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Abstract

A set S of lines is universal for drawing planar graphs with n vertices
if every planar graph G with n vertices can be drawn on S such that each
vertex of G is drawn as a point on a line of S and each edge is drawn as a
straight-line segment without any edge crossing. It is known that ⌊ 2(n−1)

3
⌋

parallel lines are universal for any planar graph with n vertices. In this
paper we show that a set of ⌊n+3

2
⌋ parallel lines or a set of ⌈n+3

4
⌉ concentric

circles are universal for drawing planar 3-trees with n vertices. In both
cases we give linear-time algorithms to find such drawings. A by-product
of our algorithm is the generalization of the known bijection between plane
3-trees and rooted full ternary trees to the bijection between planar 3-trees
and unrooted full ternary trees. We also identify some subclasses of planar
3-trees whose drawings are supported by fewer than ⌊n+3

2
⌋ parallel lines.
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1 Introduction

Many researchers in the graph drawing community have concentrated their at-
tention on drawing graphs on point-sets [3, 8, 15] and on line-sets [7, 10, 13] due
to strong theoretical and practical motivation for such drawings (e.g., comput-
ing small-width VLSI layout, approximating pathwidth and data visualization
on small form factor). A set S of lines supports a drawing of a planar graph G
if G has a planar drawing, where each vertex is drawn as a point on a line in S
and each edge is drawn as a straight line segment. We say G has a drawing on
S if S supports a drawing of G. A set of lines that supports the drawing of all
n-vertex graphs in some class is called universal for that class. In this paper we
study the problem of finding universal line sets of smaller size for planar graphs.
Given a plane graph G with n vertices, Chrobak and Nakano [5] gave an algo-

rithm to compute a drawing of G on a ⌊ 2(n−1)
3 ⌋ × 4⌊ 2(n−1)

3 ⌋ grid. This implies

that ⌊ 2(n−1)
3 ⌋ parallel lines are universal for any planar graph with n vertices.

Note that a plane graph is a planar graph with a fixed planar embedding.

Recently, several researchers have studied a labeled version of the problem
where both the lines in the point set S and vertices of G are labeled from 1
to n and each vertex is drawn on its associated line. Estrella-Balderrama et
al. [10] showed that no set of n parallel lines supports all n-vertex planar graphs
when each vertex is drawn as a point on its associated line. Dujmović et al. [7]
showed that there exists a set of n lines in general position that does not support
all n-vertex planar graphs. An unlabeled version of the problem has appeared
in the literature as “layered drawing.” A layered drawing of a plane graph G
is a planar drawing of G, where the vertices are drawn on a set of horizontal
lines called layers and the edges are drawn as straight line segments. Finding a
layered drawing of a graph on the minimum number of layers is a challenging
task. Dujmović et al. [9] gave a parametrized algorithm to check whether a
given planar graph with n vertices admits a layered drawing on h layers or not.
Mondal et al. [14] gave an O(n5)-time algorithm to compute a layered drawing
of a “plane 3-tree” G, where the number of layers is minimum over all possible
layered drawings of G.

In this paper we consider the problem of finding a universal line set of smaller
size for drawing “planar 3-trees.” A planar 3-tree Gn with n ≥ 3 vertices is a
planar graph for which the following two conditions, (a) and (b) hold: (a) Gn

is a maximal planar graph; (b) if n > 3, then Gn has a vertex whose deletion
gives a planar 3-tree Gn−1. Many researchers have shown their interest on
planar 3-trees for a long time for their beautiful combinatorial properties which
have applications in computational geometry [1, 2, 6, 14, 18]. In this paper
we show that a set of ⌊n+3

2 ⌋ parallel lines and a set of ⌈n+3
4 ⌉ concentric circles

are universal for planar 3-trees with n vertices. In both cases we give linear-
time algorithms to find such drawings. A by-product of our algorithm is the
generalization of the known bijection between plane 3-trees and rooted ternary
trees to the bijection between planar 3-trees and unrooted full ternary trees. We
also identify some subclasses of planar 3-trees whose drawings are supported by
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Figure 1: (a) A plane 3-tree G, (b) representative tree T of G, (c) another
embedding G′ of G and (d) representative tree T of G′.

fewer than ⌊n+3
2 ⌋ parallel lines.

Let G be a plane 3-tree, i.e., a planar 3-tree with a fixed planar embedding.
Clearly the outer face of G is a triangle, and let a, b and c be the three outer
vertices of G. There is a vertex p in G, which is the common neighbor of a, b and
c. The vertex p is called the representative vertex of G [14]. The vertex p along
with the three outer vertices of G divides the interior region of G into three new
regions. It is known that the subgraphs G1, G2 and G3 enclosed by those three
regions are also plane 3-trees [14]. G can be represented by a representative
tree whose root is the representative vertex p of G and the subtrees rooted at
the children of p are the representative trees of G1, G2 and G3. Figure 1(b)
illustrates the representative tree of the plane 3-tree in Figure 1(a). The depth
ρ of a plane 3-tree is the number of vertices that lie on the longest path from
the root to a leaf in its representative tree.

We now give an outline of our idea for drawing a planar 3-tree G on ρ + 2
parallel lines. One can observe that the depth of different embeddings of a
planar 3-tree may differ. Figures 1(a) and (c) illustrate two different planar
embeddings of the same planar 3-tree, with depths 3 and 4, respectively. We
thus find an embedding of the planar 3-tree with the minimum depth ρ′, and
find a drawing on ρ′ + 2 parallel lines. We show that ρ′ is at most ⌊n−3

2 ⌋ + 1.
Thus ⌊n+3

2 ⌋ parallel lines support a drawing of a planar 3-tree with n vertices.
The rest of the paper is organized as follows. Section 2 describes some of

the definitions that we have used in our paper. Section 3 deals with drawing
plane 3-trees on parallel lines and concentric circles. In section 4 we obtain our
bound on universal line set and universal circle set for planar 3-trees, and in
Section 5 we consider drawings of some subclasses of planar 3-trees. Finally,
Section 6 concludes our paper with discussions. A preliminary version of this
paper has been presented at the 6th International Workshop on Algorithms and
Computation (WALCOM 2012) [12].

2 Preliminaries

In this section we introduce some definitions and known properties of plane
3-trees. For the graph theoretic definitions not described here, see [17].
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A graph is planar if it can be embedded in the plane without edge crossing
except at the vertices where the edges are incident. A plane graph is a planar
graph with a fixed planar embedding. A plane graph divides the plane into
some connected regions called the faces. The unbounded region is called the
outer face and all the other faces are called the inner faces. The vertices on
the outer face are called the outer vertices and all the other vertices are called
inner vertices. If all the faces of a plane graph G are triangles, then G is called
a triangulated plane graph. We denote by Co(G) the contour outer face of G.
For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of G
inside C (including C). A maximal planar graph is one to which no edge can
be added without losing planarity. Thus in any embedding of a maximal planar
graph G with n ≥ 3 vertices, the boundary of every face of G is a triangle, and
hence an embedding of a maximal planar graph is often called a triangulated
plane graph.

Let G be a plane 3-tree. By a triangle Cxyz of G we denote a cycle C of three
vertices, where x, y, z are the vertices on the boundary of C in anticlockwise
order. The following result is known on plane 3-trees [14].

Lemma 1 [14] Let G be a plane 3-tree of n ≥ 3 vertices and let C be any
triangle of G. Then the subgraph G(C) is a plane 3-tree.

Let p be the representative vertex and a, b, c be the outer vertices of G in
anticlockwise order. The vertex p, along with the three outer vertices a, b and
c, form three triangles Cabp, Cbcp and Ccap. We call these triangles the nested
triangles around p.

We now define the representative tree of a plane 3-tree G of n > 3 vertices
as an ordered rooted tree T satisfying the following two conditions (a) and (b).

(a) if n = 4, then T is a single vertex, which is the representative vertex of G.

(b) if n > 4, then the root p of T is the representative vertex of G and the sub-
trees rooted at the three anticlockwise ordered children q1, q2 and q3 of p
in T are the representative trees of G(C1), G(C2) and G(C3), respectively,
where C1, C2 and C3 are the nested triangles around p in anticlockwise
order.

Figure 1(b) illustrates the representative tree T of the plane 3-tree G of
Figure 1(a). We define the depth ρ of G as the number of vertices that lie on
the longest path from the root to a leaf in its representative tree. The following
lemma describes a property of a representative tree.

Lemma 2 ([14]) Let G be a plane 3-tree and let T be its representative tree.
Every vertex v in T corresponds to a unique cycle C of three vertices in G such
that G(C) is a plane 3-tree with representative vertex v. Moreover, the subtree
rooted at v in T is the representative tree of G(C).

Let a, b and c be the three outer vertices of a plane 3-tree G. We denote by
△abc the drawing of the outer face of G as a triangle. A line or arc l crosses
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a triangle △abc if there exists at least one point p on l in the proper interior of
the triangle △abc. A line or arc l touches the triangle △abc if it does not cross
the triangle △abc and at least one point among a, b, c lies on l.

The center of a tree T is either a single node or an edge, which is obtained
by repeatedly deleting all the nodes of degree one, until a single node or an edge
is left. Let p and q be two vertices of T . By dT (p, q) we denote the distance,
i.e., the length of the unique path, between p and q in T . Two trees T and T ′

are isomorphic if there exists a bijective mapping φ from the vertices of T to
the vertices of T ′ such that two vertices u and v are adjacent in T if and only
if φ(u) and φ(v) are adjacent in T ′.

Given a plane graph G with n vertices, Chrobak and Nakano [5] gave an

algorithm to compute a straight-line drawing of G on a ⌊ 2(n−1)
3 ⌋ × 4⌊ 2(n−1)

3 ⌋
grid. We now observe some properties of their drawing algorithm. Let Γ be
a triangulated plane graph with n vertices and let x, y be two arbitrary outer
vertices of Γ in anticlockwise order. Let D be the drawing of Γ produced by the
algorithm of Chrobak and Nakano [5]. Then D has the following properties.

(CN1) D is a drawing on a set of lines l0, l1, . . . , lq, where q = ⌊ 2(n−1)
3 ⌋.

(CN2) Vertex x and vertex y lie on lines l0 and lq in D, respectively. The re-
maining outer vertex lies on either line l0 or lq.

3 Drawings on Parallel Lines and Concentric Cir-

cles

In this section we prove that any plane 3-tree of depth ρ has a drawing on ρ+2
parallel lines. We first need the following lemma.

Lemma 3 Let a, b, and c be the three vertices of the outer face Co(G) of a plane
3-tree G, and let v be the representative vertex of G. Let △abc be a drawing of
Co(G) on a set of k+2 parallel lines, for some positive integer k, such that two
of the vertices among a, b, c lie on the same or consecutive lines. Assume that
k parallel lines l1, l2, ..., lk cross △abc. Then there exists a line lx, 1 ≤ x ≤ k
such that we can place vertex v on line lx interior to △abc, where at least k− 1
parallel lines cross each of the triangles △abv, △bcv and △acv.

Proof: Without loss of generality assume that a is a top-most and c is the
bottom-most vertices in the △abc, i.e., vertex a and c lie on the lines l0 and
lk+1, respectively. We now consider the following four cases according to the
positions of the vertex b.

Case 1: Vertex b lies on the line lk+1.
In this case, vertices b and c lie on the same line lk+1. If we place the

representative vertex v on the line l1 inside the △abc, then k, k − 1 and k lines
cross the triangles △abv, △bcv and △acv, respectively.

Case 2: Vertex b lies on the line l0.
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In this case, vertices b and a lie on the same line l0. If we draw v on the line
lk inside the △abc, then k− 1, k and k lines cross the triangles △abv, △bcv and
△acv, respectively.

Case 3: Vertex b lies on the line l1.
In this case, vertices a and b lie on consecutive lines. If we draw v on the

line lk inside the △abc, then k − 1, k − 1 and k lines cross the triangles △abv,
△bcv and △acv, respectively.

Case 4: Vertex b lies on the line lk.
In this case, vertices b and c lie on consecutive lines. If we draw v on the

line l1 inside the △abc, then k − 1, k − 1 and k lines cross the triangles △abv,
△bcv and △acv, respectively. �

We now have the following lemma.

Lemma 4 Every plane 3-tree G with depth ρ has a drawing on ρ + 2 parallel
lines.

Proof: We prove a stronger claim as follows: Given a drawing D of the outer
face of G on ρ + 2 lines such that two of its outer vertices lie on the same or
consecutive lines, we can extend the given drawing to a drawing D′ of G such
that D′ is also a drawing on ρ+ 2 lines.

The case when ρ = 0 is straightforward, since in this case G is a triangle
and any given drawing D of the outer face of G on two lines is itself a drawing
of G. We may thus assume that ρ > 0 and the claim holds for any plane 3-tree
of depth ρ′, where ρ′ < ρ.

Let G be a plane 3-tree of depth ρ and let a, b and c be the three outer
vertices of G in anticlockwise order. Let p be the representative vertex of G.
We draw Co(G) on ρ + 2 parallel lines by drawing the outer vertex a on Line
l0, and the other two outer vertices b and c on Line lρ or on Lines lρ and lρ+1,
respectively. According to Lemma 3, there is a line lx, 1 ≤ x ≤ ρ+ 1 such that
the placement of p on line lx inside △abc ensures that the triangles △abp, △acp
and △cbp are crossed by at least ρ− 1 parallel lines.

We place p on lx inside △abc. By Lemma 1, G(Cabp), G(Cbcp) and G(Ccap)
are plane 3-trees. Observe that the depth of each of these plane 3-trees is at most
ρ− 1. By induction hypothesis, each of these plane 3-trees admits a drawing on
ρ+ 1 parallel lines inside the triangles △abp, △bcp and △cap, respectively. �

Based on the proof of Lemma 4, one can easily develop an O(n)-time algo-
rithm for finding a drawing of a plane 3-tree G of n vertices on ρ + 2 parallel
lines, where ρ is depth of G. Thus the following theorem holds.

Theorem 1 Let G be a plane 3-tree of n vertices. Then one can find a drawing
of G on ρ+ 2 parallel lines in O(n) time, where ρ is the depth of G.

We now consider the problem of drawing a plane 3-tree on a concentric circle
set. Since a set of ρ+2 parallel lines can be formed with ⌈ρ+2

2 ⌉ infinite concentric
circles, each of which contributes two parallel lines, every plane 3-tree admits a
drawing on ⌈ρ+2

2 ⌉ concentric circles. We can observe that Lemma 3 holds even
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if we consider a set C of non-crossing concentric circular arcs1 of finite radii
instead of a set of parallel lines, and hence we have the following corollary.

Corollary 1 Let G be a plane 3-tree of depth ρ. Then G has a drawing on
⌈ρ+2

2 ⌉ concentric circles. Furthermore, such a drawing can be found in linear-
time.

4 Universal Line Sets for Drawing Planar 3-Trees

In this section we give an algorithm to find an embedding of a planar 3-tree with
minimum depth and prove the ⌊n+3

2 ⌋ upper bound on the size of the universal
line set for planar 3-trees. For any planar 3-tree the following fact holds.

Fact 1 Let G be a planar 3-tree and let Γ and Γ′ be two planar embeddings of
G. Then any face in Γ is a face in Γ′ and vice versa.

We call a triangle, i.e., a cycle of three vertices, in a planar 3-tree G a facial
triangle if it appears as a face boundary in a planar embedding of G.

Let G be a planar 3-tree of n vertices and let Γ be a planar embedding of G
(i.e., Γ is a plane 3-tree). We now define a tree structure that contains the faces
of Γ as its leaves. Later, we will prove that such tree structures that correspond
to different planar embeddings of G are isomorphic, and consequently, we will
be able to find a minimum depth embedding G examining only a single tree
structure. A face-representative tree of Γ is an ordered rooted tree Tf that
satisfies the following conditions.

(a) If n = 3, then Tf is a single face-node.

(b) If n > 3, then any vertex in Tf is either a vertex-node, which corresponds
to a vertex of Γ or a face-node, which corresponds to a face of Γ. Moreover,
the following (i)–(ii) hold.

(i) The root is a face-node that corresponds to the outer face of Γ. Root
has only one child which is the representative vertex p of Γ. Every
vertex-node has exactly three children. Every face-node other than
the root is a leaf in Tf .

(ii) The subtrees rooted at the three anticlockwise ordered children q1, q2
and q3 of p in Tf are the face-representative trees of Γ(C1),Γ(C2)
and Γ(C3), respectively, where C1, C2 and C3 are the three nested
triangles around p in anticlockwise order.

1Note that the circular arc segments in C can be partitioned into two (possibly empty)
sets C1 and C2 such that two arcs c′ and c′′ are parallel if they belong to the same set and
non-parallel otherwise. The crucial part of the algorithm for drawing G on C is to draw ∆abc

carefully.
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Figure 2: (a)A plane 3-tree Γ and (b) the face-representative tree Tf of Γ.

Figure 2 illustrates a face-representative tree of a plane 3-tree where black
nodes are vertex-nodes and white nodes are face-nodes. Observe that every
internal node in a face-representative tree has exactly four neighbors. We call
such a tree an unrooted full ternary tree. A face-representative tree has 2n− 4
face-nodes and n − 3 vertex-nodes. Deletion of the face-nodes from the face-
representative tree yields the representative tree of Γ.

A rooted tree is semi-labeled if its internal vertices are unlabeled and the
leaves are labeled. Two semi-labeled trees are isomorphic at root, if we can
assign labels to the unlabeled nodes such that the trees become identical and
the labels of the two roots are the same. It is easy to see that if two semi-labeled
trees are isomorphic at root, then they are isomorphic. The unordered rooted
tree obtained by deleting the labels of the internal nodes of a face-representative
tree is a semi-labeled face-representative tree. Let T1 and T2 be two semi-labeled
face representative trees of two different embeddings of a planar 3-tree G. If f
is a facial triangle in G, then there is a face-node corresponding to f in T1 and
in T2, by Fact 1. For convenience, we often denote each of these face-nodes as
f .

We now prove that the face-representative trees obtained from different em-
beddings of a planar 3-tree are isomorphic. In fact, we have a stronger claim in
the following lemma.

Lemma 5 Let G be a planar 3-tree and let Γ′,Γ′′ be two different planar embed-
dings of G. Let f be a facial triangle in G, and let T ′ and T ′′ be the semi-labeled
face-representative trees obtained from the face-representative trees of Γ′ and Γ′′,
respectively, by choosing f as their roots. Then T ′ and T ′′ are isomorphic at f .

Proof: We employ induction on the number of vertices n. The case when n ≤ 4
is straightforward. We thus assume that n > 4 and the claim holds for all planar
3-trees of less than n vertices. Let the outer face of Γ′ and Γ′′ be Cabc and Cxyz,
respectively. Let the representative vertex of Γ′ be v. Then Cxyz is a face
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Figure 3: Illustration for the proof of Lemma 5; (a) Γ′, (b) Γ′′, (c) Γ′

1 and (d)
Γ′

2.

(not necessarily an inner face) of Γ′(Cabv), Γ
′(Cbcv) or Γ′(Ccav). Without loss

of generality assume that Cxyz is in Γ′(Ccav). See Figures 3(a)–(b). Observe
that the planar 3-trees that correspond to Γ′(Cbcv) and Γ′′(Ccbv) are the same.
Similarly, the planar 3-trees that correspond to Γ′(Cabv) and Γ′′(Cbav) are the
same.

Let Γ′

1 be the plane subgraph of Γ′ obtained by removing the vertex b and
the vertices interior to Cabv and Cbcv. Let Γ′

2 be the plane subgraph of Γ′′

obtained by removing the vertex b and the vertices interior to Cabv and Cbcv.
See Figures 3(c)–(d). Observe that the planar 3-trees that correspond to Γ′

1

and Γ′

2 are the same, which we denote as G. Let T1 and T2 be the semi-labeled
face-representative trees of Γ′

1 and Γ′

2, respectively. Let f be a facial triangle
in G, which is determined by the vertices a, c and v. By induction hypothesis,
the semi-labeled face-representative trees, which are obtained from T1 and T2

by choosing f as their roots, are isomorphic at f . Similarly, the semi-labeled
face-representative trees T ′

f1
and T ′′

f1
of Γ′(Cbcv) and Γ′′(Ccbv) rooted at f1 are

isomorphic at f1, where f1 is the face determined by the vertices b, c and v.
The semi-labeled face-representative trees T ′

f2
and T ′′

f2
of Γ′(Cabv) and Γ′′(Cbav)

rooted at f2 are isomorphic at f2, where f2 is the face determined by the vertices
a, b and v. Let Tf3 be the face-representative tree of a plane 3-tree of exactly
three vertices. Assign the label “abc” to f3.

We now connect a copy of T ′

f1
, T ′

f2
and Tf3 with T1 by adding edges (f, f1),

(f, f2) and (f, f3). Remove the label of f and the label of fi, i ∈ {1, 2}, if T ′

fi

consists of at least two vertices. Let X be the resulting semi-labeled tree. It is
now straightforward to observe that the two trees, which are obtained from X
and T ′ by choosing f3 as their roots, are isomorphic at f3.

Similarly, we connect a copy of T ′′

f1
, T ′′

f2
and Tf3 to T2 by adding edges (f, f1),

(f, f2) and (f, f3). We then remove the label of f and the label of fi, i ∈ {1, 2},
if T ′′

fi
consists of at least two vertices. Let Y be the resulting semi-labeled tree.

It is now straightforward to observe that the trees, which are obtained from Y
and T ′′ by choosing f3 as their roots, are isomorphic.

According to the construction, X and Y are isomorphic at f3. Therefore,
to complete the proof, we show that for any facial triangle f ′ in G, f ′ 6= f3,
the trees X ′ and Y ′ rooted at f ′, which are obtained respectively from X and
Y , are isomorphic at f ′. Suppose for a contradiction that X ′ is not isomorphic
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to Y ′ at f ′. Since X and Y are isomorphic at f3, the unlabeled vertices of X
and Y can be labeled such that X and Y become identical. Such a labeling can
determine an isomorphism for X ′ and Y ′ at f ′, a contradiction. �

Observe that if two semi-labeled face representative trees are isomorphic at
their root, then they are isomorphic. Therefore, we have the following corollary.

Corollary 2 Let G be a planar 3-tree and let Γ′,Γ′′ be two different planar
embeddings of G. Let T ′ and T ′′ be the semi-labeled face representative trees of
Γ′ and Γ′′, respectively. Then T ′ and T ′′ are isomorphic.

LetG be a planar 3-tree of n vertices. Since the semi-labeled face-representative
trees obtained from different planar embeddings of G are isomorphic, we can
choose any leaf of a face-representative tree Tf to obtain another semi-labeled
face-representative tree that corresponds to a different planar embedding of G.
Observe that Tf has 2n − 4 face-nodes and let x be a face-node in Tf such
that the depth of the tree Tx obtained from Tf by choosing x as the root is
minimum over all the 2n− 4 possible choices for x. Recall that deletion of the
face-nodes from the face-representative tree yields the representative tree of the
corresponding embedding. Therefore, deletion of the face-nodes from Tx gives
us a representative tree with minimum depth, which in turn corresponds to a
minimum-depth embedding of G. The following fact states that x is the nearest
face-node from the center of Tf .

Fact 2 Let Tf be a face-representative tree and let x be a face-node of Tf such
that the distance between x and the center of Tf is minimum over all the face
nodes of Tf . Then the depth of the tree obtained from Tf by choosing a face-node
as the root is greater than or equal to the depth of the tree obtained from Tf by
choosing x as the root.

Proof: First assume that center of Tf is an edge (u, v). Deletion of the edge
(u, v) from Tf yields two connected components Tu and Tv that contain u and
v, respectively. Let p and q be two vertices of some tree T . Then by dT (p, q), we
denote the distance (i.e., length of the unique path) between p and q in T . Let
k = min{dTf

(x, u), dTf
(x, v)}. Let y be a leaf such that the distance between y

and the center of Tf is maximum over all nodes in Tf . Let k
′ = min{dTf

(y, u),
dTf

(y, v)}. Without loss of generality assume that y is in Tu. Then there is a
leaf y′ in Tv such that min{dTf

(y′, u), dTf
(y′, v)} = k′. Let Dx be the depth

of the tree obtained from Tf by choosing x as the root. Since the center of Tf

is an edge, Dx = k + k′ + 1, which is independent of the position of x in Ti,
i ∈ {u, v}.

Let z be a face-node in Tf , where l = min{dTf
(z, u), dTf

(z, v)} and l > k.
If there is no such z, then we are done. Otherwise, suppose for a contradiction
that the depth of the tree obtained from Tf by choosing z as the root is Dz,
where Dz < Dx. Observe that Dz = l + k′ + 1, which is independent of the
position of z in Ti. Since l > k, therefore Dz > Dx, a contradiction.
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Now assume that the center is a vertex v. Deletion of the vertex u from Tf

yields four connected components T1, T2, T3 and T4. Let k = dTf
(x, v). Let y be

a leaf such that the distance between y and the center of Tf is maximum over all
nodes in Tf . Let k

′ = dTf
(y, v). Assume that y is in some Tj, 1 ≤ j ≤ 4. Then

there is a leaf y′ not in Tj such that dTf
(y′, v) = k′. Let the depth of the tree

obtained from Tf by choosing x as the root be Dx. Observe that Dx = k + k′,
which is independent of the position of x in Tj.

Let z be a face-node in Tf , where l = dTf
(z, v) and l > k. If there is no such

z, then we are done. Otherwise, suppose for a contradiction that the depth of
the tree obtained from Tf by choosing z as the root is Dz, where Dz < Dx.
Observe that Dz = l+ k′, which is independent of the position of z in Tj . Since
l > k, therefore Dz > Dx, a contradiction. �

The center of a tree is either a single node or an edge, and it is straightforward
to find the center of Tf in O(n) time by repeatedly deleting the nodes of degree
one, until a single node or an edge is left. We then do a breath-first search
to select a nearest node x, which also takes O(n) time. Then by Fact 2, the
planar embedding of G that corresponds to the face-representative tree obtained
by choosing x as the root is the minimum-depth embedding of G. Thus the
following lemma holds.

Lemma 6 Let G be a planar 3-tree. An embedding Γ of G with the minimum
depth can be found in linear time.

We now have the following lemma on the bound of minimum-depth.

Lemma 7 The depth of a minimum-depth embedding Γ of a planar 3-tree G
with n vertices is at most ⌊n−3

2 ⌋+ 1.

Proof: Let Tx be the face-representative tree of Γ, where x is the root of Tx.
Since Γ is a minimum-depth embedding, the length k of the unique path between
x and the center of Tx is minimum over all the face nodes of Tx. Let O be the
center of Tx, which may be a node or an edge of Tx. Every internal node of
Tx has exactly four neighbors and x is a nearest node from O. Let T be the
representative tree of Γ. Note that T is obtained by deleting all face-nodes from
Tx. T contains exactly n− 3 vertices and the distance from the root of T to O
is k − 1. Since every internal node of Tx has exactly four neighbors and x is a
nearest node from the center, the depth of the representative tree T obtained

by deleting all the face-nodes from Tx is at most ⌊ (n−3)
2 ⌋+ 1, when k = 1.

We thus assume that k > 1. Since every internal node of Tx is a node of
degree four and no leaf node of Tx is within the distance k − 1 from O, every
node of T within the distance k − 2 from O is a node of degree four. The
number of nodes in T which are within the distance k − 1 from the center is
1+ 4+4 · 31 + ...+4 · 3k−2 = 1+ 4(30 +31 + ...+3k−2) = 2 ·3k−1 − 1. Figure 4
illustrates an example, where the nodes within the distance k−1 from the center
lie in the shaded region. The number of nodes of T which are not counted within
the distance k − 1 is n− 3− 2 · 3k−1 + 1. Since O is on the middle of a longest
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Figure 4: Illustration for the proof of Lemma 7, where k = 4.

path in T , these nodes can contribute at most ⌈n−3−2·3k−1+1
2 ⌉ to the depth of

T . Since the root of T is at a distance k − 1 from O, the maximum depth of

T is at most ⌈n−3−2·3k−1+1
2 ⌉+ 2(k − 1) = ⌈(n− 3)/2 + 1/2⌉ − 3k−1 + 2(k − 1)

(when O is a vertex), or ⌈(n− 3)/2+ 1/2⌉− 3k−1 + 2(k− 1) + 1 (when O is an
edge). Since 3k−1 ≥ 2(k − 1) + 1, the depth of T can be at most ⌊n−3

2 ⌋+ 1. �

We now use Theorem 1 and Corollary 1 to obtain the upper bounds on the
sizes of universal line set and universal circle set for planar 3-trees, as in the
following theorem.

Theorem 2 A set of ⌊n+3
2 ⌋ parallel lines and a set of ⌈n+3

4 ⌉ concentric circles
are universal for planar 3-trees with n vertices.

5 Bounds for Special Classes of Planar 3-Trees

In this section we categorize planar 3-trees into three types: Type 0, Type 1
and Type 2. We prove that every planar 3-tree of Type 0 and Type 1 can be

embedded on ⌈ (n+3)
3 ⌉ and ⌊4n/9⌋ parallel lines, respectively. We conjecture that

every planar 3-tree of Type 2 admits an embedding on ⌊4n/9⌋ parallel lines.
Let T be a rooted tree with n vertices. Then there exists a vertex v in T

such that the number of vertices in the subtree rooted at v is more than 2n/3
and the number of vertices in each of the subtrees rooted at the children of v
is at most 2n/3 [16, Theorem 9.1]. If T is a representative tree of some plane
3-tree, then T must have such a vertex. Consequently, we can use Lemma 2 to
prove the following lemma.

Lemma 8 Let Γ be a plane 3-tree. Then there exists a triangle C in Γ satisfying
the following. Let r be the representative vertex of Γ(C) and let C1, C2, C3 be the
three nested triangles around r. Then the number of inner vertices in Γ(C) is
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more than 2(n− 3)/3 and the number of inner vertices in each Γ(Ci), 1 ≤ i ≤ 3,
is at most 2(n− 3)/3.

We call C a heavy triangle of Γ. Observe that for any heavy triangle C of Γ,
one of the following properties hold.

(a) No Γ(Ci) contains more than (n− 3)/3 inner vertices.

(b) The number of inner vertices in exactly one plane 3-tree among Γ(C1),
Γ(C2) and Γ(C3) is more than (n− 3)/3.

(c) The number of inner vertices in exactly two plane 3-trees among Γ(C1),
Γ(C2) and Γ(C3) is more than (n− 3)/3.

Let G be a planar 3-tree. If G admits a plane embedding that contains a
heavy triangle satisfying Property (a), then we call G a planar 3-tree of Type
0. If G is not a planar 3-tree of Type 0, but admits a plane embedding that
contains a heavy triangle satisfying Property (b), then we call G a planar 3-tree
of Type 1. If G is not a planar 3-tree of Type 0 or Type 1, but admits a plane
embedding that contains a heavy triangle satisfying Property (c), then we call
G a planar 3-tree of Type 2. We now have the following lemma.

Lemma 9 Given a planar 3-tree G, one can determine whether it is of Type 0,
Type 1 or Type 2 in linear time.

Proof: Let Γ be any plane embedding of G and let T be its semi-labeled face
representative tree. Let v be any vertex-node in T . By Nv we denote the number
of vertex-nodes in the subtree rooted at v and by N(T ) we denote the number
of vertex-nodes in tree T . We now do a postorder traversal on T to find the
number Nv for each vertex-node v in T . While traversing T , at each vertex-node
v we perform a Type Test, as described below. Throughout the computation we
maintain five variables t1, t2, . . . , t5 and the value stored in t1 after the end of
the computation indicates the type of G. Initially, we set t1 = 2.

Type Test: Let P,Q,R and S be the subtrees obtained by deleting the vertex
v from T . For each subset {I, J,K} ⊂ {P,Q,R, S} of three subtrees, we do the
following.

(A) If N(I) +N(J)+N(K) > 2(n− 3)/3 and each of N(I), N(J), N(K) is at
most (n− 3)/3, then we set t = 0 and stop the tree traversal.

(B) If N(I)+N(J)+N(K) > 2(n−3)/3 and exactly one of N(I), N(J), N(K)
exceeds (n− 3)/3 and t = 2, then we set t = 1.

Observe that at each step of the traversal we perform only a constant number
of tests and numbers N(.) can be computed in constant time with the help of Nv

values using the knowledge of the total number of vertex-nodes in T . Therefore,
the traversal can be performed in linear time.

In the following we prove that the value stored in t corresponds to the type
of G, and such a Type t embedding of G can be constructed in linear time.
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Without loss of generality we assume that G is a Type 0 plane 3-tree. The
proof for the case when G is a Type 1 or a Type 2 plane 3-tree is similar.

By definition, G has a planar embedding Γ′ such that for some vertex v′ of
its face-representative tree, the condition of Test (A) holds. Observe that by
Corollary 2, the face-representative trees obtained from different embeddings of
G are isomorphic. Therefore, there exists a vertex v in T and three subtrees
{I, J,K} ⊂ {P,Q,R, S}, such that N(I)+N(J)+N(K) > 2(n− 3)/3 and each
of N(I), N(J), N(K) is at most (n− 3)/3. Consequently, t must be 0.

We now compute a Type 0 embedding of G. Let T ′′ = {P,Q,R, S} \
{I, J,K}, and let f be a leaf of T ′′. We claim that the embedding of G taking
f as the outer face gives us a Type 0 embedding of G. We distinguish two cases
depending on whether v is an ancestor of f or not.

Consider first the case when v is an ancestor of f in T , as shown in Fig-
ure 5(a). Let w be the neighbor of v that belongs to T ′′. By Lemma 2, w
corresponds to a unique cycle Cxyz of three vertices x, y, z such that Γ(Cxyz) is
a plane 3-tree with representative vertex w. We delete all the inner vertices of
Γ(Cxyz) from Γ. Let Γ′ be the resulting embedding, as shown in Figures 5(b)–
(c). Take another embedding Γ′′ of Γ′ with xyz as the outer face, as shown in
Figure 5(d). It is now straightforward to observe that I, J,K correspond to the
three nested triangles around the representative vertex of Γ′′, and hence xyz is
the required heavy triangle. We now extend Γ′′ to a Type 0 embedding of G
as follows. First take an embedding Γ(Cxyz)

′ of Γ(Cxyz) with f as the outer
face. Then insert Γ′′ into the face xyz of Γ(Cxyz)

′ such that the outer face of Γ′′

coincide with the face xyz creating an embedding of G. Figure 5(e) illustrates
such a scenario.

The case when f is a descendant of v in T is simpler. By Lemma 2, v
corresponds to a unique cycle Cxyz of three vertices x, y, z such that Γ(Cxyz)
is a plane 3-tree with representative vertex v. Observe that I, J,K correspond
to the three nested triangles around v in Γ(Cxyz). Consequently, xyz is the
required heavy triangle and Γ itself is a Type 0 embedding of G. �

Before proving the upper bounds for planar 3-trees of Type 0 and Type 1,
we need to explain some properties of drawings on line set and some properties
of the drawing algorithm of Chrobak and Nakano [5].

Fact 3 Let G be a plane 3-tree and let x, y, z be the outer vertices of G. Assume
that G has a drawing D on k parallel lines, where x lies on line l0, y lies on line
lk−1 and z lies on line li, 0 ≤ i ≤ k − 1.

(a) Let p, q and r be three non-collinear points on lines l0, lk−1 and li, respec-
tively. Then G has a drawing D′ on k parallel lines, where the vertices
x, y, z lie on points p, q, r, respectively, and for each vertex u, if u lies
on line l in D then u lies on line l in D′. Moreover, D′ respects the
combinatorial planar embedding determined by D.

(b) G has a drawing D′′ on k + 1 parallel lines, where y lies on line lk and
for each vertex u of G other than y, if u lies on line l in D then u lies on
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Figure 5: Illustration for the proof of Lemma 9. (a) T , (b) Γ, (c) Γ′, (d) Γ′′,
and (e) a Type 0 embedding of G.

line l in D′′. Moreover, D′′ respects the combinatorial planar embedding
determined by D.

Fact 3 can be easily proved by induction in a fashion similar to the proof of
Lemma 8 in [14]. Figure 6(a) illustrates a plane 3-tree Γ, and Figures 6(b), (c)
and (d) illustrates examples of D, D′ and D′′.
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Figure 6: (a)A plane 3-tree Γ. (b) A layered drawing D of Γ. (c) Illustration
for D′. (d) Illustration for D′′.

We now have the following theorem.

Theorem 3 Every planar 3-tree of Type 0 with n vertices has a drawing on

⌈ (n+3)
3 ⌉ parallel lines. Every planar 3-tree of Type 1 with n vertices has a draw-

ing on ⌊4n/9⌋ parallel lines.

Proof: Let G be a planar 3-tree with n vertices and let Γ be a plane embedding
of G. Let Cxyz be a heavy triangle in Γ. Let w be the representative vertex
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Figure 7: Two different embeddings of G; (a) Γ and (b) Γ′.

of G(Cxyz). Recall that Cxyw, Cyzw, Czxw are the three nested triangles around
w. We now consider the following two cases.

Case 1. The number of inner vertices in each of the plane 3-trees Γ(Cxyw),
Γ(Cyzw) and Γ(Czxw) is at most (n− 3)/3 (G is a planar 3-tree of Type 0.)

If (x, y) is an outer edge of Γ, then redefine Γ as Γ′. Otherwise, consider an
embedding Γ′ of G such that (x, y) is an outer edge of Γ′ and the embeddings of
Γ′(Cxyz) and Γ(Cxyz) are the same. Observe that any embedding of G taking a
face xyv of G as the outer face, where v is not a vertex of Γ(Cxyz), will suffice.
An example is illustrated in Figure 7.

Since the number of inner vertices in each of the plane 3-trees Γ′(Cxyw),
Γ′(Cyzw) and Γ′(Czxw) is at most (n−3)/3, the depth of the representative tree
of Γ′(Cxyz) is at most (n− 3)/3+1. It is now tempting to claim that the depth
of the representative tree of Γ′ is bounded by (n− 3)/3+ 2 and we can produce
a drawing on (n− 3)/3 + 4 parallel lines by Theorem 1. However, z might not
be the representative vertex in Γ′. Therefore, the depth of the representative
tree of Γ′ may be very large and hence we compute the drawing in a different
technique as described below.

Let t0(= z), t1, t2, . . . , tq(= v) be all the vertices of Γ′ such that no ti is
interior to Γ′(Cxyz) and each ti, 0 ≤ i ≤ q is adjacent to both x and y, and for
each j, 0 ≤ j < q, vertex tj is interior to the triangle xytj+1. We claim that
t0(= z), t1, t2, . . . , tq(= v) is a path in Γ′. Otherwise, assume that tj and tj+1

are not adjacent. By Lemma 1, Γ′(Cxytj+1
) is a plane 3-tree. Let t′j be the

representative vertex of Γ′(Cxytj+1
) which is adjacent to both x and y. If t′j

does not coincide with tj , then j′ > j + 1, a contradiction to the assumption
that t′j is the representative vertex of Γ′(Cxytj+1

).

We now draw Γ′ on k = ⌈ (n+3)
3 ⌉ parallel lines. Place the vertices x and y on

lines l0 and lk−1, respectively, with the same x-coordinate. Place the vertices
t0(= z), t1, t2, . . . , tq(= v) on lines l1 and lk−2 alternatively with increasing x
coordinates such that the triangles xyti can be drawn maintaining their nesting
order avoiding edge crossings. Then add the edges between tj and tj+1. See
Figure 8 (a). Let the resulting drawing be D. Since Γ′(Cxyz) contains more than
2(n−3)/3 inner vertices, each plane 3-tree Γ′(Cxtj tj+1

) and Γ′(Cytj tj+1
) contains

less than (n− 3)/3 vertices. Consequently, the depth of the representative tree
of each plane 3-tree Γ′(Cxtjtj+1

) and Γ′(Cytjtj+1
) is at most (n − 3)/3. Since
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Figure 8: Illustration for the proof of Theorem 3.

each triangle xtjtj+1 and ytjtj+1 in D is intersected (crossed or touched) by
k − 1 parallel lines and two vertices of the triangle are on consecutive lines, we
can draw each plane 3-tree on k − 1 lines and then insert those drawings into
the corresponding triangle in D using Property (a) of Fact 3. To complete the
drawing of Γ′, we have to draw Γ′(Cxyz) into triangle xyt0 in D. Observe that
triangle xyt0 is intersected by k parallel lines and two vertices of the triangle
are on consecutive lines. On the other hand, since the number of inner vertices
in each of the plane 3-trees Γ′(Cxyw), Γ

′(Cyzw), Γ
′(Czxw) is at most (n−3)/3 =

k − 3, the depth of the representative tree of Γ′(Cxyz) is at most k − 2. It is
now straightforward to draw Γ′(Cxyz) on k lines and then insert the drawings
into the corresponding triangle in D using Property (a) of Fact 3.

Case 2. The number of inner vertices in exactly one of the plane 3-trees
among Γ(Cxyw), Γ(Cyzw) and Γ(Czxw) is more than (n − 3)/3 (G is a planar
3-tree of Type 1.)

Without loss of generality assume that the number of inner vertices in
Γ(Cxyw) is more than (n − 3)/3. If (x, y) is an outer edge of Γ, then rede-
fine Γ as Γ′. Otherwise, consider an embedding Γ′ of G such that (x, y) is an
outer edge of Γ′ and the embeddings of Γ′(Cxyz) and Γ(Cxyz) are the same. As
we observed in Case 1, any embedding of G taking a face xyv of Γ as the outer
face, where v is not a vertex of Γ(Cxyz), will suffice.

We now draw Γ′ on k = ⌊4n/9⌋ parallel lines as follows. We first place the
vertices x and y on lines l0 and lk−2, respectively, with the same x-coordinate.
We then use the algorithm of Chrobak and Nakano [5] to draw Γ′(Cxyw) on
lines l0, l1, . . . , lk−2 respecting the placement of x and y. Recall the properties
(CN1) and (CN2). Since the number of inner vertices in Γ′(Cxyw) is at most
N = 2(n − 3)/3, therefore k − 2 = ⌊2(N − 1)/3⌋ = ⌊4n/9⌋ − 2. Without loss
of generality assume that w is placed on line lk−2. Modify the drawing using
Property (b) of Fact 3 to get an embedding of Γ′ on lines l0, l1, . . . , lk−1 where
x, y, w lies on lines l0, lk−1, lk−2, respectively. See Figure 8 (b). Let the resulting
drawing of Γ′(Cxyw) be D.

We now add the vertices not in Γ′(Cxyw) to D as follows. Let t0(= w), t1(=
z), t2, . . . , tq(= v) be all the vertices of Γ′ such that no ti, 0 ≤ i ≤ q is interior
to Γ′(Cxyw) and each ti is adjacent to both x and y, and for each j, 0 ≤ j < q,
vertex tj is interior to the triangle xytj+1. In a similar way as we proved in
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Figure 9: Illustration for a possible drawing of a Type 2 Plane 3-tree.

Case 1, we can show that t0, t1, t2, . . . , tq(= v) is a path in Γ′. Now place the
vertices t1, t2, . . . , tq(= v) on lines l1 and lk−2 alternatively with increasing x
coordinates such that the triangles xyti can be drawn maintaining their nesting
order avoiding edge crossings. Then add the edges between tj and tj+1. See
Figure 8 (b). Let the resulting drawing be D. Observe that each of the plane
3-trees Γ′(Cxtjtj+1

) and Γ′(Cytjtj+1
) contains at most (n − 3)/3 inner vertices.

Therefore, the depth of the representative tree of each of those plane 3-trees is
at most (n− 3)/3. On the other hand, each of the triangles xtjtj+1 and ytjtj+1

contains two vertices on consecutive lines and is crossed by more than (n− 3)/3
parallel lines. Consequently, we can draw the plane 3-trees Γ′(Cxtjtj+1

) and
Γ′(Cytjtj+1

) on k−1 lines and then insert those drawings into the corresponding
△xtjtj+1 and △ytjtj+1 in D using Property (a) of Fact 3. �

The technique we used to draw Type 1 plane 3-trees, uses the property
(CN2), i.e., Γ(Cxyw) admits a drawing such that w lies either on line lk−2, or
l1; as shown in Figure 8(b) and Figure 9, respectively. If we could choose the
position of w on l1 or on lk−2 arbitrarily, then we could find a drawing of Type 2
plane 3-trees on k = 4n/9+1 parallel lines, as follows. Without loss of generality
assume that each of Γ(Cxyw) and Γ(Cwxt1) contains more than (n− 3)/3 inner
vertices. Observe that if we could choose the position of w arbitrarily, then
we could compute the drawings of Γ(Cxyw) and Γ(Cwxt1) inside triangles xyw
and wxt1, respectively. However, it seems very difficult to modify Chrobak and
Nakano’s algorithm [5] to compute a straight-line drawing respecting a given
position for w. Consequently, it would be interesting to examine whether the
upper bound of ⌈(n+ 3)/2⌉, as proved in Theorem 2, is tight.

6 Conclusion

Let n be a positive integer multiple of six, then there exists a planar 3-tree
with n vertices requiring at least n/3 parallel lines in any of its drawing on
parallel lines [11]. On the other hand, we have proved that ⌊n+3

2 ⌋ parallel lines
are universal for planar 3-trees with n vertices. It would be interesting to close
the gap between the upper bound and the lower bound of universal line set for
planar 3-trees. Finding a universal line set of smaller size for drawing planar
3-trees where the lines are not always parallel is left as an open problem.

Open Problem 1. What is the smallest constant c such that every planar
3-tree with n vertices admits a drawing on cn parallel straight lines?
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Observe that we tried to find straight-line drawings with small height. Al-
though in Section 5 we use an algorithm of Chrobak and Nakano [5] that can
produce O(n2)-area grid drawings, the drawings we produce can have exponen-
tial width because of the scenario depicted in Figure 9. One can decide whether
a planar 3-tree admits a straight-line grid drawing on a given area [14], but the
only upper bound known is O(8n2/9) area, which is implied by the algorithm of
Brandenburg [4] that can compute an O(8n2/9)-area straight-line grid drawing
for arbitrary planar graphs. Since the lower bound on the area requirement
of straight-line grid drawings of plane 3-trees is Ω(n2), we ask the following
question.

Open Problem 2. What is the smallest constant c such that every planar
3-tree with n vertices admits a straight-line grid drawing on cn2 area?
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