
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 16, no. 4, pp. 847–870 (2012)
DOI: 10.7155/jgaa.00280

Pinning balloons with perfect angles and
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Abstract

We study the problem of arranging a set of n disks with prescribed
radii on n rays emanating from the origin such that two neighboring rays
are separated by an angle of 2π/n. The center of the disks have to lie
on the rays, and no two disk centers are allowed to lie on the same ray.
We require that the disks have disjoint interiors and that for every ray
the segment between the origin and the boundary of its associated disk
avoids the interior of the disks. Let r̃ be the sum of the disk radii. We
introduce a greedy strategy that constructs such a disk arrangement that
can be covered with a disk centered at the origin whose radius is at most
2r̃, which is best possible. The greedy strategy needs O(n) arithmetic
operations.

As an application of our result we present an algorithm for embed-
ding unordered trees with straight lines and perfect angular resolution
such that it can be covered with a disk of radius n3.0367, while having no
edge of length smaller than 1. The tree drawing algorithm is an enhance-
ment of a recent result by Duncan et al. [Symp. of Graph Drawing, 2010]
that exploits the heavy edge tree-decomposition technique to construct a
drawing of the tree that can be covered with a disk of radius 2n4.
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1 Introduction

When a graph is drawn in the plane, the vertices are usually represented as small
dots. From a theoretical point of view a vertex is realized as a point, hence as
an object without volume. In many applications, however, it makes sense to
draw the vertices as disks with volume. The radii of the vertices can enhance
the drawing by visualizing associated vertex weights [2, 4]. This idea also finds
applications in so-called bubble drawings [8], and balloon drawings [10, 11].

In the following we consider only drawings with no edge crossings. Two
important quality measures for aesthetically pleasant drawings are the area of
a drawing and its angular resolution. The area of a drawing denotes the area
of the smallest disk that covers the drawing with no edge lengths smaller than
1. The angular resolution in a planar drawing denotes the minimum angle
between two neighboring edges emanating at a vertex. Unfortunately, drawings
of planar graphs with bounded angular resolution require exponential area [12].
On the other hand, by a recent result of Duncan et al. [5], it is possible to draw
any unordered tree as plane straight-line graph with perfect angular resolution
where the edges incident to a vertex v are separated by an angle of at least
2π/degree(v), and polynomial area. In the same paper it was observed that an
ordered tree drawn with perfect angular resolution requires exponential area.
Surprisingly, even ordered trees can be drawn in polynomial area with perfect
angular resolution when the edges are drawn as circular arcs [5].

The following sub-problem appears naturally in tree drawing algorithms.
Suppose we have drawings of all subtrees of the children of the root. How can
we group the subtrees around the root, such that the final drawing is densely
packed? Often one assumes that every subtree lies exclusively in some region,
say a disk. Hence, at its core, a tree drawing algorithm has to arrange disjoint
disks “nicely” around a new “root” vertex. Furthermore this task is also a
fundamental base case for bubble drawing algorithms or for algorithms that
realize vertices as large disks. In the paper we show how to layout the balloons
with perfect angular resolution and optimal area.

More formally, let B = {B1, B2, . . . , Bn} be a set of n disks. To distinguish
the disks Bi from other disks we call them balloons. The balloon Bi has radius
ri, and the balloons are sorted in non-decreasing order of their radii. We are
interested in layouts in which the balloons of B have disjoint interiors and are
evenly angularly spaced. In particular, we draw for every balloon a spoke, that
is, a line segment from the origin to the balloon center. The spokes have to avoid
the interior of the other balloons and two neighboring spokes are separated by
an angle of 2π/n. Furthermore the drawing should require only small area. We
measure the extent of the balloon layout by the radius of the smallest disk that
is centered at the origin and covers all balloons. An example of a balloon layout
is presented in Figure 1.

Results. We show how to locate the balloons with perfect angular resolution
such that the drawing can be covered with a disk of radius 2r̃, for r̃ being the
sum of the radii. This is clearly the best possible result in the worst case, since
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Figure 1: An example of a balloon layout obtained by the strategy presented in
this paper.

when |B| = 1, the the covering disk requires a radius of at least 2r1. Even for
larger sets B the best possible covering disk might require a radius of 2r̃− ε for
an arbitrary small ε > 0. The worst case example is obtained by taking one
balloon with radius r̃−ε/2, and all other balloons with radius ε/(2n−2). We also
study a modified version of the balloon layout problem that finds application in
a tree drawing algorithm. Here, one or two spokes may remain without balloon,
but the angle between the two unused spokes has to be at least 2π/3. In this
setting we obtain a balloon drawing that can be covered with a disk of radius

(1 +
√

2− 2/
√

5)r̃ < 2.0515r̃, which is optimal in the worst case. The induced

algorithm draws unordered trees with perfect angular resolution that can be
covered with a disk of radius n3.0367.

Related work. Without being explicitly stated, Duncan et al. [5] studied the
balloon layout problem (with one or two unused spokes) as part of their drawing
algorithm for unordered trees and obtained a bound of 4r̃ for the radius of the
covering disk. The induced tree drawing algorithm produces drawings which can
be covered by a disk of radius 2n4. For the special case of orthogonal straight-
line drawings of ternary trees (they automatically guarantee perfect angular
resolution) Frati [6] provided an algorithm whose drawings require O(n1.6131)
area; the drawing of the complete ternary tree requires O(n1.262) area. Bach-
maier et al. obtained a drawing of the complete 6-regular tree with perfect
angular resolution with area O(n1.37) [1].

In contrast to our setting the so-called balloon drawings are plane drawings
of trees, where the children of every node v are all placed at the same distance
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from v. Lin and Yen [10] presented an O(n3/2 log n) algorithm for optimiz-
ing the angular resolution or the aspect ratio for balloon drawings of ordered
trees. Recently, Lin et al. [11] studied balloon drawings for unordered trees.
Some incarnations of their optimization problems for unordered trees became
NP-complete, whereas others where solvable in polynomial time. Also related
are the ringed circular layouts [14]. Here, children are arranged in equidistant
layers around the parent with perfect angular resolution for every layer. On the
downside, edge crossings appear often in this framework. Without the perfect
angular resolution constraint, trees can be drawn with straight-lines and area
Θ(n) [7].

Conventions. We normalize the radii of the balloons such that they sum up
to 1. In intermediate stages of the drawing algorithm a spoke may be without a
balloon. In this case we consider the spoke as a ray emanating from the origin
that fulfills the angular resolution constraint. When we say that “we place
balloon B on s at distance x” we mean that the balloon B is placed on a spoke
s (that had no associated balloon yet) such that its center lies on s at Euclidean
distance x from the origin. In the remainder of the paper all disks covering the
balloons are considered as centered at the origin.

2 The greedy strategy

2.1 Wedges and layers

In the following section we introduce the greedy strategy for placing B with
perfect angles. To keep things simple we assume for now that the number of
balloons n is a power of two. The general case is discussed later.

We place the balloons in non-decreasing order of their radii. Thus we start
with the smallest balloon and end with the largest balloon. The placement
of the balloons is carried out in rounds. In every round we place half of the
balloons that have not been placed yet. Thus, we “consume” a certain number
of spokes in each round. Let S be the list of spokes that are available in the
beginning of a round in cyclic order. In every round we select every other spoke
as a spoke on which a balloon is placed in the current round. This ensures
that consecutive spokes that receive a balloon in round i are separated by an
angle of αi := 2i+1π/n. For every round we define the safe disk SDi centered
at the origin with radius safei. The safe disk is the smallest disk covering all
balloons that were placed in previous rounds. In round i we place all balloons
such that they avoid the interior of the safe disk SDi. Thus, the best we can
hope for is to place the balloons such that they touch SDi. Whenever this
is possible we speak of a contact situation, depicted in Figure 2(a). The safe
disks ensure that balloons placed in the current round will not intersect the
interior of the balloons that were placed in previous rounds. However, we have
to guarantee that balloons placed in the same round will also not interfere with
the remaining spokes. Suppose that Bj is assigned to the spoke sk. We enforce



JGAA, 16(4) 847–870 (2012) 851

Bj to lie inside a wedge with opening angle αi centered at sk. This wedge is
named Wk. Since the spokes that are used in round i are separated by αi,
the wedges of round i have disjoint interiors. Whenever a balloon touches the
boundary of its associated wedge we speak of a wedge situation, as shown in
Figure 2(b).

sk

Bj

SDi
αi

sk

SDi

Bj

αi

Wk

(a) (b)

Figure 2: In a contact situation (a) we place Bi such that it touches SDi. In
contrast, in a wedge situation (b), we place Bi such that it touches the boundary
of Wk (when it is placed on sk).

The greedy strategy tries first to place Bj at its spoke sk, such that it touches
SDi. If this would imply that Bj is not contained inside Wk, we move the center
of Bj on sk away from the origin, until Bj touches the boundary of Wk. In case
a wedge situation occurs, we can compute the location of the center of Bj with
help of the following lemma, which was also proven in a slightly different form
by Duncan et al. [5].

Lemma 1 Let W be a wedge with opening angle ϕ centered at a spoke s. Further
let B be a balloon with radius r that is placed such that (1) its center lies on
s, and (2) it touches the boundary of W . Then B is contained inside a disk
centered at the origin with radius

1 + sin (ϕ/2)

sin (ϕ/2)
· r.

Proof. Let t be one of the points where B touches the boundary of W and c
the center of B as shown in Figure 3. The triangle spanned by the origin, t,
and c has a right angle at t and an angle of ϕ/2 at the origin. Therefore, c has
distance r/ sin (ϕ/2) from the origin. To cover B we add r to the radius of the
disk that touches c. The resulting radius equals r + r/ sin (ϕ/2). 2

In the remainder of the paper we use as notation

α(ϕ) :=
1 + sin (ϕ/2)

sin (ϕ/2)
. (1)
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B

c

ϕ/2

r

r

r/ sin(ϕ/2)

s

t

Figure 3: The construction used in the proof of Lemma 1.

Notice that when a wedge situation occurs in round i, then in particular a
wedge situation has to occur for the last balloon that is added in round i, since
the balloons are sorted by increasing radii. All balloons placed in round i are
sandwiched between SDi and SDi+1. We call the region SDi+1 \ SDi the i-th
layer Li.

1 The width of layer Li is defined as safei+1 − safei. When a wedge
situation occurs in round i, the layer Li is called a wedge layer, otherwise a
contact layer. Notice that there is one particular balloon that defines the width
of a layer. If all wedges have the same opening angle then the largest balloon
inside a layer determines its width. Unless the number of spokes is a power of
two, we can not guarantee that all opening angles of wedges are the same, and
hence also other balloons might define the width. An example of a wedge layer
is shown in Figure 4.

SDi+1
SDi

Figure 4: A wedge layer (shaded) that is filled with balloons by the greedy
strategy.

1By convention SD1 is the origin, and for i being the last round, SDi+1 =
smallest disk covering all balloons.
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2.2 Splitting the set of spokes

We now come back to the case where n is not necessarily a power of two. In
this setting there might be an odd number of spokes k in some round. In such
a round we place only bk/2c balloons, such that no two of them are assigned to
consecutive spokes. This however has two drawbacks: First, the angles might
not split evenly, and second, the layers will be filled with less balloons.

We show that we can always pick bk/2c spokes such that in the remaining
set of spokes at most two separating angles are smaller than the others, which
are all equal. Moreover, the two smaller angles are adjacent, and each of them
is at least half as big as the remaining angles. We call every set of spokes
for which this property holds well-separated. Furthermore we assume that a
well-separated set of spokes is ordered such that the two smaller angles are
realized between the first and second, and between the second and third spoke.
Algorithm 1 describes a strategy that picks bk/2c of the spokes and ensures
that the remaining set of spokes is still well-separated if the original set was
well-separated.

Algorithm 1: SplitSpokes(S)

Input : S sequence of k spokes, indexed in radial order 1 . . . k
Output: (T, T ′), such that T ′ are the spokes that will be used in the current

round, T = S \ T ′.

1 T ′ ← every spoke of S with an even index
2 T ← every spoke of S with an odd index
3 reorder T by putting the last spoke in front
4 return (T, T ′)

Lemma 2 Let S be a well-separated set of at least three spokes and let ϕ denote
the size of the large angles in S. Let (T, T ′) be the pair of spokes returned by
Algorithm 1.

(1) If |T | > 2, then T is well-separated.

(2) If |T | = 2, then the smaller angle between the two spokes is at least 2π/3.

(3) The wedge with angle ϕ centered at the first spoke in T ′ contains no spoke
of S in its interior.

(4) A wedge with angle 2ϕ centered at a spoke in T ′ that is not the first spoke
contains no spoke of S in its interior.

Proof. Let the angle between the first and second spoke in S be γ1, and let the
angle between the second and third spoke in S be γ2. Since S is well-separated,
we have ϕ/2 ≤ γ1, γ2 ≤ ϕ. The first spoke in T ′ is the second spoke in S and the
wedge centered at the second spoke of S with angle ϕ does not contain any other
spoke of S in its interior, which proves (3). The remaining spokes in T ′ are the
spokes in S with even index. Property (4) is due to the fact that every spoke
in S with even index larger than 2 is separated from its neighboring spokes by
an angle of ϕ.



854 I.Halupczok A. Schulz Pinning balloons with perfect angles and opt. area

≥ ϕ/2

≥ ϕ/2

ϕ

ϕ

ϕ
ϕ

≥ ϕ2ϕ

2ϕ

1

2

3

4

5

6

1

2

3

≥ ϕ/2

≥ ϕ/2

ϕϕ

ϕ

2ϕ

1

2

3

4

5

ϕ

1

2

3

≥ ϕ

(a) (b)

Figure 5: The outcome of Algorithm 1 as example: in case we have an even
number of spokes (a), and in case we have an odd number of spokes (b). The
spoke indices are shown as small numbers. The left pictures show the set S, the
right pictures the set T .

After line 2 of Algorithm 1, the angle between the first and second spoke of
T equals γ1 + γ2 ≥ ϕ. The remaining spokes in T are separated by an angle
of 2ϕ with one exception: In case that S is odd, the last spoke of T forms an
angle of ϕ with the first spoke of T . Thus all separating angles of T have size
2ϕ, except the two angles around the first spoke in T , which have size at least
ϕ but at most 2ϕ. After reordering the set T as done in line 3 of Algorithm 1,
T is clearly well-separated. Figure 5 illustrates the outcome of the algorithm
for the case |S| = 6 and |S| = 5.

To see that (2) is true, notice the following. T contains two spokes if S
contains three or four spokes. In case S contains 4 spokes, the sum of the two
small angles is at least 2π/3. In case S contains three spokes, the sum of the
two small angles between the spokes is at least π. The large angle between the
spokes in S is at least 2π/3. This angle appears also between the spokes in T .
2

To ensure that the balloons of each layer cannot interfere with each other
and with the remaining spokes, we place them inside the wedges defined by
Lemma 2(3–4). All wedges have the same opening angle, say 2ϕ, except the
first wedge, whose opening angle is at least ϕ. The balloon with the smallest
radius in each round is placed inside the wedge with the (possible) smaller
opening angle.

2.3 The final layer

It is important to analyze the situation where the greedy strategy has to stop.
In every round we reduce the number of spokes from k to dk/2e. If we subdivide
the spokes in this fashion we will come to a point where exactly two spokes are
left. The final two balloons are placed in the last round as follows: (1) The
balloon Bn will be placed such that it touches the safe disk. (2) The balloon
Bn−1 will be placed such that it is contained inside a wedge with opening angle
π/3, centered at its spoke, while avoiding the interior of the current safe disk.
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Lemma 3 When the balloons are placed as discussed in the previous paragraph,
then one of the following is true:

1. The width of the last layer is 2rn.

2. All balloons can be covered with a disk of radius 3/2.

Proof. Let ϕ be the smaller of the two angles between the spokes in the final
round i. Due to Lemma 2, ϕ is at least 2π/3. The line orthogonal to the spoke
of Bn touching SDi separates Bn from the spoke of Bn−1. Since the angle
between this tangent and the spoke of Bn−1 is at least ϕ − π/2 ≥ π/6 it is
safe to place Bn−1 inside a wedge centered at its spoke with opening angle π/3.
Thus, either Bn or Bn−1 defines the radius of the covering disk. In the former
case (see Figure 6(a)) the width of the last layer is 2rn, in the latter case (see
Figure 6(b)) the radius of the covering disk is at most α(π/3)rn−1 ≤ 3/2, since
rn−1 ≤ 1/2. 2

SDi+1

SDi

Bn−1

Bn

Bn−1

Bn

SDi+1

≥ π/6

SDi

(a) (b)

Figure 6: The two possible cases in the final layer as discussed in the proof of
Lemma 3. Either Bn determines the width of the layer (a), or Bn−1 determines
the width (b).

Due to Lemma 3 we can assume that the width of the last layer equals 2rn.
Thus even if Bn−1 defines a wedge situation, we consider the last layer to be a
contact layer. We summarize the discussion in Algorithm 2.

2.4 Quality of the greedy strategy

We denote by R the radius of the smallest disk that covers all balloons. In order
to determine R we have to consider only certain balloon radii.

Lemma 4 The radius of the smallest disk R that covers all balloons drawn with
Algorithm 2 can be determined with the knowledge of

1. the number of spokes,
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Algorithm 2: GreedyBalloon(S).

Input : S : spokes in cyclic order, balloon radii
Output: Balloon drawing

1 k ← 0 // number of balloons placed so far

2 safe← 0 // radius of the current safe disk

3 while |S| > 2 do
4 (T, T ′)← Splitspokes(S)
5 width← 0 // width of the current layer so far

6 for i← k + 1 to k + |T ′| do
7 s← (i− k)-th spoke of T ′

8 ϕ← 2(minimal angle between s and its neighboring spokes)
9 c← max {α(ϕ)ri − ri, safe + ri} // center of Bi

10 place Bi on s at distance c
11 width← max{width, c+ ri − safe}
12 end
13 safe← safe + width
14 k ← k + |T ′|
15 S ← T

16 end
17 let s1, s2 be the spokes in S
18 place Bn on s1 at distance safe + rn
19 place Bn−1 on s2 at distance max{2rn−1, safe + rn−1}
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2. the radius of the largest and smallest balloon in the outermost wedge layer,

3. the radii of the largest balloons in each of the contact layers following the
outermost wedge layer.

Proof. Suppose the last wedge situation occurs in round i. Then the radius
of SDi+1 is determined by a balloon B̂ that touches its wedge. There are two

possibilities for B̂. Either B̂ is the last balloon in the layer, since this balloon
is the largest, or B̂ is the first balloon in the layer, since its wedge might have a
smaller opening angle compared to the other wedges in the layer. The following
layers are all contact layers. Their width is determined by the diameter of the
largest balloons in each layer. The radius R equals therefore the radius of SDi+1

with the addition of the widths of the following contact layers. 2

Since we are interested in a worst case bound for R we make the following
assumptions to simplify the analysis of the algorithm.

Lemma 5 Let w be the index of the balloon, whose wedge situation determined
the width of the last wedge layer Lj. The radius R of the smallest covering disk
is maximized when

rw = rw+1 = rw+2 = · · · = rn−1, and

r1 = r2 = r3 = · · · = rw−1 = 0.

Proof. We are interested in the worst case situation with respect to the initial
radii. Since no radius of a balloon with smaller index than w matters for R,
we set these radii to zero to save resources. If Bw is the smallest balloon in its
layer, all radii of balloons in Lj have radius rw in the worst case. Otherwise
we could shrink some of these balloons without changing the width of Lj and
spend the resources to increase rn and therefore R.

Only the balloon added last in each contact layer determines the width of
its layer. We select the radii of the other balloons in contact layers as small as
possible, i.e., as large as the radius of the largest balloon in the previous layer.
If any of these radii would be larger we could make such a radius smaller and
increase rn instead, which would increase R.

Assume we have at least two contact layers following Lj . The situation is
schematically depicted in Figure 7. Let Bc be the largest balloon in the contact
layer Lj+1, that is, the balloon last added in Lj+1. Due to the discussion in
the previous paragraph we can assume that the balloon Bc+1 in the next layer
has radius rc. If rc > rw, we could lower the radius by δ := rc − rw for Bc and
Bc+1 each. By this we can increase rn by 2δ. As a consequence the width of
Lj+1 decreases by δ and the width of the last layer increases be 2δ. Thus, the
radius R increases by δ and all radii in Lj+1 equal rw in the worst case. By
an inductive argument the radii in the last contact layers are all rw. The only
exception is the largest balloon Bn. 2

Before proving the main theorem we show a technical lemma, that gives a
lower bound for the opening angles of the wedges.
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rw

rc

rc
rn

Bw

Bc

Bc+1

Bn

Lj Lj+1 Lj+2

rw

rw

rw

rn + 2(rc − rw)

Bw

Bc

Bc+1

Bn

Lj Lj+1 Lj+2

(a) (b)

Figure 7: If there is a balloon in between Bw and Bn with radius > rw (a), then
there is another radii assignment that requires a larger covering disk (b).

Lemma 6 Let L be a wedge layer with k balloons and a well-separated set of
spokes. Further, let ϕ be the opening angle of the wedge that defines the width
of L.

(1) If the largest balloon in L defines its width, then

ϕ ≥ 4π/k.

(2) If the smallest balloon in L defines its width, then

ϕ ≥ 2π/(k − 1/2).

Proof. (1) By construction the last balloon is placed inside the wedge with
largest opening angle (in this round). Therefore its opening angle ϕ is mini-
mized, when the angles between all pairs of neighboring spokes are equal. There-
fore two spokes are separated by 2π/k and ϕ ≥ 4π/k.
(2) Due to Lemma 2 the angles between two neighboring spokes are all of size
ψ except two angles, which are at least ψ/2 (the small angles). The angle ϕ is
twice the minimum of the two small angles, and hence minimized when one of
the small angles has size ψ and the other has size ψ/2. In this case we have
k − 1 angles of size ψ and one angle of size ψ/2. Since all angles sum up to 2π,
we have ψ = 2π/(k − 1/2), which is a lower bound for ϕ. 2

Theorem 1 Algorithm 2 constructs a drawing of balloons with disjoint interiors
and spokes that intersect only the interior of their associated balloon that can be
covered with a disk of radius two, which is best possible in the worst case.

Proof. We define as L̄i the i-th last layer such that L̄1 is the last layer. Suppose
there were k spokes left, before the last wedge layer was filled. We denote the
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number of contact layers that follow the last wedge layer by `. By Algorithm 1
the number ` is given by a function ` = f(k), which is defined as follows

f(k) :=


1 if 3 ≤ k ≤ 4,

1 + f
(
k
2

)
if k > 4, even,

1 + f
(
k+1
2

)
if k > 4, odd.

(2)

By induction, f(k) ≤ log(k − 1), where log denotes the binary logarithm. The
radius of the covering disk R equals the radius of L̄`’s safe disk plus the width
of the last ` contact layers. Let Bw be the balloon that determined safe`. By
Lemma 5 we can assume that all balloons following Bw have radius rw, except
Bn. All other radii are zero.

As previously discussed, the balloon Bw is either the first or the last balloon
in the last wedge layer. We discuss the two possibilities by case distinction. Let
us first assume that Bw is the last balloon of layer L̄`+1. By Lemma 6(1) we
have that ϕ ≥ 4π/k. Furthermore, we have ` − 1 layers of width 2rw, and one
layer of width 2rn following L̄`+1. In layer L̄`+1 we place no more than k/2
balloons and therefore in the last ` layers we have at least k/2 balloons in total.
Since there is one balloon in L̄`+1 with radius rw and only one balloon in the
last ` layers with radius different from rw, we get rn ≤ 1− rwk/2. This leads to

R ≤ α(ϕ)rw + 2(`− 1)rw + 2rn ≤ 2 + [α(4π/k) + 2 log(k − 1)− k − 2] rw.

The last wedge layer must contain at least three spokes. Since α(4π/k) +
2 log(k − 1) − k − 2 is decreasing2 for k ≥ 4 and negative for k = 3, 4, we
get R ≤ 2.

We assume now that Bw was placed first in L̄`+1. Again, let ϕ be the angle
of the wedge that contains Bw centered at its spoke. Due to Lemma 6(2) we
have that ϕ ≥ 2π/(k − 1/2). Notice that all balloons in L̄`+1 have radius rw,
hence we have k − 1 balloons of radius rw, and therefore rn ≤ 1 − (k − 1)rw.
We conclude with

R ≤ α(ϕ)rw + 2(`− 1)rw + 2rn ≤ 2 + [α(2π/(k − 1/2)) + 2 log(k − 1)− 2k] rw.

For k ≥ 2 the expression α(2π/(k − 1/2)) + 2 log(k − 1) − 2k is negative and
decreasing and the theorem follows. 2

2.5 Running time

In this section we discuss the running time of Algorithm 2. Recall that we
assumed in the beginning that the balloons are sorted by radii. Our estimation
for the running time will also be valid for the later modifications of the algorithm.

Lemma 7 The running time of Algorithm 2 is O(n).

2The estimation of this expression and of similar following expressions was obtained by
computer algebra software.
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Proof. The algorithm consists mainly of a while-loop. The set S denotes the
set of spokes, which have not been assigned with a balloon yet. In every iteration
of the loop we compute the spokes that will get a balloon in the current round,
and assign them with balloons. This takes O(|S|/2) time per round. Since we
are halving the set of spokes in every round, the total running time is O(n). 2

Even when B is not ordered by radii we can still guarantee a running time of
O(n) for Algorithm 2. This can be achieved by sorting the set of balloons only
partially in a preprocessing step as follows. Recall that ri denotes the radius of
the balloon Bi. We denote the median of the radii of B with rM .

Definition 1 (weakly ordered sequence) We say that the sequence of bal-
loons B is weakly-ordered, iff

1. r1 = min{ri},
2. for all i < bn/2c we have ri ≤ rM ,

3. rbn/2c = rM , and

4. (Bbn/2c+1, . . . , Bn) is weakly-ordered.

The median of n elements can be found in linear time [3]. It follows from the
recursive definition that B can be weakly-ordered in linear time. On the other
hand it is indeed sufficient for B being weakly-ordered, since for the location of
the balloons within each round only the smallest and largest balloon matters. A
permutation of the balloons in between has no influence on the necessary width
of the corresponding layer. We summarize our observations with the following
theorem.

Theorem 2 We can compute the balloon layout as determined by Algorithm 2
in O(n) time, even if the balloons B are not sorted by radii.

3 Free spokes

3.1 Modifications

In this section we study a variant of the balloon layout problem that finds
application in a tree drawing algorithm, which is presented in Section 4. In
contrast to the original setting we require that one or two spokes remain without
an assigned balloon. Hence the number of spokes exceeds the number of balloons
which we denote with n. A spoke that remains without an assigned balloon is
called free spoke. As additional constraint we require that if there are two free
spokes, the smaller separating angle is at least 2π/3. Allowing free spokes makes
the performance of the greedy strategy worse, since the available angular space
between the spokes is reduced. In order to achieve good bounds for this modified
problem, we change the greedy strategy slightly. In particular, we change the
terminal cases for the layout algorithm and we introduce a construction that
allows us to move some balloons inside their safe disk. The rest of the greedy
strategy remains unaltered.
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3.2 New terminal cases

We have two terminal cases for the scenario with one free spoke, and two ter-
minal cases for the scenario with two free spokes. The new terminal cases are
covered by the Lemmata 8–10; see also Table 1. Notice that for any number of
original spokes the greedy strategy has to come to one of these terminal cases.

free spokes remaining spokes remaining balloons

Lemma 8
1 2 1

1 3 2

Lemma 9 2 3 1

Lemma 10 2 4 2

Table 1: The terminal cases.

Lemma 8 Suppose we have either two spokes and one balloon, or three well-
separated spokes and two balloons left while executing the greedy strategy. We
can place the remaining balloons, such that either all balloons can be covered
with a disk of radius two, or the width of the last layer is 2rn.

Proof. The case when there are two spokes and one balloon left is trivial. For
the remaining case we assume that the spokes are labeled such that the largest
angle is realized between s3 and s1, and the second largest angle is realized
between s2 and s3. Balloon Bn is placed at s3 such that it touches the safe
disk, which is possible, since the angle between s2 and s3 is at least π/2. Let t
be the tangent of Bn at the intersection with the safe disk. Since s3 and s1 are
separated by an angle of at least 2π/3, t and s1 are separated by an angle of
at least π/6. Similarly to the construction of Lemma 3, we can place Bn−1 at
a wedge with opening angle π/3 centered at s1. If this would result in a wedge
situation, the disk covering all balloons except possibly Bn would have radius
α(π/3)rn−1 = 3rn−1 ≤ 3/2. 2

Lemma 9 Suppose we have three well-separated spokes and one balloon left
while executing the greedy strategy. We can place Bn, such that the width of

the last layer is (1 +
√

2− 2/
√

5)rn, and the smaller angle between the two

remaining spokes is at least 2π/3.

Proof. Let ϕ1 ≤ ϕ2 ≤ ϕ3 be the angles that separate the three spokes. Since
the spokes are well-separated, we know that 2ϕ1 ≥ ϕ2, ϕ3. Hence, 5ϕ1 ≥
ϕ1 + ϕ2 + ϕ3 = 2π. Thus we can place Bn on the spoke incident to the two
smaller angles such that it touches the safe disk inside a wedge with opening
angle 4π/5. Hence, Bn can be covered with a disk of radius α(4π/5)rn =

(1 +
√

2− 2/
√

5)rn < 2.0515rn. The remaining spokes are separated by the

former larger angle. By Lemma 2 this angle is at least 2π/3 and at most π. 2
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Lemma 10 Suppose we have four well-separated spokes and two balloons left
while executing the greedy strategy. We can place Bn and Bn−1, such that either
all balloons can be covered with a disk of radius two, or the width of the last layer
is 2rn. The smaller angle between the two remaining spokes is at least 2π/3.

Proof. By well-separatedness, we can assume that the two larger angles (which
are at least π/2) are realized between the spokes s3, s4, and s1. We place Bn
at s4 such that it touches the safe disk. The smallest angle is minimized when
all other angles are equal. In this case, the smallest angle is 2π/7. Hence, we
can place Bn−1 at s2 inside a wedge with opening angle 4π/7. If this would
result in a wedge situation, the disk covering all balloons would have radius
α(4π/7)rn−1 < 2. The angle between the two remaining (free) spokes is at least
the sum of the two small angles, which is at least 2π/3. 2

3.3 Compaction

The following construction allows us to place a balloon such that it slightly
overlaps the previous safe disk; this is needed in a few special cases.

Lemma 11 Suppose that s1 and s2 are two spokes that are separated by an
angle β and that B is a balloon placed on s1 such that it is disjoint from s2
and such that it can be covered with a disk of radius s. Then a balloon B′ with
radius r′ placed on s2 at distance s · (sin(β) + cos(β))/(sin(β) + 1) + r′ from the
origin will be disjoint from B.

Proof. In the worst case B is as large as possible, i.e., it touches both, the
spoke s2 and the border of the disk of radius s. Let the radius of B in this
case be r. By Lemma 1 we have s = r + r/ sin(β) (see Figure 8) and hence
r = s · sin(β)/(sin(β) + 1). To ensure that B′ is disjoint from B, it suffices to
place its center r′ units above the line h that is perpendicular to s2 and touches
B′. The distance of this line from the origin is

s′ = r + cot(β)r = r · sin(β) + cos(β)

sin(β)
= s · sin(β) + cos(β)

sin(β) + 1
.

2

3.4 Analysis of the modified greedy strategy

The analysis follows the presentation in Section 2. As before, the layer of the
last round is always considered as contact layer, even when a wedge situation
determined its width.

Theorem 3 Assume that the number of spokes exceeds the number of balloons
by one. Algorithm 2 with base case as described in Lemma 8 produces a drawing
of balloons with disjoint interiors and one free spoke that can be covered with a
disk of radius two.



JGAA, 16(4) 847–870 (2012) 863

h

ss′

β

r

Figure 8: By Lemma 11 it is possible to push the balloons slightly inside the
safe disk.

Proof. We denote by k the number of spokes in the last wedge layer. We reuse
the estimations for the angles given in Lemma 6. There are ` layers following
the last wedge layer. The number ` = f(k) can bounded in terms of k by the
following recursion

f(k) :=


1 if 4 ≤ k ≤ 6,

1 + f
(
k
2

)
if k > 6, even,

1 + f
(
k+1
2

)
if k > 6, odd.

The recursion yields f(k) ≤ log(2(k−1)/3), which can by checked by induction.
Let Bw be the balloon that determined the width of the last wedge layer.

Bw can be either the first or last balloon of the layer. Assume that Bw was
placed last in L̄`+1. In this case rn ≤ 1− (k/2−1)rw, since we have one balloon
less compared to the proof of Theorem 1, but we have the same bounds for the
angles, namely ϕ ≥ 4π/k. This gives

R ≤ α(ϕ)rw + 2(`− 1)rw + 2rn ≤ 2 + [α(4π/k) + 2 log(2(k − 1)/3)− k] rw.

Since α(4π/k)+2 log(2(k−1)/3)−k is non-positive for all k ≥ 4, we have R ≤ 2
in this case.

Assume now that Bw was the first balloon of L̄`+1. By Lemma 6 we have
ϕ ≥ 2π/(k − 1/2). Since we have one balloon less, we get rn ≤ 1 − (k − 2)rw.
We deduce

R ≤ α(ϕ)rw + 2(`− 1)rw + 2rn

≤ 2 + [α(2π/(k − 1/2)) + 2 log(2/3(k − 1))− 2k + 2] rw.

Since α(2π/(k − 1/2)) + 2 log(2/3(k − 1)) − 2k + 2 < 0 for k ≥ 4 the theorem
follows. 2

Theorem 4 Assume that the number of spokes exceeds the number of balloons
by two. Algorithm 2 with base cases as described in Lemma 9, and 10, and
the construction described in Lemma 11 produces a drawing of balloons with
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disjoint interiors and two free spokes that can be covered with a disk of radius

(1 +
√

2− 2/
√

5) < 2.0515.

Proof. The proof is similar to the proof of Theorem 3. So again, let k be the
number of spokes in the last wedge layer. We stop the greedy strategy when
three or four spokes are left.

Let ` denote the numbers of layers following the last wedge layer. We have

` = f(k) :=


1 if 5 ≤ k ≤ 8,

1 + f
(
k
2

)
if k > 8 even,

1 + f
(
k+1
2

)
if k > 8 odd.

The solution to this recurrence gives f(k) ≤ log(k−1)−1, which can be checked
easily by induction.

Assume that Bw is the last balloon in its layer. We place bk/2c balloons in
the last wedge layer, and therefore dk/2e − 2 in the final ` layers. This gives

rn ≤ 1− (dk/2e− 2)rw. Let κ :=

(
1 +

√
2− 2/

√
5

)
, by Lemma 9 the width of

the last layer is at most κ · rn. We obtain

R ≤ α(ϕ)rw + 2(`− 1)rw + κrn

≤ κ+ [α(4π/k) + 2 log(k − 1)− 4 + κ(2− dk/2e)] rw.

A numerical analysis shows that R < κ when k ≥ 7. Thus in the two remaining
cases (k = 5, 6) we apply Lemma 11 to enhance the result by moving Bn slightly
inwards. In both cases, the last layer L̄1 contains only Bn, the last wedge layer
is L̄2, and we have rn ≤ 1− rw. The angle between two spokes in layer L̄2 is at
least 2π/(2k− 1), so we can use β = 2π/(2k− 1) in Lemma 11. In this way, we
obtain

R ≤ α(ϕ)rw · (sin(β) + cos(β))/(sin(β) + 1) + κrn

≤ κ+ [α(4π/k) · (sin(β) + cos(β))/(sin(β) + 1)− κ]rw.

This is less than κ in both cases, k = 5 and k = 6.

Finally we have to consider the case when Bw is the smallest balloon in its
layer. In this setting we have rn ≤ 1− (k − 3)rw and ϕ ≥ 2π/(k − 1/2), which
yields

R ≤ α(ϕ)rw + 2(k − 1)rw + κ · rn
≤ κ+ [α(2π/(k − 1/2)) + 2 log(k − 1)− 4− κ(k − 3)] rw.

We obtain, R ≤ κ, since α(2π/(k − 1/2)) + 2 log(k − 1) − 4 − κ(k − 3) < 0 for
k ≥ 5. 2



JGAA, 16(4) 847–870 (2012) 865

4 Drawing unordered trees with perfect angles

The greedy strategy can be used to construct drawings of unordered trees with
perfect angular resolution and small area. In fact, the balloon layout prob-
lem studied in Section 2 is a subproblem of the drawing algorithm of Dun-
can et al. [5], where it is used to draw “depth-1” trees. With the help of the so
called heavy edge tree-decomposition (see Tarjan [13]) these trees are combined
to the original tree. Since our proposed strategy uses significantly smaller area,
it implies an improvement for the area of the tree drawing.

We start with a brief review of the heavy edge tree-decomposition. Let u be
a non-leaf of the rooted tree T with root r. We denote by Tu the subtree of T
rooted at u. Let v be the child of u such that Tv has the largest number of nodes
(compared to the subtrees of the other children of u), breaking ties arbitrarily.
We call the edge (u, v) a heavy edge, and the edges to the other children of u
light edges. The heavy edges induce a decomposition of T into (maximal) paths,
called heavy paths, and light edges; see Figure 9 on the left. We call the node on
a heavy path that is closest to r its top node. The subtree induced by a heavy
path is the subtree rooted at its top node. The light edge that links the top
node with its parent in T is called the light parent edge. The height of a heavy
path P is defined as follows: If P is not incident to light parent edges of other
heavy paths it has height one. Otherwise we obtain the height of P by adding
one to the maximal height of all heavy paths linked to P by some light parent
edge (but not the light parent edge of P ). By construction, every root-leaf path
in T visits at most dlog ne many light edges, and thus no path has height larger
dlog ne.

T

Figure 9: An example of a heavy-edge tree-decomposition. The path P has
height two.

The drawing of the tree will be obtained by recursively combining drawings
of subtrees. In particular, we construct drawings for all subtrees rooted at a
heavy path’s top node. For every such subtree S we define an exclusive disk
X with the following properties: (1) The drawing of S is contained inside X,
(2) the light parent edge of S crosses the boundary of X orthogonally, and (3)
the center of X coincides with the top node of the corresponding heavy path.
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`

Figure 10: Constructing the drawing of CP with light parent edge `. Its exclusive
disk is drawn darkly shaded. The white circles save the space for the subtrees
rooted at the corresponding children. The lighter shaded circles depict the
extend of the of the balloon layouts constructed for every non-leaf vertex of the
heavy path.

Roughly speaking, we draw S by drawing the corresponding heavy path with
its children, and for every children q we save an exclusive region, large enough
such that subtree of T rooted at q can be inserted here. The drawing of such a
subtree is depicted in Figure 10.

More formally, let P be a heavy path of T and let CP be the union of P
with its incident light edges (but without the light parent edge) as shown in
Figure 9. The leaves of CP represent (possibly degenerate) subtrees of heavy
paths with smaller height. Assume we have constructed the drawings for all
these subtrees and we constructed an exclusive disk for each of the drawings.
Let u be a non-leaf tree node of P . We apply the balloon layout algorithm to
draw u and its incident edges. We introduce a spoke for every light edge incident
to u. The balloon that is placed on a spoke represents the exclusive disk of the
corresponding subtree. The heavy edges incident to u are represented as free
spokes. If u is the top node of P , we also add another free spoke (representing
the parent edge) unless u is the root of T . In fact, the root of T is the only place
for which we have one free spoke, otherwise we always have two free spokes.

In order to link the balloon layouts for the nodes of P via its heavy edges
(free spokes) we apply the technique of Duncan et al. [5, full version, Lemma
2.3]. This Lemma states that the combined drawing fits inside an exclusive disk
of radius 2

∑
i xi, where xi is the radius of the disk that covers the balloon layout

of the i-th node on P . Figure 10 illustrates this construction. The base case in
the recursion draws the leaves of T (degenerate heavy paths) with their incident
light parent edges. This is done by drawing these light parent edges with length
one and placing the exclusive disk centered at the leaf node with radius one.
The following theorem presents a bound on the area of the constructed tree
drawing.

Theorem 5 Let κ = (1 +
√

2− 2/
√

5) be the constant derived in Lemma 10.
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Using Algorithm 2 in the framework of Duncan et al. produces a drawing of an
unordered tree with n nodes that has perfect angular resolution and that can be
covered with a disk of radius n2 · nlog κ < n3.0367, while having no edge with
length smaller than 1.

Proof. Let Nu denote the number of nodes in the subtree rooted at u. We
show by induction that any subtree of a heavy path P of height i can be covered
with a disk of radius less than (2κ)iNu, for u being the top node of P . This
statement is certainly true for i = 1. Assume that we have already built the
drawings of all height (i − 1) heavy path subtrees. We apply the construction
of the previous paragraph to combine the drawings. In order to achieve this
we have to apply the greedy strategy for the balloon layout for every node of
P . By Theorem 3 and 4, the balloon layout requires a covering disk of radius
κ times the sum of the balloon radii. We denote the necessary radius of the
covering disk at node z by xz, and the number of nodes of the subtrees that
are linked to z by a light parent edge by Mz. By the recursion hypothesis we
have xz ≤ κ(2κ)(i−1)Mz. The construction of Duncan et al. [5, full version,
Lemma 2.3] combines the balloon layouts of the nodes of P to a tree drawing
with perfect angular resolution and the drawing fits inside an exclusive disk of
radius at most 2

∑
z∈P xz =

∑
z∈P (2κ)iMz = (2κ)iNu.

Since every root-leaf path in T traverses at most log n light edges, the height
of the root of T is at most log n. This shows that the radius of the covering disk
is at most

(2κ)lognNr = nlog 2κ · n = n2nlog κ < n3.0367.

Notice that by construction all edges have length at least one. 2

Figure 11: Three balloons with radius ε, ε, 1− 2ε and 5 spokes. Separating the
unused spokes by an angle≥ 2π/3 yields a covering disk with radius α(2π/5) = κ
when ε approaches zero.
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5 Discussion

The only case, where we obtain no strict inequalities in the proof of Theorem 1, is
when |B| = 1. By placing all balloons slightly inside the wedges, resp., slightly
outside the safe disks we can therefore modify all constructions such that no
balloons touch.

Although our balloon layout strategy is the best possible in some scenarios,
it would be interesting if one could obtain a denser layout for special cases. In
particular, we think that better layouts exist if the fraction of the largest and
the smallest radius is bounded. It would be interesting to find an algorithm
that produces a layout which gives a guarantee on the area in terms of n and
this ratio.

As a final remark we point out that Theorem 1 can be generalized such
that it holds for one or two free spokes, while guaranteeing that the whole
balloon drawing can be covered with a disk of radius 2. However, as depicted
in Figure 11, the slightly worse bound of κ cannot be avoided if one has to
guarantee that the smaller angle between the two unused spokes is at least 2π/3.
This requirement is however necessary to apply Lemma 2.3 of Duncan et al. [5,
full version].
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