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Abstract

We study a graph-augmentation problem arising from a technique applied in
recent approaches for route planning. Many such methods enhance the graph by
inserting shortcuts, i.e., additional edges (u,v) such that the length of (u,v) is the
distance from u to v. Given a weighted, directed graph G and a number c ∈ Z>0,
the shortcut problem asks how to insert c shortcuts into G such that the expected
number of edges that are contained in an edge-minimal shortest path from a ran-
dom node s to a random node t is minimal. In this work, we study the algorithmic
complexity of the problem and give approximation algorithms for a special graph
class. Further, we state ILP-based exact approaches and show how to stochasti-
cally evaluate a given shortcut assignment on graphs that are too large to do so
exactly.
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1 Introduction
Background. Computing shortest paths in graphs is used in many real-world appli-
cations like route-planning. Shortest paths from a given source to a given target can
be computed by DIJKSTRA’S algorithm, but the algorithm is slow on huge datasets.
Therefore, it can not be directly used for applications like car navigation systems or
online working route-planners that require an instant answer to a source-target query.
In the last decade various preprocessing-based techniques have been developed that
yield much faster query-times (see [25, 31] for an overview).

One core part of some of these approaches is the insertion of shortcuts [7, 9, 13, 14,
15, 20, 24, 26, 28, 29], i.e., additional edges (u,v) whose length is the distance from
u to v and that represent shortest u-v-paths in the graph. The strategies of assigning
the shortcuts and of exploiting them during the query differ depending on the speedup-
technique. Many techniques work as follows: In a preprocessing stage, the nodes
of the input graph are assigned to a level and shortcuts between nodes of the same
level are added to the graph. Afterwards, the query stage is similar to bidirectional
Dijkstra’s algorithm but omits some edges by preferring shortcut edges depending on
the level. However, it is still guaranteed that correct distances are computed. Until
now, all existing shortcut insertion strategies are heuristics and only few theoretical
worst-case or average case results are known [1, 5].

In this context, an interesting new theoretical problem arises: Given a weighted,
directed graph G and a number c ∈ Z>0, the shortcut problem asks how to insert c
shortcuts into G such that the expected number of edges that are contained in an edge-
minimal shortest path from a random node s to a random node t is minimal.

Contribution. In this work, we formally state the SHORTCUT PROBLEM and a variant
of it, the REVERSE SHORTCUT PROBLEM. While we study the algorithmic complexity
of both problems, the algorithmic contribution focuses on the SHORTCUT PROBLEM.
We state exact, ILP-based solution approaches. We further describe two algorithms that
give approximation guarantees on graphs in which, for each pair s, t of nodes, there is
at most one shortest s-t-path. It turns out that this class is highly relevant as in road
networks, most shortest paths are unique and only small modifications have to be made
to obtain a graph having unique shortest paths. Finally, we show how to stochastically
evaluate a given shortcut assignment on graphs that are too large to do so exactly.
Besides its relevance as a step towards theoretical results on speedup-techniques, we
consider the problem to be interesting and beautiful on its own right.

Related Work. Parts of this work have been published in [6]. The diploma thesis
[30] experimentally examines heuristic algorithms to find shortcut assignments with
high quality, including local search strategies and a betweenness-based approach. Fur-
thermore, the GREEDY-step Algorithm 3 is proposed in this thesis. To the best of
our knowledge, the problem of finding shortcuts as stated in this work has never been
treated before.

Speedup-techniques that incorporate the usage of shortcuts are the following. Given
a graph G = (V,E) the multilevel overlay graph technique [19, 20, 21, 26, 27, 29] uses
some centrality measures or separation strategies to choose a set of ‘important’ nodes
V ′ in the graph and inserts the shortcuts S such that the graph (V ′,S) is edge-minimal
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among all graphs (V ′,E ′) for which the distances between nodes in V ′ are as in (V,E).
Highway hierarchies [23, 24] and Reach Based Pruning [14, 15, 16, 17] iteratively spar-
sificate the graph according to the ‘importance’ of the nodes. After each sparsification
step, nodes v with small in- and out-degree are deleted. Then for each pair of edges
(u,v), (v,w) a shortcut (u,w) is inserted if necessary to maintain correct distances in the
graph. SHARC-Routing [7, 8, 10, 11] and Contraction Hierarchies [13] use a similar
strategy.

Overview. This paper is organized as follows. Section 2 introduces basic definitions.
The SHORTCUT PROBLEM and the REVERSE SHORTCUT PROBLEM are stated in Sec-
tion 3. Furthermore, results concerning complexity and non-approximability of the
problems are given. The remainder of the paper focuses on the SHORTCUT PROBLEM.
Section 4 proposes two exact, ILP-based approaches. In Section 5, a greedy algorithm
is presented that gives an approximation guarantee on graphs in which shortest paths
are unique. Section 6 states an approximation algorithm that works on graphs with
bounded degree in which shortest paths are unique. A probabilistic approach to evalu-
ate a given solution of the SHORTCUT PROBLEM is introduced in Section 7. The paper
is concluded by a summary and possible future work in Section 8.

2 Preliminaries
Let A ⊆ X be a subset of a set X . The indicator function of A and X is the function
1A : X →{0,1} defined as 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

Common Graph Theory. Throughout this work, G = (V,E, len) denotes a directed,
weighted graph with positive length function len : E→R>0. Given nodes u and v, we
call u a neighbor of v if there is an edge (u,v) or (v,u). We denote by N(v) the set of all
neighbors of v. Given a set S of nodes, the neighborhood of S is the set S∪

⋃
u∈S N(u).

We denote by
←−
G the reverse graph of G, i.e. the graph (V,

←−
E ,
←−
len) with

←−
E :=

{(v,u) | (u,v) ∈ E} and
←−
len being defined by

←−
len(u,v) := len(v,u) for (v,u) ∈ E.

A path P from x1 to xk in G is a finite sequence (x1,x2, . . . ,xk) of nodes such
that (xi,xi+1) ∈ E, i = 1, . . . ,k− 1 and xi 6= x j for each i 6= j. We say P contains
an edge (u,v) if (u,v) = (xi,xi+1) for some i ∈ {1, . . . ,k−1} and use the abbreviation
(u,v) ∈ P. The length len(P) of P is the sum of the lengths of all edges in P, i.e.
len(P) = ∑

k−1
i=1 len(xi,xi+1). A shortest path from node s to node t is a path from s to

t of minimum length. Given two nodes s and t the distance dist(s, t) from s to t is the
length of a shortest path from s to t and ∞ if there is no path from s to t. The diameter
of a graph G is the largest distance in G, i.e. max{dist(s, t) | s, t ∈V}. The eccentricity
εG(v) of a node v is the maximum distance between v and any other node u of G.

A cycle is a finite sequence (x1,x2, . . . ,xk) of nodes such that (xi,xi+1) ∈ E, i =
1, . . . ,k− 1 and xi = xk. A (rooted) tree with root (node) s is a directed graph T =
(V ′,E ′) without cycles such that for each node t ∈ V ′ there is exactly one path from s
to t. We call v a descendant of t in T , if the path from s to v in T contains t. Note that
each node is a descendant of itself.

A shortest-paths tree with root s is a subgraph T = (V ′,E ′) of G such that T is a
tree, V ′ is the set of nodes reachable from s and such that for each edge (u,v) ∈ E ′ we
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have dist(s,u)+ len(u,v) = dist(s,v). Note that each path in T is a shortest path. The
shortest-path subgraph with root s is the subgraph Gs = (V ′,E ′′) of G such that V ′ is the
set of nodes reachable from s and E ′′ is the set of all edges with dist(s,u)+ len(u,v) =
dist(s,v). Note that Gs contains exactly all shortest-paths in G that start with s. Further,
Gs is directed acyclic in case all edge weights are strictly positive.

Specific Notation and Considered Graphs. Consider a path P = (x1,x2, . . . ,xk). We
say P contains node u before node v if there are numbers i, j with 0 ≤ i ≤ j ≤ k such
that u = xi and v = x j.

Given is a sequence y1, . . . ,yk for k ≥ 2. A y1-y2-. . .-yk-path is a path P from y1
to yk such that P contains node yi before node yi+1 for i = 1, . . . ,k− 1. A shortest
y1-y2-. . .-yk-path is a y1-y2-. . .-yk-path that is a shortest path from y1 to yk. Let

P−(x,y) := {s ∈V | ∃ shortest s-y-path containing x}
P+(x,y) := {t ∈V | ∃ shortest x-t-path containing y}

denote the sets of start- or end-vertices of shortest paths through x and y. Similarly, let

P(x,y) := {(s, t) ∈V ×V | ∃ shortest s-t-path that contains x before y}

consist of all pairs of nodes, for which a connecting shortest path containing first x and
then y exists. Finally, let

P./(x,y) := {u ∈V | ∃ shortest x-y-path that contains u}

be the set of all nodes that lie on a shortest x-y-path.

We call a graph G sp-unique if, for any pair of nodes s and t in G, there is at most one,
unique shortest s-t-path in G. Let P = (x1,x2, . . . ,xk) be a path. The hop-length |P| of P
is k−1. Given two nodes s and t, the hop-distance hG(s, t) from s to t is the minimum
hop-length of any shortest s-t-path in G and 0 if there is no s-t-path in G or if s = t. We
abbreviate hG(s, t) by h(s, t) if the choice of the graph G is clear. We further assume
that for each edge (u,v) in G it is len(u,v) = dist(u,v). This can easily be assured by
deleting edges (u,v) with len(u,v)> dist(u,v) in a preprocessing step. This guarantees
that, after the insertion of a shortcut (a,b), there is only one edge (a,b) in the graph.

3 Problem Statement and Complexity
In this section, we introduce the SHORTCUT PROBLEM and the REVERSE SHORT-
CUT PROBLEM. We show that both problems are NP-hard. Moreover, we show
that there is no polynomial-time constant-factor approximation algorithm for the RE-
VERSE SHORTCUT PROBLEM and no polynomial-time algorithm that approximates
the SHORTCUT PROBLEM up to an additive constant unless P = NP. Finally, we iden-
tify a critical parameter of the SHORTCUT PROBLEM and discuss some monotonicity
properties of the problem.
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In the following, we augment a given graph G with shortcuts. These are edges
(u,v) that are added to G such that len(u,v) = dist(u,v). A set of shortcuts is called a
shortcut assignment.

Definition (Shortcut Assignment). Consider a graph G = (V,E, len). A shortcut as-
signment for G is a set E ′⊆ (V×V )\E such that, for any (u,v) in E ′, it is dist(u,v)<∞.
The notation G[E ′] abbreviates the graph G with the shortcut assignment E ′ added, i.e.,
the graph (V,E∪E ′, len′) where len′ : E∪E ′→R>0 equals dist(u,v) if (u,v) ∈ E ′ and
equals len(u,v) otherwise.

When working with shortcuts we are interested in the expected number of edges that
are contained in an edge-minimal shortest path from a random node s to a random node
t. The gain of a shortcut assignment E ′ measures how much this value decreases due
to the graph-augmentation with E ′.

Definition (Gain). Given a graph G = (V,E, len) and a shortcut assignment E ′, the
gain wG(E ′) of E ′ is

wG(E ′) := ∑
s,t∈V

hG(s, t)− ∑
s,t∈V

hG[E ′](s, t) .

We abbreviate wG(E ′) by w(E ′) in case the choice of the graph G is clear.

We briefly consider an augmented graph G[E ′] = (V,E ∪E ′, len′) and choose nodes s
and t uniformly at random. The expected number of edges on an edge-minimal shortest
s-t-path is 1

|V |2 ∑s,t∈V hG[E ′](s, t) when we count pairs s and t with dist(s, t) = ∞ by 0.
The term ∑s,t∈V hG(s, t) does not depend on E ′ and hence is constant. Consequently,
maximizing the gain and minimizing the expected number of edges on edge-minimal
shortest-paths are equivalent problems. The SHORTCUT PROBLEM consists of adding
a number c of shortcuts to a graph, such that the gain is maximal.

Problem (SHORTCUT PROBLEM). Let G = (V,E, len) be a graph and c ∈ Z>0 be
a positive integer. Given an instance (G,c), the SHORTCUT PROBLEM is to find a
shortcut assignment E ′ with |E ′| ≤ c such that the gain wG(E ′) of E ′ is maximal.

The REVERSE SHORTCUT PROBLEM searches for a shortcut assignment E ′ of mini-
mum cardinality achieving at least some given gain k. We assure that such a solution
exists by stating an upper bound on k. To obtain k, we first compute the number∣∣{(u,v) ∈V ×V | dist(u,v)< ∞,u 6= v}

∣∣ .
This is exactly the value of ∑s,t∈V hG[S](s, t) when inserting all possible shortcuts S to
G. Then we subtract this value from ∑s,t∈V hG(s, t) to yield a sharp bound on the gain.

Problem (REVERSE SHORTCUT PROBLEM). Let G = (V,E, len) be a graph and k ∈
Z>0 be less than or equal to ∑s,t∈V hG(s, t)−|{(u,v) ∈V ×V | dist(u,v)< ∞,u 6= v}|.
Given an instance (G,k) the REVERSE SHORTCUT PROBLEM is to find a shortcut
assignment E ′ such that wG(E ′)≥ k and such that |E ′| is minimal.
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As an auxiliary problem to shorten proofs we also consider the SHORTCUT DECISION
PROBLEM.

Problem (SHORTCUT DECISION PROBLEM). Let G = (V,E, len) be a graph and
c,k ∈ Z>0 be positive integers. Given an instance (G,c,k), the SHORTCUT DECISION
PROBLEM is to decide if there is a shortcut assignment E ′ for G = (V,E, len) such that
wG(E ′)≥ k and |E ′| ≤ c.

In order to show the complexity of the problems we make a transformation from SET
COVER and MIN SET COVER.

Definition (SET COVER and MIN SET COVER). Let C be a collection of subsets of
a finite set U such that

⋃
c∈C c =U and let k ∈Z>0 be a positive integer. A set cover of

(C,U) is a subset C′ of C such that every element in U belongs to at least one member
of C′. Given an instance (C,U), the problem MIN SET COVER is to find a set cover
C′ of (C,U) of minimum cardinality. Given an instance (C,U,k), the problem SET
COVER is to decide if there is a set cover C′ of (C,U) of cardinality no more than k.
The size of a MIN SET COVER instance (C,U) is ∑c∈C |c|.

Notation (Solution). Given a {SHORTCUT PROBLEM, REVERSE SHORTCUT PROB-
LEM, MIN SET COVER}-instance I, we denote by opt{SP,RSP,MSC}(I) an arbitrary (op-
timal) solution of I of the according problem.

We now show a relationship between SET COVER and the SHORTCUT PROBLEM.

Lemma 1. Let (C,U,k) be a SET COVER-instance. There is a graph G = (V,E, len)
such that there is a set cover C′ for (C,U) of cardinality |C|′ ≤ k if, and only if there is
a shortcut assignment E ′ for G of cardinality |E|′ ≤ k and gain w(E ′)≥ (2|C|+1)|U |.
Further, the size of G and the time to compute G is polynomial in the size of (C,U).
Finally, given a shortcut assignment E ′ with w(E ′)≥ (2|C|+1)|U |, we can compute a
set cover of cardinality at most |E ′| in time polynomial in the size of (C,U,k).

Proof: Given an instance (C,U,k) of SET COVER, we construct a graph G= (V,E, len)
as follows, see Figure 1 for an illustration: We denote the value 2|C|+ 1 by ∆. We
introduce a node s to G. For each u ∈U , we introduce a set of nodes Uu = {u1, . . . ,u∆}
to G. For each c in C, we introduce nodes c−, c+ and edges (c−,c+), (c+,s) to G.
The graph furthermore contains, for each u ∈U and each c ∈C with u ∈ c, the edges
(ur,c−),r = 1, . . . ,∆. All edges are directed and have length 1. We abbreviate U :=⋃

u∈U Uu, C− := {c−|c ∈C} and C+ := {c+|c ∈C}.
We first observe that shortcuts in G are always contained in one of the following

three sets: U ×{s},C−×{s} and U ×C+. Given u ∈ U , we say u is covered by a
shortcut (c−,s) ∈C−×{s} if u ∈ c.

Claim. Let C′ be a set cover of (C,U). Then, the shortcut assignment E ′ = {(c−,s) |
c ∈C′} fulfills |E ′|= |C′| and w(E ′)≥ ∆|U |.

Obviously |E ′| = |C′| holds. For each node v ∈U the hop-distance to node s de-
creases by 1 due to the insertion of E ′. As |U |= ∆|U |, it is w(E ′)≥ ∆|U |.
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c+1

c−1

c+2

c−2

c+3

c−3

U1 U2 U3 U4

U

C−

C+

s {s}

Figure 1: Graph G = (V,E) constructed from the SET COVER-instance {c1 =
{1,2},c2 = {2,3},c3 = {3,4}}.

Claim. Let E ′ be a shortcut assignment of G with w(E ′)≥∆|U |. Then, we can construct
a shortcut assignment E ′′ ⊆ C−×{s} of G with cardinality |E ′′| ≤ |E| and w(E ′′) ≥
∆|U | in polynomial time.

We first check if |E ′| > |C|. If this is the case, we set E ′′ := {(c−,s)|c ∈ C} and
terminate. Otherwise, we proceed as follows until E ′ ⊆ C−×{s} or each u ∈ U is
covered by a shortcut (c−,s): We choose a shortcut (x,y) in E ′∩ (U ×C+∪U ×{s}).
We further choose a shortcut (c−,s) ∈ V ×V such that there is a u ∈ c which is not
covered by any shortcut in E ′. Then, we set E ′ := (E ′∪{(c−,s)})\{(x,y)}.

The removal of a shortcut in U ×C+ ∪U ×{s} decreases the gain by at most 2.
Let u ∈ U be an element that is not covered by a shortcut in E ′ and let u ∈ c ∈ C.
The insertion of (c−,s) in E ′ improves the hop distance h(v,s) for each node in v ∈Uu
which is not part of a shortcut in E ′ by 1. As there are 2|C|+ 1 nodes in Uu and we
have at most |C| shortcuts, the gain increases by at least 2|C|+1−|C|. Summarizing,
at each step w(E ′) increases at least by 2|C|+1−|C|−2 = |C|−1≥ 0. Any shortcut
assignment that covers all u ∈U results in the desired gain. Hence, after termination
E ′′ := E ′∩ (C−×{s}) gives a solution to the claim.

Claim. Let E ′ be a shortcut assignment of G with w(E ′)≥∆|U |. Then, we can compute
in polynomial time a set cover C′ for (C,U) of cardinality at most |E ′|.

We use the last claim to transform E ′ such that E ′ ⊆C−×{s} and w(E ′) ≥ ∆|U |.
It is w(E ′) = |E ′|+∆|{u ∈U | u is covered by a shortcut in E ′}| ≥ ∆|U |. This implies
that each u ∈ U is covered by a shortcut in E ′ and {c|(c−,s) ∈ E ′} is a set cover of
(C,U). �

Theorem 1. The SHORTCUT DECISION PROBLEM is NP-complete.

Proof: Let (C,U,k) be a SET COVER-instance and G be constructed as described
in Lemma 1. It is (C,U,k) a yes-instance if and only if the SHORTCUT DECISION
PROBLEM-instance (G, |k|,(|2|C|+1)|U |) is a yes-instance, and the transformation is
polynomial. �

We remember that an optimization problem P is NP-hard if there is an NP-hard decision
problem P′ such that following holds: Problem P′ can be solved by a polynomial-time
algorithm which uses an oracle that, for any instance of P, returns –in constant time–
an optimal solution along with its value.
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Corollary. The SHORTCUT PROBLEM and the REVERSE SHORTCUT PROBLEM are
NP-hard.

The transformation applied in Lemma 1 also preserves part of the non-approximability
of MIN SET COVER.

Theorem 2. Unless P = NP, no polynomial-time constant-factor approximation algo-
rithm exists for the REVERSE SHORTCUT PROBLEM, i.e., there is no combination of
an algorithm apx and an approximation ratio α > 0 such that

• apx(G,k) is a shortcut assignment for G of gain at least k

• |apx(G,k)|/|optRSP(G,k)| ≤ α for all instances (G,k) of the REVERSE SHORT-
CUT PROBLEM

• the runtime of apx(G,k) is polynomial in the size of (G,k).

Proof: Given a MIN SET COVER-instance (C,U), assume to the contrary that there
is a polynomial-time constant-factor approximation apx of the REVERSE SHORTCUT
PROBLEM with approximation ratio α . Using apx, we construct a constant-factor
approximation algorithm for MIN SET COVER, contradicting the fact that MIN SET
COVER is not contained in the class APX unless P = NP [4]:

As described in Lemma 1, we first construct the graph G. Then we compute E ′ =
apx(G,(2|C|+1)|U |) and finally transform E ′ to a set cover C′ of (C,U) of size at most
|E ′|. With Lemma 1 we have that

|optMSC(C,U)|= |optRSP(G,(2|C|+1)|U |)| .

Hence it is
|C′|/|optMSC | ≤ |E ′|/|optRSP(G,(2|C|+1)|U |)| ≤ α

which shows the theorem. �

Using a stronger result on the inapproximability of the MIN SET COVER-problem,
we get an asymptotically tighter lower bound on the approximation factor of the RE-
VERSE SHORTCUT PROBLEM.

Proposition. Unless P = NP, no polynomial-time algorithm exists that approximates
the REVERSE SHORTCUT PROBLEM to a factor Ω

(
log(log |V |)

)
.

Proof: By [3], MIN SET COVER is not approximable within a factor η · ln |U |, for a
certain constant η . Assume that there is a polynomial-time approximation algorithm
apx for the REVERSE SHORTCUT PROBLEM such that |apx(G,k)|/|optRSP(G,k)| ≤η ·
ln
( log(|V |)

2 −2
)

for all instances (G=(V,E),k) of the REVERSE SHORTCUT PROBLEM.
Let (C,U) be an arbitrary instance of MIN SET COVER. Analogous to the proof of

Theorem 2, we construct a graph G = (V,E) with (2|C|+1)|U |+2|C|+1 nodes and a
set cover C′ in polynomial-time such that |C′|/|optMSC(C,U)| ≤ η · ln

( log(|V |)
2 −2

)
.
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Our goal is to obtain an upper bound on log(|V |) depending on |U |, thus we aim to
get an upper bound on |V | in the form 2x. As |C| ≤ 2|U | and |U | ≤ 2|U |, it is

|V | ≤ (2|U |+1 +1)|U |+2|U |+1 +1≤ (2|U |+1 +1)2|U |+1 +2|U |+1 +1

= 22|U |+2 +2|U |+2 +1≤ 22|U |+4

Hence, it is 2|U |+4≥ log(|V |) and thus |C′|/|optMSC(C,U)| ≤η · ln |U |, contradicting
the inapproximability of MIN SET COVER. �

Theorem 3. Unless P = NP, no polynomial-time algorithm exists that approximates
the SHORTCUT PROBLEM up to an additive constant, i.e., there is no combination of
an algorithm apx and a maximum error α ∈R>0 such that

• apx(G,c) is a shortcut assignment for G of cardinality at most c

• the runtime of apx(G,c) is polynomial in the size of (G,c)

• wG(optSP(G,c))−wG(apx(G,c))≤ α for all instances (G,c) of the SHORTCUT
PROBLEM.

Proof:
Assume to the contrary that there is an polynomial-time algorithm apx that ap-

proximates the SHORTCUT PROBLEM up to an additive constant maximum error α

and let (G = (V,E, len),c,k) be a SHORTCUT DECISION PROBLEM-instance. To as-
sure α ∈ Z+, we set α := dαe. We construct an instance (G = (V ,E, len),c) of the
SHORTCUT PROBLEM by adding to G, for each node v ∈V , exactly χ := α +1+ |V |2
nodes v1, . . . ,vχ and directed edges (v1,v), . . . ,(vχ ,v). We further set len(vi,v) = 1 for
i = 1 . . .χ . This construction can be done in polynomial time. Let E ′ denote apx(G,c).

Our aim is to solve (G = (V,E, len),c,k) in polynomial time. We can insert at most
cmax := |{(u,v)∈V ×V \E|dist(u,v)< ∞,u 6= v}| shortcuts into G. If c≥ cmax we can
decide the problem in polynomial time by adding all possible shortcuts and computing
the according gain. Hence, in the following we may assume c < cmax.

Claim. The endpoints of all shortcuts inserted by apx in G lie in V , i.e E ′ ⊆V ×V .
If a shortcut in G is not contained in V ×V , it must be contained in V ×V because

of the edge directions in G. Assume that there is a shortcut (u,v)∈ E ′ such that (u,v)∈
(V \V )×V . Removing (u,v) from E ′ will decrease the gain wG(E

′) by at most |V |2 (as
it represents only paths starting from u of length at most |V |+1). Afterwards inserting
an arbitrary shortcut (x,y) ∈ V ×V increases the gain wG(E

′ \ {(u,v)}) by at least χ

(as it represents at least χ paths ending at y of length at least 2). Summarizing,

wG(({(x,y})∪E ′)\{(u,v)})−wG(E
′)≥ χ−|V |2 > α

contradicting the approximation guarantee of apx.

Claim. We can use apx to decide (G=(V,E, len),c,k) in polynomial time contradicting
the assumption P 6= NP.

An exact algorithm can be seen as an approximation algorithm with maximum error
α = 0. We can show in a similar fashion as in the last claim that an optimal solution of
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(G,c) only consists of shortcuts in V ×V , i.e., optSP(G,c) ⊆ V ×V . Given a shortcut
assignment E ′′ ∈ V ×V , it is wG(E

′′) = (1+ χ) ·wG(E ′′). Given an optimal solution
E∗ for (G,c) and (G,c), it follows

(1+χ)
(
wG(E∗)−wG(E ′)

)
= wG(E

∗)−wG(E
′)≤ α.

Hence, wG(E∗)−wG(E ′) ≤ α/(1+χ) < 1 which implies wG(E∗) = wG(E ′) as both
wG(E∗) and wG(E ′) are integer valued. This shows the claim and finishes the proof.

�

To obtain a better intuition on the SHORTCUT PROBLEM, we report some properties
of the problem.

Trivial approximation bounds. Consider an arbitrary non-empty shortcut assign-
ment E ′. It is 0 ≤ ∑s,t∈V hG(s, t) ≤ |V |3 for any graph G = (V,E, len) and hence
wG(E ′) ≤ |V |3. As each shortcut in E ′ decreases the hop-distance from its start to its
end-node by at least one, we have that each E ′ is a trivial factor |V |3/|E ′|-approximation
of the SHORTCUT PROBLEM. Furthermore, any shortcut assignment achieving the de-
sired gain is a trivial factor |V |2-approximation of the REVERSE SHORTCUT PROB-
LEM.

Bounded number of shortcuts. If the number of shortcuts we are allowed to insert
is bounded by a constant kmax, the number of possible solutions of the SHORTCUT
PROBLEM is at most (

|V |2

kmax

)
=

|V |2!
(|V |2− kmax)!kmax!

≤ |V |2kmax .

This is polynomial in the size of the input graph G = (V,E, len). We can evaluate a
given shortcut assignment by basically computing all-pairs shortest-paths, hence this
can be done in time O(|V |2 log |V |+ |V ||E|) using Dijkstra’s algorithm. For this reason,
the case with bounded number of shortcuts can be solved in polynomial time by a brute-
force algorithm.

Monotonicity. In order to show the hardness of working with the problem beyond the
complexity results, Figure 2 gives an example that, given a shortcut assignment S and
an additional shortcut s 6∈ S, the following two inequalities do not hold in general:

w(S∪{s}) ≥ w(S)+w(s) (1)
w(S∪{s}) ≤ w(S)+w(s). (2)

It is easy to verify that in Figure 2 the inequalities w({s1,s2}) > w(s1)+w(s2) and
w({s1,s2,s3})< w({s1,s2})+w(s3) hold.

Note that Inequality 2 holds if, for any pair of nodes (s, t) of graph G, there is at
most one, unique shortest s-t-path in G. We call such a graph sp-unique and prove that
fact in the following lemma.

Lemma 2. Given an sp-unique graph G = (V,E, len) and a set of shortcuts S with S =
{s1,s2, . . . ,sk}. Then, wG(S)≤ ∑

k
i=1 wG(si) and wG(S)≤ wG({s1, . . .sk−1})+wG(sk).
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2

s1 s2

s3

Figure 2: Example Graph G with shortcuts s1, s2, s3. All edges for which no weight is
given in the picture have weight 1.

Proof: Given arbitrary but fixed a,b ∈ V we denote by wab
G (S) the gain of S on graph

G restricted to shortest a-b-paths, i.e., wab
G (S) = hG(a,b)− hG[S](a,b). Because of

wG(S) = ∑u,v∈V wuv
G (S) it suffices to show wab

G (S)≤ wab
G ({s1, . . .sk−1})+wab

G (sk). The
inequality wab

G (S)≤ ∑
k
i=1 wab

G (si) then follows by induction. We write sk = (x,y). It is

wab
G (S) = wab

G ({s1, . . . ,sk−1})+wab
G[s1,...,sk−1]

({(x,y)}).

If (a,b) ∈ P(x,y), we have

wab
G[s1,...,sk−1]

({(x,y)})≤ hG[s1,...,sk−1](x,y)−1≤ hG(x,y)−1 = wab
G (sk).

Further, if (a,b) 6∈ P(x,y) we have wab
G[s1,...,sk−1]

({(x,y)}) = 0 = wab
G (sk). Hence, we

have
wab

G (S)≤ wab
G ({s1, . . .sk−1})+wab

G (sk)

which shows the lemma. �

Later, we use these results to present an approximation algorithm for sp-unique
graphs.

4 ILP-Approaches
In this section we present two exact, ILP-based approaches for the SHORTCUT PROB-
LEM. Throughout this section, we are given an instance (G = (V,E, len),c) of the
SHORTCUT PROBLEM that is to be solved optimally.

For a vertex x ∈ V , we denote by Px the set of all vertices u ∈ V for which an x-
u-path exists. Remember that we denote by P+(x,y) the set of all vertices u ∈ V for
which a shortest x-u path containing y exists and that we denote by P./(x,y) the set of
all vertices that lie on a shortest x-y-path. We assume that all distances in the graph
are precomputed and hence that the sets Px, P./(x,y) and P+(x,y) are known for all
x,y ∈V .

Simple ILP-Formulation. The following ILP-formulation (SLSP) is straightforward
and simple but has the drawback to incorporate O(|V |4) variables and constraints. The
interpretation of the ILP is as follows: The variables ks

t (·, ·) represent an edge-minimal
shortest s-t-path in the augmented graph. It is ks

t (u,v) = 1 if and only if the edge (u,v)
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is used in this path. We characterize all edges or possible shortcuts (u,v) that can be
used for a shortest s-t-path by introducing the set

A := {(s,u,v, t) ∈V 4 | dist(s,u)+dist(u,v)+dist(v, t) = dist(s, t)< ∞, u 6= v}.

Consequently, for fixed s,v, t ∈ V , the set {u ∈ V | (s,u,v, t) ∈ A} contains each node
u such that the edge or shortcut (u,v) can be used in a shortest s-t-path. The variable
c(u,v) equals 1 if the computed shortcut assignment contains (u,v). Instead of maxi-
mizing the gain, our aim is to minimize the sum of all hop-distances in the augmented
graph. This value equals the sum of all variables ks

t (u,v) with (s,u,v, t ∈ A).

(SLSP) minimize ∑
(s,u,v,t)∈A

ks
t (u,v) (3)

such that

∑
{v∈V |(s,v,t,t)∈A}

ks
t (v, t) = 1 s ∈V, t ∈ Ps \{s} (4)

∑
{u∈V |(s,u,v,t)∈A}

ks
t (u,v) = ∑

{w∈V |(s,v,w,t)∈A}
ks

t (v,w)
s ∈V, t ∈ Ps \{s}

v ∈ P./(s, t), v 6= s, t
(5)

ks
t (u,v)≤ c(u,v) (s,u,v, t) ∈ A, (u,v) 6∈ E (6)

∑
(u,v)∈(V×V )\E

c(u,v)≤ c (7)

ks
t (u,v) ∈ {0,1} (s,u,v, t) ∈ A (8)

c(u,v) ∈ {0,1} (u,v) ∈V ×V \E (9)

Constraint 4 and Constraint 5 ensure that a shortest path is considered for every s-t-
pair: Constraint 4 requires that each target t owns exactly one incoming edge on an s-t-
path while Constraint 5 guarantees that, for each node v 6= s, t, there is an incoming edge
(on an s-t-path) if there is an outgoing edge (on such a path). Constraint 6 forces short-
cuts to be present whenever edges are used that are not present in the graph. Finally,
Constraint 7 limits the number of shortcuts to be inserted. Consequently, a solution of
model (SLSP) gives an optimal solution of (G,c): The set {(u,v)∈V ×V |c(u,v) = 1}
is a shortcut assignment for G of maximum gain and cardinality at most c.

Obviously, there can be more than one edge-minimal shortest path from a given
source to a given target. Hence, the model may incorporate unwanted symmetries.
In order to break these symmetries one could use additional constraints. We did not
further pursue this direction because of the huge number of constraints that would be
necessary. Note that the model stays correct when relaxing Constraint 8 to

ks
t (u,v) ∈ [0,1] (s,u,v, t) ∈ A.
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Flow-Based ILP-Formulation. The number of variables and constraints of the fol-
lowing integer linear program (LSP) is cubic in |V |. The model exhibits two types
of variables. It is c(u,v) = 1 if and only if the solution found uses the shortcut (u,v).
Instead of directly counting the hop-distance for each pair of nodes, we use a flow-
like formulation that counts, for each edge, how often it is used in the solution. In
detail, the value of f s(u,v) can be interpreted as the number of vertices t for which the
hop-minimal shortest s-t-path found by (LSP) includes the edge or shortcut (u,v). To
characterize all possible combinations of s,u,v ∈V such that (u,v) could be an edge or
a shortcut in the shortest-paths subgraph with root s, we introduce the set

B := {(s,u,v) ∈V 3 | dist(s,u)+dist(u,v) = dist(s,v)< ∞, u 6= v} .

The flow outgoing from source s is exactly the number of vertices reachable from s
(Constraint 11). As each node consumes exactly one unit of flow (Constraint 12), it is
assured that a shortest path from s to any reachable node is considered. Constraint 13
forces shortcuts to be present whenever edges are used that are not present in the graph.
Finally, Constraint 14 limits the number of shortcuts to be inserted. Again, instead
of maximizing the gain, our aim is to minimize the sum of all hop-distances in the
augmented graph which is given as obj( f ,c).

(LSP) minimize obj( f ,c) := ∑
(s,u,v)∈B

f s(u,v) (10)

such that

∑
{v∈V |(s,s,v)∈B}

f s(s,v) = |Ps|−1 s ∈V (11)

∑
{u∈V |(s,u,v)∈B}

f s(u,v) = 1+ ∑
{w∈V |(s,v,w)∈B}

f s(v,w) s ∈V, v ∈ Ps, v 6= s (12)

f s(u,v)≤ |P+(s,v)| · c(u,v) (s,u,v) ∈ B, (u,v) 6∈ E, (13)

∑
(u,v)∈(V×V )\E

c(u,v)≤ c (14)

f s(u,v) ∈ Z≥0 (s,u,v) ∈ B (15)

c(u,v) ∈ {0,1} (u,v) ∈V ×V \E (16)

We now prove the correctness of model (LSP). The proof of the following prepara-
tory lemma shows that a solution of (LSP) can be converted into a solution of equal
objective value that, for each node, induces a shortest-paths tree.

Lemma 3. There exists an optimal solution ( f ,c) of (LSP), such that for each s ∈V ,
the subgraph induced by Ts := {(u,v) ∈V ×V | f s(u,v)> 0} is a tree.
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Proof: Let ( f ,c) be a solution of (LSP). Then Ts is a directed acyclic graph with root
s as Ts is contained in the shortest-paths subgraph of G with root s. As long as Ts is not
a tree proceed as follows:

First, consider an arbitrary node y such that there are two edges (v,y) and (w,y) in
Ts. Let x be an arbitrary node such that there are disjoint x-y-paths P1 and P2 in Ts. Such
a node x has to exist as there is more than one shortest s-y-path in Ts and we can take any
topologically maximal node x for which there is more than one x-y-path. Let (y′,y) be
the last edge on P1 and ∆ := f s(y′,y). For each edge e on P1 we set f s(e) := f s(e)−∆,
for each edge e on P2 we set f s(e) := f s(e)+∆.

It is easy to verify that this does not change the feasibility of the solution. Ob-
viously, the objective function cannot decrease because of this operation as ( f ,c) is
optimal. Further, the objective function may not increase: Assume the contrary. Then
P2 contains more edges than P1. Let (y′′,y) be the last edge of P2 and ∆′ := f s(y′′,y).
We would obtain a better feasible solution by setting f s(e) := f s(e)−∆′ for each edge
e ∈ P2 and f s(e) := f s(e)+∆′ for each edge e ∈ P1, contradicting the optimality of
( f ,c). �

The following theorem shows that model (LSP) and the SHORTCUT PROBLEM are
equivalent with regard to exact solutions.

Theorem 4. Given an optimal solution E ′ of the SHORTCUT PROBLEM, the assign-
ment

c′(u,v) :=
{

1 ,(u,v) ∈ E ′

0 ,otherwise

can be extended to an optimal solution of (LSP). Further, given an optimal solution
( f ,c) of (LSP), the set

E ′′ := {(u,v) ∈V ×V | c(u,v) = 1}

is an optimal solution for the SHORTCUT PROBLEM.

Proof: Let (G = (V,E, len),c) be a SHORTCUT PROBLEM-instance. As we have ob-
served before, maximizing the gain is equivalent to finding a shortcut assignment E ′

that minimizes obj(E ′) := ∑s,t∈V hG[E ′](s, t). Throughout this proof, we use this point
of view.

Let E ′ be a shortcut assignment of (G = (V,E, len),c). Consider an arbitrary vertex
s∈V . There is a shortest-paths tree Ts⊆G[E ′] such that, for each t ∈V with dist(s, t)<
∞, the number of edges on the s-t-path in Ts equals hG[E ′](s, t). Such a tree Ts can
be computed using Dijkstra’s algorithm by altering the distance labels to be tuples
(edge length,hop distance) and applying lexicographical ordering. Let

c′(u,v) =

{
1 ,(u,v) ∈ E ′

0 ,otherwise

and

f ′s(u,v) =
{

0 ,(u,v) 6∈ Ts
|{w | w is descendant of v in Ts}| , otherwise
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The pair (c′, f ′) is a feasible solution of (LSP). We denote by PTs(s, t) the s-t-path in
Ts and by |PTs(s, t)| the number of edges on this path. It is

∑
t∈Ps

hG[E ′](s, t) = ∑
t∈Ps

|PTs(s, t)|= ∑
t∈Ps

∑
e∈Ts

1e(PTs(s, t)) = ∑
e∈Ts

∑
t∈Ps

1e(PTs(s, t))

= ∑
(u,v)∈Ts

|{w | w is descendant of v in Ts}|= ∑
u∈Ps, v∈P+(s,u), u 6=v

f ′s(u,v)

Consequently, obj( f ′,c′) = obj(E ′).
On the other hand, let ( f ,c) be a feasible solution of (LSP). With Lemma 3

we may assume that, for each node s, the subgraph induced by Ts := {(u,v) ∈ V ×
V | f s(u,v) > 0} is a tree. Hence, we can show by induction that f s(u,v) = |{w |
w is descendant of v in Ts}| for each edge (u,v) ∈ Ts. Further, the set

E ′′ = {(u,v) ∈V ×V | c(u,v) = 1}

is a feasible solution of the SHORTCUT PROBLEM. Finally, we show that obj(E ′′) ≤
obj( f ,c). We consider each root s∈V separately. To bound the hop-distances in G[E ′′]
starting at s from above we use the shortest-paths tree Ts as a witness. This yields

∑
t∈Ps

hG[E ′′](s, t)≤ ∑
t∈Ps

|PTs(s, t)|

With the same computation as above, we derive

∑
t∈Ps

hG[E ′′](s, t)≤ ∑
t∈Ps

|PTs(s, t)|= ∑
u∈Ps, v∈P+(s,u), u6=v

f s(u,v)

which shows the claim. �

Tuning the Flow-Based Formulation. In order to simplify model (LSP), we relax
Constraint 15 to

f s(u,v) ∈R≥0 (s,u,v) ∈ B (17)

and denote the resulting model (10, 11, 12, 13, 14, 16, 17) by (RLSP).

Lemma 4. Let ( f ,c) be a solution of (RLSP). Then there is a solution ( f ′,c) of (LSP)
with same objective value.

Proof: Note that Lemma 3 also holds for (RLSP). Hence, we assume that, for each
node s, the subgraph induced by Ts := {(u,v) ∈ V ×V | f s(u,v) > 0} is a tree. The
integrality of f now follows by induction on the nodes in reverse topological order and
Constraint 12. �

In order to heuristically speedup the solving process we may add the following
constraints that give bounds on the f -variables.

f s(u,v)≤ |P+(s,v)| (s,u,v) ∈ B (18)



462 Bauer et al. The Shortcut Problem – Complexity and Algorithms

An additional heuristic improvement works as follows: The sum ∑s,t∈V hG(s, t) is the
value of the objective function of model (LSP) in case no shortcuts are allowed. The
value (hG(a,b)− 1) · |P(a,b)| is an upper bound for the amount that shortcut (a,b)
improves the objective function. We precompute ∑s,t∈V hG(s, t) and, for each pair (a,b)
of connected nodes, the value (hG(a,b)−1) · |P(a,b)|. Then we can add the constraint

∑
(s,u,v)∈B

f s(u,v)︸ ︷︷ ︸
=obj( f ,c)

≥ ∑
s,t∈V

hG(s, t)

︸ ︷︷ ︸
lower bound of obj( f ,0)

− ∑
a,b∈V

dist(a,b)<∞

c(a,b) · (hG(a,b)−1) · |P(a,b)|︸ ︷︷ ︸
upper bound of improvement

because of shortcut (a,b)

(19)

to additionally tighten the model.

Case Study. While our main interest on the problem is of theoretical nature, we report
some experimental results of the ILP-based approaches. This shall allow for a brief
comparison of both formulations and for assessing the heuristic improvements. Our
implementation is written in Java using CPLEX 11.2 as ILP-Solver and was compiled
with Java 1.6. The tests were executed on one core of an AMD Opteron 6172 Processor,
running SUSE Linux 10.3. The machine is clocked at 2.1 GHz and has 16 GB of RAM
per processor.

We tested on four different graphs. The graph Gdisk is a unit-disk graph and gen-
erated by randomly assigning 100 nodes to a point in the unit square of the Euclidean
plane. Two nodes are connected by an edge if their Euclidean distance is below a given
radius. This radius is adjusted such that the resulting graph has approximately 1000
edges. The graph Gka represents a part of the road network of Karlsruhe. It contains
102 nodes and 241 edges. The graph Ggrid is based on a two-dimensional 10× 10
square grid. The nodes of the graph correspond to the crossings in the grid. There is
an edge between two nodes if they are neighbors on the grid. Finally, the graph Gpath
is a path consisting of 30 nodes. In each graph, edge weights are randomly chosen in-
teger values between 1 and 1000. For each experiment, the computation time has been
limited to 60 minutes. The integrality constraints of the variables kt

s(·, ·) of the simple
model and the variables f s(·, ·) of the flow model have been relaxed. Some example
outcomes are depicted in Figure 3.

The results are summarized in Table 1. Columns mean the following: Columns
Eq19 and Eq18 indicate if Equation 19 and Equation 18 are incorporated in the model.
For the simple model, we adapted Equation 19 in a straightforward fashion. Columns
opt show if an optimal solution has been found and proven to be optimal. Columns gap
give the guaranteed approximation ratio of the best feasible solution found within 60
minutes, i.e., the value (best feasible solution found - best proven lower bound) / best
proven lower bound. The value of gap is ∞ if no feasible solution has been found in 60
minutes. Finally, columns time give the computation time in minutes.

We observe that the simple model does not benefit from Equation 19 and the plain
version without this enhancement is always superior. For the flow formulation, it turned
out that the version enriched with Equation 18 is best: This version is always better
than the plain model without improvement and than the formulation enhanced only
with Equation 19. Further, it is most times better than the version enriched with Equa-
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Ggrid Gka Gpath Gdisk
shortcuts model Eq19 Eq18 opt gap time opt gap time opt gap time opt gap time

1 flow X 0 2 X 0 5 X 0 1 X 0 2
1 flow X X 0 2 X 0 3 X 0 0 X 0 1
1 flow X X 0 4 X 0 8 X 0 0 X 0 3
1 flow X X X 0 2 X 0 7 X 0 0 X 0 2
1 simple X 0 16 X 0 29 X 0 1 X 0 14
1 simple X X 0 18 X 0 49 X 0 1 X 0 24
2 flow 0.02 60 0.09 60 0.2 60 X 0 12
2 flow X X 0 10 X 0 35 X 0 8 X 0 2
2 flow X X 0 17 0.01 60 0.06 60 X 0 2
2 flow X X X 0 3 X 0 40 X 0 9 X 0 2
2 simple X 0 20 X 0 26 X 0 2 X 0 12
2 simple X X 0 21 X 0 48 X 0 2 X 0 20
5 flow 0.16 60 0.53 60 0.4 60 0.06 60
5 flow X X 0 28 X 0 46 0.16 60 X 0 4
5 flow X 0.05 60 0.12 60 0.39 60 X 0 55
5 flow X X 0 60 0.01 60 0.17 60 X 0 9
5 simple X 0 30 X 0 40 0.04 60 X 0 15
5 simple X X 0 58 ∞ 60 ∞ 60 X 0 38

10 flow 0.58 60 0.83 60 0.45 60 0.11 60
10 flow X 0.03 60 0.49 60 0.27 60 X 0 27
10 flow X 0.14 60 0.49 60 0.49 60 0.07 60
10 flow X X 0.05 60 0.34 60 0.32 60 X 0 25
10 simple ∞ 60 ∞ 60 0.47 60 X 0 22
10 simple X ∞ 60 ∞ 60 2.08 60 X 0 39

Table 1: Experimental results of the ILP-approaches.

tion 19 and 18. Finally, we see that Equation 19 was an improvement to the plain model
if more than one shortcut was to be inserted.

Comparing the two formulations we obtain that the flow formulation is superior.
The flow formulation enhanced with Equation 18 was most times better than the simple
model, sometimes with a big gap. With one exception, the difference was small when
the simple model was better. Concluding, in this testset the flow formulation enhanced
with Equation 18 performed best.

In our experiments, we did not take memory consumption into account as the limit-
ing factor was computation time. However, to enable a vague comparison of the mem-
ory consumption, we report in Table 2 the number of nonzeros reported by CPLEX
after the presolve routine. Note that, this number turned out to be almost independent
from the number of shortcuts to be inserted.
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graph ka with 5 optimal shortcuts graph ka with 10 optimal shortcuts

graph grid with 5 optimal shortcuts graph grid with 10 optimal shortcuts

graph disk with 5 optimal shortcuts graph disk with 10 optimal shortcuts

Figure 3: Optimal shortcut assignments for some example graphs.
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model Eq19 Eq18 Ggrid Gka Gpath Gdisk
flow 274.818 328.102 34.391 249.564
flow X 327.022 392.422 41.849 295.460
flow X 342.689 409.157 43.029 311.547
flow X X 394.737 473.390 50.379 357.146
simple 1.241.560 1.724.034 259.211 1.005.390
simple X 1.551.052 2.165.022 324.256 1.250.583

Table 2: Number of nonzeros reported by CPLEX after the presolve routine for each
model and graph.

5 Approximation using the GREEDY-Strategy
In this section, we propose a polynomial-time algorithm that approximatively solves
the SHORTCUT PROBLEM in a greedy fashion. Given the number c of shortcuts to
insert, the approach finds a c-approximation of the optimal solution if the underlying
graph is sp-unique. While the algorithm works on arbitrary graphs, we restrict our
description to strongly connected graphs to improve readability. The restriction to sp-
unique graphs is only needed for achieving the approximation guarantee.

Description. Given the instance (G,c), the GREEDY approximation scheme consists
of iteratively constructing a sequence G = G0,G1, . . . ,Gc of graphs where Gi+1 results
from solving the SHORTCUT PROBLEM on Gi with only one shortcut allowed to insert.
The pseudocode for the approach is given as Algorithm 1. The following theorem
shows the approximation ratio for GREEDY.

Algorithm 1: GREEDY(G,c)
input : graph G = (V,E, len), number of shortcuts c
output: shortcut assignment E ′

1 E ′← /0; for i = 1,2, . . . ,c do
2 (x,y)← argmax(x,y)∈(V×V )\(E∪E ′), dist(x,y)<∞{wG[E ′]({(x,y)})}
3 E ′← E ′∪{(x,y)}
4 output E ′.

Theorem 5. Consider an sp-unique graph G = (V,E, len) together with a positive in-
teger c ∈ Z>0. The solution E ′ := GREEDY(G,c) of the GREEDY-approach is a c-
approximation of an optimal solution E∗, i.e., wG(E∗)/wG(E ′)≤ c.

Proof: Let e1 ∈ E ′ be the first shortcut inserted by GREEDY. Then, wG(e) ≤ wG(e1)
for each e ∈ E∗. Moreover by Lemma 2, w(E∗)≤ ∑e∈E∗ w(e). This yields

wG(E∗)≤ ∑
e∈E∗

wG(e)≤
c

∑
i=1

wG(e1) = c ·wG(e1)≤ c ·wG(E ′)

which shows w(E∗)/w(E ′)≤ c. �
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Basic Runtime Issues. The runtime of GREEDY crucially depends on how the next
shortcut to be inserted is found. A straightforward approach would be to first precom-
pute the distance dist(s, t) for each pair s, t ∈ V as well as the shortest-paths subgraph
Gs for each node s ∈ V . Then, the evaluation of a possible shortcut can be done by
running breadth-first searches on the |V | graphs Gs. After insertion of a shortcut (a,b)
to G, the shortest-paths subgraphs Gs can be adapted by adding (a,b) to each subgraph
Gs for which dist(s,a)+dist(a,b) = dist(s,b). Hence Gs contains at most |E|+c edges
and the time needed for evaluating one shortcut is O(|V | ·(|V |+ |E|+c)). This leads to
a runtime in O(|V |2 · |V | · (|V |+ |E|+c)) for evaluating all |V |2 possible shortcuts. The
runtime O(|V |2 log |V |+ |V | · |E|) of precomputing the shortest-paths subgraphs can be
neglected.

In the remainder of this section, we show how to perform this step in time O(|V |3)
using a dynamic program. Consequently, the GREEDY-strategy can be implemented to
work in time O(c · |V |3).
Greedily finding one optimal shortcut in sp-unique graphs. In sp-unique graphs
each shortest path is edge-minimal. Hence, we can compute the gain of a shortcut
(a,b) restricted to a pair of nodes (s, t) ∈ P(a,b) by the equation

hG(s, t)−hG[(a,b)](s, t) = hG(a,b)−1. (20)

Furthermore, for general graphs, the following lemma holds.

Lemma 5. (s, t) ∈ P(a,b) if and only if s ∈ P−(a,b) and t ∈ P+(s,b).

Proof: ⇒: Let (s, t) ∈ P(a,b), then there is a shortest s-t-path p containing first a and
then b. Obviously, this path also shows that t ∈ P+(s,b) and as subpaths of shortest
paths are again shortest paths, the subpath of p from s to b is a witness that s is in
P−(a,b).
⇐: Let s ∈ P−(a,b) and t ∈ P+(s,b). Then, dist(s,b) = dist(s,a)+ dist(a,b) and

hence dist(s, t) = dist(s,b)+ dist(b, t) = dist(s,a)+ dist(a,b)+ dist(b, t). This shows
that (s, t) ∈ P(a,b). �

Exploiting Lemma 5 and Equation 20, we obtain

w(a,b) = (hG(a,b)−1) · |P(a,b)|= (hG(a,b)−1) · ∑
s∈P−(a,b)

|P+(s,b)|. (21)

This equation directly leads to Algorithm 2 that finds one optimal shortcut for sp-
unique graphs. The runtime of the algorithm lies in O(|V |3) as the computation of
|P+(s,b)| is linear in |V |: For each v ∈ V we have to check if dist(s,b)+ dist(b,v) =
dist(s,v).

The problem of this approach is that we can not apply Algorithm 2 for the GREEDY-
strategy, even when the input graph is sp-unique: After insertion of the first shortcut,
the augmented graph is not sp-unique any more and hence we can not use Equation 20.

An O(|V |3)-implementation for greedily finding one optimal shortcut. In the fol-
lowing, we generalize the above approach to work with arbitrary graphs. The offset

ωsb(t) := hG(s,b)+hG(b, t)−hG(s, t)
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Algorithm 2: GREEDY STEP ON SP-UNIQUE GRAPHS

input : graph G = (V,E, len), distance table dist(·, ·) of G
output: optimal shortcut (a,b)

1 initialize w(·, ·)≡ 0
2 compute hG(·, ·)
3 for s ∈V do
4 for b ∈V do
5 compute |P+(s,b)|
6 for a ∈V do
7 if dist(s,a)+dist(a,b) = dist(s,b) then
8 w(a,b)← w(a,b)+(hG(a,b)−1)|P+(s,b)|
9 output arbitrary (a,b) with maximum w(a,b)

reflects the increase of the hop-distance between given nodes s and t, if we restrict
ourselves to shortest paths containing b. We define the potential gain gs(a,b) of a
shortcut from a to b with respect to s as

gs(a,b) := hG(a,b)−1−ωsa(b) .

This is an upper bound for the decrease of the hop-distance between s and any t in the
graph G[(a,b)].

Lemma 6. For all vertices s, t,a,b ∈V such that (s, t) ∈ P(a,b) it holds that

hG(s, t)−hG[(a,b)](s, t) = max{gs(a,b)−ωsb(t), 0}.

Proof: Directly from the definition of potential gain and offset we obtain

gs(a,b)−ωsb(t)> 0⇐⇒ hG(s, t)> hG(s,a)+1+hG(b, t) (22)

Case [gs(a,b)−ωsb(t) > 0]. Then hG(s, t) > hG(s,a)+ 1+ hG(b, t). The presence of
shortcut (a,b) decreases the s-t-hop-distance to hG[(a,b)](s, t) = hG(s,a)+ 1+ hG(b, t)
as the lemma assumes that there is a shortest s-a-b-t-path. This yields

hG(s, t)−hG[(a,b)](s, t) = hG(s, t)−hG(s,a)−1−hG(b, t)

= hG(a,b)−1−hG(s,a)−hG(a,b)+hG(s,b)︸ ︷︷ ︸
=−ωsa(b)

−hG(s,b)−hG(b, t)+hG(s, t)︸ ︷︷ ︸
=−ωsb(t)

= gs(a,b)−ωsb(t).

Case [gs(a,b)−ωsb(t) ≤ 0]. With Equation (22) we obtain hG(s, t) ≤ hG(s,a)+ 1+
hG(b, t). Hence, a shortcut (a,b) does not improve the hop-distance from s to t and we
have hG(s, t)−hG[(a,b)](s, t) = 0. �
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Lemma 6 implies that vertices t in P+(s,b) with the same value of ωsb(t) benefit
from a shortcut ending at b to the same extent, if we restrict ourselves to shortest paths
starting at s. We divide the vertices in P+(s,b) in equivalence classes with respect to
ωsb. Let

∆i(s,b) := |{t ∈ P+(s,b) | ωsb(t) = i}|

be the number of vertices in these equivalence classes.
The algorithm we propose makes use of partial (weighted) sums of the ∆i(s,b) for

fixed s and b in V . For convenience, we introduce two further abbreviations :

Cr(s,b) :=
r

∑
i=0

∆i(s,b)

Dr(s,b) :=
r

∑
i=0

i ·∆i(s,b).

With these definitions, we can form an alternative equation for w(a,b).

Lemma 7. Let a,b,s, t ∈V be arbitrary nodes. Then

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

)
.

Proof:

w(a,b) = ∑
s,t∈V

(
hG(s, t)−hG[(a,b)](s, t)

)
= ∑

(s,t)∈P(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
+ ∑

(s,t)/∈P(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)︸ ︷︷ ︸
=0

= ∑
(s,t)∈P(a,b)

ωsb(t)<gs(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)
+ ∑

(s,t)∈P(a,b)
ωsb(t)≥gs(a,b)

(
hG(s, t)−hG[(a,b)](s, t)

)︸ ︷︷ ︸
=0 with Lemma 6

.

With Lemma 6, we yield

w(a,b) = ∑
(s,t)∈P(a,b)

ωsb(t)<gs(a,b)

gs(a,b)−ωsb(t).

It is ωsb(t)≥ 0 as (s, t) ∈ P(a,b), hence with Lemma 5 we have

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1

∑
i=0

∑
t∈P+(s,b)
ωsb(t)=i

gs(a,b)− i.



JGAA, 16(2) 447–481 (2012) 469

As gs(a,b) is independent of t we can transform the equation as follows

w(a,b) = ∑
s∈P−(a,b)
gs(a,b)>0

gs(a,b)−1

∑
i=0

∆i(s,b) ·
(
gs(a,b)− i

)

= ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b)

gs(a,b)−1

∑
i=0

∆i(s,b)−
gs(a,b)−1

∑
i=0

(
i ·∆i(s,b)

))

= ∑
s∈P−(a,b)
gs(a,b)>0

(
gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

)
.

This finishes the proof. �

Lemma 7 is the key to obtain our O(|V |3)-algorithm for performing one GREEDY-
step, which is stated as Algorithm 3: First, all distances and hop-distances are pre-
computed. We then consider, for each s ∈ V , each shortest-paths subgraph with root
s separately. It is easy to see that the values of ∆·(s, ·), C·(s, ·) and D·(s, ·) can be
computed in time O(|V |2).

Algorithm 3: GREEDY STEP

Input: Strongly connected graph G = (V,E, len)
Output: shortcut (a,b) maximizing wG({(a,b)})

1 compute dist(·, ·), h(·, ·)
2 initialize w(·, ·)≡ 0
3 initialize ∆i(·, ·)≡ 0
4 for s ∈V do
5 for b, t ∈V do /* compute ∆ */

6 if there exists a shortest s-t-path containing b in G then
7 j← ωsb(t)
8 ∆ j(s,b)← ∆ j(s,b)+1
9 for b ∈V do /* compute C and D */

10 C0(s,b)← ∆0(s,b)
11 D0(s,b)← 0
12 for r := 1 to |V |−1 do
13 Cr(s,b)←Cr−1(s,b)+∆r(s,b)
14 Dr(s,b)← Dr−1(s,b)+ r ·∆r(s,b)
15 for a,b ∈V do /* apply Lemma 7 */

16 if there exists a shortest s-b-path containing a and gs(a,b)> 0 then
17 w(a,b)← w(a,b)+gs(a,b) ·Cgs(a,b)−1(s,b)−Dgs(a,b)−1(s,b)

18 output arbitrary (a,b) with maximum w(a,b)



470 Bauer et al. The Shortcut Problem – Complexity and Algorithms

Prepared with these values we are ready to apply Lemma 7. We initialize the values
w(·, ·) with 0. For each triple s,a,b∈V , we check if there is a shortest s-a-b-path and if
gs(a,b)> 0. We increment w(a,b) according to Lemma 7 in case of a positive answer.
Finally, we take an arbitrary shortcut (a,b) that maximizes w(a,b). The correctness
of the algorithm directly follows from the definitions of ∆·(·, ·), C·(·, ·) and D·(·, ·) and
Lemma 7. To reach the runtime in O(|V |3) we answer the question if a shortest s-a-b
path exists by checking if dist(s,a)+dist(a,b) = dist(s,b).

6 Approximation via Partitioning
The second algorithm works for sp-unique graphs in which the degree of each vertex is
bounded by a constant. Given an sp-unique graph G = (V,E, len) in which the degree
of each vertex is bounded by a constant B. Algorithm 4 partitions V into small sub-
sets, solves the SHORTCUT PROBLEM restricted to each subset and then chooses the
best solution among all subsets as an approximated solution. If the subsets are small
enough, we can solve the SHORTCUT PROBLEM restricted to each set in polynomial
time.

In detail, our scheme works as follows. First, we partition the set V into sets P =
{P1, . . . ,Pk}, where each Pi has size size = c

√
|V |ε/B for an arbitrary constant ε ∈ (0,c).

Then, for each set Pi ∈P , we compute the neighborhood Ci := Pi∪{u ∈ N(v) | v ∈ Pi}
of Pi and solve the shortcut problem on G restricted to shortcuts in Ci. That is, we
compute

S̃i = argmax{w(S) | S is shortcut assignment ⊆Ci×Ci and |S| ≤ c}.

Finally, we determine the set Ci, for which the shortcut assignment yields the highest
gain. This solution gives an approximation ratio of O

(
max

{
|V |1− ε

c , 1
c · |V |

1+ ε
c

})
to

the optimal solution (see Theorem 1).

Algorithm 4: PARTITION
input : graph G = (V,E, len), number of shortcuts c, parameter ε ∈ (0,c)
output: shortcut assignment S′

1 Partition the set V into sets P = {P1, . . . ,Pk} each of size size = c
√
|V |ε/B.

2 for Pi ∈P do
3 Ci := Pi∪{u ∈ N(v) | v ∈ Pi}
4 S̃i := argmax{wG(S) | S⊆Ci×Ci and |S| ≤ c}

5 output S′ := argmax{wG(S̃i) | i = 1,2, . . . ,k}

Since size = c
√
|V |ε/B and G has bounded degree B, |Ci| ≤ c

√
|V |ε holds. Hence,

each solution S̃i can be computed by performing at most ( c
√
|V |ε)2c = |V |2ε all pairs

shortest paths computations in G. As there are d|V |/sizee = d|V |B/ c
√
|V |εe sets and

B = O(1), the overall computation time is O( f (|V |) · |V |2ε · |V |/ c
√
|V |ε), where f (|V |)

is the time needed for computing all pairs shortest paths in G.
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e∗

D(e∗)

(a) Sets D(e∗)

overlapping non-overlapping

(b) Example of overlapping and non-overlapping shortcuts

Figure 4: Illustrations to proof of Theorem 1

The following theorem shows the approximation ratio for PARTITION. A detailed
discussion on the ratio is given after the proof.

Theorem 1. Given a weighted, directed, SP-unique graph G = (V,E, len) in which the
degree of each vertex is bounded by a constant, and a positive integer c ∈N. Then, the
solution computed by PARTITION is an O

(
max

{
|V |1− ε

c , 1
c · |V |

1+ ε
c

})
approximation

for the optimal solution of the SHORTCUT PROBLEM instance (G,c).

Proof: The proof is outlined as follows: We break up the shortcuts in an optimal short-
cut assignment into shortcuts whose endpoints are contained in the same neighborhood.
We then show that at least one of the neighborhoods contains a subset of these shortcuts
that fulfills the approximation guarantee stated in the theorem.

Let E∗ denote an optimal solution to (G,c), P the partition and C the set of neigh-
borhoods Ci used by PARTITION. Now each shortcut e∗ = (a,b) ∈ E∗ is subdivided as
follows: Let p = (v1, . . . ,vr) be the unique shortest path from a to b in G and D(e∗)
be the set of shortcuts containing (vi,vi+2) for all odd i with 1 ≤ i ≤ i− 2, see Figure
4a. It is easy to see that for each of these shortcuts there is at least one neighborhood
containing both endpoints, as these are connected by a path of length 2 in the original
graph. Let E ′ =

⋃
e∗∈E∗D(e∗) and Ei be the set of e = {a,b} ∈ E ′ such that both a

and b are contained in Ci. Due to the construction of the Ei, this is a cover of E ′, i.
e.
⋃d|V |/sizee

i=1 Ei = E ′.

Claim.wG(E∗)≤ 2 ·∑d|V |/sizee
i=1 wG(Ei)

Let s, t be a pair of vertices such that hG(s, t) > hG[E∗](s, t) and E∗(s, t) be the set
of shortcuts on an arbitrary hop-minimal shortest s-t-path in G[E∗]. As shortest paths
in G are unique, hG(s, t)−hG[E∗](s, t) equals the sum of the hop-distances between the
endpoints of the shortcuts in E∗(s, t) minus |E∗(s, t)|. Furthermore, for each e∗ in E∗,
hG(e∗)−1≤ 2 · |D(e∗)| and thus,

hG(s, t)−hG[E∗](s, t) = ∑
e∗∈E∗(s,t)

(hG(e∗)−1)≤ 2 · ∑
e∗∈E∗(s,t)

|D(e∗)|
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For e∗ ∈ E∗(s, t), the sets D(e∗) are disjoint, as the respective shortcuts e∗ lie on differ-
ent parts of the chosen s-t-path. Therefore,

2 · ∑
e∗∈E∗(s,t)

|D(e∗)|= 2 · |{e ∈ E ′ | ∃e∗ ∈ E∗(s, t) with e ∈ D(e∗)}|

≤ 2 ·
d|V |/sizee

∑
i=1

|{e ∈ Ei | ∃e∗ ∈ E∗(s, t) with e ∈ D(e∗)}|

We say that two shortcuts (vi1 ,vi2) and (v j1 ,v j2) overlap on a path v1, . . . ,vr if neither
i2 ≤ j1 nor j2 ≤ i1, see Figure 4b. The shortcuts in Ei that are the result of dividing
non-overlapping shortcuts on the shortest s-t-path are pairwise non-overlapping, thus

2 ·
d|V |/sizee

∑
i=1

|{e ∈ Ei | ∃e∗ ∈ E∗(s, t) with e ∈ D(e∗)}| ≤ 2 ·
d|V |/sizee

∑
i=1

hG(s, t)−hG[Ei](s, t)

Hence, it is

wG(E∗) = ∑
s,t∈V

hG(s, t)−hG[E∗](s, t)

≤ 2 · ∑
s,t∈V

d|V |/sizee

∑
i=1

hG(s, t)−hG[Ei](s, t) = 2 ·
d|V |/sizee

∑
i=1

wG(Ei)

Let B be the maximum degree of a node in G and S′ be the solution computed by
PARTITION. For each i, two cases may occur:

• if |Ei| ≤ c, since S′ = argmax{wG(S̃i) | i = 1,2, . . . ,d|V |/sizee}, then wG(Ei) ≤
wG(S′).

• If |Ei| > c, then we can group the shortcuts in Si into sets of size c. Since S′ =
argmax{wG(S̃i) | i = 1,2, . . . ,d|V |/sizee}, each set of shortcuts of size c gives a
decrease in overall hop length on shortest paths that is smaller than wG(S′) and
hence wG(Ei)≤ wG(S′)

|Ei|
c ≤ wG(S′) size2B2

c .

It follows that,

w(S∗)≤ 2
d|V |/sizee

∑
i=1

w(S′)max
{

1,
size2 ·B2

c

}
≤ 2

⌈
|V |
size

⌉
w(S′)max

{
1,

size2 ·B2

c

}
Hence, the approximation ratio can be bound as follows.

w(S∗)
w(S′)

≤ 2
⌈
|V |
size

⌉
max

{
1,

size2 ·B2

c

}
= O

(
|V |
size

max
{

1,
size2

c

})

= O

(
|V |

c
√
|V |ε

max

{
1,

c
√
|V |2ε

c

})
= O

(
max

{
|V |1−

ε
c ,

1
c
· |V |1+

ε
c

})
.

�
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c GREEDY PARTITION Trivial bound
O(1) O(1) Ω(|V |) Θ(|V |3)
Θ(log |V |) Θ(log |V |) Θ(|V |) Θ

(
|V |3

log |V |

)
Θ(|V |) Θ(|V |) Θ(|V |) Θ(|V |2)
Θ(|V | · log |V |) Θ(|V | · log |V |) Θ(|V |) Θ( |V |

2

log |V | )

Table 3: Comparison of approximation bounds for sample configurations

Discussion of Approximation Bounds. In this section, we compare PARTITION and
GREEDY against each other and against trivial guarantees on some example config-
urations. Let G = (V,E, len) be a weighted, directed, SP-unique graph in which the
degree of each vertex is bounded by a constant. The latter assumption is not necessary
for the statements concerning the greedy algorithm, its approximation guarantee of c
holds for arbitrary degree distributions. We distinguish examplarily four settings for
the parameter c:

• c ∈ O(1): In this case, as stated in Section 3, the problem is polynomially solv-
able by a brute-force algorithm. However, the runtime of this approach is expo-
nential in c, while the runtime of the greedy algorithm has only a linear depen-
dence on c and its approximation guarantee is constant. The guarantee given by
the partitioning approach is in ω(|V |).

• c ∈ Θ(log(|V |)): Let x > 0 be a constant, then |V |1−
ε

x·log(|V |) = |V | · 2− ε
x and

1
log(|V |) · |V |

1+ ε

x·log |V | = 1
log(|V |) · |V | · 2

ε
x . Hence, the guarantee given for PARTI-

TION is in Θ(|V |), which is worse than the bound of the greedy algorithm.

• c ∈ Θ(|V |): It is |V | ≥ |V |1−
ε

x·|V | ≥ |V |1−
ε

x·log(|V |) . Thus, analoguous to the last
case, the approximation guarantee of PARTITION is in Θ(|V |), which matches
the bound given for GREEDY.

• c∈Θ(|V | · log(|V |)): The guarantee of the partitioning algorithm stays in Θ(|V |),
which is better than the guarantee of the greedy algorithm. Note that this guar-
antee is much tighter than the trivial bound of |V |2

log(|V |) given in Section 3.

A summary of these configurations is given in Table 3.

7 Evaluation of the Measure Function
To evaluate the gain of a given shortcut assignment, a straightforward algorithm re-
quires computing all-pairs shortest-paths. Since this computation is expensive, we pro-
vide a probabilistic method to quickly assess the quality of a shortcut assignment E ′.
This approach can be used for networks where the computation of all-pairs shortest-
paths is prohibitive, such as big road networks. For the sake of simplicity we state the
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approach for the evaluation of µ(E ′) := ∑s,t∈V hG[E ′](s, t), the adaption to the SHORT-
CUT PROBLEM is straightforward. More concrete, we apply the sampling technique
to obtain an unbiased estimate for µ(E ′) and apply Hoeffding’s Bound [18] to get a
confidence intervall for the outcome. As an auxiliary result we propose algorithms that
approximate the maximum hop-distance in a graph.

Theorem 6 (Hoeffding’s Bound). If X1,X2, . . . ,XK are real valued independent ran-
dom variables with ai ≤ Xi ≤ bi and expected mean µ =E[∑Xi/K], then

P

{∣∣∣∣∑K
i=1 Xi

K
−µ

∣∣∣∣≥ ξ

}
≤ 2e−2K2ξ 2/∑

K
i=1(bi−ai)

2

for each ξ > 0.

We now model the assessment of a shortcut assignment E ′ of a graph G in terms of
Hoeffding’s Bound. Let X1, . . . ,XK be the family of random variables such that Xi is
defined by

Xi := |V |∑
t∈V

hG[E ′](si, t)

where si ∈V is a vertex chosen uniformly at random. We estimate µ(E ′) by

µ̂ :=
K

∑
i=1

Xi/K .

Because of

E(µ̂) =E

(
K

∑
i=1

Xi

K

)
=

K

∑
i=1

E(Xi)

K
=E(X1) =

1
|V | ∑s∈V

|V |∑
t∈V

hG[E ′](s, t) = µ(E ′)

we can apply Hoeffding’s Bound if we know lower and upper bounds for the variables
Xi. The values 0 and |V |3 are trivial such bounds. We introduce the notion of shortest-
paths diameter to obtain stronger upper bounds.

Definition. The shortest path diameter spDiam(G) of a graph G is the maximum hop-
distance from any node to any other node in G.

Applying Hoeffding’s Bound with 0≤ Xi ≤ |V |2 spDiam(G) yields

P
{∣∣µ̂−µ(E ′)

∣∣≥ ξ
}
≤ 2e−2Kξ 2/(|V |4·spDiam(G)2)

and with lrel := ξ/µ̂ we have

P

{∣∣∣∣ µ̂−µ(E ′)
µ̂

∣∣∣∣≥ lrel

}
≤ 2e−2K(µ̂·lrel)

2/(|V |4·spDiam(G)2)

where the parameter lrel states the relative size of the confidence intervall. The values
of the variables Xi are chosen by randomly choosing values from the finite population
c1, . . . ,c|V | with replacement where ci := |V |∑t∈V hG[E ′](vi, t) and V = {v1, . . .v|V |}.
In [18] it is reported that Hoeffding’s Bound stays correct if, when sampling from a
finite population, the samples are being chosen without replacement. Algorithm 5 is an
approximation algorithm that exploits the above inequality and that samples without
replacement.
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Algorithm 5: STOCHASTICALLY ASSESS SHORTCUT ASSIGNMENT

input : graph G = (V,E ∪E ′, len),
size of confidence intervall lrel , significance level α

output: approximation µ̂ for µ = ∑s,t∈V hG(s, t)

1 compute random order v1,v2, . . . ,vn of V
2 compute upper bound spDiam(G) for shortest-paths diameter
3 i← 0; sum← 0; µ̂ ← 0

4 while not (i = |V | or 2 · exp(−2i(µ̂ · lrel)
2/(|V |4spDiam(G)2))≤ α) do

5 i← i+1
6 T ← grow shortest-paths tree rooted at vi (favor edge-minimal shortest

paths)
7 sum← sum+|V | ·∑t∈V h′G(vi, t)
8 µ̂ ← sum/i

9 output µ̂

Approximating the Shortest-Paths Diameter. A straightforward approach to com-
pute the exact shortest path diameter requires computing all-pairs shortest-paths. This
is reasonable when working with mid-size graphs that allow the computation of all-
pairs shortest-paths at least once and for which a large number of shortcut assignments
is to be evaluated. In case the computation of all-pairs shortest-paths is prohibitive one
can also use upper bounds for the shortest path diameter. We obtain an upper bound
the following way:

First we compute an upper bound diam(G) for the diameter of G. To do so we
choose a set of nodes s1,s2, . . . ,sl uniformly at random. We denote the eccentricity of
node v in graph G = (V,E, len) by εG(v) = max{distG(v, t) | t ∈V} . For each node si,
the value ε←−G (si)+εG(si) is an upper bound for the diameter of G: Let u,v ∈V be such
that dist(u,v) = diam(G). Then

diam(G) = dist(u,v)≤ dist(u,si)+dist(si,v)≤ ε←−G (si)+ εG(si) .

We set diam(G) to be the minimum of these values over all si. The bound diam(G) is
a 2-approximation for the exact diameter diam(G) of G (already for l = 1) as there are
u,v ∈V and si ∈V such that

diam(G) = dist(u,si)+dist(si,v)≤ diam(G)+diam(G) = 2 ·diam(G).

Let lenmax and lenmin denote the lengths of a longest and a shortest edge in G, re-
spectively. The value diam(G)/ lenmin is an upper bound for spDiam(G): Let P be an
edge-minimal shortest path in G with |P|= spDiam(G) edges. Then

spDiam(G) = |P| ≤ len(P)
lenmin

≤ diam(G)

lenmin
≤ diam(G)

lenmin
.

Further, diam(G)/ lenmin is a 2 · lenmax / lenmin-approximation for spDiam(G) as with
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spDiam(G)≥ diam(G)/ lenmax follows that

diam(G)

lenmin
≤ 2diam(G)

lenmin
≤ 2lenmax ·spDiam(G)

lenmin
.

A more expensive approach works as follows, pseudocode is given as Algorithm 6:
After computing diam(G), we choose a tuning parameter η . Then we grow, for each
node s in G, a shortest-paths tree whose construction is stopped directly before one
vertex with distance greater than diam(G)/η is settled. When breaking ties between
different shortest paths we favor edge-minimal shortest paths. We denote by τmax the
maximum number of edges of the shortest paths on any of the trees grown plus one.
Then spDiam(G) := τmax ·η is an upper bound for the shortest path diameter of G:
Let P = (v1, . . . ,vn) be an arbitrary edge-minimal shortest path in G. We can split P in
sub-paths

P1 = (v1, . . . ,vk1), P2 = (vk1 , . . . ,vk2), . . . , P̀ = (vk`−1 , . . . ,vk`)

such that

dist(vki ,vki+1)> diam(G)/η and dist(vki ,vki+1−1)≤ diam(G)/η .

The number ` of these subpaths is at most η , as ` > η would imply that

len(P)>
diam(G)

η
(`−1)≥ diam(G).

It is |Pi| ≤ τmax which yields |P| ≤ τmax ·η . As P was arbitrary we have that

spDiam(G)≤ τmax ·η .

Further τmax ·η is a 2η-approximation and an η(1+ 1/(τmax− 1))-approximation of
spDiam(G) : With τmax−1≤ spDiam(G) follows that

τmax ·η
spDiam(G)

≤ (spDiam(G)+1)η
spDiam(G)

= η(1+
1

spDiam(G)
)≤ η(1+

1
τmax−1

)≤ 2 ·η .

Obviously, the whole proceeding only makes sense for graphs for which the short-
est path diameter is much smaller than the number of nodes. This holds for a wide
range of real-world graphs, in particular for road networks. For example, the road net-
work of Luxembourg provided by the PTV AG [22] consists of 30733 nodes and has
a shortest path diameter of only 429. The road network of the Netherlands consists of
946.632 nodes and has a shortest-paths diameter of 1503.

8 Conclusion
Summary. In this work we studied two problems. The SHORTCUT PROBLEM is the
problem of how to insert c shortcuts in G such that the expected number of edges that
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Algorithm 6: COMPUTE UPPER BOUND FOR SHORTEST-PATHS DIAMETER

input : graph G = (V,E, len), tuning parameter l, tuning parameter η

output: upper bound spDiam(G) for the shortest-paths diameter of G

1 diam(G)← ∞; τ ← 0;

2 for i = 1, . . . , l do /* compute diam(G) */

3 s← choose node uniformly at random
4 grow shortest-paths tree rooted at s

5 grow shortest-paths tree rooted at s on the reverse graph
←−
G

6 diam(G)←min{diam(G),maxv∈V{dist(s,v)}+maxv∈V{dist(v,s)}}
7 for s ∈V do /* compute spDiam(G) */

8

T ← grow partial shortest-paths tree rooted at s
(favoring edge-minimal shortest paths).
Stop growing the tree directly before the first node
with dist(s,v)> diam(G)/η is settled.

τmax ← max{τmax,1+maximal number of edges of a path in T }
9 output spDiam(G) := τmax ·η

are contained in an edge-minimal shortest path from a random node s to a random node
t is minimal. The REVERSE SHORTCUT PROBLEM is the variant of the SHORTCUT
PROBLEM where one has to insert a minimal number of shortcuts to reach a desired
expected number of edges on edge-minimal shortest paths.

We proved that both problems are NP-hard and that there is no polynomial-time
constant-factor approximation algorithm for the REVERSE SHORTCUT PROBLEM, un-
less P = NP. Furthermore, no polynomial-time algorithm exists that approximates the
SHORTCUT PROBLEM up to an additive constant unless P = NP.

The algorithmic contribution focused on the SHORTCUT PROBLEM. We proposed
two ILP-based approaches to exactly solve the SHORTCUT PROBLEM: A straightfor-
ward formulation that incorporates O(|V |4) variables and constraints and a more so-
phisticated flow-like formulation that requires O(|V |3) variables and constraints.

We considered two approximation strategies. A straightforward greedy approach
computes a c-approximation of the optimal solution if the input graph is such that
shortest paths are unique. We further presented a dynamic program that performs
a greedy step in time O(|V |3) which yields an overall runtime in O(c · |V |3). The
main idea of the second approach is to partition the set of nodes. It computes an
O
(

max
{
|V |1− ε

c , 1
c · |V |

1+ ε
c

})
approximation of the optimal solution if shortest paths

in the input graph are unique and the maximum degree is bounded by a constant. If ε

is a constant, this algorithm is polynomial.

Finally, we proposed a probabilistic method to quickly evaluate the measure func-
tion of the SHORTCUT PROBLEM. This can be used for large input networks where an
exact evaluation is prohibitive.
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Future Work. A wide range of possible future work exists for the SHORTCUT PROB-
LEM. From a theoretical point of view the probably most interesting open field is the
approximability of the SHORTCUT PROBLEM. It is still unknown if it is in APX. Fur-
thermore, it would be helpful to identify graph classes for which the SHORTCUT PROB-
LEM or the REVERSE SHORTCUT PROBLEM becomes tractable. FPT-algorithms are
also desirable. From an experimental point of view it would be interesting to develop
heuristics that find good shortcuts for large real-world inputs. In particular, evolution-
ary algorithms and local search algorithms seem promising.

Finally, we pose the question if the given ILP-approaches can be used for the design
of approximation algorithms. We do not see good chances for rounding-based methods.
However, other techniques like primal-dual arguments might work.
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