(n2 logn), which is therefore slower than O(mn),
but it is not hard to see that their algorithm actually takes time O(mn).
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• Squaregraphs are the planar graphs that can be drawn in the plane in
such a way that every bounded face has four sides and every vertex with
degree less than four belongs to the unbounded face. Every squaregraph
is a partial cube, and squaregraphs may be recognized in linear time [4].

• A median graph is a graph in which, for every three vertices, there is a
unique median vertex that belongs to shortest paths between each pair of
the three vertices [3,9,33]. The graphs of distributive lattices are median
graphs [9]; median graphs also arise from the solution sets of 2-satisfiability
problems [24] and the reconstruction of phylogenetic trees [6,11]. Based on
earlier work by Hagauer et al. [27], Imrich et al. [30] showed that the times
for median graph recognition and for triangle-free graph recognition are
within polylogarithmic factors of each other. Applying the best known
algorithm for triangle detection, based on fast matrix multiplication [1]
yields a time bound of O(n1.41) for median graph recognition.

• Brešar et al. [10] discuss several other classes of partial cubes that are
closely related to the median graphs and may be recognized in O(m log n)
time.

Other Distance Labeling Schemes. The assignment of bitvectors to ver-
tices in a partial cube is a form of a distance labeling scheme, an assignment
of labels to vertices in arbitrary graphs that allows distances to be computed
from the labels [25]. Although bitvectors provide a convenient representation
of distances in partial cubes, they are not the only possible scheme for distance
labeling, and other schemes may be more concise. The isometric dimension
of a partial cube is the number of bits needed in each bitvector label, and as
discussed above it may be as high as n− 1.

Every partial cube may be embedded in a distance-preserving way into an
integer lattice Zd of some dimension d. One such labeling simply uses each bit
of a bitvector labeling as a coordinate in Zd; however, some graphs may be
embeddable into integer lattices of much lower dimension than their isometric
dimension. For instance, a path graph can be embedded into Z, and given one-
dimensional coordinates that accurately describe the graph distances, despite
having an isometric dimension of n− 1. The lattice dimension of a partial cube
is the minimum number d for which the graph admits a distance-preserving em-
bedding into Zd. The lattice dimension, and an embedding of that dimension,
may be found in polynomial time using an algorithm based on graph match-
ing [15], but this algorithm depends on having as input a bitvector labeling and
is slower than the algorithm we describe here, so it does not form the basis of
an efficient partial cube recognition algorithm.

It may also be possible to express a partial cube as a distance-preserving
subgraph of a Cartesian product of trees, using many fewer trees than the lat-
tice dimension of the graph. For instance, the star K1,n−1 has lattice dimension
dn−12 e despite being a single tree [34]. Any individual tree admits a distance

labeling scheme with O(log2 n)-bit labels [25]; even more concisely, it is possi-
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ble to assign O(log n)-bit identifiers to the nodes of a tree in such a way that
pairwise distances can be looked up in constant time per query, based on lowest
common ancestor data structures [8, 28]. Therefore, finding small tree product
representations would be of interest as a method of efficient distance representa-
tion in these graphs. However, although it is possible to find a representation as
a subgraph of a product of two trees in linear time, when such a representation
exists [5], it is NP-hard to find optimal representations using larger numbers of
trees or even to find accurate approximations of the optimal number of trees
needed in such a representation, due to a reduction from graph coloring [7].

1.3 Organization

The remainder of this paper is organized as follows. In Section 2 we review a
characterization of partial cubes by Winkler [38]. Winkler characterizes partial
cubes in terms of an equivalence relationship defined on the edges of the graph
by an inequality between sums of pairs of distances; this characterization is
central to past partial cube recognition algorithms as well as our own. In this
section we also review other standard results on partial cubes needed in our
work. In Section 3 we describe how to find a single bit within each vertex label
of a partial cube by using Winkler’s characterization as part of an algorithm
based on breadth-first search, and in Section 4 we show how to find multiple bits
of each label by a single pass of breadth-first search. In Section 5 we show how
this method leads to an efficient algorithm for finding the complete bitvector
labels of each vertex. In Section 6 we review our previous algorithm for all-pairs
shortest paths in partial cubes and examine its behavior on graphs that might
not be partial cubes, and in Section 7 we show how to use this algorithm to
test whether the labeling we have constructed is valid. Section 8 reports on a
proof-of-concept implementation of our algorithms. We conclude in Section 9.

2 Preliminaries

The characterizations of partial cubes by Djokovic [12] and Winkler [38] both
depend on defining certain relations on the edges of the graph that, in the
case of partial cubes, can be shown to be equivalence relations. Moreover,
although Djokovic’s and Winkler’s relations may differ from each other on ar-
bitrary graphs, they are identical on partial cubes. It will be more convenient
for our purposes to start with the formulation of Winkler. Therefore, following
Winkler, define a relation ∼G on the edges of an undirected graph G, by setting
pq ∼G rs if and only if d(p, r) + d(q, s) 6= d(p, s) + d(q, r), where d denotes the
number of edges in the shortest path between two vertices.

This relation is automatically reflexive in any graph without self-loops: for
every edge pq, pq ∼G pq. It is also symmetric: if pq ∼G rs then rs ∼G pq, and
vice versa. It also does not depend on the ordering of the two endpoints of the
edges it relates. These are two of the three defining properties of an equivalence
relation, the third being transitivity.
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Figure 2: An example of Winkler’s relationship, for the graph G = K2,3 (left).
In this graph, each edge is related to the two other edges that it does not share
an endpoint with; the right side of the figure shows pairs of edges that are
related to each other. In this graph, ∼G is not an equivalence relationship; for
instance, ab ∼G ce ∼G ad, but ab 6∼G ad. Thus, by Winkler’s characterization,
K2,3 is not a partial cube.

For example, if pqrs form a path, with no additional edges connecting these
four vertices, then pq 6∼G rs because d(p, r) + d(q, s) = 2 + 2 = 3 + 1 = d(p, s) +
d(q, r). On the other hand, if pqrs form a 4-cycle, again with no additional
edges, then pq ∼G rs because d(p, r) +d(q, s) = 2 + 2 6= 1 + 1 = d(p, s) +d(q, r).
Figure 2 shows a more complicated example of a graph K2,3 with six edges, and
the Winkler relation among these edges.

Lemma 1 (Winkler) Graph G is a partial cube if and only if G is bipartite
and ∼G is an equivalence relation.

Referring again to the example in Figure 2, the transitive property does not
hold: for instance, ab ∼G ce, and ce ∼G ad, but ab 6∼G ad. Therefore, for this
example, ∼G is not an equivalence relation and Winkler’s lemma tells us that
the graph K2,3 shown in the figure is not a partial cube.

We will use [e] to denote the set of edges related to an edge e by ∼G (that
is, in the case that G is a partial cube, the equivalence class of e).

If G is a partial cube, and e = pq is any edge of G, then let Spq denote the
set of vertices nearer to p than to q, and Sqp denote the set of vertices nearer
to q than to p. (There can be no ties in a bipartite graph.) The sets Spq and
Sqp were called semicubes in our algorithm for lattice embeddings of partial
cubes [15], where they play a key role, and they are also central to Djokovic’s
and Winkler’s characterizations of partial cubes. Equivalently, Spq must consist
of the vertices whose labels match that of p in the coordinate at which the labels
of p and q differ, and Sqp must consist of the vertices whose labels match that
of q in the same coordinate. The edges separating these two subsets are exactly
the edges in [e], and both of these two subsets must be connected (since every
pair of vertices in one of these two subsets can be connected by a path that does
not change the label at the coordinate that they share with p or q).
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Thus, as shown by Winkler, in a partial cube, each equivalence class [e]
forms an edge cut partitioning the graph into two connected components, and
the partial cube labeling for G has a coordinate i such that the ith bit in all
labels for vertices in one of the two components is 0, and the same bit in all
labels for vertices in the other component is 1. The dimension of the partial cube
labeling (the isometric dimension of the graph) equals the number of equivalence
classes of ∼G, and the labeling itself is essentially unique up to symmetries of
the hypercube.

It will be important for our algorithms to observe that any partial cube
with n vertices has at most n log n edges. This appears to be folklore (see e.g.
Lemma 3 of Matoušek [32]) but we repeat for completeness a proof, copied (in
different terminology) from Lemma 4 of [20].

Lemma 2 In any n-vertex partial cube, the number of edges is at most n log2 n.

Proof: We apply induction on the isometric dimension. As a base case, if there
is only one vertex there can be no edges. Otherwise, let e = uv be any edge
in the graph, partition the graph into two components Gu and Gv, and assume
without loss of generality that |Gu| ≤ |Gv|. Then both Gu and Gv induce
partial cubes, which have a number of edges that can be bounded by induction
to the same formula of their numbers of vertices. In addition, the number of
edges in [e] is at most |Gu|, because each edge has an endpoint in Gu and each
vertex in Gu can be the endpoint for at most one edge. (If it were the endpoint
of two edges in [e], the other endpoints of those edges would have equal labels,
contradicting their nonzero distance from each other.)

So, if M(n) denotes the maximum number of edges in any n-vertex partial
cube, we have a recurrence

M(n) ≤ max
{
M(a) +M(b) + min(a, b) | a+ b = n

}
which can be used in an induction proof to derive the desired bound. �

3 Finding a single edge class

Given a graph G and an edge pq of G, it is straightforward to construct the
set [pq] of edges related to pq by ∼G: perform two breadth first searches, one
starting from p and another starting from q, using the resulting breadth first
search trees to calculate all distances from p or q to other vertices of the graph,
and then apply the definition of Winkler’s relation ∼G to test whether each
other edge of the graph belongs to [pq] in constant time per edge. We begin the
description of our algorithm by showing how to simplify this construction: we
may find [pq] by an algorithm that performs only a single breadth first search
rather than two searches. Moreover, we need not calculate any distances as
part of this computation. This simplification will be an important step of our
overall result, as it will eventually allow us to construct multiple equivalence
classes of edges simultaneously, in less time than it would take to perform each
construction separately.
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Our technique is based on the following observation:

Lemma 3 Let pq be an edge in a bipartite graph G. Then pq ∼G rs if and only
if exactly one of r and s has a shortest path to p that passes through q.

Proof: If neither r nor s has such a path, then d(q, r) = d(p, r) + 1 and
d(q, s) = d(p, s) + 1, so d(p, r) + d(q, s) = d(p, r) + 1 + d(p, s) = d(q, r) + d(p, s)
by associativity of addition, and pq 6∼G rs. Similarly, if both r and s have such
paths, then d(q, r) = d(p, r) − 1 and d(q, s) = d(p, s) − 1, so d(p, r) + d(q, s) =
d(p, r) − 1 + d(p, s) = d(q, r) + d(p, s). Thus in neither of these cases can pq
and rs be related. If, on the other hand, exactly one of r and s has such a
path, we may assume (by swapping r and s if necessarily that it is r that has
the path through q. Then d(q, r) = d(p, r) − 1 while d(q, s) = d(p, s) + 1, so
d(p, r) + d(q, s) = d(p, r) + d(p, s) + 1 6= d(p, r)− 1 + d(p, s) = d(q, r) + d(p, s),
so in this case pq ∼G rs. �

Thus, to find the edge class [pq] in a bipartite graph G, we may perform
a breadth first search rooted at p, maintaining an extra bit of information for
each vertex v traversed by the search: whether v has a shortest path to p that
passes through q. This bit is set to false initially for all vertices except for q, for
which it is true. Then, when the breadth first search traverses an edge from a
vertex v to a vertex w, such that w has not yet been visited by the search (and
is therefore farther from p than v), we set the bit for w to be the disjunction of
its old value with the bit for v. Note that we perform this update for all edges
of the graph, regardless of whether the edges belong to any particular breadth
first search tree.

Recall that Spq denotes the set of vertices nearer to p than to q. It will be
important to the correctness of our algorithm to make the following additional
observation.

Lemma 4 If G is bipartite, then for any edge pq the semicubes Spq and Sqp
partition G into two subsets, and the edge class [pq] forms the cut between these
two semicubes.

Proof: This follows immediately from the previous lemma, since Sqp consists
exactly of the vertices that have a shortest path to p passing through q. �

We remark that this description of edge classes [pq] in terms of semicubes
is very close to Djokovic’s original definition of an equivalence relation on the
edges of a partial cube. Thus, for bipartite graphs, Winkler’s definition (which
we are following here) and Djokovic’s definition can be shown to coincide.

4 Finding several edge classes

As we now show, we can apply the technique described in the previous section
to find several edge classes at once. Specifically, we will find classes [pq] for
each neighbor q of a single vertex p, by performing a single breadth first search
rooted at p.
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Figure 3: The vertex-labeling stage of the algorithm of Lemma 7. The breadth
first search tree edges are shown darker than the other edges; the left-to-right
placement of the vertices is determined by their distance from the starting vertex
p. Except for the neighbors qi of the starting vertex, the bitvector shown for
each vertex is the disjunction of the bitvectors of its neighbors to the left.

Lemma 5 Let pq and pr be edges in a bipartite graph G. Then pq 6∼G pr.

Proof: By bipartiteness, d(q, r) = 2, so d(p, p) + d(q, r) = 2 = 1 + 1 = d(p, r) +
d(q, p). �

Our algorithm will need efficient data structures for storing and manipulating
bit vectors, which we now describe. As described in the introduction, we assume
throughout that arithmetic and bitwise Boolean operations on integers of at least
log n bits, as well as array indexing operations, are possible in constant time.

Lemma 6 Let k be a given number, and let K = 1+k/ log n. Then it is possible
to store bitvectors with k bits each in space O(K) per bitvector, and perform
disjunction operations and symmetric difference operations in time O(K) per
operation. In addition, in time O(K) we can determine whether a bitvector
contains any nonzero bits. If it does, in time O(K) we can determine whether
it has exactly one nonzero bit, and if so find the index of that bit, using a single
precomputed external table of size n.

Proof: We store a bitvector in dKe words, by packing log n bits per machine
word. Disjunction and symmetric difference can be performed independently on
each of these words. To test whether a bitvector is nonzero, we use a comparison
operation to test whether each of its words is nonzero. To test whether a
bitvector has exactly one nonzero bit, and if so find out which bit it is, we again
use comparisons to test whether there is exactly one word in its representation
that is nonzero, and then look up that word in a table that stores either the
index of the nonzero bit (if there is only one) or a flag value denoting that there
is more than one nonzero bit. �
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Figure 4: The edge-labeling stage of the algorithm of Lemma 7. If the bitvectors
of the endpoints of an edge differ only in their ith bits, the edge is included in
class [pqi]. If the bitvectors of the endpoints are the same, the edge is not
included in any class. If there were an edge that had bitvectors differing in
more than one bit, the graph would not be a partial cube.

We are ready to specify the main algorithm of this section, for finding a
collection of edge classes of our supposed partial cube.

Lemma 7 Let G be any graph with n vertices and m edges. Then there is an
algorithm which either determines that G is not a partial cube (taking time at
most O(n2) to do so) or finds a collection E of disjoint sets of edges [ei], with
|E| ≥ 2m/n, taking time O(|E| · n) to do so where |E| is the number of sets in
the collection. In the latter case, the algorithm can also label each vertex of G
by the set of semicubes it belongs to among the semicubes corresponding to the
edges ei, in the same total time.

Proof: We first check that G is bipartite; if not, it cannot be a partial cube.
We also check that its number of edges is at most n log2 n, and if not we again
report that it is not a partial cube. We then let p be a vertex of maximum
degree in G. We denote by d the degree of p, which must be at least 2m/n. We
denote the d neighbors of p in G by qi, for an index i satisfying 0 ≤ i < d.

We create, for each vertex of G, a data structure Dv with d bits Dv[i]. Bit
Dv[i] will eventually be 1 if v has a shortest path to p that passes through
qi (that is, if v ∈ Sqip); initially, we set all of these bits to 0 except that we
set Dqi [i] = 1. Next, we perform a breadth first traversal of G, starting at p.
When this traversal finds an edge from a vertex v to a vertex w that has not yet
been traversed (so w is farther from p than v), it sets all bits Dw[i] to be the
disjunction of their previous values with the corresponding bits Dv[i], as shown
in Figure 3.

Finally, once the breadth first search is complete and all data structures
Dv have reached their final values, we examine each edge vw in the graph. If
Dv = Dw, we ignore edge vw, as it will not be part of our output collection.
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Otherwise, we compute a bitvector B as the symmetric difference of Dv and
Dw. If B contains two or more nonzero bits B[i] and B[j], then vw belongs
to both [pqi] and [pqj ], and G cannot be a partial cube; if we ever encounter
this condition we terminate the algorithm and report that the graph is not a
partial cube. Otherwise, we assign vw to the class [pqi] for which B[i] is nonzero.
Figure 4 shows this assignment of edges to classes for the example graph shown
in Figure 3.

The result of this algorithm is a collection E of disjoint sets of edges [pqi],
as the lemma requires; the number of sets in the collection is d. All stages of
the algorithm perform O(m) steps, each one of which involves at most O(1) of
the bitvector operations described by Lemma 6, so the total time is O(m(1 +
d/ log n)) = O(d(m/d+m/ log n)) = O(dn). Since d ≤ n, this bound is O(n2),
as the lemma states for the time taken when the input is determined not to
be a partial cube, and since d = |E| the time is O(|E|n) when the algorithm
successfully constructs a set of edge classes.

The semicube labeling output described by the statement of the lemma is
represented by the data structures Dv computed as part of the algorithm. �

5 Finding all edge classes

In order to recognize a partial cube, we need to partition its edges into equiv-
alence classes of the relation ∼G, and then verify that the resulting labeling is
correct. The algorithm of the previous section allows us to find some of these
equivalence classes efficiently, but as it depends for its efficiency on starting from
a high degree vertex we will not necessarily be able to use it multiple times on
the same graph. In order to reapply the algorithm and find all equivalence
classes efficiently, as we now describe, we will need to remove from the graph
the parts we have already recognized.

Lemma 8 Let G be a partial cube, let pq be an edge in G, and let G′ be the
graph formed from G by contracting all edges in [pq]. For any edges e and f in
G, neither of which belong to [pq], let e′ and f ′ denote the corresponding edges
in G′. Then e ∼G f if and only if e′ ∼G′ f ′.

Proof: If e and f are not in [pq], by Lemma 4, either both edges connect
vertices in one of the two semicubes Spq and Sqp, or one edge is entirely in one
semicube and the other edge is in the other semicube. If both are in the same
semicube, then no shortest path from any vertex of e to any vertex of f can use
an edge of [pq] (for if it did, that crossing would increase rather than decrease
the Hamming distance of the path vertex’s labels), so the distances d(x, y) used
in the definition of ∼G′ remain unchanged from those used to define ∼G. If, on
the other hand, e and f are in opposite semicubes, then by similar reasoning
every shortest path from an endpoint of e to a vertex of f must use exactly one
edge of [pq], and each distance d(x, y) used in the definition of ∼G′ is exactly
one smaller than the corresponding distance in the definition of ∼G. Since we
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Figure 5: A four-vertex path graph formed by contracting the labeled edges
from Figure 4.

are subtracting two units of distance total from each side of the inequality by
which ∼G′ is defined, it remains unchanged from ∼G. �

Lemma 9 Let G be a partial cube, let pq be an edge in G, and let G′ be the
graph formed from G by contracting all edges in [pq]. Then G′ is a partial cube,
the equivalence classes of edges in G′ correspond with those in G except for [pq],
and the vertex labeling of G′ is formed by omitting the coordinate corresponding
to [pq] from the vertex labeling of G.

Proof: By Lemma 8, ∼G′ coincides with ∼G on the remaining edges; thus, it is
an equivalence relation, G′ is a partial cube, and its equivalence classes corre-
spond with those of G. Since the vertex labeling is formed from the semicubes
of G′, which are derived from the cuts formed by equivalence classes of edges,
they also correspond in the same way. �

Lemma 10 Any partial cube with n vertices has at most n−1 edge equivalence
classes.

Proof: Choose arbitrarily a vertex v. For any edge equivalence class [pq], with
p closer to v than q is, any shortest path from v to q must pass through an edge
in [pq] by Lemma 4. In particular, if T is a breadth-first spanning tree of the
graph, rooted at v, T must include an edge in [pq]. But T has only n− 1 edges,
and each equivalence class is represented by at least one edge in T , so there can
be at most n− 1 equivalence classes. �

Our algorithm for partitioning the edges of a graph G into classes (that, if
G is a partial cube, will be the equivalence classes of ∼G) and simultaneously
labeling the vertices of G with bitvectors (that, if G is a partial cube, will be a
correct partial cube labeling for G) performs the following steps. As part of the
algorithm, we set a limit L on the number of equivalence classes it can output;
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for our initial call to the algorithm, we set L = n− 1, but it will be smaller in
the recursive calls the algorithm makes to itself.

• If G has one vertex and no edge, we report that it is a partial cube, label
its vertex with a bitvector of length zero, and return an empty set of edge
equivalence classes.

• We find the maximum degree d of a vertex in G and test whether d exceeds
the remaining limit on the number of allowed equivalence classes. If it
does, we terminate the algorithm and report that G is not a partial cube.

• We apply the algorithm of Lemma 7 to find a set E of d edge classes of G.
If this algorithm terminates and reports that G is not a partial cube, we
do likewise.

• We contract all edges that belong to classes in E , and remove any self-loops
or multiple adjacencies in the resulting contracted graph. As we do so,
we maintain a correspondence of edges in G with the edges representing
them in the contracted graph G′, and between vertices in G and the cor-
responding vertices in G′. If a set of edges in G corresponds to a multiple
adjacency in G′, we represent them all by the same single edge in G′. If
an edge in G corresponds to a self-loop in G′, and does not belong to one
of the classes in E , we terminate the algorithm and report that G is not
a partial cube. Figure 5 shows the smaller contracted graph G′ resulting
from this step of the algorithm.

• We apply the same algorithm recursively, to partition the edges and label
the vertices of G′. In this recursive call we limit the algorithm to output
at most L−d equivalence classes. If this algorithm terminates and reports
that G′ is not a partial cube, we terminate and report that G is also not
a partial cube.

• We propagate the labels and partition of G′ back to the vertices and edges
of G, using the correspondence created when we contracted G to form G′.

• To form the list of equivalence classes of edges for G, we concatenate the
list of equivalence classes for G′ (with the edges replaced by the edges they
correspond to in G) with the separate list of classes E .

• To form the vertex label for each vertex v of G, we concatenate the bitvec-
tor for the vertex corresponding to v in G′ with the bitvector Dv found
by the algorithm of Lemma 7.

As an example, if we apply our algorithm to the graph of Figures 3 and 4
(perhaps the graph contains an additional edge, not shown, that would cause the
vertex p to have maximum degree), it would construct the four edge classes and
four-bit labels shown in Figure 4 in its outermost call. It would then contract
the labeled edges, resulting in a much smaller graph, a path of three edges shown
in Figure 5: there are four unlabeled edges in Figure 4 but two of them form
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a multiple adjacency when contracted. We pass this path to the second level
of recursion, which will label and contract two of the edges and leave unlabeled
the third since a path has no nontrivial edge relations. In the third level of
recursion, the remaining edge is labeled and contracted, leaving a single vertex
in the fourth level of recursion, which terminates immediately. Thus, for this
graph (which is a partial cube), the algorithm eventually terminates with seven
edge classes: the four shown in Figure 4, one for the two unlabeled edges that
are part of a four-cycle in that figure, and one each for the two remaining edges.

Lemma 11 The algorithm above terminates in time O(n2), and either produces
a partition of the edges into classes and a bitvector labeling of the vertices or
terminates with the claim that G is not a partial cube. If G is a partial cube, the
algorithm produces a correct partition and a correct labeling of G. If G is not a
partial cube, but the algorithm nevertheless returns a partition and a bitvector
labeling, then each edge set in the partition forms a cut in the graph separating
the vertices for which the bit corresponding to that edge set is 0 from the vertices
for which the bit is 1.

Proof: As is standard in graph algorithms, removing self-loops and multiple
adjacencies from the contracted graph G′ may be performed in time O(m) by
assigning index numbers to the vertices and then applying two rounds of bucket
sorting to the list of edges, one for each endpoint of each edge. The other
steps of the algorithm, except for applying Lemma 7 and concatenating vertex
labels, take time O(m). By Lemma 7, the time to find E is O(dn), where d
is the number of equivalence classes found. And, the time spent in the final
step of the algorithm concatenating vertex labels is also O(dn). Thus, in each
recursive call of the algorithm, the time taken at that level of the recursion is
O(dn+m) = O(dn). Since we limit the algorithm to produce a total of at most
n− 1 classes, the total time summed over all recursive calls is at most O(n2).

If the input is a partial cube, we prove by induction on the number of
recursive calls that the output is correct. As a base case, this is clearly true
for the single-vertex graph. Otherwise, each call to the algorithm of Lemma 7
finds a valid set of classes [pq], which by Lemma 1 are equivalence classes of
∼G, and a valid vertex labeling for the semicubes derived from those classes.
The induction hypothesis tells us that the algorithm finds a correct labeling and
partitioning for the contracted graph G′, and by Lemma 9 it is also correct when
translated to the corresponding objects of G. The algorithm simply combines
these two components of a correct labeling and therefore all equivalence classes
it outputs are correct. By the induction hypothesis again, every edge of G′ is
part of one of the output equivalence classes, from which it follows that these
classes when translated to G include all edges not already part of a class in E ;
therefore our output list of equivalence classes is not only correct but complete,
and forms a partition of the edges of G.

If the input is not a partial cube, the desired edge cut property nevertheless
follows for the edge classes in E by Lemma 4, and can be shown to hold for all
edge classes straightforwardly by induction on the number of recursive calls. �
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6 All pairs shortest paths

In order to verify that the given graph is a partial cube, we check that the
labeling constructed by Lemma 11 is a correct partial cube labeling of the graph.
To do this, we need distance information about the graph, which (if it is a
correctly labeled partial cube) can be gathered by the all-pairs shortest paths
algorithm for partial cubes from our previous paper [20]. However, as part of
our verification algorithm, we will need to apply this algorithm to graphs that
may or may not be partial cubes. So, both for the purpose of providing a self-
contained explanation and in order to examine what the algorithm does when
given an input that may not be a partial cube, we explain it again in some detail
here.

It will be convenient to use some of the language of media theory [21, 23], a
framework for describing systems of states and actions on those states (called
media) as finite state machines satisfying certain axioms. The states and ad-
jacent pairs of states in a medium form the vertices and edges of a partial
cube, and conversely any partial cube can be used to form a medium. We do
not describe here the axioms of media theory, but only borrow sufficient of its
terminology to make sense of the all-pairs shortest path algorithm.

Thus, we define a token to be an ordered pair of complementary semicubes
(Spq, Sqp). If G is a graph, with vertices labeled by bitvectors, we may specify
a token as a pair (i, b) where i is the index of one of the coordinates of the
bitvectors, Spq is the semicube of vertices with ith coordinate equal to b, and
Sqp is the semicube of vertices with ith coordinate unequal to b. A token acts
on a vertex v if v belongs to Spq and has a neighbor w in Sqp; in that case,
the result of the action is w. Our all-pairs shortest path algorithm begins by
building a table indexed by (vertex,token) pairs, where each table cell lists the
result of the action of a token τ on a vertex v (or v itself if τ does not act on v).
Note that, if we are given any labeled graph that may or may not be a correctly
labeled partial cube, we may still build such a table straightforwardly in time
O(n2); if as part of this construction we find that a vertex v has two or more
neighbors in Sqp we may immediately abort the algorithm as in this case the
input cannot be a correctly labeled partial cube.

Define an oriented tree rooted at r to be a subgraph of the input graph G,
with an orientation on each edge, such that each vertex of G except for r has
a single outgoing edge vw, and such that w is formed by the action on v of a
token (Spq, Sqp) for which r is a member of Sqp.

Lemma 12 Suppose we are given a graph G, a labeling of the vertices of G by
bitvectors, and a partition of the edges into classes, such that each class is the
set of edges spanning the cut defined by one of the coordinates of the bitvectors.
Then the graph distance between any two vertices v and w in G is greater than
or equal to the Hamming distance of the labels of v and w.

Proof: For each bit in which the labels of v and w differ, the path from v to w
must cross the corresponding cut in G at least once. No two cuts can share the
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same path edge, as the cuts partition the edges. Therefore, any path from v to
w must have at least as many edges as there are bit differences. �

Lemma 13 Suppose we are given a graph G, a labeling of the vertices of G by
bitvectors, and a partition of the edges into classes, such that each class is the
set of edges spanning the cut defined by one of the coordinates of the bitvectors,
and suppose that T is an oriented tree rooted at r. Then T is a shortest path
tree for paths to r in G, and each path from any vertex s to r in this tree has
length equal to the Hamming distance between the labels of s and r.

Proof: T has no directed cycles, for traversing a cycle would cross the same
cut in G multiple times in alternating directions across the cut, while in T any
directed path can only cross a cut in the direction towards r. Thus, T is a tree.
The length of a path in T from s to r at most equals the Hamming distance
between the labels of s and r, because by the same reasoning as above the path
can only cross once the cuts separating s and r (for which the corresponding
bits differ) and cannot cross any cut for which the corresponding bits of the
labels of s and r agree. By Lemma 12 any path must have length at least equal
to the Hamming distance, so the paths in T are shortest paths and have length
equal to the Hamming distance. �

Our all-pairs shortest path algorithm traverses an Euler tour of a spanning
tree of the input graph, making at most 2n− 1 steps before it visits all vertices
of the graph, where each step replaces the currently visited node in the traversal
by a neighboring node. As it does so, it maintains the following data structures:

• The current node visited by the traversal, r.

• A doubly-linked ordered list L of the tokens (Spq, Sqp) for which r belongs
to Sqp.

• A pointer pv from each vertex v 6= r to the first token in L that acts on v.

• A list Aτ for each token τ in L of the vertices pointing to τ .

Lemma 14 If the data structures described above are maintained correctly, we
can construct an oriented tree rooted at r.

Proof: We set the directed edge out of each v to be the result of the action of
token pv on v. �

To update the data structure when traversing from r to r′, we perform the
following steps:

• Append the token τ = (Srr′ , Sr′r) to the end of L, set pr = τ , and add r
to Aτ .

• Let τ ′ be the token (Sr′r, Srr′); remove r′ from Aτ ′ .
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• For each vertex v 6= r in Aτ ′ , search L sequentially forward from τ ′ for
the next token that acts on v. Replace pv with a pointer to that token
and update the lists Ai appropriately.

• Remove (Sr′r, Srr′) from L.

We modify the algorithm in one small regard to handle the possibility that
the input might not be a partial cube: if the search for the replacement for pv
runs through all of list L without finding any token that acts on v, we abort the
algorithm and declare that the input is not a partial cube.

Lemma 15 If the input graph G is a correctly labeled partial cube, the algorithm
described above will correctly update the data structures at each step and find
a shortest path tree rooted at each node. If the input graph is not a correctly
labeled partial cube, but is a bitvector-labeled graph together with a partition of
the edges into classes such that each class is the set of edges spanning the cut
defined by one of the coordinates of the bitvectors, then the algorithm will abort
and declare that the input is not a partial cube. In either case, the total running
time is at most O(n2).

Proof: If the input is a partial cube, then, at any step of the algorithm, each
vertex v has a token in L that acts on it, namely the token corresponding to
the first edge in a shortest path from v to r. Thus, the sequential search for a
replacement for pv, starting from a point in L that is known to be earlier than
all tokens acting on v, is guaranteed to find such a token. Thus, by Lemma 14
we have an oriented tree rooted at r for each r, and by Lemma 13 this is a
shortest path tree.

Conversely, if the algorithm terminates with an oriented tree rooted at r
for each r, this gives us by Lemma 13 a shortest path tree in which each path
length equals the Hamming distance of labels; since all graph distances equal
the corresponding Hamming distances, the input is a partial cube. Thus, if the
input were not a correctly-labeled partial cube, but satisfied the other conditions
allowing us to apply Lemma 13, the algorithm must at some point abort.

L starts with at most n− 1 items on it, and has at most 2n− 1 items added
to it over the course of the algorithm. Thus, for each v, over the course of the
algorithm, the number of steps performed by searching for a new value for pv
is at most 3n− 2. Thus, the total amount of time spent searching for updated
values of pv is O(n(3n − 2)) = O(n2). The other steps of the algorithm are
dominated by this time bound. �

7 Testing correctness of the labeling

We now put together the pieces of our partial cube recognition algorithm.

Lemma 16 If we are given a graph G, a labeling of the vertices of G by bitvec-
tors, and a partition of the edges into classes, such that each class is the set of
edges spanning the cut defined by one of the coordinates of the bitvectors, then
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we can determine whether the given labeling is a valid partial cube labeling in
time O(n2).

Proof: We apply the algorithm of Lemma 15. By that Lemma, that algorithm
either successfully finds a collection of shortest path trees in G, which can only
happen when the input is a partial cube, or it aborts and declares that the input
is not a partial cube. We use the presence or absence of this declaration as the
basis for our determination of whether the given labeling is valid. �

Theorem 1 Let G be an undirected graph with n vertices. Then we may check
whether G is a partial cube, and if so construct a valid partial cube labeling for
G, in time O(n2).

Proof: We use Lemma 11 to construct a partial cube labeling, and Lemma 16
to test its validity. �

8 Implementation

As a proof of concept, we implemented the algorithms described in this paper as
part of our open-source Python algorithm implementation library PADS, avail-
able online at http://www.ics.uci.edu/~eppstein/PADS/, replacing a previ-
ous implementation of an O(mn)-time algorithm.

8.1 Implementation details

The labeling phase of the new algorithm is in one Python module, PartialCube,
and consists of approximately 66 lines of code within that module. The distance-
checking phase of the algorithm is in a separate module, Medium, and consists
of approximately 48 lines of code within that module. Additionally, a module
performing breadth-first searches (written at the same time) and a previously-
written module for testing bipartiteness of a graph (using depth-first search)
were used as subroutines by the implementation.

The labeling algorithm described in this paper is recursive—it finds some
labels, contracts the labeled edges, recursively labels the remaining graph, and
then uncontracts it and in the process of uncontraction it extends the labels
from the contracted graph to the original graph. However, some versions of
Python are unsuited for algorithms involving deep recursion. Instead, we per-
formed an iterative version of the algorithm that finds some edge equivalence
classes, contracts the graph, and continues without recursing. Our implementa-
tion represents the partition of the edges into equivalence classes by a union-find
data structure [37] (also previously implemented) in which each set element rep-
resents an edge of the input graph and each of the disjoint sets represented by
the union-find data structure represents a set of edges that are all known to
have the same label. Whenever our algorithm finds the equivalence classes of
all of the edges incident to a single vertex using the algorithm of Section 4, it
uses union operations to group those edges into a single set, and whenever it

http://www.ics.uci.edu/~eppstein/PADS/
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contracts those labeled edges and the contraction generates multiple adjacencies
between a single pair of vertices, those multiple adjacencies are again grouped
together by union operations and replaced in the contracted graph by a sin-
gle representative edge. At the end of the algorithm, when the input graph has
been contracted down to a single vertex, the sets of edges sharing the same label
do not need to be constructed by uncontracting the graph, as they are exactly
the sets represented by the union-find structure. The total time spent perform-
ing union-find operations, O(n2α(n2,m)) = O(n2), is not asymptotically larger
than that for the rest of the algorithm.

Altogether, including comments, unit tests, and routines for other related
tasks, but not including the other modules they refer to, both modules total
631 lines.

8.2 Experimental tests

In order to test how well our theoretical bounds match the actual performance
of the implementation, we ran tests on a family of partial cubes generated from
sets of random permutations.

Let P = {P1, P2, . . . , Pk} be a set of permutations of the same t items, and
for each k-tuple of integers X = (x1, x2, . . . xk), 0 ≤ xi ≤ t, let S(X) be the set
of items that appear in a position earlier than xi in at least one permutation Pi.
Then the sets S(X) generated in this way form an antimatroid, and the graph
that has one vertex for each such set and one edge for each two sets that differ in
a single element is an example of a partial cube. These graphs do not include all
possible partial cubes; we chose them as test cases for two reasons: first because
choosing k permutations uniformly at random (with replacement) provides a
convenient probability distribution with which to perform random testing, and
second because efficient algorithms and a proof of concept implementation were
available to generate these graphs from their defining permutations [17].

Our experimental data is presented in Table 1. Each row of the table shows,
averaged over ten randomly chosen graphs, the number of vertices in the graph,
the number of edges in the graph, the number of iterations performed in the
first phase of the algorithm (in which the partial cube labeling is constructed),
and the number of steps per vertex performed by the second phase of the algo-
rithm (in which the labeling is tested). We also measured the average number
of breadth-first-search passes needed within the first phase of the algorithm,
limiting each pass to use bitvector operations with at most 32 bits per word,
but for the size parameters we chose this number was not significantly different
than the total number of iterations. The total time of the algorithm may be
estimated by adding the numbers in the phase I and phase II columns and then
multiplying the sum by the number of vertices.

Because the worst case for our algorithm is a path graph, a special case of
a tree, we also performed experiments for randomly generated trees (Table 2).
The trees in our experiments are rooted and ordered (that is, the ordering of
the children of each node is significant for determining whether two trees are
the same). The number of trees with a given number of nodes is counted by the
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k t |V (G)| |E(G)| phase I iterations phase II steps / vertex
2 15 76.0 135.0 3.7 115.0
2 20 125.8 229.6 4.6 193.8
2 25 183.4 339.8 5.3 292.8
2 30 238.4 444.8 6.6 376.4
2 35 332.4 627.8 7.1 542.3
2 40 465.6 889.2 7.9 759.6
3 15 194.3 470.6 2.5 340.1
3 20 473.6 1232.4 3.0 876.5
3 25 773.4 2039.8 3.6 1445.5
3 30 1264.9 3401.5 4.0 2393.8
4 15 466.0 1410.7 2.1 879.1
4 20 1192.4 3843.0 2.0 2306.1
5 15 1029.5 3719.7 1.9 2008.7

Table 1: Experimental test results from our implementation, on antimatroids
generated from k random permutations of a t-item set.

Catalan numbers, and we generated trees uniformly at random, with probability
inversely proportional to the Catalan numbers. Again, each row of the data is
an average of ten trials. For these experiments, on sufficiently large trees, the
phase I iteration counts diverged from the count of the number of passes over
the graph that would be required using bitvectors that are limited to 32 bits.
However both counts were still close to each other and both were significantly
smaller than the number of vertices in the graph.

n phase I iterations phase I 32-bit passes phase II steps / vertex
50 9.6 9.6 24.5
100 14.0 14.0 49.5
200 21.5 21.5 99.5
400 27.9 28.3 199.5
800 45.5 49.4 399.5

Table 2: Test results on random n-node trees.

Our experiments showed that, for both types of graphs that we tested, the
number of phase I iterations appears to be significantly less than its worst case
bound of Θ(n) (a bound achieved, for instance, by path graphs); therefore, this
phase of the algorithm is significantly faster than its worst case bound. The
number of steps per vertex in phase II of the algorithm was smaller for trees
than it was for antimatroids, but in both test sets this number appeared to
be growing linearly in the number of vertices. Therefore, for these graphs, the
average performance of phase II was no better than its worst case.
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9 Conclusions

We have shown that recognition of partial cubes may be performed in quadratic
time, improving previous algorithms for the same problem. If an explicit partial
cube labeling of the vertices is required as output, this is close to the O(n2)
bit complexity of the output. Although not simple, our algorithms are imple-
mentable.

A worst case input, requiring Ω(n2) bits of output and forcing the labeling
phase of our algorithm to take Ω(n2) time, takes the form of a path graph.
However, the existence of algorithms for recognizing median graphs [30] that
do not output a labeling explicitly and are significantly faster than quadratic
suggests that it may similarly be possible to recognize partial cubes more quickly.
Our experiments suggest that the labeling phase of our algorithm is often much
faster than our worst case bounds; however, to speed up the overall algorithm,
we must also speed up the verification phase of the algorithm, which in our
experimental tests was no better on average than it is in the worst case.
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[30] W. Imrich, S. Klavžar, and H. M. Mulder. Median graphs and triangle-free
graphs. SIAM J. Discrete Math. 12:111–118, 1999.
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