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Drawing Unordered Trees on k-Grids
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Abstract

We present almost linear area bounds for drawing trees on the octago-
nal grid. For complete 7-ary trees we establish an upper and lower bound
of Θ(n1.129) and for complete ternary trees the bounds of O(n1.048) and
Θ(n), where the latter needs edge bends. For arbitrary ternary trees we
obtain an upper bound of O(n log log n) with bends and good aspect ratio
by applying the recursive winding technique. We explore the unit edge
length and area complexity of drawing unordered trees on k-grids with
k ∈ {4, 6, 8} and generalize the NP-hardness results of the orthogonal
grid to the octagonal and hexagonal grids.
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1 Introduction

Trees are a fundamental data structure in computer science to represent hier-
archies. Amongst others they are used as family trees in social networks or
inheritance structures in UML-diagrams. Their visualization is an important
field in graph drawing [8, 9, 11, 15, 16, 24]. Often trees are unordered, e. g., flow
charts. Then, it is not necessary that a drawing reflects a given child order.
For readable and comprehensible drawings in traditional hierarchical style the
following aesthetics are established [19,23,25]: y-coordinates of the vertices cor-
respond to their depth, centered parents over their children, minimal distance
between vertices, integral coordinates, no (too) small angles between edges in-
cident on a common vertex, maintaining the order, planarity, and identically
drawn isomorphic subtrees up to reflection. These criteria exclude recursive
winding techniques as they were studied by Chan et al. [8, 9]. Marriott and
Stuckey [21] have shown that for unordered binary trees it is NP-hard to de-
termine a hierarchical drawing with minimal width. The same was shown by
Supowit and Reingold [25] for order-preserving drawings. The common drawing
algorithm for binary trees was introduced by Reingold and Tilford [23] and gen-
eralized to d-ary trees by Walker [4, 7, 27], which all satisfy the above aesthetic
criteria.

The hierarchical drawing methods enforce placing the vertices at grid points.
All these approaches allow drawing trees of high degree, such that the angles
between incident edges may be very small. Restricting the degree of trees allows
to draw along a finite set of directions, e. g., four directions on the orthogonal
grid. This grid was widely investigated in literature [3, 8–10, 13, 15, 16, 24, 26].
The 6- and the 8-grid with additional axes are used to draw trees with higher
degree [1, 6, 18]. A motivation for such grids are discrete representations of
radial drawings [11]. In our companion paper [6] we showed that it is NP-
hard to determine the existence of an order-preserving tree drawing within a
given area on the k-grid with k ∈ {4, 6, 8}. Now we translate the NP-hardness
to the unordered case. Bhatt and Cosmadakis [3] showed that it is NP-hard
to determine if a tree of degree up to four has an unit edge length drawing
on the orthogonal grid. This result can also be proven by the logic engine
approach [12]. For binary trees this was shown by Gregori [17]. NP-hardness
results for minimum area were presented in [5,20]. We already have claimed an
equivalent result on the 6-grid for trees with degree up to six [1], however, in
contrast to here without a formal proof. In the plane only two grid axes are
linear independent. This shall cause some problems for compacting drawings on
higher order grids containing more than 2 axes which do not occur on the 4-grid.
Furthermore, the degree of difficulty increases with the number of additionally
available discrete directions.

The remainder is organized as follows. After some definitions in Sect. 2 we
present a tight area bound for drawing complete 7-ary trees in Sect. 3. After-
wards, we show an almost linear upper area bound for straight-line drawings
and bounds for drawings of ternary trees with bends on the 8-grid in Sect. 4.
Table 1 summarizes known area bounds for unordered complete trees on k-grids.
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Table 1: Area bounds for complete d-ary trees on k-grid

k = 4 k = 6 k = 8

d = 2 Θ(n) [10] Θ(n) [10] Θ(n) [10]
d = 3 O(n1.262) [13] O(n1.262) [1] O(n1.048), Theorem 2

O(n), with bends, Theorem 3
d = 4 — O(n1.585) [1] O(n1.585) [1]
d = 5 — O(n1.366) [1] O(n1.366) [1]
d = 6 — — O(n1.227) [22]
d = 7 — — Θ(n1.130), Theorem 1

Finally, we show in Sect. 5 that it is NP-hard to decide whether or not there
is a unit edge length drawing for arbitrary trees with degree k ∈ {6, 8} on the
k-grid and whether or not there is a drawing within a given area.

2 Preliminaries

The orthogonal or 4-grid is the infinite planar undirected graph G = (V,E)
whose vertices V have integral coordinates and whose edges E link vertex pairs
with vertical or horizontal unit distance. Throughout the paper we use a Carte-
sian coordinate system with ascending y-coordinates downwards. We extend
the 4-grid with its four directions to the hexagonal or 6-grid [1, 6, 18] with six
directions by adding an edge {u, v} for each u ∈ V on coordinates (x, y) and
v ∈ V on (x + 1, y + 1). The octagonal or 8-grid is a 6-grid with additional
edges {u, v} between each u ∈ V on (x, y) and v ∈ V on (x+ 1, y − 1). We call
these grids k-grids with k ∈ {4, 6, 8}. The distance between vertices u, v ∈ V
with coordinates (ux, uy) and (vx, vy) on a k-grid is defined by the maximum
metric d(u, v) = max(|ux − vx|, |uy − vy|). A path (v1, . . . , vn) is a sequence of
vertices with edges (vi, vi+1) and i ∈ {1, . . . , n − 1}. A path is straight if the
edges have the same direction. Let T = (V,E) be a (rooted) unordered tree.
If each vertex v ∈ V has an outdegree of at most d, we call T a d-ary tree.
An embedding Γ(T ) of a d-ary tree T = (V,E) on a k-grid with d < k is a
mapping Γ which specifies distinct integer coordinates Γ(v) = (x, y) for each
vertex v ∈ V . Γ maps an edge e ∈ E onto a (straight) path of grid edges Γ(e)
between its endpoints. The length of an edge e ∈ E is the distance between its
incident vertices and the length of a path is the sum of its edge lengths. We use
the terms drawing and embedding synonymously. The area on a k-grid is the
size of the smallest bounding rectangle and the aspect ratio is the quotient of
its height and its width.

The following definitions of drawing styles are in accordance to [6], where we
replace “O” for ordered by “U” for unordered. An Uk-drawing is a drawing of an
unordered d-ary tree on a k-grid with d < k. A tree drawing is locally uniform if
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(a) k = 4 (b) k = 8

(c) k = 6 (asymmetric) (d) k = 6 (symmetric)

Figure 1: Patterns on the k-grids

for each vertex its outgoing edges have identical length. We call a locally uniform
Uk-drawing ULk-drawing. In a pattern drawing of a d-ary tree on the k-grid, the
outgoing edges of each vertex are axially symmetric with respect to the incoming
edge. All patterns are categorized by their outdegree. They are listed in Fig. 1
for the various k-grids. An Uk-drawing using patterns is called UPk-drawing.
Combining these properties we obtain locally uniform pattern drawings, called
ULPk-drawings. Here the children of a vertex are positioned symmetrically,
which corresponds to placing the parent centered over its children.

3 Complete 7-ary Trees

In this section we investigate drawing complete 7-ary trees on the 8-grid. Similar
to the results of [1], we establish an upper and lower bound for the area needed
for complete trees.

Theorem 1 The upper and the lower bound for the area of drawings of complete
7-ary trees with n vertices on the 8-grid is Θ(nlog7 9).

Proof: We construct the drawing of the tree recursively. In the initial case the
tree has height h = 0. In the construction step h → h + 1 the side length (in
grid points) of the planar drawing grows by a factor of three, see Fig. 2. Thus,
the area is in O(9h). Since h = log7 n, the area is O(9log7 n) ⊂ O(n1.129).

Let Γ(T (h)) be an Uk-drawing of a complete 7-ary tree of height h with
root r on the 8-grid. W. l. o. g. we assume that r is placed at the origin. We
proof by induction on h that at least seven of the four corner extreme points

(± 3h−1
2 ,± 3h−1

2 ) and four center extreme points (± 3h−1
2 , 0) and (0,± 3h−1

2 ) are
occupied by a vertex or an edge of T (h). Note that one of the corner extreme
points may be used for the incoming edge of the root of T (h). Clearly, the
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Figure 2: Complete 7-ary tree

statement holds for the induction bases h = 0 and h = 1. Let T1, . . . , T7 be the
seven (complete) subtrees of r with height h− 1 and roots r1, . . . , r7. W. l. o. g.
let the outgoing edges of r (r, r1), . . . , (r, r7) point to any of the eight possible
edge directions except to the north-west. This allows us to assume that the
numbering of the Tis is counter-clockwise starting with the west.

Assume for contradiction that the grid point p = ( 3h−1
2 , 0) is not occupied

by Γ(T (h)). Hence, the subtree T5 with incoming edge (r, r5) pointing to the
east does not occupy p. By induction, the side lengths of the drawing of T5 are
at least 3h−1 − 1. Then, one corner extreme point of T5 overlaps the diagonal
axis from r to the north-east. Therefore, it is not possible to use this diagonal
direction for T6. By symmetric arguments, the same holds for T1, T3, and T7.

It remains to show that the corner extreme points are occupied. Assume for

contradiction that the grid point q = ( 3h−1
2 , 3

h−1
2 ) is not occupied by Γ(T (h)).

Hence, the subtree T4 with incoming edge (r, r4) pointing to the south-east does
not occupy q. As a consequence, its extreme points are placed at least one unit
to the north and/or to the west. W. l. o. g. we assume that it is displaced one
unit to the north (both other directions are symmetric). As the side lengths of
T4 and T5 are at least 3h−1 − 1 and T4 and T5 do not overlap, T5 overlaps the
diagonal axis from r to the north-east. Therefore, it is not possible to use this
diagonal direction for T6. The same can be shown for T2 and T6 by symmetric
arguments. �

Corollary 1 There is a linear time algorithm to draw a complete 7-ary rooted
tree with n vertices on the 8-grid in O(n1.129) area and with aspect ratio 1.

4 Ternary Trees

First we consider complete ternary trees and afterwards arbitrary ternary trees
on the 8-grid.
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4.1 Complete Ternary Trees

Each complete ternary tree can be drawn on the 4-grid within O(n1.262) area
[13]. For strictly upward drawings on the 6-grid there is a tight bound of
Θ(n1.262) [1]. In upward drawings the edges point piecewise monotonically in
a common direction. We present an almost linear upper bound for complete
ternary trees on the 8-grid using all 8 directions.

Theorem 2 There is a linear time algorithm to draw a complete ternary tree
with n vertices on the 8-grid in O(n1.048) area and with aspect ratio 1.

Proof: We construct the tree T (h) with height h recursively. Figure 3 shows one
recursion step for i → i + 4 with i ≤ h. Initially, for i = h mod 4 ∈ {0, . . . , 3},
we draw the tree T (i) within a square of constant area with the root at a corner.
In a recursion step i → i + 4 there are 81 complete trees with height i which
we draw within a square with side length S(i). Let c = 8 be the number of
additionally inserted columns (rows) which are used for wiring, i. e., connecting
the subtrees with their parents. Then, the side length is S(i+4) = 10 ·S(i)+c ≤
10di/4e+(c ·

∑di/4e
i=0 10i) < 10di/4e+ c ·10di/4e+1. Thus, S(h) ∈ O(10h/4) and the

area of T (h) is in O(100h/4). The height of a complete ternary tree is h = log3 n.
Therefore, the needed area is in O(100(log3 n)/4) = O(n(log3 100)/4) ⊂ O(n1.048).

�

Theorem 3 There is a linear time algorithm to draw a complete ternary tree
with at most one bend per edge on the 8-grid and the 6-grid within Θ(n)-area.
The drawing is strictly upward, has constant aspect ratio, and less than n

9 bends.

Proof: We inductively define a drawing of a complete ternary tree T (h) with
height h. For trees with height h = 0 and h = 1 the drawing is shown in
Fig. 4. In the construction step h → h + 1 we compose the complete subtrees
T1(h), T2(h), and T3(h) rooted at r1, r2, and r3 to a tree T (h + 1) with root
r and connecting edges (r, r1), (r, r2), and (r, r3). This is done either vertically
(Fig. 5(a)) or horizontally (Fig. 5(b)), alternating with odd and even h. Note
that T1(h), T2(h), T3(h) are drawn identically and, thus, their drawings have
identical dimensions. We denote the width and the height (number of occu-
pied grid points) of the drawing of a tree with height h with W (h) and H(h),
respectively.

We place r at the origin. If h is odd, we apply the vertical construction
and place r1 at (0, 2H(h) + 2), r2 at (1, H(h) + 1), and r3 at (0, 2). Otherwise,
if h is even, we apply the horizontal construction and place r1 at (0, 2), r2 at
(W (h) + 1, 1), and r3 at (2W (h) + 2, 0). For an example see Fig. 4.

In the vertical step the height H(h+ 1) = 3H(h) and the width W (h+ 1) =
W (h) + 2. For the horizontal step symmetrically H(h + 1) = H(h) + 2 and
W (h + 1) = 3W (h). The correctness of these recursions can be shown by
induction. After eliminating the recursion we substitute h by log3(2n+ 1)− 1,

since n = 3h+1−1
2 in 3-ary trees, and obtain
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Figure 3: Scheme to draw complete ternary trees on 8-grids recursively (grid
lines omitted)

Figure 4: Complete 3-ary tree with bends
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T1

T2

T3

(a) Vertical

T1

T2

T3

(b) Horizontal

Figure 5: Construction steps for Theorem 3

H(h) = 2 · 3bh2 c+1 − 2− (−1)h ∈ O(
√
n) , (1)

W (h) = 5 · 3b
h−1
2 c + 2 + (−1)h ∈ O(

√
n) . (2)

Finally, we show that the overall number of edge bends b is smaller than
n
9 . In the drawing of a tree T (h) with n = 3h+1−1

2 vertices b = 3h−1−1
2 as each

recursion step produces exactly one bend. Solving these equations results in
b = n−4

9 . �

4.2 Arbitrary Ternary Trees

We transfer the recursive winding approach of Chan et al. [8, 9] for drawing
binary trees on the 4-grid to ternary trees on the 8-grid introducing bends.
On the 4-grid the algorithm constructs straight-line upward planar drawings
respecting subtree separation with O( nA logA) height and O(A logn

logA ) width with

A ∈ {2, . . . , n}. Subtree separation means that in the drawing there are non-
overlapping rectangles for every pair of disjoint subtrees. Observe that each
choice of 2 ≤ A ≤ n implies an O(n log n) drawing area. Now we consider the
8-grid. Due to the linear dependency among the different edge directions on the
8-grid, it is not possible to reach the result with straight-line edges.

Theorem 4 Let T be an arbitrary ternary tree with n vertices. There is a
planar upward drawing on the 8-grid of T with O( nA logA) × O(A logn

logA ) area,

where A ∈ {2, . . . , n}, and in total with less than n− | leaves(T )| bends.

Proof: Let T3 = (V3, E3) be an arbitrary ternary tree with n vertices. First, we
transform T3 to a binary tree T2 = (V2, E2) as follows. For each vertex v ∈ V3
with three children v1, v2, v3 we replace the edges (v, v1) and (v, v2) by a new
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(d) Ternary, case (ii)

Figure 6: Ternarization

dummy vertex w and the edges (v, w), (w, v1), and (w, v2). Note that |V2| and
|E2| are linear in n.

In the next step, we draw T2 using the algorithm of Chan et al. [8, 9] out of
the box. We obtain a drawing Γ(T2) on the 4-grid with a height in O( nA logA)

and a width in O(A logn
logA ), where A ∈ {2, . . . , n}. Each vertex v ∈ V2 with two

children has the following property. Either, in case (i), one outgoing edge of v
has the same direction as the incoming edge e of v and the other is orthogonal
to e, or, in case (ii), both outgoing edges of v are orthogonal to e. See Figs. 6(a)
and (b).

Now, we transform the straight-line drawing Γ(T2) on the 4-grid into a draw-
ing Γ(T3) on the 8-grid with bends. All non-dummy vertices are placed on
identical coordinates in Γ(T3). We replace each dummy vertex w ∈ V2 and
its incident edges (v, w), (w, v1), and (w, v2) by the original edges (v, v1) and
(v, v2) and determine their bend coordinates. All other (straight-line) edges
remain identical in Γ(T3).

First, consider case (i). Let (xu, yu) be the coordinates of a vertex u in
Γ(T2). W. l. o. g. an edge (v, w) ∈ E2 for each dummy vertex w is directed
to the east in Γ(T2), (w, v1) has the same direction, and (w, v2) points to the
south, see Fig. 6(a). Then, yv = yw = yv1 and xw = xv2 . In Γ(T3) we add
(v, v1) with two bends at (xv + 0.25, yv − 0.25) and (xv1 − 0.25, yv1 − 0.25). We
add (v, v2) with one bend at (xw, yw) instead of the dummy vertex w. For an
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v1
v2

w1 v3 w2

v4v5
v6

w3 v7v8 v9

(a) Recursive winding on the 4-grid

v1
v2

v3

v4v5
v6

v7v8 v9

(b) Recursive winding on the 8-grid
with less than n bends

Figure 7: Transformation of the binary tree drawing with dummy vertices w1,
w2, and w3 to the corresponding drawing of the ternary input tree

example see Fig. 6(c). It remains case (ii), where w. l. o. g. the edge (v, w) points
to the south, (w, v1) to the west, and (w, v2) to the east. Here, we place the
bends of the edge (v, v1) at coordinates (xv−0.25, yv+0.25) and (xw−0.25, yw).
For (v, v2) we introduce a bend at (xw, yw) instead of w. For an example see
Figs. 6(b) and (d).

For all remaining directions of the incoming edge of w the construction is
analogous. Note that the construction steps preserve planarity and subtree
separation. Γ(T3) is a drawing with vertices at integral coordinates and some
bends at multiples of 0.25. Quadrupling all coordinates transforms bends onto
the grid while the area grows by a factor of 16. Thus, the asymptotic area
bounds of Chan et al. [8, 9] hold. The number of introduced bends in total is
less than 2n3 + n

3 = n since one third of the edges gets two bends and another
third one. Further, as no edge incident to a leaf needs a bend, we have less than
n− | leaves(T3)| bends. For a schematic example see Fig. 7. �

The construction of the proof can also be used for planar non-upward draw-
ings of ternary trees on the 8-grid [8, 9]. Then, all directions of the 8-grid are
used for the edge routing.

Corollary 2 Let T be an arbitrary ternary tree with n vertices. There is a
planar drawing on the 8-grid of T with O( nA logA)×O(A log n+A) area, where
A ∈ {2, . . . , n}, and in total with less than n− | leaves(T )| bends.

Choosing A = dlog ne delivers a drawing with height O( n
logn log log n), width

O(log n), and, hence, area in O(n log log n).

5 NP-hardness Results

In this section we present NP-hardness results for planar unordered tree draw-
ings on k-grids. There is always an ULPk-drawing Γ(T ) of a d-ary tree T on
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Table 2: Drawing with unit edge length is NP-hard

k = 4 k = 6 k = 8

Uk [3] Theorem 6 Theorem 5
ULk Theorem 6 Theorem 6 Theorem 6
UPk Corollary 3 Conjecture 1 Corollary 3
ULPk Corollary 3 Conjecture 1 Corollary 3

the k-grid with d < k. A possible construction is similar to the drawing style of
the complete 7-ary tree in Sect. 3. We set the lengths of the outgoing edges of a
vertex u to 3height(T )−depth(u)−1 and then proceed top-down. For each vertex u
we draw its j < k outgoing edges in an arbitrary order with these lengths and
with arbitrary directions. Similar to [1,3], we first shall restrict ourselves to the
problem of drawing with unit edge length. Table 2 summarizes that drawing
trees with unit edge length on a grid is in all listed cases NP-hard. Afterwards,
we consider the area complexity of these drawings without the unit edge length
constraint.

5.1 Unit Edge Length

We consider the complexity of constructing Uk-, UPk-, ULk- and
ULPk-drawings with unit edge lengths. First we show an NP-hardness result
for Uk-drawings, where we extend the results of the 4-grid [3, 12, 17] to trees
of degree 8 on the 8-grid. This result should be adaptable, such that it holds
also for binary trees on the 8-grid similar to [17]. 3-satisfiability (3-SAT)
is the classical NP-complete decision problem whether or not a given a
Boolean expression E in 3-conjunctive normal (3-CNF) with n variables and c
clauses has a satisfying assignment such that E evaluates to true [14]. 3-CNF
demands that the clauses are logically and-conjuncted and that each clause
contains exactly three literals which are conjuncted by logical ors. A literal is
a Boolean variable which may be negated or not. We reduce the NP-hard
NOT-ALL-EQUAL-3-SAT (NAE-3-SAT) [14] by constructing a tree of degree
8 in polynomial time for the given expression E. NAE-3-SAT is a specialized
variant of 3-SAT where only Boolean variable assignments are accepted which
additionally cause at least one true and at least one false literal in each clause.

For a simple description, we use a free undirected tree in the following con-
structions. We define a full tree consisting of a vertex q with eight neighbors
r1, . . . , r8, see Fig. 8(a). In turn, these have incident edges (r1, s1), . . . , (r8, s8).
The four vertices s1, . . . , s4 in {s1, . . . , s8} additionally have seven adjacent ver-
tices, called corner leaves. Each of the remaining four vertices s5, . . . , s8 has
only one additional neighbor, called center leaf. In Fig. 8(a) the leaves t5, . . . , t8
are center leaves and all remaining leaves are corner leaves. We identify the
position of a full tree by the coordinates of vertex q.
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q

r1

s1

r5

s5

t5

t8

t7

t6

(a) Full tree

s s′

s′′

(b) Encode tree and striker (s, s′, s′′)

Figure 8: Full and encode trees on the 8-grid

Lemma 1 Full trees have exactly one drawing with unit edge length on the 8-
grid up to translation and labeling of the vertices.

Proof: As mentioned above let s1, . . . , s4 be the neighbors of the corner leaves
and let the remaining s5, . . . , s8 be the neighbors of the center leaves. Assume
for contradiction that an edge (q, ri) with i ∈ {1, . . . , 4} is drawn horizontally
with length 1. As required, the seven other incident edges of q are also drawn
with length 1. Then, there remain three possible edge directions for (ri, si).
One is horizontal and two are diagonal. If (ri, si) is drawn horizontally, then
the seven adjacent leaves of si cannot be placed satisfying unit edge length
without an overlap. The same is true if (ri, si) is drawn diagonally with unit
edge length. Thus, (q, ri) cannot be drawn horizontal. The same arguments
hold for a vertical (q, ri). Thus, (q, ri) must be diagonal.

There remain five possible directions for the edge (ri, si). Assume for con-
tradiction that (ri, si) has a different slope as (q, ri). Then, the seven neighbors
of si overlap with the neighbors of q. Therefore, the square containing si and
its neighbors must be drawn at a corner of the overall 7 × 7 square S of grid
points. No vertex can be placed outside of S, as otherwise there is an edge
which is longer than 1. Finally, for the paths from q to the center leaves only
the horizontal and vertical directions remain. �

Let an encode tree be a full tree omitting two center leaves, see Fig. 8(b)
(without s′ and s′′). We call the two new leaves, i. e., the former neighbors of the
omitted center leaves, striker leaves. Later we shall extend certain encode trees
by strikers which are paths of length two added at a striker leaf, e. g., (s, s′, s′′)
in Fig. 8(b). Consider a drawing of an encode tree with a given position of
s. Then, the position of s′ is predetermined. For s′′ three possible grid points
remain satisfying unit edge length. These lie outside the 7× 7 square.
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u0 v1 v2 v3 v4 w0

x11
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x21
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x31
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x41
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u1

u′1

u′′1

w0 w1

w′1

w′′1

Figure 9: Basic tree S(n, 1) with n = 4

We connect two full and encode trees inserting either an edge between center
leaves, called center connection, or an edge between corner leaves, called corner
connection. Note that in the remainder these two connection types are the
only connections used between these two tree types. When it is obvious, we
coarsen our view and use the notions vertex, leaf and path identifying full and
encode trees as (meta-)vertices. Let u and v be center connected full trees. By
Lemma 1, there are four relative positions for them in a drawing, i. e., u is left
of, right of, above or below v. Let v have an absolute grid position and u a
relative position to v. For u there are three possible grid positions satisfying
edge length 1, e. g., if u is left of v, their y-coordinates differ by at most 1.

For a Boolean expression E in 3-CNF with c clauses and n variables we
construct a tree S(n, c + 1) of degree 8, see Fig. 10 ignoring the strikers. Ini-
tially, we introduce the basic tree S(n, 1) containing the basic spine of center
connected full trees (u0, v1, . . . , vn, w0), see Fig. 9. We add two center connected
encode trees xi1 and xi1 as additional neighbors to each of the full trees vi with
i ∈ {1, . . . , n}. Finally, we append three additional center connected full trees
u1, u

′
1, u
′′
1 (w1, w

′
1, w

′′
1 ) and two corner connected full trees a11 and d11 (b11 and

c11) to the full tree u0 (w0). We denote a corner connected full tree α11 with
α ∈ {a, b, c, d}.

In the inductive step j → j + 1 we expand S(n, j) to S(n, j + 1) by append-
ing the full trees uj+1, u

′
j+1, u

′′
j+1, wj+1, w

′
j+1, w

′′
j+1 to uj , u

′
j , u
′′
j , wj , w

′
j , w

′′
j via

center connections. Again using center connections, we add the encode trees
xi,j+1 and xi,j+1 to xij and xij , respectively. For each k ∈ {1, . . . , j} and
α ∈ {a, b, c, d} we add the full tree αj+1,k (αk,j+1) to the leaf αjk (αkj) using
a center connection. Finally, we append the new full trees αj+1,j+1 to αjj by
corner connections.

We apply one additional construction step to the so far obtained tree S(n, c)
to frame it. This is done similarly to the inductive step from the previous
paragraph, but using full trees instead of encode trees. We obtain the tree
S(n, c+1). This ensures that the free positions of each encode tree are restricted
to the same y-coordinate and, then, as we will see later, strikers can only be
embedded on the left or the right side of the encode trees for the c-th clause and
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Figure 10: T (E) of E = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) (n = 4
and c = 3) and assignment x1 = T, x2 = x3 = x4 = F

not to the north or to the south. In S(n, c+1) we call the path (xi,c+1, . . . , xi,c+1)
with i ∈ {1, . . . , n} the i-th column Ci.

Lemma 2 Let S(n, c+ 1) be drawn with unit edge length on the 8-grid and let
its basic spine be (v0 = u0, v1, . . . , vn, w0 = vn+1). Then, all vertices vi with
i ∈ {0, . . . , n} share the same relative position to their successor vi+1, which is
either left of, right of, above, or below.

Proof: Considering the basic spine, the vertex u0 has four center connected
neighbors u1, u

′
1, u
′′
1 , v1. W. l. o. g. v1 is placed to the right of u0 and u1, u

′
1, u
′′
1

may be positioned left of, above, and below u0, see Fig. 9. Assume for contra-
diction that the center connected neighbor v2 is placed below (above) v1. Each
of the two full trees v1 and v2 has four center connected neighbors. This leads
to a contradiction because there is no space left to place the fourth neighbor of
v2 considering edge length 1. Hence, v2 must be placed to the right of v1. The
same can be shown by an inductive argument for the remaining full trees of the
basic spine. As a consequence, all these full trees are placed side by side and
the y-coordinates differ between neighbors at most by 1. The center connected
neighbors w1, w

′
1, w

′′
1 of w0 are placed symmetrically to the respective neighbors

of u0. See Fig. 10 for an example. �

The basic spine is horizontally embedded if all neighbors are positioned in
a planar way relatively left and right of each other, else it is vertically em-
bedded. Let Γ(S(n, c + 1)) be a drawing of S(n, c + 1) with a horizontally
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embedded basic spine. Then, the basic spine separates Γ(S(n, c + 1)) into
two halfs, the top half and the bottom half. Due to the freedom to permute
incident edges, either the path (xi1, . . . , xi,c+1) is drawn in the top half and
(xi1, . . . , xi,c+1) in the bottom half of each column Ci, or vice versa. We call
the paths (u0, . . . , uc+1), (u0, . . . , u

′
c+1), (u0, . . . , u

′′
c+1) the u-spines of S(n, c+1).

Analogously, we define w-spines.

Lemma 3 Let S(n, c+1) be drawn with unit edge length and let the basic spine
be embedded horizontally on the 8-grid. Then, all other edges have determined
slopes (directions).

Proof: Let Γ(S(n, 1)) be a drawing of the basic tree S(n, 1) where w. l. o. g. the
basic spine (u0, v1, . . . , vn, w0) is horizontally embedded and u0 is placed left of
v1. Let u′ be placed left of u0, u′ above u0, and u′′ below u0 (symmetrically for
w). Each vi with i ∈ {1, . . . , n} has two center connected encode trees xi1 and
xi1, which must be drawn above and below, respectively (or vice versa). So far
all center connected full and encode trees have relative positions. Due to unit
edge length, the horizontal grid distance between the corner connected full trees
α11 with α ∈ {a, b, c, d} above (below) the basic spine is at most 7(n + 2) + 1,
which corresponds to 7(n + 2) free grid points. As each full tree horizontally
covers 7 grid points, the horizontal row of n encode trees cover in sum 7(n+ 2)
points. The positions of these encode trees and of the corner connected full trees
are fix. Analogously, the positions of the full trees vertically between the corner
connected trees α11 are fix. Hence, all edges of the basic tree S(n, 1) despite the
center connections of the basic spine have a fix slope. The same argumentation
can be applied in the induction step j → j + 1. �

W. l. o. g. let the basic spine always be horizontally embedded to the right
in the remainder. Then, in each column Ci with i ∈ {1, . . . , n} the center
connection edges of the path (xi,c+1, . . . , xi,c+1) are drawn vertically. Each
surrounding 7× 7 square of an encode tree covers exactly two grid points which
are not occupied by the encode tree and which have identical y-coordinates. We
use these free grid points to encode the remaining information of the Boolean
expression E into the tree S(n, c+ 1).

Consider the i-th variable xi and the j-th clause with i ∈ {1, . . . , n} and j ∈
{1, . . . , c}. If xi does not appear in clause j, we append the striker (sij , s

′
ij , s

′′
ij)

to the encode tree xij and the striker (sij , s
′
ij , s

′′
ij) to xij . If xi occurs not negated

in clause j, we add the striker (sij , s
′
ij , s

′′
ij) to the encode tree xij . Finally, if the

variable xi occurs negated in clause j, we add the striker (sij , s
′
ij , s

′′
ij) to xij . In

the following, T (E) identifies this extension of S(n, c+ 1). Note that in a unit
edge length drawing Γ(T (E)) all edges despite edges connecting the basic spine
and the rear striker edges (s′ij , s

′′
ij) or (s′ij , s

′′
ij) have determined slopes.

Consider the encode tree zij with zij ∈ {xij , xij} and its striker S = (s, s′, s′′)
in Γ(T (E)). Since there is the freedom of vertically mirroring zij , S can be drawn
either on its left or on its right side. According to Lemma 2, the y-coordinates
of the columns Ci and Ci−1 or Ci+1 with i ∈ {2, . . . , n− 1} differ at most by 1.
However, if there is a free grid point at the right side of zi−1,j or the left side of
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zi+1,j , respectively, the vertex s′′ can be embedded on it. For an example see
the encode tree x22 in Fig. 10 with its striker S embedded to the right side. Note
that a striker starting from an encode tree of C1 (Cn) can only be embedded to
the right side (left side).

Lemma 4 Let E be a Boolean expression in 3-CNF with c clauses and n vari-
ables. E is satisfiable with at least one true and one false literal per clause if
and only if there is a drawing Γ(T (E)) with unit edge length on the 8-grid.

Proof: “⇒”: Let τ(E) be a satisfying assignment for the Boolean expression E
with n variables and c clauses. Compute the tree T (E) as described above. To
obtain a planar drawing Γ(T (E)) with unit edge length we have to determine,
whether a path (xi1, . . . , xi,c+1) will be embedded in the top half and its com-
panion path (xi1, . . . , xi,c+1) in the bottom half, or vice versa. If the variable xi
with i ∈ {1, . . . , n} is true, then embed the corresponding path (xi1, . . . , xi,c+1)
of column Ci in the top half, and in the bottom half otherwise. This is always
possible as τ(E) ensures that each clause has at least one true and at least one
false literal. This fits exactly to the fact that in the j-th row in the top (bottom)
half of the drawing for the j-th clause at most two strikers can be embedded in
a planar way as each encode tree can be vertically flipped. All other n− 3 holes
are occupied by strikers for variables not existing in clause j.

“⇐”: Let Γ(T (E)) be a drawing with unit edge length of T (E). According
to Lemma 3 all edges have a determined slope despite the edges connecting the
basic spine and the rear striker edges. Without strikers there are n − 1 holes,
i. e., two adjacent free grid points, in the j-th row with j ∈ {1, . . . , c} between
neighbored encode trees in the top half and n− 1 holes in the bottom half. In
each row j (top and bottom half) we added n − 3 strikers for the non existing
variables in clause j. Therefore, in the top (bottom) half at most two more
strikers can be placed in the j-th row. For negated and not negated literals in
a clause we added in total three strikers. It is not possible to place all three
strikers in the top (bottom) half. In a planar drawing with unit edge length
there must be two strikers in the top half and the other in the bottom half, or
vice versa.

A literal yk with k ∈ {1, . . . , n} is either the variable xk or its negation
xk. Let yk be in clause j. If yk is not negated, then the literal is true if the
corresponding striker (skj , s

′
kj , s

′′
kj) is embedded in the top half of the draw-

ing Γ(T (E)). Otherwise, if yk is negated, then the literal is false if the striker
(skj , s

′
kj , s

′′
kj) is embedded in the top half. Hence, we obtain a satisfying assign-

ment τ ′(E) with respect to NAE-3-SAT with at least one literal true and at
least one literal false in each clause. �

We obtain directly from Lemma 4 the following.

Theorem 5 Let T be a 7-ary tree. Deciding whether or not there exists an
U8-drawing Γ(T ) with unit edge length is NP-hard.

The proof idea of the analogous result on the 6-grid is essentially the same as
the above for the 8-grid. However, as there are technical differences and traps in
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Figure 11: Full and encode trees on the 6-grid

the constructions due to the one missing diagonal, w. l. o. g. from south-east to
north-west on the grid, we nevertheless present the proof (where necessary) in
the same detail to ensure correctness. The differences manifest especially in the
north-west and south-east regions of the (drawings of) full trees, encode trees,
and T (E). For example and in contrast to Fig. 10, for the latter there is no
option in this regions to corner connect the full trees bjj and djj , 1 ≤ j ≤ c+ 1,
to enforce the rigidness of a drawing of T (E). Note that the NP-hardness was
already claimed in [1], however, the detailed proof is presented for the first time
in the following.

First, we extend the definition of a full tree for the 6-grid, see Fig. 11(a). The
vertex q has six adjacent vertices r1, . . . , r6. These have additional neighbors:
r1 (r2) is adjacent to three leaves of which one is t1 (t2). r3 (r4) is adjacent to
leaf t3 (t4) and to the inner vertex s1 (s2). r5 (r6) is adjacent to one leaf t5 (t6).
There are no further vertices or edges. Analogously to the 8-grid, we call the
adjacent leaves of r1 and r2 corner leaves and t3, . . . , t6 center leaves.

Lemma 5 Full trees have exactly one drawing on the 6-grid with unit edge
length and center leaves on the boundary of a bounding 5 × 5 square (in grid
points) up to swapping paths from q to the center leaves, translation, and labeling
of the vertices.

Proof: Let the root vertex q of a full tree be placed in the center of a 5 × 5
bounding square S (in grid points), w. l. o. g. at (0, 0). Then, r1, . . . , r6 are
placed around q such that the edges (q, r1), . . . , (q, r6) have length 1.

Assume for contradiction that (q, r1) is drawn to the east with edge length
1. Then, the adjacent leaves of r1 occupy at least one of the grid positions (1, 1)
and (1,−1) and the remaining adjacent vertices of q cannot be placed. With
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Figure 12: Basic tree S(n, 1) with n = 4

symmetric arguments (q, r1) cannot be drawn to the west or vertically. The
same holds for the edge (q, r2). Thus, (q, r1) and (q, r2) can only lie on the sole
diagonal through q. As the precondition demands that each center leaf is on the
boundary of S, each of them has to be placed in the middle of one boundary
side. Then, there is not enough room to embedd both subtrees T (r3) and T (r4)
induced by r3 and r4, respectively, together in the north-east or south-west
quadrant. Thus, T (r3) is in the north-east and T (r4) in the south-west, or vice
versa. Then, the positions of the remaining vertices are predetermined. �

An encode tree on the 6-grid is a full tree omitting the leaves t5 and t6, see
Fig. 11(b) without s′ and s′′. Again, we call a path with length 2 starting at
one of the two arising leaves a striker. In the example, the striker (s, s′, s′′) is
appended to the striker leaf r6 = s.

Consider a drawing of an encode tree with unit edge length and the two
center leaves t3 and t4 placed at the boundary of the surrounding 5× 5 square
and a fixed position of s. Then, the position of s′ is predetermined. For the leaf
s′′ there remain two possible grid points, which are located outside of the 5× 5
square.

In the following we connect full trees and encoding trees like on the 8-grid.
For these connections it is necessary to place the center leaves on the boundary
of the respective 5×5 squares as required by Lemma 5. As on the 8-grid, center
connections enforce relative positions of the participating full or encoding trees.

The basic spine is defined analogously and the construction of the basic tree
S(n, 1) is done similar to the 8-grid. The only difference is, that we omit the
corner connected full trees b11 and d11, see Fig. 12 in comparison to Fig. 9. The
tree S(n, 2) is the extension of S(n, 1). The encoding trees, the u- and w-spines,
and the full trees a11 and c11 are extended as on the 8-grid. The difference is,
that we append the full trees b11 to w1 and d11 to u1, see Fig. 13. We call the
subtrees rooted at α11 with α ∈ {a, c} α-trees and the subtrees rooted at β11
with β ∈ {b, d} β-trees.

The inductive construction step j → j + 1 is also similar to the 8-grid. We
append a corresponding new encoding tree to each existing encoding tree in
S(n, j). The extension of the α-trees is identical, too. However, the extension
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Figure 13: S(n, 2) with n = 4

of the β-trees by new full trees varies due to the missing grid diagonal, which
we describe in detail now. We center connect a new full tree βj−γ+1,γ to each
existing full tree βj−γ,γ for γ ∈ {1, . . . , j−1} and a single new full tree β1,j+1 to
β1,j . This construction step is repeated until j + 1 = c. Like on the 8-grid, we
finally apply one additional construction step using full trees instead of encoding
trees. Again, this ensures that the strikers later can only be embedded left or
right of the encode trees of the c-th clause. Thus, for the tree construction on
the 6-grid we obtain in analogy to Lemma 3 the following.

Lemma 6 Let S(n, c+1) be drawn with unit edge length and let the basic spine
be embedded horizontally on the 6-grid. Then, all other edges have determined
slopes (directions).

Proof: The only difference to the 8-grid lies in the construction of the β-trees.
Let Γ(S(n, 1)) be a drawing of the basic tree S(n, 1) where w. l. o. g. the basic
spine (u0, v1, . . . , vn, w0) is horizontally embedded and u0 is placed left of v1.
Let u1 be placed left of u0, u′1 above u0, and u′′1 below u0 (symmetrically for w).
Each vi with i ∈ {1, . . . , n} has two center connected encode trees xi1 and xi1,
which must be drawn above and below, respectively, or vice versa. So far, all
center connected full and encode trees have relative positions. Now, the corner
connected full tree a11 (c11) can only be drawn above (below) u1 (w1) and left
of (right of) u′1 (w′1). Due to the unit edge length in Γ(S(n, 1)), the number of
free grid points horizontally between u′1 and w′1 above the basic is at most 5n.
The same holds below the basic spine between u′′1 and w′′1 . As each encode tree
covers horizontally 5 grid points, the horizontal row of n encode trees covers in
sum 5n grid points. Thus, the positions of these encode trees and of the corner
connected full trees are fix. Hence, all edges of the basic tree S(n, 1) up to the
center connections of the basic spine have a determined slope, see Fig. 12.
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In the first inductive step 1→ 2 the basic tree S(n, 1) is extended to S(n, 2),
see Fig. 13. b11 is center connected to w1 and d11 to u1. The construction
ensures that the position above w1 is either occupied by b11 or w2. The position
below u1 is analogously occupied by either d11 or u2. Therefore, the full and
encoding trees of each encode column Ci with i ∈ {1, . . . , n} are embedded
vertically above each other, i. e., their x-coordinates are fixed. For the general
inductive step j → j + 1 let w. l. o. g. w0 be placed at the origin (0, 0) on a
coarsened coordinate system where one unit covers 5 grid points. In case (i),
b11 is then located at (1, 1). W. l. o. g. the w-spines (w0, . . . , wj), (w0, . . . , w

′
j),

and (w0, . . . , w
′′
j ) are embedded horizontally to the east, vertically to the north,

and vertically to the south, respectively. Now, we inductively prove that the
“diagonal” positions (j − γ, γ) and (1, j) with γ ∈ {1, . . . , j − 1} between wj
and w′j are occupied by full trees of the b-tree. For j = 1 the statement holds
because in S(n, 1) there is no valid position between w1 and w′1. For j = 2 in
S(n, 2) there is one position occupied in the north-eastern direction by b11 or
w2. By induction the j − 1 positions between wj and w′j are occupied by the
full trees bj−γ,γ with γ ∈ {1, . . . , j − 1}. In the construction step we append
the new full trees wj+1 and w′j+1 to the w-spines and center connect j new full
trees bj+1−γ,γ with γ ∈ {1, . . . , j − 1} to the existing full trees bj−γ,γ and b1,j
to b1,j−1. By induction there are j − 1 occupied positions between wj and w′j .
After applying the induction step there are exactly j positions between wj+1

and w′j+1. In the remaining case (ii) b11 is located at the coarse coordinates
(2, 0). Then, the path (w1, . . . , wj) is embedded vertically to the north and
the b-tree is displaced one unit to the south-eastern direction. Then, the same
argumentation as in case (i) shows that the diagonal positions are occupied.
The proof for the d-tree is symmetric. Thus, together with the fix α-trees as
shown in the proof of Lemma 3, the x-coordinates of the encoding trees in a
drawing Γ(S(n, c + 1)) are determined. Hence, all slopes between full and/or
encoding trees are determined up to the center connections of the basic spine.

�

With this in hands, we are now able to encode a Boolean expression E into
the tree S(n, c + 1) to obtain T (E) exactly as done on the 8-grid. Thus, the
following holds by the same reasoning as in the proof of Lemma 4. For an
example see Fig. 14.

Lemma 7 Let E be a Boolean expression in 3-CNF with c clauses and n vari-
ables. E is satisfiable with at least one true and one false literal per clause if
and only if there is a drawing Γ(T (E)) with unit edge length on the 6-grid.

Together with the NP-hardness results of Bhatt and Cosmadakis [3] on the
4-grid, the main result follows.

Theorem 6 Let T be a d-ary tree with d < k for k ∈ {4, 6, 8}. Deciding whether
or not there exists an Uk-drawing Γ(T ) with unit edge length is NP-hard.

Now we restrict Uk-drawings using the aesthetic criteria local uniformity and
patterns to obtain ULk-, UPk- and ULPk-drawings. Remember, that these are
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Figure 14: T (E) of E = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) (n = 4
and r = 3) and assignment x1 = T, x2 = x3 = x4 = F
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only defined for rooted trees. Unit edge length drawings trivially imply local
uniformity and, thus, are automatically ULk-drawings. Nevertheless, Theo-
rem 6 also holds for ULk-drawings with k ∈ {4, 6, 8} and Corollary 3 for UPk-
and ULPk-drawings with k ∈ {4, 8}.

Corollary 3 Let T be a d-ary tree with k ∈ {4, 8} and d < k. Deciding whether
or not there exists an UPk-drawing (ULPk-drawing) Γ(T ) with unit edge length
is NP-hard.

Proof: When using uniform slopes for the edges connecting the basic spine,
the construction in the proof of Lemma 4 generates an ULPk-drawing of T (E)
with unit edge length and k ∈ {4, 8}. �

For UP6-drawings it is not possible to show the NP-hardness with the pre-
sented approach because a full tree with its center leaves on the boundary is no
valid pattern drawing. Nevertheless, we claim the following.

Conjecture 1 Let T be a d-ary tree with d < 6. Deciding whether or not there
exists an UP6-drawing (ULP6-drawing) Γ(T ) with unit edge length is NP-hard.

5.2 Area

Now we are interested in the area occupied by U8-, UL8-, UP8- and ULP8-
drawings.

Proposition 1 Let T be a tree with degree 8 and A > 1. Determining whether
or not there exists an U8-drawing Γ(T ) within area A is NP-hard.

Proof: (Sketch) Again we reduce from NAE-3-SAT. Let E be a Boolean
expression with c clauses and n variables and let tree T (E) of degree 8 be con-
structed as described in Sect. 5.1 with some additional edges. Let j ∈ {1, . . . , c}.
For each encode tree x1j and x1j in the first column C1 we add new vertices
b1j and b1j connected by the edges (s1j , b1j) and (s1j , b1j) to the striker leaf s1j
and s1j , respectively. To the last column Cn we add the edges (snj , bnj) and
(snj , bnj) in the same way. Let A = W ·H with W = 7(2(c + 1) + n + 2) and
H = 7(2(c+ 1) + 1). E is satisfiable with at least one true and one false literal
per clause if and only if there is an U8-drawing of T (E) within area A.

“⇒”: We argue similar to the if-part in the proof of Lemma 4. We draw
the basic spine (u0, v1, . . . , vn, w0) horizontally on identical y-coordinates. We
align the edges added to the striker leaves to the left in the first column C1 and
to the right in the last column Cn. Using the assignment τ(E) the strikers are
aligned as described in Lemma 4. Then, Γ(T (E)) has total height H. Its total
width corresponds to the sum of the lengths of a u-spine, the basic spine, and
a w-spine which is W .

“⇐”: Let Γ(T (E)) be a drawing of T (E) within area A. The number of
available grid points of area A = W · H with W = 7(2(c + 1) + n + 2) and
H = 7(2(c + 1) + 1). The number of vertices in T (E) is smaller by 2c than
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the number of available grid points in A. Therefore, for each clause j there are
only two grid points left blank. This shall tighten the drawing in a row in the
top or in the bottom half and therefore, the whole drawing, such that we can
determine the assignment τ(E) analogously to the proof of Lemma 4. �

Corollary 4 Let T be a 7-ary tree and A > 1. Determining whether or not
there exists an UP8, UL8 or ULP8-drawing Γ(T ) within area A is NP-hard.

Proof: First, consider ULP8-drawings. Let Γ(T (E)) be a locally uniform pat-
tern drawing within area A = H ·W , which is identical to the drawing in the
proof of Proposition 1. Therefore, the remaining arguments can be applied
analogously. The result also holds for UL8- and UP8-drawings because they are
already ULP8-drawings. �

The same statements for the k-grid with k ∈ {4, 6} except for UP6- and
ULP6-drawings shall be proven similarly. In the case k = 6, Γ(T (E)) must
be extended to completely fill the remaining space in the north-east and the
south-west of the surrounding rectangle with full trees.

6 Conclusion

We have shown the NP-hardness for several problems of drawing trees with
unit edge length on k-grids with k ∈ {4, 6, 8}. For the same types of drawings,
we furthermore stated the NP-hardness of using minimal area. For complete
7-ary trees on the 8-grid we presented a tight area bound of Θ(nlog7 9) which is
about Θ(n1.129) and for complete ternary trees we gave an almost linear upper
bound of O(n1.048) for the needed area. Using bends allows drawing complete
ternary trees in O(n) area. For arbitrary ternary trees we showed an upper area
bound of O(n log log n). Each of the two latter algorithms generates in total
less than n edge bends.

Future work is to complete the needed area bounds for arbitrary trees on the
k-grid with or without allowing bends. We conjecture that ternary trees can be
drawn upwards on the 8-grid with recursive winding using less than n

3 bends
in O(n log n) area and in O(n log log n) area without a common direction. For
that, further optimizations in the subtree placement within the transformation
of the intermediate binary to the final ternary tree drawing of Sect. 4.2 should
be helpful. Formal NP-hardness proofs for the unit edge length and minimal
area UP6- and ULP6-drawings are missing up to now. It would be nice to have
similar but more general results on bounds and NP-hardness independent of a
concrete k.
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