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Abstract

DAGmaps are space filling visualizations of DAGs that generalize
treemaps. Deciding whether or not a DAG admits a DAGmap is NP-
complete. Although any layered planar DAG admits a one-dimensional
DAGmap there was no complete characterization of the class of DAGs
that admit a one-dimensional DAGmap. In this paper we prove that a
DAG admits a one-dimensional DAGmap if and only if it admits a di-
rected ε-visibility representation. Then we characterize the class of DAGs
that admit directed ε-visibility representations. This class consists of the
DAGs that admit a downward planar straight-line drawing such that all
source and sink vertices are assigned to the external face. Finally we show
that a DAGmap defines a directed three-dimensional ε-visibility represen-
tation of a DAG.
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1 Introduction

Among the many alternative ways to visualize a tree, space filling visualiza-
tions, such as treemaps, have become very popular due to their efficiency, their
scalability, and their ease of navigation and user interaction [1]. Space filling
techniques make optimal use of the available space and have the capacity of
showing thousands of items legibly. On the other hand, the node-link represen-
tations do not make optimal use of the available space since most of the pixels
are used for background. Recently, we investigated space filling visualizations
for hierarchies that are modeled by Directed Acyclic Graphs (DAG). We as-
sumed that the available space is a rectangle and we defined the constraints for
a visualization that extends the treemap techniques [1, 6, 13, 17] to DAGs and
where the vertices and edges of a DAG are drawn as rectangles [20]. In [20] we
use the term “DAGmap” to describe a space filling visualization according to
the constraints and we show that there are DAGs that admit and DAGs that
do not admit DAGmap drawings. Moreover deciding whether or not a DAG ad-
mits a DAGmap drawing is NP-complete. In the special cases of Two Terminal
Series Parallel digraphs [21] and of layered planar DAGs [9], the admissibility
question can be answered in linear time with respect to input size [20]. Figure 1
shows two alternative DAGmaps of a DAG G. The second DAGmap, shown in
Fig. 1(c), is called one dimensional because all rectangles have the same height.
To illustrate the structure of the hierarchy, the rectangles are shrunk suitably
in vertical, in horizontal or in both directions. This postprocessing operation
is called nesting [13] and is independent from the assignment of rectangles to
vertices.

In a visibility representation of a graph G, vertices of G are mapped to
sets in Euclidean space and edges are expressed as visibility relations between
them. In a (two-dimensional) visibility representation of a graph G, the vertices
are drawn as horizontal segments in the plane and the edges are represented by
pairs of vertically visible segments [8, 7, 14, 10, 16, 18, 22]. Recently, interest has
developed in investigating visibility representations in three dimensions where
vertices are represented by disjoint axis-aligned closed rectangles lying in planes

6 

2 3 4 

7 

5 

1 

(a)

s->11

1->5

1->6

1->2

1->3

1->4

5

3

4

2
2->6

4->7

5->7

3->77
6

(b)

s->11
1->5

1->6
1->2 1->3 1->4 53 42
2->6 4->7 5->73->776

(c)

Figure 1: (a) A DAG G and two DAGmaps of G.
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parallel to the xy-plane and edges correspond to z-parallel visibility among these
rectangles [5]. If graph G is directed, then for every edge (u, v) the rectangle of
v is below the rectangle of u.

In a DAGmap as well as in a visibility representation of a DAG the vertices
are represented by closed rectangles and the edges are closed sets which have
non-empty intersection with the source and destination vertex rectangles. In this
paper we show that a DAGmap (resp. treemap) determines a directed three-
dimensional ε-visibility representation of a DAG (resp. tree). Additionally we
show that there is a one-to-one correspondence between the class of DAGs that
admit one-dimensional DAGmaps and the class of DAGs that admit directed
ε-visibility representations. Using this correspondence we show that the class
of DAGs that admit a one-dimensional DAGmap is the class of downward (or
upward) planar digraphs that admit a drawing such that all source and sink
vertices are on the external face f∗ and their incident edges on f∗ form geometric
angles greater than π. Additionally we propose a testing and drawing algorithm
that runs in linear time.

2 Preliminaries

Let G = (V,E) be a directed acyclic graph (DAG) with n = |V | vertices and
m = |E| edges. A path of length k from a vertex u to a vertex w is a sequence
v0, v1, v2, . . . , vk of vertices such that u = v0, w = vk, and (vi−1, vi) ∈ E for
i = 1, 2, . . . , k. There is always a zero-length path from u to u. If there is a path
p from u to w, we say that w is reachable from u via p. A topological numbering
of G is an assignment of numbers to the vertices of G, such that for every edge
(u, v) of G, the number assigned to v is greater than the one assigned to u (i.e.,
number(v) > number(u)). A numbering is optimal if the range of numbers
assigned to vertices is minimized. If e = (u, v) ∈ E is a directed edge, we say
that e is incident from u (or outgoing from u) and incident to v (or incoming
to v); vertex u is the origin of e and vertex v is the destination of e. The origin
of e is denoted by orig(e) and the destination of e by dest(e). For every vertex
u ∈ V , E+(u) = {e ∈ E | orig(e) = u} and E−(u) = {e ∈ E | dest(e) = u} are
the sets of edges incident from and to vertex u, respectively.

A drawing Γ of a graph (digraph) G is a function which maps each vertex
v to a distinct point of the plane and each edge (u, v) to a simple open Jordan
curve, with endpoints u and v. A drawing is planar if no two edges intersect
except, possibly, at common endpoints. A graph is planar if it admits a pla-
nar drawing. Two planar drawings of G are equivalent if they determine the
same circular ordering of the edges around each vertex. An equivalence class of
planar drawings is a (combinatorial) embedding of G. An embedded graph is a
graph with a specified embedding. A planar drawing partitions the plane into
topologically connected regions that are called faces. The unbounded face is the
external face. Two drawings with the same embedding have the same faces but
may still differ in the choice of the external face. A planar embedding consists
of a combinatorial embedding and an external face.
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An st-graph is an acyclic digraph with a single source s and a single sink t.
A planar st-graph is an st-graph that is planar and embedded with vertices s
and t on the boundary of the external face.

Lemma 1 [18] For every vertex v of a planar st-graph G, the incoming (out-
going) edges appear consecutively around v.

Let G be a planar st-graph and F be its set of faces. We conventionally
assume that F contains two representatives for the external face: the left exter-
nal face s∗, which is incident to the edges on the left boundary of G, and the
right external face t∗, which is incident to the edges on the right boundary of
G. For each element o of V ∪E we define orig(o), dest(o), left(o), and right(o)
as follows:

1) If o = v ∈ V , we define orig(v) = dest(v) = v. Also, by Lemma 1
there exist a face left(v) and a face right(v) that separate the incoming
from the outgoing edges of a vertex v 6= s, t in the clockwise direction
and in counter-clockwise direction, respectively. For v = s or v = t, we
conventionally define left(v) = s∗ and right(v) = t∗.

2) If o = e ∈ E, we denote by left(e) (resp. right(e)) the face on the left
(resp. right) side of e. Also, orig(e) (resp. dest(e)) denotes the origin
(resp. destination) vertex of e.

We define a digraph G∗, associated with the planar st-graph G, as follows: The
vertex set of G∗ is the set of faces of G. For every edge e 6= (s, t) of G, G∗ has
an edge e∗ = (f, g) where f = left(e) and g = right(e).

Lemma 2 [7] For any two objects o1, o2 ∈ V ∪E of a planar st-graph G, exactly
one of the following holds:

• G has a directed path from dest(o1) to orig(o2)

• G has a directed path from dest(o2) to orig(o1)

• G∗ has a directed path from right(o1) to left(o2)

• G∗ has a directed path from right(o2) to left(o1)

Let S be a set of horizontal non-overlapping closed line segments in the
plane. Two segments σ, σ′ of S are said to be visible if they can be joined by a
vertical segment not intersecting any other segment of S. Furthermore, σ and
σ′ are called ε-visible if they can be joined by a vertical band of width ε that
does not intersect any other segment of S.

Definition 1 A directed (weak) w-visibility representation for a DAG G con-
sists of mapping each vertex v of G into a horizontal segment σ(v) (called
vertex-segment), and each edge (u, v) ∈ E into a vertical segment σ(u, v) (called
edge-segment), so that, the vertex-segments do not overlap, and for each edge
(u, v) ∈ E the corresponding edge-segment σ(u, v) has its top endpoint on σ(u),
its bottom endpoint on σ(v), and it does not cross any other vertex-segment
σ(q), q 6= u, v.
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Figure 2: Visibility representations of a DAG G. (b) w-visibility representation
of G. (c) ε-visibility representation of G. Segments 2 and 3 block the visibility
between segments 1 and 4 without being ε-visible to each other.

Definition 2 A directed ε-visibility representation for a DAG G is a directed w-
visibility representation with the additional property that two vertex-segments are
directed ε-visible if and only if the vertex that corresponds to the bottom vertex-
segment is adjacent to the vertex that corresponds to the top vertex-segment.

Note that in order to be consistent with the downward representation of DAGs
we draw a visibility representation downward whereas in the literature it is
drawn upward [8]. Figure 2 shows the main difference between (weak) w- and
ε- visibility representations. In w-visibility representation of a DAG G the
visibility between two segments does not imply the existence of an edge in G
whereas in ε-visibility representation of G two segments are ε-visible if and only
if there is an edge between the corresponding vertices.

Now consider an arrangement of closed, non-overlapping rectangles in R3

such that the planes determined by the rectangles are perpendicular to the
z-axis, and the sides of the rectangles are parallel to the x- or y-axes. Two
rectangles R and R′ are ε-visible if and only if between the two rectangles there
is a closed cylinder C of positive height and radius such that the ends of C are
contained in R and R′, the axis of C is parallel to the z-axis, and the intersection
of C with any other rectangle in the arrangement is empty [5].

Definition 3 [15] A directed three-dimensional ε-visibility representation for
a DAG G consists of mapping each vertex v of G into a rectangle Rv (called
vertex-rectangle), and each edge (u, v) ∈ E into a vertical closed cylinder C of
positive length and radius (called edge-cylinder), so that the vertex-rectangles
do not overlap, and for each edge (u, v) ∈ E the corresponding edge-cylinder C
has its top base on Ru, its bottom base on Rv, and does not intersect any other
vertex-rectangle Rq, q 6= u, v. Additionally, two vertex-rectangles are ε-visible if
and only if the vertex that corresponds to the bottom vertex-rectangle is adjacent
to the vertex that corresponds to the top vertex-rectangle.
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(a) (b)

Figure 3: Illustration of the main properties of DAGmaps. (a) In treemaps the
rectangle of a child vertex is included into the rectangle of its parent vertex. (b)
In DAGmaps the rectangle of a vertex is included into the union of rectangles
of its ancestors. Also the rectangle of an edge is contained in the intersection of
the rectangles of its source and destination vertices.

In the following Ru denotes the drawing region of a vertex u ∈ V and Re

denotes the drawing region of an edge e ∈ E.

Definition 4 (DAGmap drawing) A DAGmap drawing of a DAG G = (V,E)
with a single source s is a space filling visualization of G that satisfies the fol-
lowing drawing constraints:

B1. The vertices and the edges are drawn as rectangles that have positive area.

B2. The rectangle of every non-source vertex u ∈ V is equal to the union of
the rectangles of edges incident to u (Ru = ∪e∈E−(u)Re).

B3. The rectangles of edges incident from a non-sink vertex u ∈ V form a
partition of the rectangle of u (Ru = ∪e∈E+(u)Re and ∀e1, e2 ∈ E+(u)
with e1 6= e2 ⇒ area(Re1 ∩Re2) = 0).

Figure 3 shows the main properties of treemaps and of their generalizations
which are called DAGmaps. In Definition 4 we require that the rectangles
of edges incident from a vertex partition the rectangle associated to the vertex.
However the partition property is not required for the edges incident to a vertex.
Lemma 3 and Corollary 1 show that constraints B1-B3 imply this partition
property.

Lemma 3 In a DAGmap drawing of DAG G = (V,E), if for some pair of edges
e1, e2 ∈ E with e1 6= e2, it holds that that orig(e1) is not reachable from dest(e2)
and orig(e2) is not reachable from dest(e1), then the rectangles Re1 and Re2 do
not overlap (i.e., area(Re1 ∩Re2) = 0).

Proof: Assume for a contradiction that there are two edges e1, e2 ∈ E, where
e1 6= e2, such that orig(e1) is not reachable from dest(e2), orig(e2) is not
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reachable from dest(e1) and area(Re1 ∩ Re2) > 0. The proof is accomplished
by the following recursive procedure which ends after a finite number of steps.

If orig(e1) = orig(e2) from constraint B3 we arrive at a contradiction. For
this reason we assume that orig(e1) 6= orig(e2). Then from constraint B3 we
have that Re1 ⊂ Rorig(e1) and Re2 ⊂ Rorig(e2). Then Re1 ∩ Re2 ⊂ Rorig(e1) ∩
Rorig(e2) ⇒ 0 < area(Re1 ∩ Re2) ≤ area(Rorig(e1) ∩ Rorig(e2)). Now we have
three cases. Case 1: If neither orig(e1) nor orig(e2) is the source vertex, then
from constraint B2 we have that there is an edge e′1 incident to vertex orig(e1)
and an edge e′2 incident to vertex orig(e2) such that area(Re′1

∩ Re′2
) > 0. We

repeat the above procedure for edges e′1 and e′2. Case 2: orig(e1) is the source
vertex and orig(e2) is a non-source vertex. Then from constraint B2 there exists
an edge e′2 incident to vertex orig(e2) such that area(Re1 ∩Re′2

) > 0. We repeat
the procedure for edges e1 and e′2. The third case where orig(e1) is a non-source
vertex and orig(e2) is the source vertex is similar to case 2 and we repeat the
procedure for vertices e′1 and e2.

After a finite number of steps the above procedure ends and we get two
edges ek and el such that area(Rek ∩Rel) > 0 and orig(ek) = orig(el) which is
a contradiction. �

Corollary 1 The rectangles of edges incident to a non-source vertex u ∈ V
form a partition of the rectangle of u.

Corollary 2 In a DAGmap drawing of a DAG G the following holds: For every
pair of vertices u, v ∈ V if there is no path from u to v or from v to u, then
their rectangles Ru, Rv do not overlap (area(Ru ∩Rv) = 0).

To extend Definition 4 to a DAG G with more than one source, we require
that constraints B1, B2 and B3 hold and additionally that the rectangles of the
sources form a partition of the available display rectangle. Then we consider
DAG G′ that is obtained by introducing an artificial source s′ and edges from s′

to all sources of G. A DAGmap of G′ can be obtained from a DAGmap of G by
assigning the available display rectangle to s′ and the rectangle Rs to each edge
(s′, s), where s is a source of G. Conversely, a DAGmap of G can be obtained
by a DAGmap of G′ by omitting the rectangle of vertex s′ and the rectangles
of edges incident from s′. Therefore we have the following:

Lemma 4 DAG G admits a DAGmap if and only if DAG G′ admits a DAGmap.

3 One-Dimensional DAGmaps and Directed ε-
Visibility Representations

One-dimensional DAGmaps were introduced in [20]. They are constructed by
partitioning the space only along the vertical direction. We will show that
one-dimensional DAGmaps are related to directed ε-visibility representations of
DAGs.
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Figure 4: An example of a one-dimensional DAGmap drawing of a DAG G. The
hierarchy structure is visualized via nesting along the vertical direction.

Definition 5 A DAGmap is called one-dimensional if all rectangles have the
same height (or equivalently if all rectangles have the same width).

Figure 4 shows an example of a one-dimensional DAGmap. Since the height of
all rectangles is constant, the admissibility and drawing problems are unaffected
if instead of the vertex and edge rectangles Rq we consider their projections on
the horizontal axis. These projections are intervals Iq.

From the vertex rectangles (resp. intervals) of a one-dimensional DAGmap
we can construct a directed three-dimensional (resp. two-dimensional) ε-visibility
representation by assigning to rectangles (resp. intervals) a z-coordinate. The
construction is described in Theorem 1 and an example is shown in Fig. 5.
In Fig. 5(b) the rectangles of a one-dimensional DAGmap of the DAG of Fig.
5(a) are shown. The directed three-dimensional ε-visibility representation that
is constructed from these rectangles is shown in Fig. 5(c). The corresponding
directed (two-dimensional) ε-visibility representation is shown in Fig. 5(d). The
segments of Fig. 5(d) are the projections of the rectangles of Fig. 5(c) onto the
xz-plane.

Theorem 1 If a DAG G = (V,E) admits a one-dimensional DAGmap then it
admits a directed ε-visibility representation.

Proof: Suppose that G admits a one-dimensional DAGmap. From the one-
dimensional DAGmap we construct a directed ε-visibility representation as fol-
lows: We compute an optimal topological numbering Y of G, such that only
integer numbers are used and the sources are assigned the number 0. We also
compute the length h of the longest path in the DAG. Each interval Iu, with
u ∈ V of the one-dimensional DAGmap is shifted along the vertical direction
and is drawn on the horizontal line with equation y = y(u) = h − Y (u) + ε · j,
where ε is a small positive number (e.g. 0 < ε < 1

1000·|V | ) and j = j(u) ∈
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Figure 5: An example of the construction of Theorem 1. (a) A DAG G. (b)
The rectangles of a one-dimensional DAGmap of G. (c) The constructed three-
dimensional directed ε-visibility representation of G, and (d) the corresponding
directed ε-visibility representation of G.
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{0, 1, · · · , |V | − 1} is a unique vertex index. The shifted intervals Iu, with
u ∈ V , become the vertex-segments σ(u) of the ε-visibility representation. The
vertex-segments do not overlap since they are drawn on different horizontal
lines. Next we add the edge-segments. For each e = (u, v) ∈ E, an edge-
segment σ(u, v) = {(µuv, y) | y(v) ≤ y ≤ y(u)} is created, where µuv is the
horizontal coordinate of the middle of the interval Ie (recall that Ie is the pro-
jection of edge rectangle Re on the horizontal axis). This construction is always
possible since length(Ie) > 0.

We will show that edge-segment σ(u, v) does not intersect any other vertex-
segment apart from vertex-segments σ(u) and σ(v) at its end points. Suppose for
a contradiction that σ(u, v) intersects with vertex-segment σ(q), where q 6= u, v.
Then we have Y (u) ≤ Y (q) ≤ Y (v). If Y (q) = Y (u) then there is no directed
path between q and u and from Corollary 2 it follows that Iq does not intersect
with Iu ⇒ σ(q) does not intersect with σ(u, v) (a contradiction). Similarly if
Y (q) = Y (v) then from Corollary 2 it follows that Iq does not intersect with
Iv ⇒ σ(q) does not intersect with σ(u, v) (a contradiction). Therefore the only
case that remains is Y (u) < Y (q) < Y (v). The intervals Ie, where e = (u, v),
and Iq overlap since edge-segment σ(u, v) intersects with vertex-segment σ(q).
Interval Iq is equal to the union of the intervals of edges incident to q. Among
those intervals there is one edge interval Ie1 that overlaps with edge interval Ie.
However there is no path from dest(e) = v to orig(e1) or from dest(e1) = q
to orig(e) = u since Y (orig(e1)) < Y (dest(e)) and Y (orig(e)) < Y (dest(e1)).
This contradicts Lemma 3. Therefore for each edge (u, v) ∈ E the segment σ(v)
is visible from σ(u), which is the condition for directed w-visibility. Moreover
σ(v) is directed ε-visible from σ(u), since in the above arguments we can choose
ε suitably small and replace the edge-segment σ(u, v) with the vertical visibility
band b(u, v) = [µuv − ε

2 , µuv + ε
2 ]× [y(v), y(u)] = Iε × Iy.

Now, suppose that two vertex-segments σ(u) and σ(v), such that Y (u) <
Y (v), are ε-visible while (u, v) /∈ E. From the ε-visibility of σ(u) and σ(v)
we have that vertex-segments σ(u) and σ(v) can be joined by a vertical band
Iε × Iy, where Iy = [y(v), y(u)], of width ε that does not intersect any other
segment. Let e1, e2, . . . , ek be the edges incident from u and e′1, e

′
2, . . . , e

′
l be

the edges incident to v. From constraint B3 we have: Iu = Ie1 ∪ . . . ∪ Iek .
Similarly, from constraint B2 we have: Iv = Ie′1 ∪ . . . ∪ Ie′l . Interval Iε is
contained in Iu. Therefore there is an interval Ie ∈ {Ie1 , . . . , Iek} such that
length(Ie ∩ Iε) 6= 0. Since Ie ∩ Iε ⊂ Iv it holds that there is at least one interval
Ie′ among {Ie′1 , . . . , Ie′l} such that length(Ie∩Iε∩Ie′) 6= 0⇒ length(Ie∩Ie′) 6= 0.
Then from Lemma 3 we have that there is at least one path from dest(e) to
orig(e′). Since (u, v) /∈ E, it follows that any path from u to v has length at least
two. Therefore dest(e) 6= v. If dest(e) = q then Ie ⊂ Iq ⇒ length(Iε∩Iq) 6= 0⇒
the vertical band Iε × Iy intersects with σ(q) which contradicts the hypothesis
that Iε × Iy does not intersect any other segment apart from σ(u) and σ(v).
We proved that if two vertex segments σ(u) and σ(v), such that Y (u) < Y (v),
are ε-visible then (u, v) ∈ E. Therefore vertex segment σ(v) is ε-visible from
segment σ(u) if and only if (u, v) ∈ E, which is the condition of directed ε-
visibility representation. �
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4 Directed ε-Visibility Representations and One-
Dimensional DAGmaps

Theorem 1 reveals an interesting relationship between one-dimensional DAGmaps
and ε-visibility representations. Namely a one-dimensional DAGmap defines an
ε-visibility representation of a DAG. The converse of this theorem is even more
interesting because a) the problem of visibility representations of a DAG has
been thoroughly studied and b) it allows us to characterize the class of DAGs
that admit a one-dimensional DAGmap. Before we give the converse of Theo-
rem 1 we will characterize the class of DAGs that admit a directed ε-visibility
representation. An equivalent characterization of this class of DAGs was given
by Kirkpatrick and Wismath [12]. A characterization of the class of (undi-
rected) graphs that admit an ε-visibility representation was given by Tamassia
and Tollis [18] and independently by Wismath [22]. A characterization of the
class of digraphs that admit a (weak) w-visibility representation was given by
Di Battista and Tamassia [8].

Theorem 2 [8] A digraph G admits a directed w-visibility representation if and
only if G is a subgraph of a planar st-graph.

4.1 Directed ε-Visibility Representations and Planar st-
Graphs

Let G = (V,E) be a DAG and G′ = (V ′, E′) be the DAG that is formed by
augmenting DAG G with two vertices s′ and t′ and edges from s′ to all sources
of G and edges from all sinks of G to t′. Then the following lemma holds.

Lemma 5 If a DAG G admits a directed ε-visibility representation, then DAG
G′ is a planar st-graph.

Proof: Let G be a directed ε-visibility representation for G. Let s1, . . . , sk be
the sources of G and σ(s1), . . . , σ(sk) the corresponding segments of G. Sim-
ilarly, let t1, . . . , tl be the sinks of G and σ(t1), . . . , σ(tl) the corresponding
segments of G. From the directed ε-visibility representation G construct a new
directed ε-visibility representation G1 as follows: The segments σ(s1), . . . , σ(sk)
are moved upwards so that all have the same height. Similarly, the segments
σ(t1), . . . , σ(tl) are moved downwards so that all have the same height. In case
that two segments intersect at their endpoints then move one of them in the
vertical direction by a small amount ε. Then construct a planar drawing Γ of
G by shrinking every vertex-segment of G1 into a point, and bending the edge-
segments in order to maintain the adjacencies. Then add a point s′ above all
vertex points of Γ and join this point with the sources of Γ using straight lines.
Similarly, add a point t′ below all vertex points of Γ and join the sinks of Γ
with this point using straight lines (see Fig. 6). Then the new drawing Γ′ is
planar and the vertices s′ and t′ are drawn on the boundary of the external face.
Therefore st-graph G′ is planar. �



370 Tsiaras, Tollis DAGmaps and ε-Visibility Representations of DAGs

(a) ε-visibility representa-
tion of a DAG G

(b) All segments of sources
(resp. sinks) have the same
height.

s’ 

t’ 

(c) Drawing Γ and points s′

and t′

Figure 6: An example of the construction of Lemma 5.

Let Cw and Cε be the classes of DAGs that admit a directed w-visibility and a
directed ε-visibility representation respectively. From the definition of directed
ε-visibility representation we have that Cε ⊆ Cw. From Theorem 2 and Lemma
5 it follows that Cε is properly included in Cw.

The converse of Lemma 5 can be proved by constructing a directed ε-
visibility representation of a planar st-graph. The construction is accomplished
by Algorithm 1, which is based on the Algorithm Tessellation [7, 19]. The input
to Algorithm 1 is a planar embedding of DAG G′. Note that in order to test for
st-planarity and find an appropriate planar embedding of G′ we add edge (s′, t′)
and obtain an embedding for the augmented G′ graph. This edge constrains
the embedding such that vertices s′ and t′ appear on the boundary of the same
face, say the external face. After a planar embedding has been obtained this
edge is removed.

Theorem 3 Let G be a planar st-graph with n vertices. Algorithm 1 constructs
a directed ε-visibility representation in O(n) time.

Proof: For any pair of vertices u, v ∈ V , the vertex segments σ(u) and σ(v) do
not overlap since they have distinct y coordinates.

For each edge e = (u, v) ∈ E, the corresponding maximal visibility band b(e)
has its top side on σ(u) since yT (e) = y(u) and xL(u) ≤ xL(e) < xR(e) ≤ xR(u),
and its bottom side on σ(v) since yB(e) = y(v) and xL(v) ≤ xL(e) < xR(e) ≤
xR(v). We will show that we can choose a vertical band b′(e) ⊂ b(e) of non-
zero width that has its top side on σ(u), its bottom side on σ(v), and does not
intersect with any other vertex-segment σ(q). For the coordinates of b′(e) we
choose y′B = yB(e) = y(v), y′T = yT (e) = y(u), and xL(e) < x′L < x′R < xR(e).
If there is a directed path in G from vertex q to vertex orig(e) or a directed
path from dest(e) to q then y(q) > y(u) or y(v) > y(q), respectively. Therefore
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Algorithm 1 Directed ε-visibility representation

Input: a planar st-graph G = (V,E)
Output: a) a directed ε-visibility representation G of G

b) visibility bands of maximal width between segments s(u) and s(v)
for every (u, v) ∈ E

1. Construct the planar st-graph G∗.

2. Compute an optimal topological numbering Y of G such that only integer
numbers are used.

3. Compute an optimal topological numbering X of G∗.

4. Let ε be a very small positive number and set j = 0

5. For each vertex u ∈ V , let the coordinates of segment σ(u) be:
xL(u) = X(left(u)); xR(u) = X(right(u));
y(u) = Y (t)− Y (u) + ε · j; //perturb slightly by adding ε · j
j = j + 1;

6. For each edge e ∈ E, let the coordinates of the corresponding maximal
visibility band b(e) be:

xL(e) = X(left(e)); xR(e) = X(right(e));
yT (e) = y(orig(e)); yB(e) = y(dest(e)).

s 0 

4 a 1 
1 

6 2 b 
7 0 

c 3 d 3 3 

2 
v g u 4 

4 
5 4 4 

t 5 

(a) Planar st-graphs G and G∗

s 

a 

b 

d c 

g v u 

t 

(b) ε-visibility representation of G and
maximal visibility bands

Figure 7: Example of a run of Algorithm 1. Planar st-graphs G and G∗ are
labeled by topological numberings Y and X, respectively.
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vertex segment σ(q) and vertical band b′(e) do not intersect. For this we assume
that (see Lemma 2) G∗ either has a directed path from right(e) to left(q) or
has a directed path from right(q) to left(e). Then either x′R < xR(e) ≤ xL(q)
or xR(q) ≤ xL(e) < x′L. In both cases b′(e) does not intersect with σ(q).

Finally since the topological numbering X is optimal the vertex-segment of a
non-sink vertex u is covered by the bottom sides of the maximal visibility bands
of edges incident from u. Similarly the vertex-segment of a non-source vertex v
is covered by the top sides of the maximal visibility bands of edges incident to
v. Therefore vertex-segment σ(v) is ε-visible from vertex-segment σ(u) only if
G has an edge (u, v).

The O(n) time bound follows easily since each step of the algorithm can be
accomplished in O(n) time. �

The construction of Algorithm 1 implies the following lemma:

Lemma 6 If DAG G′ is a planar st-graph then DAG G admits a directed ε-
visibility representation.

Proof: Suppose that G′ is a planar st-graph. Then using Algorithm 1, we
construct a directed ε-visibility representation G′ forG′. If we remove the vertex-
segments σ(s′) and σ(t′) from G′ (along with their incident edge-segments) we
obtain a directed ε-visibility representation for G. �

From Lemmas 5 and 6 we have:

Theorem 4 DAG G admits a directed ε-visibility representation if and only if
DAG G′ is a planar st-graph.

4.2 Directed ε-Visibility Representations and Downward
Planarity

An alternative characterization of directed ε-visibility representation is based
on downward (or upward) planarity.

Let f be a face of a planar drawing (or embedding) of a digraph G and
suppose that the boundary of f is traversed counterclockwise. If e1 and e2 are
two edges incident to or from a vertex v which are encountered in this order
along the boundary of f , the triplet α = (e1, v, e2) is called an angle of f . Note
that, e1 and e2 may coincide if G is not biconnected. Angle α is called a switch
of f if e1 and e2 are both incoming edges or both outgoing edges of v: in the
first case α is also called a sink-switch of f , while in the second case it is a
source-switch of f . Therefore, a source-switch (sink-switch) of f is a source
(sink) of f . Note that a source-switch (sink-switch) is not necessarily a source
(sink) of G.

A downward drawing of a digraph is such that all the edges are represented by
directed curves decreasing monotonically in the vertical direction. A digraph
has a downward drawing if and only if it is acyclic. A digraph is downward
planar if it admits a planar downward drawing. A downward planar digraph
also admits a planar downward straight-line drawing [8, 11].
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Let Γ be a planar straight-line downward drawing of an embedded downward
planar digraph G. We say that a sink t (source s) of G is assigned to face f of
Γ if the angle defined by the two edges of f incident on t (s) is greater than π.
Clearly, each sink (source) can be assigned only to one face, while an internal
vertex is not assigned to any face. For more information of how this intuitive
idea of assignment of vertices to faces can be formally expressed as a perfect
c-matching problem see [2, 3, 7].

Lemma 7 If a DAG G admits a directed ε-visibility representation, then there
exists a downward planar drawing of G such that all source and sink vertices
are assigned to the external face.

Proof: Let G be a directed ε-visibility representation for G. Construct a down-
ward planar drawing of G by shrinking every vertex-segment of G into a point,
and bending the edge-segments in order to maintain the adjacencies. Suppose,
for a contradiction, that there is a source s that is not assigned to the external
face. Since s is assigned to exactly one face, it follows that it is assigned to
an internal face f . This means that the angle defined by the two edges of f
incident on s is greater than π and therefore s is not the highest point of the
boundary of f . Thus in G the vertex-segment σ(s) is ε-visible from at least one
other vertex-segment. Therefore s is not a source (a contradiction). The proof
for sink vertices is similar. �

Lemma 8 If there exists a downward planar drawing of G such that all source
and sink vertices are assigned to the external face then G admits a directed
ε-visibility representation.

Proof: The downward planar drawing of G can be easily extended to a planar
drawing of G′. Then from Theorem 4 it follows that G admits a directed ε-
visibility representation. �

From Lemmas 7 and 8 we have the following theorem:

Theorem 5 A DAG G admits a directed ε-visibility representation if and only
if there exists a downward planar drawing of G such that all source and sink
vertices are assigned to the external face.

4.3 Characterization of One-Dimensional DAGmaps

We are now in a position to prove the converse of Theorem 1

Theorem 6 If a DAG G = (V,E) admits a directed ε-visibility representation
then it admits a one-dimensional DAGmap.

Proof: Suppose that G admits a directed ε-visibility representation. Then we
compute a directed ε-visibility representation G′ of G′ using Algorithm 1 and
from G′ a directed ε-visibility representation G of G by deleting segments σ(s′)
and σ(t′). From the arrangement of the vertex-segments of G we will construct
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a one-dimensional DAGmap drawing of G. To each vertex-segment σ(u), with
u ∈ V we correspond an interval Iu by taking its projection on the horizontal
axis. For each edge e = (u, v) ∈ E there is exactly one vertical band b of maximal
width that has its bottom side on σ(u) its top side on σ(v) and its internal points
do not intersect with any other segment. The coordinates of b are calculated
by Algorithm 1. The edge rectangle Ie is equal to the projection of b on the
horizontal axis. Therefore we construct intervals {Iu | u ∈ V } and {Ie | e ∈ E}.
With these intervals we can construct rectangles {Ru = Iu × Iwidth | u ∈ V }
and {Re = Ie × Iwidth | e ∈ E} with sides aligned to xy- axes and fixed vertical
coordinates of their corners (see Fig. 8). We will show that these rectangles
satisfy the DAGmap drawing constraints. Drawing constraint B1 is clearly
satisfied. Constraints B2 and B3 are satisfied due to the optimality of the
topological numbering X of G∗. �

Combining Theorems 1 and 6 we have the following theorem:

Theorem 7 A DAG G = (V,E) admits a one-dimensional DAGmap if and
only if it admits a directed ε-visibility representation.

Algorithm 2 One-dimensional DAGmap drawing

Input: DAG G = (V,E) and drawing rectangle R = (xleft, ybottom, xright, ytop)
Output: one-dimensional DAGmap drawing of G if G admits such a drawing.

1. From DAG G = (V,E) we construct an st-digraph G′ = (V ′, E′), where
V ′ = V ∪ {s′, t′} and E′ = E ∪ {(s′, u) | u is a source of G } ∪ {(u, t′) | u
is a sink of G } ∪ (s′, t′).

2. If G′ is not st-planar return “DAG G does not admit a one-dimensional
DAGmap.”

3. Else find a planar embedding of G′ such that s′ and t′ appear on the
boundary of the external face.

4. Remove edge (s′, t′) from G′

5. Call Algorithm 1 with input G′ to compute the horizontal coordinates of
vertex-segments and maximal visibility bands.

6. Use these coordinates to fill the coordinates of vertex and edge rectangles
of G.

Algorithm 2 recognizes whether or not a DAG admits a one-dimensional
DAGmap and in the first case it constructs a one-dimensional DAGmap drawing.
All steps of this algorithm can be computed in O(n) time. Therefore we have
the following theorem.



JGAA, 16(2) 359–380 (2012) 375

a

b

c d

v g u

s

t

a

b

c d

v g u

s

t
 

(a) ε-visibility representa-
tion of G

 

a 

b 

c d

v g u

t 

s 

(b) Constructing rectangles
with sides aligned to xy-axes
and constant width

 

s

a

b

c d
v g u

t

(c) All rectangles are pro-
jected onto xy-plane and then
nesting is used to display the
hierarchy structure

Figure 8: Steps 4 and 5 of Algorithm 2 when applied to DAG of Fig. 7(a)

Theorem 8 Algorithm 2 computes a one-dimensional DAGmap of an n-vertex
DAG in O(n) time, if such a drawing exists.

Proof: The proof of Theorem 8 is very similar to the proof of Theorem 3 which
proves the correctness of Algorithm 1.

The O(n) time bound follows easily since each step of the algorithm runs in
O(n) time. In particular, the planar embedding of Step 3 can be obtained by
the algorithm proposed by Bertolazzi et al. [4]. �

5 DAGmaps and Three-Dimensional ε-Visibility
Representations

A treemap determines a three-dimensional ε-visibility representation of a tree
T if the vertex rectangles are placed in three dimensional space such that their
x and y coordinates are unaltered and their z coordinates are equal to the tree
height minus the distance of the corresponding vertices from the root (plus tiny
perturbations in order to keep the rectangles disjoint) (see Fig. 9). Similarly,
we construct a directed three-dimensional ε-visibility representation of a DAG
G by shifting the vertex rectangles of the DAGmap along the vertical direction
in such a way that their z-coordinates are determined by an optimal topological
numbering of G (plus a perturbation). This construction leads to Theorem 9.
The proof of Theorem 9 is similar to the proof of Theorem 1 and therefore is
omitted.

Theorem 9 If a DAG G admits a DAGmap, then it admits a directed three-
dimensional ε-visibility representation.
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Notice that the converse of Theorem 9 does not hold as shown in Fig. 10.
The DAG of Fig. 10 does not admit a DAGmap due to adjacency constraint
violations. Since the edge rectangles form a partition of the rectangles of the
origin and destination vertices, then the sink vertices e, f , g, h, i, j constrain
the pairs of source vertices {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} to be drawn
in adjacent rectangles. However this configuration is impossible. On the other
hand a directed three-dimensional ε-visibility representation is shown on the
right side of Fig. 10.

From Theorem 9 and the counter-example of Fig. 10 it follows that the class
of DAGs that admit DAGmaps is a proper subset of the class of DAGs that
admit directed three-dimensional ε-visibility representations. It is interesting
to investigate under what restrictions a directed three-dimensional ε-visibility
representation implies a DAGmap. Without loss of generality we focus our
analysis on st-graphs. From an st-graph G = (V,E) we construct the st-graph
G1 = (V1, E1), such that V1 = V ∪ E and E1 = {(u, e), (e, v) | e = (u, v) ∈ E}.
In the augmented graph G1 each edge of G has the entity of a vertex and
corresponds to a rectangle in any visibility representation of G1. Additionally
we restrict the arrangement of rectangles of a visibility representation of G1

such that the projections of the rectangles of the source and sink vertices onto
the xy-plane are equal to a given rectangle R and that the projections of the
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(c) Three-dimensional ε-visibility of T

Figure 9: A tree T , a treemap of T and a three-dimensional ε-visibility repre-
sentation of T that is constructed from the treemap of T
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a cb d

e g j f h i

Figure 10: The DAG of this figure does not admit a DAGmap. However it
admits a three-dimensional directed ε-visibility representation.

rectangles of all other vertices are restricted inside R. Under these restrictions
a three-dimensional ε-visibility representation of G1 corresponds to a DAGmap
of G as Theorem 10 states.

Theorem 10 An st-graph G admits a DAGmap if and only if the augmented
st-graph G1 admits a directed three-dimensional ε-visibility representation such
that the projections of the rectangles of the source and sink vertices onto the xy-
plane are equal to a given rectangle R and that the projections of the rectangles
of all other vertices are restricted inside R.

Proof: From a DAGmap of an st-graph G it is easy to construct a directed
three-dimensional ε-visibility representation of G1 by setting appropriately the
z-coordinates of the vertex and edge rectangles of the DAGmap of G.

Conversely, from the directed three-dimensional ε-visibility representation
of G1 = (V1, E1) we will construct a DAGmap of G. For each vertex v ∈ V1 let
Pv be the corresponding rectangle in the directed three-dimensional ε-visibility
representation and let Rv be the projection of Pv onto the xy-plane. Now
construct a DAGmap of G such that each vertex v ∈ V is assigned the rectangle
Rv and each edge e ∈ E is assigned the rectangle Re (recall that e is an edge
of G but is also a vertex of G1 and corresponds to a rectangle in the visibility
representation). Then constraint B1 is satisfied. We will show that constraints
B2 and B3 are also satisfied. First assume that constraint B2 is not satisfied.
For this suppose that u is a non-source vertex and that Ru is not equal to the
union of the rectangles of edges incident to u. Then Ru is not covered by the
union of the rectangles of edges incident to u or the union of the rectangles of
edges incident to u is not covered by Ru. If Ru is not covered by the union of
the rectangles of edges incident to u, then Pu is ε-visible from a rectangle Pw

but (w, u) /∈ E1, which is a contradiction. Note that there is always at least one
such rectangle Pw since the projection onto the xy-plane of the rectangle of the
source vertex of G1 includes the projection of Pu (i.e., R = Rs ⊇ Ru). If the
union of the rectangles of edges incident to u is not covered by Ru then there
exists a rectangle Pw which is ε-visible from a rectangle Pe, where e is a vertex
of G1 and also e is an edge incident to u in G. However (e, w) /∈ E1, which is a
contradiction. Note that there is always at least one such rectangle Pw since the
projection onto the xy-plane of the rectangle of the sink vertex of G1 includes
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the projection of Pe (i.e., R = Rt ⊇ Re). Therefore Ru is equal to the union of
the rectangles of edges incident to u and constraint B2 is satisfied.

Now, let u be a non-sink vertex. Similarly to the proof of constraint B2 we
can show that Ru is equal to the union of the rectangles of edges incident from
u. Also suppose that there are two edges e1, e2 of G with common origin the
vertex u such that area(Re1 ∩Re2) 6= 0. Then rectangles Pe1 and Pe2 , where e1
and e2 are treated as vertices of G1, are either ε-visible or there are rectangles
that block the visibility of Pe1 and Pe2 . The first case leads to contradiction
because neither (e1, e2) nor (e2, e1) is an edge of G1. The second case also leads
to contradiction because it implies that either Pe1 or Pe2 is ε-visible from a
rectangle Pw, w 6= u. However neither (w, e1) nor (w, e2) is an edge of G1.
Therefore constraint B3 is also satisfied. �

Following the proof of Theorem 10 we construct a directed three-dimensional ε-
visibility representation of G by removing the rectangles of vertices e ∈ E ⊂ V1
of the directed three-dimensional ε-visibility representation of G1. This visibility
representation of G implies a DAGmap of G.

6 Discussion

In this paper we show that a DAG admits a one-dimensional DAGmap if and
only if it admits a directed ε-visibility representation. We also show that a
DAGmap can be transformed into a directed three-dimensional ε-visibility rep-
resentation of the corresponding DAG. The converse does not always hold, as
shown in the counter-example of Fig. 10. Theorem 10 reveals two sufficient
conditions on the arrangement of the rectangles of a directed three-dimensional
ε-visibility representation under which the converse holds. The first condition
is the inclusion of all (projected onto the xy-plane) rectangles in the rectangle
of the source (resp. sink) of an st-graph. Note that the characterization of the
classes of DAGs that admit a three-dimensional ε-visibility representation under
the inclusion property is an open problem. The second condition restricts the
visible part between any pair of visible rectangles to be a rectangle. When a
DAG is proper layered, then this condition is satisfied in any ε-visibility repre-
sentation with the inclusion property. However, it may not be satisfied when
a DAG has edges that span more than two layers. Therefore, a second open
problem is the characterization of the classes of DAGs that comply to both
conditions and for whom the converse of Theorem 9 is true.
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