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Abstract

We investigate the class of vertex intersection graphs of paths on a grid,
and specifically consider the subclasses that are obtained when each path in the
representation has at most k bends (turns). We call such a subclass the Bk-VPG
graphs, k ≥ 0. In chip manufacturing, circuit layout is modeled as paths (wires)
on a grid, where it is natural to constrain the number of bends per wire for
reasons of feasibility and to reduce the cost of the chip.

If the number k of bends is not restricted, then the VPG graphs are equiv-
alent to the well-known class of string graphs, namely, the intersection graphs
of arbitrary curves in the plane. In the case of B0-VPG graphs, we observe
that horizontal and vertical segments have strong Helly number 2, and thus the
clique problem has polynomial-time complexity, given the path representation.
The recognition and coloring problems for B0-VPG graphs, however, are NP-
complete. We give a 2-approximation algorithm for coloring B0-VPG graphs.
Furthermore, we prove that triangle-free B0-VPG graphs are 4-colorable, and
this is best possible.

We present a hierarchy of VPG graphs relating them to other known families
of graphs. The grid intersection graphs are shown to be equivalent to the bi-
partite B0-VPG graphs and the circle graphs are strictly contained in B1-VPG.
We prove the strict containment of B0-VPG into B1-VPG, and we conjecture
that, in general, this strict containment continues for all values of k. We present
a graph which is not in B1-VPG. Planar graphs are known to be in the class
of string graphs, and we prove here that planar graphs are B3-VPG graphs,
although it is not known if this is best possible.
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1 Introduction

Let P be a set of simple paths on a (rectangular) grid. The vertex intersection
graph VPG(P) of P has vertex set V , where every vertex v ∈ V corresponds to
a path Pv ∈ P , and edge set E, where (u, v) ∈ E if and only if the corresponding
paths Pu and Pv intersect, i.e., E = {(u, v)∣u, v ∈ V,u ≠ v,Pu ∩ Pv ≠ ∅}. We
call a graph G a VPG graph if G = VPG(P), for some P . In this paper, if not
specified otherwise, two paths “intersect” by sharing a vertex of the grid (grid
point). If P is a set of simple paths on a grid, where each path has at most k
bends (90○ turns), then the graph G is called Bk-V PG.

Bk-VPG graphs are related to several other families of intersection graphs
that have been studied in the literature. String graphs are the intersection
graphs of curves (i.e., arbitrary paths) in the plane, defined in a similar way to
the VPG graphs: here the vertex set corresponds to a set of curves in the plane
and two vertices are adjacent if and only if the corresponding curves intersect.
It is rather simple to prove that the string graphs are equivalent to the VPG
graphs when there is no restriction on the number of bends per path in the grid,
see Theorem 1.

Our focus here is to constrain the number of bends, studying the properties
of Bk-VPG graphs for particular values of k or for bounded values of k. Interval
graphs and trees are both subfamilies of B0-VPG, and the so called grid inter-
section graphs of Hartman, et al. [18] are equivalent to the bipartite B0-VPG
graphs, see Theorem 2.

Circle graphs are a subfamily of string graphs, and it is easy to show that
they are contained in the class B1-VPG (Theorem 3). This immediately implies
that the coloring problem is NP-complete on B1-VPG graphs. We prove the
stronger result that the coloring problem is NP-complete for B0-VPG graphs
(Theorem 8).

For planar graphs, Sinden [32] showed that every planar graph is a string
graph. In this paper, we show that every planar graph is a B3-VPG graph
(Theorem 7), and we conjecture that this is best possible.

Another connection between planar graphs and string graphs began when
Scheinerman [31] conjectured that planar graphs are contained in the family of
segment graphs (SEG), the intersection graphs of straight-line segments in the
plane with an arbitrary number of directions. Recently, Chalopin and Gonçalves
[6] proved Scheinerman’s conjecture. West [33] proposed a stronger version of
Scheinerman’s conjecture, namely, that every planar graph has a SEG represen-
tation where the segments have four possible directions. Previously, Hartman et
al. [18] and de Fraysseix et al. [12] had proven the conjecture for bipartite planar
graphs using only two possible directions for the segments. Castro et al. [11]
proved the conjecture for triangle-free planar graphs, allowing only three di-
rections for the segments. Chalopin et al. [7] proved that planar graphs are in
1-String, which are the family of string graphs where two curves are allowed to
intersect only once.

The paper is organized as follows. In Section 2, we first present relationships
between Bk-VPG graphs and four other known families of graphs. In Section 3,
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we show that any collection of horizontal and vertical segments has strong Helly
number 2. We then study the structure of chordless cycles in B0-VPG graphs,
and prove that B0-VPG graphs are sun-free. This property implies that chordal
B0-VPG graphs are equivalent to strongly chordal B0-VPG graphs. The proof
that there is a string graph which is not in B1-VPG is given in Section 4. In
Section 5, we present a complete hierarchy of Bk-VPG graphs, k ≥ 0, and other
known families of graphs. Planar graphs are discussed in Section 6 where we
prove that every planar graph is a B3-VPG graph. The minimum coloring
problem on B0-VPG is proved to be NP-complete in Section 7, and we show a
2-approximation algorithm for coloring B0-VPG graphs. In Section 8, we prove
that triangle-free B0-VPG graphs are 4-colorable, and that this bound is tight.
Finally, some open problems are given in Section 9.

Motivation.

The motivation for studying Bk-VPG graphs is as follows. String graph
problems arose naturally in the context of layout problem of integrated thin film
RC circuits [32], since the technology for creating the circuits made it possible
for some pairs of conductors to cross. Later on, the circuit layout setting was
modeled as paths (wires) intersecting on a grid. In the knock-knee layout models
[1, 27], each wire may bend (turn) at a grid point but is not allowed to intersect
with another wire. A layout may have multiple layers and in a legal layout, on
each layer, the vertex intersection graph of paths on a grid is an independent
set. This corresponds to a graph coloring problem. We adopt this model to
investigate the properties of VPG graphs. The minimum coloring problem of
VPG graphs defines the knock-knee multiple layout with minimum number of
layers.

In chip manufacturing, each wire bend requires a transition hole. A large
number of such holes may increase the layout area and the cost of the chip.
Much research has been done to minimize the number of bends in a layout and
on layout optimization problems in general. We apply here the constraint on
the number of bends per wire.

2 Preliminaries: The relationship of Bk-VPG
graphs to four other classical families of graphs

We begin our study by stating some simple relationships between the Bk-VPG
graphs and the well known families of string graphs, d-DIR graphs for d=2, grid
intersection graphs (GIG) and circle graphs, as shown in Figure 1.

2.1 The equivalence of VPG and string graphs

The equivalence of the two families, string graphs and VPG graphs, has been a
folklore in the graph theory community (for example, see [8]). In the following
theorem, we state the equivalence explicitly.
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Figure 1: Relations between Bk-VPG graphs and well known graph classes.

Theorem 1 The family of VPG graphs is equivalent to the family of string
graphs.

Proof: Obviously, every path in the grid is a particular case of a curve on a
plane. Therefore, every VPG graph is a string graph. In the other direction,
consider a string representation. First, we may assume, without loss of gen-
erality, that at most two strings meet in any intersection point [21]. In such
a representation, each intersection point has degree at most 4. Second, a suf-
ficiently fine grid can be imposed upon the plane to allow each curve to be
embedded as a path on the grid, by replacing segments of the curve by “stair-
cases” of vertical and horizontal lines with sufficiently small distance ǫ between
them, such that (1) all intersection points of the curves fall on grid points and
(2) no new intersections are introduced. This transforms the string representa-
tion into a VPG representation without creating new adjacencies in the graph,
showing that every string graph is a VPG graph. ◻

Remark 2.1 Consider the complete graph of size five and subdivide every edge
into two edges by adding a new vertex. In [32], it was shown that this graph,
denoted here by C2

5
, is not a string graph, see Figure 5.

2.2 The equivalence of bipartite B0-VPG and GIG graphs

The Grid Intersection Graphs (GIG) are the intersection graphs of horizontal
and vertical line segments on the plane, such that no two horizontal segments
or two vertical segments intersect [18] 1.

1More precisely, they allow intersecting intervals on the same horizontal or vertical line,
but do not count this as producing an edge in the graph. Hence, without loss of generality,
one may assume that, by perturbing such intervals by a small epsilon, they do not intersect.
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Theorem 2 The family of bipartite B0-VPG graphs is equivalent to the family
of GIG.

Proof: Obviously, every GIG graph is bipartite and B0-VPG. Conversely, a
B0-VPG graph can be represented as intersection of rectangles on the plane,
by taking a B0-VPG representation on the grid and thickening the segments
(paths). The intersection graphs of rectangles on the plane are also known as
graphs with boxicity two.

In [2], it was proved that the grid intersection graphs (GIG) are the bipartite
graphs with boxicity two. This implies that every bipartite B0-VPG graph is a
GIG. ◻

Remark 2.2 It is easy to show that every tree is a bipartite B0-VPG graph.

2.3 The equivalence of B0-VPG and 2-DIR graphs

Two other subfamilies of string graphs are of interest. The d-DIR graphs are the
family of intersection graphs of straight-line segments parallel with at most d

directions. The PURE-d-DIR graphs have a representation by straight-line seg-
ments parallel with at most d directions, such that every two parallel segments
are disjoint [23]. In the case of d = 2, without loss of generality, it is possible to
assume that the two directions are orthogonal. Thus, we observe the following.

Remark 2.3 The B0-VPG graphs are exactly the 2-DIR graphs; the PURE-2-
DIR graphs are exactly the GIG graphs.

2.4 The containment of circle graphs in B1-VPG

Circle graphs are the intersection graphs of chords in a circle. The graph Wn,
the wheel graph, consists of a chordless cycle of size n (n ≥ 4) and a universal
vertex.

Theorem 3 The family of circle graphs is strictly contained in the family of
B1-VPG graphs; the wheel W5 is a separating example.

Proof: Consider a representation of G as intersecting chords of a circle. We
slide all the endpoints of the chords to the upper left quarter of the circle, while
preserving their order (thus, intersections are not changed.) Now, replace each
chord by a path with one bend, see Figure 2. All the adjacencies of the graph
remain unchanged in the resulting B1-VPG representation. Thus, every circle
graph is a B1-VPG graph.

The wheel W4 is a circle graph, but none of the wheels Wn (n ≥ 5) is a circle
graph, as shown in [5]. All the wheels are easily seen to be B1-VPG graphs.
Therefore, the containment is strict. ◻
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Figure 2: The transformation of a circle graph representation into a B1-VPG
representation.

3 Structural results on B0-VPG graphs

3.1 Helly properties of B0-VPG graphs

Let S={Si}i∈I be a collection of subsets of a set S. We say that S has Helly
number h if, for all J ⊆ I, ⋂{Si∣i ∈ J} = ∅ implies that there exist h indices
i1, . . . , ih ∈ J such that Si1 ∩⋯∩Sih = ∅. We say that S has strong Helly number
s if, for all J ⊆ I, there exist s indices i1, . . . , is ∈ J such that Si1 ∩ ⋯ ∩ Sis =

⋂{Si∣i ∈ J}.

It is well-known [3] that any collection of paths on a tree has Helly number
2, and any collection of intervals on a line has strong Helly number 2. We see
here that orthogonal segments also have strong Helly number 2.

Proposition 3.1 Any collection of horizontal and vertical segments on a grid
has strong Helly number 2.

Proof: Consider a set of horizontal and vertical segments {Pi∣i ∈ J}. If there is
a pair of segments Pa, Pb that do not intersect, then Pa ∩ Pb = ∅ = ⋂{Pi∣i ∈ J},
and we are done.

So we may assume that every two segments intersect. If all the segments
are horizontal on the grid, then they are intervals on the same grid line, and
therefore clearly they have strong Helly number 2. The same is true for only
vertical paths.

Otherwise, there is a horizontal segment Pa and a vertical segment Pb, and
they intersect in one common grid point Pa ∩ Pb = q. Clearly, the intersection
of each horizontal segment with Pb is the point q, and the intersection of each
vertical segment with Pa is the point q, so ⋂{Pi∣i ∈ J} = q = Pa ∩Pb. ◻

Corollary 3.2 In a B0-VPG representation of a clique, all the corresponding
paths share a common grid point.

Example 3.3 Let G be a graph that contains a clique Km (m ≥ 5) such that
5 or more vertices of the clique have private neighbors. Then the graph is not
B0-VPG.
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Remark 3.4 A set of single bend paths on a grid does not necessarily have Helly
number 3; for an example, consider the four paths (0,0)-(0,1)-(1,1), (0,1)-(1,1)-
(1,0), (1,1)-(1,0)-(0,0), (1,0)-(0,0)-(0,1). The common intersection of these
four paths is empty, yet the intersection of any three is non-empty.

Golumbic, Lipshteyn and Stern [17] have shown that any collection of single
bend paths on a grid has strong Helly number 4.

3.2 Suns are not in B0-VPG

The graph Sn (n-sun) consists of a clique K={v1, . . . , vn} of size n and an
independent set S={vn+1, . . . , v2n} of size n, where vertex vi+n is adjacent to vi
and vi+1 (modulo n), for i = 1, . . . , n. The strongly chordal graphs can be defined
as the sun-free chordal graphs [15].

Theorem 4 A B0-VPG graph contains no induced Sn for n ≥ 3. Therefore, the
family of chordal B0-VPG graphs is equivalent to the family of strongly chordal
B0-VPG graphs.

Proof: Suppose Sn is a B0-VPG graph for some n ≥ 3. Let PK and PS be
the sets of paths that correspond to the vertex sets K and S, respectively. By
Corollary 3.2, all paths in PK share a common grid point q. If all paths in PK

are on the same line, say horizontal, then clearly only at most two vertices in S

can be represented. Therefore, there is a horizontal path Pi and a vertical path
Pj in PK and j = i+ /− 1 (mod n). To represent a sun, there must exists a path
in PS that intersects with both Pi and Pj and hence contains the common grid
point q of PK , a contradiction. ◻

Remark 3.5 It can be easily shown that the suns Sn are in B1-VPG for all
n ≥ 3. Figure 3 illustrates the case for n = 4 and the general case.
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Figure 3: The graphs S4 and in general Sn(n ≥ 3) each with a B1-VPG repre-
sentation. The bold paths correspond to the central clique.

3.3 Cycles in B0-VPG graphs

In general, chordless cycles have many possible B0-VPG representations, how-
ever it is easy to see that the chordless 4-cycle has only one.
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Remark 3.6 The graph C4 has a unique B0-VPG representation; it consists
of two horizontal parallel paths intersecting with two vertical parallel paths. The
uniqueness is up to isomorphism that is, the four intersections points of the four
paths close a rectangle on the hosting grid.

An example of this useful remark is the following.

Proposition 3.7 Let G be a connected graph in which each edge belongs to an
induced C4. If G is a B0-VPG graph, then it is bipartite, hence also a GIG.

Proof: If G is not bipartite, it has an odd cycle. Thus, there are two vertices x, y
connected by an edge, whose paths have the same direction (both horizontal or
both vertical). However, the edge xy must belong to an induced C4, and thus by
Remark 3.6, x and y must have different directions, a contradiction. Therefore,
G is bipartite. By Theorem 2, G is a GIG. ◻

4 Going beyond B1: the graph K3
n (n ≥ 33)

In this section, we prove that there is a string graph which is not a B1-VPG
graph. We note that a method for constructing string graphs, that require
arbitrary number of bends, is presented in [24].

LetK3

n be the split graph which consists of a cliqueK of n vertices labeled by
[n] = {1,2, . . . , n} and an independent set I of (n

3
) vertices which are labeled by

subsets of [n] of size 3. The edges between K and I are defined by membership,
for example, only the vertices 2, 5, and 8 of K are connected to the vertex
{2,5,8} of I. Since K3

n is a chordal graph, it is a string graph [21].

Theorem 5 The graph K3

33
is not B1-VPG.

Proof: Suppose there exists a B1-VPG representation of K3

33
. For each vertex

v, denote the corresponding path by Pv (we write P123 rather than P{1,2,3}, etc.)
Since the vertices of K are represented by paths with one bend2, each of

them is either ⌜, ⌝, ⌞ or ⌟. Without loss of generality, at least 9 = ⌈1
4
⋅ 33⌉ of

them are ⌜. Also without loss of generality, these are the vertices labeled by
1,2, . . . ,9. Since they form a clique, the bending points of the corresponding
paths P1, P2, . . . , P9 form a weakly ascending sequence, i.e., for i < j, the bending
points (xi, yi) and (xj , yj) of Pi and Pj , respectively, we have xi ≤ xj and yi ≤ yj .
Moreover, using standard arguments of small changes in a construction, we may
assume that the paths P1, P2, . . . , P9 are in fact strictly ascending, i.e., xi < xj

and yi < yj, for i < j.
Without loss of generality, there exists a permutation π of {1, ...,9}, with

Pπ(1), . . . , Pπ(9) forming a weakly ascending sequence.
Consider the paths P147, P258 and P369.

2Without loss of generality, for any path with no bend we can add an ǫ-length orthogonal
segment at one of its end points without introducing new adjacencies.



JGAA, 16(2) 129–150 (2012) 137

Assume, without loss of generality, that P258 meets the vertical part of P5.
There are four ways in which P258 can meet P2 and P8 (P258 can meet a vertical
or a horizontal part of each of them); they are shown by bold lines in Figure
4(a).
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(a) Bold lines denote all possible
ways to add P258.
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(b) The path P258 and part of the
path P369.
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(c) The only possible way to insert
P147, P258 and P369.

Figure 4: Illustrations for proof of Theorem 5.

However, in most of these cases it is impossible to add P147 and P369 to
the construction. Consider, for example, the case when P258 meets the vertical
parts of P2, P5 and P8, as shown in Figure 4(b).

Notice that in the discussed case, P369 necessarily meets horizontal parts
of P3 and of P6 (a corresponding part of P369 is shown in Figure 4(b)) since
otherwise it cannot meet all of P3, P6 and P9. However, then P147 cannot meet
all of P1, P4 and P7.

By carefully examining of all possible cases, we find that the only way to
add P147, P258 and P369 is as shown in Figure 4(c).

However, now it is impossible to add the path P169. ◻

Corollary 4.1 The graph K3

n is not B1-VPG, for n ≥ 33.

Remark 4.2 Dangelmayr, Felsner and Trotter [10] have recently shown that
the graph K3

n, for n ≥ 33, is not an intersection graph of curves on a plane,
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where every pair of curves intersect in at most one point. Our result does not
follow from theirs, since in our case paths can intersect in two points, or along
a segment.

5 The complete hierarchy of Bk-VPG graphs

In this section, we demonstrate the results illustrated in the complete hierarchy
shown in Figure 5. We say that a hierarchy is complete, when all containment
relationships are given. That is, (1) classes that appear in the same box are
equivalent, (2) a downward edge from class A to class B indicates that class A
contains class B, (3) an example appearing along the edge between two classes
is a separating example for those classes, (4) the lack of a hierarchical (contain-
ment) relation indicates that the classes are incomparable.

Theorem 6 The hierarchy of relationships shown in Figure 5 is complete.

Proof:

1. Equivalences

All the equivalence relations are summarized in Table 1.

2. Containments

We have already shown in Theorem 3 that the circle graphs are B1-VPG.
By [21], all chordal graphs are string graphs. Having already shown the
equivalence of classes in the same box, all the other containment relations
in the hierarchy are trivial by their definitions.

3. Separating examples

The following are the separating examples as shown in Figure 5.

The graph S4: As proved in Theorem 4, the suns are notB0-VPG graphs.
They are well known to be chordal and have a simple circle representation.
By Remark 3.5, they are B1-VPG graphs.

The graph BW3: By Proposition 3.7, the graph BW3 is GIG. However,
it is not a circle graph.

Result Where

string graphs ≡ VPG Theorem 1
2-DIR ≡ B0-VPG Remark 2.3

PURE-2-DIR ≡ GIG ≡ bipartite B0-VPG Remark 2.3 and Theorem 2
chordal B0-VPG ≡ strongly chordal B0-VPG Theorem 4

Table 1: Justification for the equivalences in the hierarchy.
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Figure 5: Hierarchy of Bk-VPG graphs and other graphs.

The graph K3,3: The graph K3,3 obviously has trivial GIG and circle
representations. However, it is not chordal since it contains a C4.

The graph H2: In [9], the graph H2 is proved to be an interval graph
but not a circle graph.

The graph K3

33: By Corollary 4.1, the graph K3

33 is a string graph which
is not B1-VPG. It is well known to be a chordal graph.

The graph C2

5
: In [32] it is shown that the graph C2

5
is not a string

graph.

The graph H1: By Proposition 3.7, the graph H1 is not a B0-VPG.
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Figure 6 shows a B1-VPG representation for H1.

The graph T2: It is well known that the graph T2 is not an interval
graph.

4. Incomparabilities.

The separating examples between incomparable classes of graphs are given
in Table 2.

X Y G1 ∈X − Y G2 ∈ Y −X
Circle B0-VPG, GIG S4 BW3

Circle, GIG Chordal, Chordal B1-VPG K3,3 H2

Chordal B0-VPG, Interval
B1-VPG Chordal K3,3 K3

36

B0-VPG Chordal, Chordal B1-VPG K3,3 S4

Table 2: Separating examples between incomparable classes of graphs in the
hierarchy.

We have shown all the containment relationships in the hierarchy, and there-
fore the hierarchy is complete. ◻
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Figure 6: The balloon graph H1 and its B1-VPG representation.

6 Planarity and Bk-VPG Graphs

As mentioned in Section 1, Sinden [32] showed that every planar graph is a string
graph. Since the VPG graphs are equivalent to the string graphs (Theorem 1),
we ask the question, what is the smallest number of bends needed to represent
a planar graph? In this section, we show that every planar graph is a B3-VPG
graph.

Theorem 7 Every planar graph is a B3-VPG graph.
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Proof: Let G be a planar graph. By a result of de Fraysseix, Ossona de Mendez
and Rosenstiehl [13], we can represent G with a “⊺-contact system”, where to
each vertex of G there corresponds a ⊺-shape, such that two ⊺-shapes may
touch but may not cross, and there is an edge between vertices in G if their
corresponding ⊺-shapes touch. Without loss of generality, we may assume that
in such a ⊺-representation, all horizontal segments of the ⊺s belong to different
lines.

In similar fashion to [4], (where it was proven that every planar graph is
B5-EPG), we transform each ⊺-shape into a path with 3 bends as indicated in
Figure 7. By that, we obtain a B3-VPG representation of G. ◻

Conjecture 6.1 We suspect that the planar graphs are not contained in B2-
VPG, i.e., that there exists a planar graph which is not B2-VPG.

Figure 7: Transformation of ⊺-shapes representation into a B3-VPG represen-
tation.

7 Complexity results for Bk-VPG graphs

7.1 Generally known results

The recognition of string graphs was first shown to be NP-hard by [22]. In [25],
an example of a string graph with exponential number of intersection points was
given, posing the question whether recognizing string graphs is decidable. After
a decade, it was proved affirmatively (independently) in [28, 30]. Surprisingly,
by [29], it was proven to be in NP. Hence, the recognition of string graphs is
NP-complete. In [23], the recognition problems of d-DIR and PURE-d-DIR were
proven to be NP-complete, for d ≥ 2.
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Putting these all together, since (a) VPG and string graphs are equivalent
(Theorem 1), (b) B0-VPG graphs and 2-DIR graphs are equivalent (Remark
2.3), and (c) bipartite B0-VPG graphs, GIG and PURE-2-DIR graphs are equiv-
alent (Theorem 2 and Remark 2.3), we obtain:

Corollary 7.1 The recognition problems for VPG graphs, B0-VPG graphs and
bipartite B0-VPG graphs are all NP-complete.

It is therefore likely that recognizing Bk-VPG graphs for any k > 0 is also
NP-complete, but we leave this as an open problem.

Using another result of [20] for the NP-completeness of the maximum inde-
pendent set problem on 2-DIR graphs, and similarly, by combining the results
of [18] and [19] for the Hamiltonian graph problems on the class GIG, we obtain:

Corollary 7.2 The maximum independent set problem on B0-VPG graphs is
NP-complete. The Hamiltonian path problem and the Hamiltonian circuit prob-
lem on B0-VPG graphs are NP -complete.

It is shown in [26] that the problem of maximum clique for B1-VPG graphs
is NP-complete. Hence, finding maximum clique in Bk-VPG graphs is NP-
complete, for k ≥ 1. In contrast to this, for B0-VPG graphs, given a B0-VPG
representation of a graph G the maximum clique problem can be solved very
efficiently: By Corollary 3.2, all corresponding paths of a clique have a common
point on the grid, either at a “crosspoint” where horizontal segments meet
vertical segments, or at an “internal” point involving only horizontal segments or
only vertical segments. In a manner similar to finding the cliques of an interval
graph representation, it is sufficient to traverse each horizontal, noting each
segment endpoint and each crosspoint, then similarly traverse each vertical, to
find the one with the maximum number of paths passing through it, namely, the
collection of all paths passing through this grid point. This set of vertices form
a maximum clique. This method has O(n +m) time complexity where n is the
number of vertices in the graph (segments) and m is the number of crosspoints
and internal points on the grid. A polynomial algorithm for maximum clique
for a generalization of B0-VPG graphs is presented in [20].

7.2 The complexity of coloring B0-VPG graphs

As we discussed in Section 1, coloring the paths in a VPG representation of
a graph G, where two paths on the grid are colored with different colors if
the paths share at least one grid point, has an important application in circuit
layout problems. This motivates our study of coloring Bk-VPG graphs.

The minimum coloring of string graphs is NP-complete [14], so the same is
true for VPG graphs in general, since they are equivalent to string graphs. This
leads to the question of the complexity when restricting the number of bends
per path in a VPG representation.

We showed that the family of circle graphs is contained in B1-VPG (Theo-
rem 3), and we know that the problem of coloring a circle graph is NP -complete
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[16]. Hence, it immediately follows that the coloring problem for Bk-VPG
graphs is NP-complete for all k ≥ 1. We will show the stronger result that
the coloring problem for B0-VPG graphs is NP-complete. Let χ(G) be the
chromatic number of G and let ω(G) be the clique number of G.

Theorem 8 Let G be a B0-VPG graph and let m be a positive integer (m ≥ 3).
It is NP-complete to decide if χ(G) ≤m.

Proof: To prove the result, we first use the transformation of circle graphs to
B1-VPG graphs presented in Theorem 3, namely, each chord can be replaced by
a path with only one bend. We then associate to a circle graph G a graph G′,
which is B0-VPG. We show thatG ism-colorable if and only if G′ ism-colorable.

The transformation is as follows: In a B1-VPG representation of G, each
vertex v of G is represented by a path Pv. We replace this path by two disjoint
segments denoted Xv and Yv, one horizontal and one vertical. These two seg-
ments are not connected. To link Xv to Yv, we add an m−1 clique, at the bend
point of the former path. We do this by adding m−1 short paths touching both
Xv and Yv (this transformation is shown in Figure 8). We transform each path
of the B1-VPG representation by this procedure. Note that each clique added
at the bend point of each path is only connected to the horizontal and vertical
paths that represent a vertex v. It is clear from the transformation that the
obtained graph G′ is a B0-VPG graph. Moreover, the transformation can be
performed in polynomial time and the size of G′ is polynomial in the size of G,
since ∣V (G′)∣ = 2n + n ⋅ (m − 1) ≤ 2n + n2.

Now we prove that G is m-colorable if and only if G′ is m-colorable. Let
ϕ ∶ V ↦ {1, . . . ,m} be a valid assignment of colors for G. Then to color G′

it suffices to color each vertex from G (i.e., the horizontal and vertical path)
with the color used in G. Each clique is connected only to one vertical and one
horizontal path, and by construction these two paths have the same color. We
can use the m − 1 remaining colors to color the paths representing the clique.

We now show that if G′ is m-colorable then G is m-colorable. The graph
G′ is m-colorable, therefore the m− 1 clique connecting any Xv and Yv requires
m−1 colors. Consequently, Xv and Yv have the same color. Since the coloring of
G′ is a valid assignment of colors, it is also a valid coloring of G: color the path
representing v in G with the same color of the vertices in G′ that correspond to
Xv and Yv. ◻

Theorem 9 For any B0-VPG graph G, ω(G) ≤ χ(G) ≤ 2 ⋅ ω(G). Moreover,
there is a polynomial 2-approximation scheme for coloring B0-VPG graphs.

Proof: Consider the following greedy naive approximation algorithm for color-
ing B0-VPG graphs: Each horizontal or vertical line on the grid is an induced
interval graph. We color all these interval subgraphs optimally, such that for
horizontal lines we use c different colors and for vertical lines we use c′ differ-
ent colors. Note that the resulting coloring is not optimal. Thus, we get a
polynomial 2-approximation scheme.
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Yv

Pv

clique
(m − 1)

Xv

Figure 8: The transformation of a path with one bend to a B0-VPG represen-
tation.

We will show that max{c, c′} ≤ ω(G) ≤ χ(G) ≤ c + c′ ≤ 2 ⋅ ω(G).
Since interval graphs are perfect graphs, c and c′ correspond to the size

of the maximum clique of horizontal lines and respectively of vertical lines.
Therefore, max{c, c′} ≤ ω(G). For every graph, ω(G) ≤ χ(G), and clearly,
χ(G) ≤ c + c′ ≤ 2 ⋅ ω(G). This proves the theorem. ◻

8 The chromatic number of triangle-free B0-VPG
graphs

In this section, we construct a triangle-free B0-VPG graph with χ = 4. Thus,
the bound in Theorem 9 is tight for the case ω = 2.

Theorem 10 There is a triangle-free B0-VPG graph which is not 3-colorable.

Proof: Step 1. Consider first the graph H whose B0-VPG representation
is shown in Figure 9 (small black circles denote overlapping of paths). We
claim that it is impossible to color H in three colors, using only two colors for
horizontal paths.

To obtain a contradiction, suppose that H can be colored by three colors so
that only colors a and b are used for horizontal paths.

The row r1 is used by two paths which are colored interchangeably: either
a − b or b − a. Similarly, the row r2 is used by three paths which are colored
interchangeably: either a− b−a or b−a− b; and the row r3 is used by five paths
which are colored interchangeably: either a − b − a − b− a or b− a − b − a − b. For
any way to color these rows and for any independent choice of colors x1, x2, x3 ∈
{a, b}, there is a column among c1, . . . , c8 that meets r1 in a point of a horizontal
path colored by x1, meets r2 in a point of a horizontal path colored by x2, and
meets r3 in a point of a horizontal path colored by x3.

In particular, there is a column ci among c1, . . . , c8 that meets r1 in a point
of a horizontal path colored by a, meets r2 in a point of a horizontal path colored
by b, and meets r3 in a point of a horizontal path colored by a. And there is a
column cj among c1, . . . , c8 that meets r1 in a point of a horizontal path colored
by b, meets r2 in a point of a horizontal path colored by a, and meets r3 in a
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point of a horizontal path colored by b. A typical situation is shown in Figure
9, where ci is c1 and cj is c6.

a

r0

r1

r2

r3

c1 c4 c5 c6 c7 c8c2 c3 d1 d2

a

a

b

ba

b

a b

b

Figure 9: A typical bi-coloring of the horizontal lines in the B0-VPG represen-
tation of H .

Each of the columns ci and cj is used by two paths. The upper path of ci
intersects horizontal path colored by a and b, and therefore must be colored by
c. Now the lower path of ci intersects a horizontal path colored by a and it also
intersects its upper path, therefore it is colored by b.

Similarly, the upper path of cj is colored by c, and the lower path of cj is
colored by a.

Finally, at least one of d1, d2 meets a horizontal path colored by a and a
horizontal path colored by b, and therefore it is colored by c.

Therefore, r0 intersects vertical paths of all three colors a, b, c, and it is
impossible to color it.

So we proved that if H is colored by three colors, all of them are needed for
horizontal paths.

Step 2. Consider now the graph G represented in Figure 10 (the shaded
regions are copies of the B0-VPG representation of H).

t3

t1 t2

Figure 10: A representation of the graph G.

Consider a coloring of G by three colors a, b, c. The paths t1 and t2 must be
colored by different colors. Therefore, without loss of generality, the color of t1
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is different from the color of t3: assume that t3 is colored by a and t1 is colored
by b. However, we proved that for any coloring of H by three colors, each color
is used by some horizontal path. Therefore, there is a horizontal path colored
by c in the left (under our assumption) copy of H . Adding vertical paths in
the neighborhoods of all vertical columns used by now, we see that one of them
must then meet horizontal paths colored by a, b and c. Therefore, the graph G′

(obtained from G by adding vertical paths, see Figure 11) cannot be colored by
three colors. ◻

t3

t1 t2

Figure 11: A representation of the graph G′.

9 Open Problems

In this paper, our focus has been primarily to study the Bk-VPG graphs, for
k = 0,1. We showed that the family of B0-VPG is strictly contained in the
family of B1-VPG, and gave examples of VPG graphs that are not contained in
B1-VPG. A general open question is whether the family of Bk-VPG is strictly
contained in the family of Bk+1-VPG, for k ≥ 1, which we expect is the case.

It is easy to see that the class B0-VPG is strictly contained in the class of
graphs having boxicity two, with the graph W4 as a separating example. We
leave as an open question the connection between boxicity and the bending
number of a graph.

Each path in a B1-VPG representation has one of four possible shapes:
Right-Up, Right-Down, Left-Up and Left-Down. Which B1-VPG graphs are
representable using only a proper subset of these shapes?

A pair of single-bend paths may intersect in exactly one grid point, in ex-
actly two grid points or on a common subpath. Which B1-VPG graphs are
representable using only a proper subset of these three possibilities?

In Theorem 7, we showed that every planar graph is in B3-VPG. We pose
the question of finding a planar graph that is not in B2-VPG, thus making the
result tight.

We saw in Theorem 9 that χ(G) ≤ 2 ⋅ω(G) for any B0-VPG graph G, and in
Theorem 10 that this bound was tight for triangle-free graphs (ω = 2). Is this
bound also tight when ω = 3 or for larger values of ω?

The class of B0-VPG graphs, where every pair of paths can intersect in at
most one grid point, is a subclass of B0-VPG graphs and a superclass of GIG.
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One of the referees posed the question of determining the complexity of coloring
such graphs, as our reduction from Theorem 8 does not hold for this case. Note,
that by Theorem 9 the chromatic number of such class of graphs is at most eight.
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