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Abstract

Two planar graphs G1 and G2 sharing some vertices and edges are
simultaneously planar if they have planar drawings such that a shared
vertex [edge] is represented by the same point [curve] in both drawings.
It is an open problem whether simultaneous planarity can be tested ef-
ficiently. We give a linear-time algorithm to test simultaneous planarity
when the shared graph is 2-connected. Our algorithm extends to the
case of k planar graphs where each vertex [edge] is either common to all
graphs or belongs to exactly one of them, and the common subgraph is
2-connected.
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1 Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs sharing some vertices and
edges. The simultaneous planar embedding problem asks whether there exist
planar embeddings for G1 and G2 such that, in the two embeddings, each vertex
v ∈ V1 ∩ V2 is mapped to the same point and each edge e ∈ E1 ∩E2 is mapped
to the same curve. We show that this problem can be solved efficiently when
the common graph (V1 ∩ V2, E1 ∩ E2) is 2-connected.
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Figure 1: Two planar graphs G1 and G2 and their simultaneous planar embed-
ding. The common graph (drawn in bold) is 2-connected and the only edge
crossings in the simultaneous embedding occur between a private edge of G1

and a private edge of G2.

The study of planar graphs has a long history and has generated many
deep results [31–33]. There is hope that some of the structure of planarity
may carry over to simultaneous planarity. A possible analogy is with matroids,
where optimization results generalize from one matroid to the intersection of
two matroids [12]. On a more practical note, simultaneous planar embeddings
are valuable for visualization purposes when two related graphs need to be
displayed. For example, the two graphs may represent different relationships on
the same node set, or they may be the “before” and “after” versions of a graph
that has changed over time.

Over the last few years there has been a lot of work on simultaneous planar
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Figure 2: Two planar graphs that do not allow for a simultaneous planar embed-
ding. Note that the two planar embeddings drawn here are not simultaneous
planar because the common edge {F,G} (drawn in bold) is mapped to two
different curves.

embeddings [1,2,14,15,18–21,29], often under the name “simultaneous embed-
dings with fixed edges”. We mention a few results here and give a more detailed
description in the Background section below. A major open question is whether
simultaneous planarity of two graphs can be tested in polynomial time. The
problem seems to be right on the feasibility boundary. The problem is NP-
complete for three graphs [21] and the version where the planar drawings are
required to be straight-line is already NP-hard for two graphs and only known
to lie in PSPACE [16]. On the other hand, several classes of (pairs of) graphs
are known to always have simultaneous planar embeddings [14, 15, 19, 20, 29]
and there are efficient algorithms to test simultaneous planarity for some very
restricted graph-classes: biconnected outerplanar graphs [19], the case where
one graph has at most one cycle [18] or the case where the common graph is
a star [2]. Simultaneous planarity generalizes the problem of whether a planar
embedding of a subgraph can be extended to a planar embedding of the whole
graph, for which a linear time algorithm was recently given by Angelini et al. [1].
In particular, this problem is equivalent to testing simultaneous planarity be-
tween a planar graph and a 3-connected graph.

In this paper we give a linear time algorithm to test simultaneous planarity of
any two graphs whose shared subgraph is 2-connected. Our algorithm builds on
the planarity testing algorithm of Haeupler and Tarjan [23], which in turn unifies
the planarity testing algorithms of Lempel-Even-Cederbaum [30], Shih-Hsu [36]
and Boyer-Myrvold [9]. We show how to extend our algorithm to the case of
k graphs where each vertex [edge] is either common to all graphs or belongs
to exactly one of them, and the common graph is 2-connected. Although we
concentrate on the decision version of the problem, we also initiate the quest
for a nice simultaneous planar drawing. We show that two simultaneous planar
graphs with a connected common graph have a simultaneous planar drawing
in which one graph is straight-line planar, and each edge of the other graph is
drawn as a polygonal line with at most |V1 ∩ V2| bends.

Independently (and at the same time as our conference version [22]), Angelini
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et al. [2] gave an efficient algorithm to test simultaneous planarity of any two
graphs whose shared subgraph is 2-connected. Their algorithm is based on
SPQR-trees, takes linear time (in the final version [3]), and is restricted to the
case where the two graphs have the same vertex set. Recently Bläsius and
Rutter [6] have generalized our idea of finding “consistent orderings” between
PQ trees that share some common leaves (see sections 2.1 and 4), and shown
how to test simultaneous planarity of two biconnected graphs whose shared
subgraph is connected. This is a substantial strengthening of our result. Bläsius
and Rutter [5] also solve the case where the shared graph is disconnected but
the embedding of each connected component is fixed.

Our paper is organized as follows: Section 1.1 gives more background and
related work. In Section 2 we review and develop some techniques for PQ-trees,
which are needed for our algorithm, and in Section 3 we review the Haeupler-
Tarjan planarity testing algorithm. Section 4 contains our simultaneous pla-
narity testing algorithm, including the extension to k graphs, and the result on
drawing two simultaneous planar graphs.

1.1 Background

Several versions of simultaneous planarity have received much attention in re-
cent years. Brass et al. [10] introduced the concept of simultaneous geometric
embeddings of a pair of graphs—these are planar straight-line drawings such
that any common vertex is represented by the same point. Note that a common
edge will necessarily be represented by the same line segment. It is NP-hard
to test if two graphs have simultaneous geometric embeddings [16]. For other
work on simultaneous geometric embeddings see [4] and its references.

The generalization to planar drawings where edges are not necessarily drawn
as straight line segments, but any common edge must be represented by the same
curve was introduced by Erten and Kobourov [15] and called simultaneous em-
bedding with consistent edges. Most other papers follow the conference version
of Erten and Kobourov’s paper and use the term simultaneous embedding with
fixed edges (SEFE). In our paper we use the more self-explanatory term “si-
multaneous planar embeddings.” A further justification for this nomenclature
is that there are combinatorial conditions on a pair of planar embeddings that
are equivalent to simultaneous planarity. Specifically, Jünger and Schulz give
a characterization in terms of “compatible embeddings” [Theorem 4 in [29]].
Specialized to the case where the common graph is connected, their result says
that two planar embeddings are simultaneously planar if and only if the cyclic
orderings of common edges around common vertices are the same in both em-
beddings.

Several papers [14, 15, 20] show that pairs of graphs from certain restricted
classes always have simultaneous planar embeddings, the most general result
being that any planar graph has a simultaneous planar embedding with any
tree [20]. On the other hand, there is an example of two outerplanar graphs
that have no simultaneous planar embedding [20]. The graphs that have simul-
taneous planar embeddings when paired with any other planar graph have been
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characterized [19]. In addition, Jünger and Schulz [29] characterize the common
graphs that permit simultaneous planar embeddings no matter what pairs of
planar graphs they occur in.

There are efficient algorithms to test simultaneous planarity for pairs of bi-
connected outerplanar graphs [19], and for pairs consisting of a planar graph
and a graph that is either 3-connected [1] or has at most one cycle [18]. Test-
ing simultaneous planarity when the common graph is a tree was shown to be
equivalent to a book-embedding problem which together with [24] implies that
testing simultaneous planarity when the common graph is a star can be done in
linear time [2].

There is another, even weaker form of simultaneous planarity, where common
vertices must be represented by common points, but the planar drawings are
otherwise completely independent, with edges drawn as Jordan curves. Any
set of planar graphs can be represented this way by virtue of the result that a
planar graph can be drawn with any fixed vertex locations [34].

The idea of “simultaneous graph representations” has also been applied to
intersection representations. For the case of interval graphs, the problem is to
find representations for two graphs as intersection graphs of intervals in the real
line, with the property that a common vertex is represented by the same interval
in both representations. This can be done in polynomial time [26]. There are
also polynomial time algorithms to find simultaneous representations of pairs of
chordal, comparability and permutation graphs [27].

2 PQ-trees

Many planarity testing algorithms in the literature [9, 23, 30, 36] use PQ-trees
(or a variation) to obtain a linear-time implementation. PQ-trees were discov-
ered by Booth and Lueker [8] and are used, not only for planarity testing, but
for many other applications like recognizing interval graphs or testing matri-
ces for the consecutive-ones property. We first review PQ-trees and then in
Subsection 2.1 we show how to manipulate pairs of PQ-trees.

A PQ-tree represents the permutations of a set of elements satisfying a fam-
ily of constraints. Each constraint specifies that a certain subset of elements
must appear consecutively in any permutation. PQ-trees are rooted trees with
internal nodes being labeled ‘P’ or ‘Q’, and are drawn using a circle or a rectan-
gle (or double circles in [25]), respectively. The leaves of a PQ-tree correspond
to the elements whose orders are represented. PQ-trees are equivalent under
arbitrary reorderings of the children of a P-node and reversals of the order of
children of a Q-node. We consider a node with two children to be a Q-node.
A leaf-order of a PQ-tree is the order in which its leaves are visited in an in-
order traversal of the tree. The set of permutations represented by a PQ-tree
is the set of leaf-orders of equivalent PQ-trees. Given a PQ-tree T on a set U
of elements, adding a consecutivity constraint on a set S ⊆ U , reduces T to a
PQ-tree T ′, such that the leaf-orders of T ′ are precisely the leaf-orders of T in
which the elements of S appear consecutively. Booth and Lueker [8] gave an
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efficient implementation of PQ-trees that supports this operation in amortized
O(|S|) time. Their implementation furthermore allows an efficient complement-
reduction, i.e., adding the constraint on a set S, given the set U \S, in amortized
O(|U \ S|) time [23].

Although PQ-trees were invented to represent linear orders, they can be rein-
terpreted to represent circular orders as well [23]: Given a PQ-tree we imagine
that there is a new special leaf s attached as the “parent” of the root. A circular
leaf order of the augmented tree is a circular order that begins at the special leaf,
followed by a linear order of the remaining PQ-tree and ending at the special
leaf. Again a PQ-tree represents all circular leaf-orders of equivalent PQ-trees.
It is easy to see that a consecutivity constraint on such a set of circular orders
directly corresponds to a consecutivity constraint on the original set of linear
leaf-orders and a reduction on the circular orders corresponds to a standard or
complement reduction. Note that using PQ-trees for circular orders requires
solely this different view on PQ-trees but does not need any change in their
implementation. As such, it turns out that PC-trees introduced in [25] are the
exact same data structure as PQ-trees albeit with this circular interpretation.

2.1 Intersection and projection of PQ-trees

In this section we develop simple techniques to obtain consistent orders from
two PQ-trees. More precisely when two PQ-trees share some but not necessarily
all leaves, we want to find a permutation represented by each of them with a
consistent ordering on the shared leaves.

Note that the set of such consistent orderings is not representable by a PQ-
tree. For example, consider the ground set {1, 2, 3, 4} and the constraint that
{2, 3} must be consecutive among {1, 2, 3}. Element 4 may appear anywhere,
and there is no way to capture this with a PQ-tree. This is why we restrict our
goal to finding one permutation of each PQ-tree such that the two permutations
are consistent on the shared leaves.

The idea is to first project both PQ-trees to the common elements, intersect
the resulting PQ-trees, pick one remaining order and finally “lift” this order
back. We now describe the individual steps of this process in more detail.

The projection of a PQ-tree on a subset of its leaves S is a PQ-tree obtained
by deleting all elements not in S and simplifying the resulting tree. Simplifying
a tree means that we (recursively) delete any internal node that has no children,
and delete any node that has a single child by making the child’s grandparent
become its parent. This can easily be implemented to run in linear time.

Given two PQ-trees on the same set of leaves (elements) we define their
intersection to be the PQ-tree T that represents exactly all orders that are leaf-
orders in both trees. This intersection can be computed in polynomial time as
follows.

1. Initialize T to be the first PQ-tree.

2. For each P-node in the second PQ-tree, reduce T by adding a consecutivity
constraint on all the P-node’s descendant leaves.
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3. For each Q-node in the second tree, and for each pair of adjacent children
of it, reduce T by adding a consecutivity constraint on all the descendant
leaves of the two children.

Using the efficient PQ-tree implementation, computing such an intersection
can be sped up to amortized linear time in the size of the two PQ-trees. This is
a relatively straight-forward extension of the PQ-tree reduction and is described
in detail in Booth’s thesis [7].

These two operations are enough to achieve our goal. Given two PQ-trees
T1 and T2 defined on different element (leaf) sets, we define S to be the set of
common elements. Now we first construct the projections of both PQ-trees on
S and then compute their intersection T as described above. Any permutation
of S represented by T can now easily be “lifted” back to permutations of T1 and
of T2 that respect the chosen ordering of S. Furthermore, any two permutations
of T1 and T2 that are consistent on S can be obtained this way.

We note that techniques to “merge” PQ-trees were also presented by Jünger
and Leipert [28] in work on level planarity. Their merge is conceptually and
technically different from ours in that the result of their merge is a single PQ-
tree whereas we compute two orderings that are consistent on common elements.
The set of all these consistent orderings cannot be captured by a PQ-tree.

3 Planarity testing

In this section, we review the algorithm of Haeupler and Tarjan [23] for testing
the planarity of a graph. Later, we will extend it to an algorithm for testing
simultaneous planarity. We first begin with some basic definitions.

Let G = (V,E) be a connected graph on vertex set V = {v1, · · · , vn} and
let O be an ordering of the vertices of V . An edge vivj is an in-edge of vi (in
O) if vj appears before vi in O, and vivj is an out-edge of vi if vj appears after
vi in O.

An st-ordering of G is an ordering O of the vertices of G, such that the first
vertex of O is adjacent to the last vertex of O and every intermediate vertex
has at least one in-edge and at least one out-edge. It is well-known that G has
an st-ordering if and only if it is 2-connected. Further, an st-ordering can be
computed in linear time [17].

The planarity test of Haeupler and Tarjan embeds vertices (together with
their adjacent edges) one at a time. Edges with two, one or no endpoint(s)
embedded are called (fully-)embedded, half-embedded and non-embedded re-
spectively. The idea is to keep track of all possible partial planar embeddings
at each stage. A partial planar embedding is a planar drawing of all embedded
vertices and edges that also contains a straight line for each half-embedded edge
starting at its embedded vertex and ending in an adjacent face. An example of
such a partial planar embedding can be seen in Figure 3. For the correctness of
the algorithm it is crucial that the vertices are added in a leaf-to-root order of
a spanning-tree. This guarantees that, at any time, the non-embedded vertices
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induce a connected subgraph. When extending a partial planar embedding these
vertices will therefore end up in a single face of this embedding and it is con-
venient to think of this face as the outer face. With this as a precursor we can
restrict attention to partial planar embeddings in which all half-embedded edges
end in the outer face. Now the first crucial observation is that (for the sake of
extending this embedding) a partial embedding is completely characterized by
describing, for each connected component, the cyclic order of the half-embedded
edges around it. Secondly, maintaining one PQ-tree per connected component
leads to a natural and efficient way to describe the set of all possible cyclic
orders and thus to a concise description of the set of all possible partial planar
embeddings. Indeed, the main operation needed when embedding a new ver-
tex is to restrict the set of circular half-embedded edge orders of a connected
component to those in which the edges going to the newly embedded vertex are
consecutive. This is neccessary as otherwise embedding the vertex leads to a
non-extendable embedding with half-embedded edges enclosed in two or more
faces. It also directly corresponds to the reduction operation supported by the
PQ-tree data structure.

Before describing in more detail how to update the PQ-trees when a vertex is
added, we first discuss the choice of the specific embedding order we use. In gen-
eral using either a leaf-to-root order of a depth-first spanning tree or an st-order
leads to particularly simple implementations that run in linear-time. Indeed
these two orders are essentially the only two orders in which the algorithm runs
in linear-time using the standard PQ-tree implementation. Our simultaneous
planarity algorithm will use a mixture of the two orders: We first add the ver-
tices that are contained in only one of the graphs by a leaf-to-root order of a
depth-first search tree and then add the common vertices using an st-ordering.
Note that if all vertices are common, both G1 and G2 will be 2-connected and
have a common st-order. In this case we only use this st-order. We now give
an overview of how the update steps of the planarity test work for each of these
orderings.

Leaf-to-root order of a depth-first spanning tree:
Let v1, v2, · · · , vn be a leaf-to-root order of a depth-first spanning tree of G.
Note that at stage i, the vertices {v1, · · · , vi} may induce several connected
components. We maintain a PQ-tree for each component representing the set
of possible circular orderings of its out-edges. Using a depth-first spanning tree,
in contrast to an arbitrary spanning tree, has the advantage that we can easily
maintain the invariant that the edge to the smallest node greater than i will be
the special leaf, which is used to represent circular orderings.

Adding vi+1 can lead to merging several components into one. It is easy to
see, e.g., in Figure 3 or the left part of Figure 5, that after embedding vi+1 the
edges of each merging component that go to vi+1 have to be consecutive since
otherwise a half-embedded edge would be enclosed in the newly formed compo-
nent. To go to the next stage, we thus first reduce each PQ-tree corresponding
to such a merging component by adding a consecutivity constraint that requires
the set of out-edges that are incident to vi+1 to be consecutive. We then delete
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Figure 3: Above is a partial planar embedding of the graph G1 from Figure 1
with vertices A, B and C being non-embedded. All half-embedded edges (drawn
with hollow vertices for their non-embedded endpoints) lie in the outer face and
their cyclic order can be observed by following the dotted curve. The half-
embedded edges incident with vertex C are consecutive in the ordering, which
allows the embedding to be extended by adding vertex C as shown in the lower
left figure. Again all half-embedded edges lie in the new outside face. On the
lower right, the initial partial embedding is altered by flipping the order of the
two half-embedded edges incident to vertex G, as can be observed by following
the dotted curve. Now the half-embedded edges incident with vertex C are
not consecutive in the ordering, and the attempt to add vertex C results in a
half-embedded edge (the one from G to B) enclosed in an inside face. Partial
embeddings like this are eliminated by the PQ-reduction of the planarity test.
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these edges since they are now fully embedded. By the invariant stated above
the special leaf is among these edges. Note that the resulting PQ-tree for a
component now represents the set of all possible linear-orders of the out-edges
that are not incident to vi+1. Now we construct the PQ-tree for the new merged
component including vi+1 as follows:

Let vl be the parent of vi+1 in the depth-first spanning tree. The PQ-tree
for the new component consists of the edge vi+1vl as the special leaf and a new
P-node as a root and whose children are all the remaining out-edges of vi+1 and
the roots of the PQ-trees of the reduced components (similar to the picture in
Figure 4). Note that by choosing the edge vi+1vl as the special leaf we again
maintain the above mentioned invariant.

It is easy to verify that these operations capture exactly all possible circular
orders of half-embedded edges around the new embedded connected component.
Note that if the reduction step fails at any stage then the graph must be non-
planar. Otherwise the algorithm concludes that the graph is planar.

st-order:
Let v1, v2, · · · , vn be an st-order of G. This order is characterized by the fact
that at any stage i ∈ {1, · · · , n−1} not just the non-embedded vertices but also
the embedded vertices {v1, · · · , vi} induce a connected component. This results
in the algorithm having to maintain only one PQ-tree Ti to capture all possible
circular orderings of out-edges around this one component. Furthermore since
v1vn is an out-edge at every stage, it can stay as the special leaf of Ti for all i.

The update step for embedding the next vertex is the same as above. At
stage 1, the tree T1 consists of the special leaf v1vn and a P-node whose children
are all other out-edges of v1. Now suppose we are at a stage i ∈ {1, · · · , n− 2}
and want to go to the next stage. (Since we only maintain the orderings of out-
edges of the partially embedded graph at each stage, we do not have to consider
stage n). Again it holds that after embedding vi+1 the in-edges incident to vi+1

have to be consecutive. We call the set of leaves of Ti that correspond to these
edges the black leaves. To go to the next stage, we thus first reduce Ti so that
all black edges appear together. This ensures that either the black edges appear
as the (leaf) descendants of a P-node or the (leaf) descendants of a consecutive
sequence of child nodes of a Q-node. A non-leaf node in the reduced PQ-tree
is said to be black if all its leaf descendants are black edges. We next create a
new P-node pi+1 and add all the out-edges of vi+1 as its children. Now Ti+1 is
constructed from Ti as follows:
Case 1: Ti contains a black node x that is an ancestor of all the black leaves.
We obtain Ti+1 from Ti by replacing x and all its descendants with pi+1.
Case 2: Ti contains a (non-black) Q-node containing a (consecutive) sequence
of black children. We obtain Ti+1 from Ti by replacing these black children (and
their descendants) with pi+1.

This captures again exactly all possible circular orders of half-embedded
edges around the newly embedded connected component. Note that as before
the graph is non-planar if and only if the reduction step fails at any stage.
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4 Simultaneous planarity when the common graph
is 2-connected

This section contains our main result, a linear time algorithm for testing simul-
taneous planarity of two graphs whose shared subgraph is 2-connected.

Let G1 = (V1, E1) and G2 = (V2, E2) be two planar connected graphs with
|V1| = n1 and |V2| = n2. Note that G1[V1 ∩ V2] need not be the same as
G2[V1 ∩ V2]. Let G = (V1 ∩ V2, E1 ∩ E2) be 2-connected and n = |V1 ∩ V2|.
Let v1, v2, . . . , vn be an st-ordering of the vertices of G. We call the edges and
vertices of G common and all other vertices and edges private.

We say two linear or circular orderings of elements with some common ele-
ments are compatible if the common elements appear in the same relative order
in both orderings. Similarly we say two combinatorial planar embeddings of G1

and G2, respectively, are compatible if for each common vertex the two circular
orderings of edges incident to it are compatible.

If G1 and G2 have simultaneous planar embeddings, then clearly they have
combinatorial planar embeddings that are compatible with each other. The con-
verse also turns out to be true, if the common edges form a connected graph.
This can be easily proved as follows. Let E1 and E2 be the compatible combi-
natorial planar embeddings of G1 and G2 respectively. Let Ep be the partial
embedding of E1 [or E2] obtained by restricting G1 [resp. G2] to the common
subgraph. (Note that since E1 and E2 are compatible, the partial embedding of
E1 restricted to the common subgraph is the same as the partial embedding of
E2 restricted to the common subgraph). Now we can find a planar embedding
of the common subgraph that corresponds to Ep and iteratively extend it to an
embedding of E1 and an embedding of E2 (see Lemma 2 of Jünger and Schulz [29]
for a proof). The two planar embeddings thus obtained are simultaneous planar
embeddings and thus it is enough to compute a pair of compatible combinatorial
planar embeddings.

We will find compatible combinatorial planar embeddings by adding vertices
one by one. At any point we will have two sets of PQ-trees representing the
partial planar embeddings of the subgraphs of G1 and G2 induced by the vertices
added so far. Each PQ-tree represents one connected component of the current
subgraph of G1 or G2. In the first phase we will add all private vertices of G1

and G2, and in the second phase we will add the common vertices in an st-order.
When a common vertex is added, it will appear in two PQ-trees, one for G1

and one for G2 and we must take care to maintain compatibility. Note that if
V1 = V2, i.e., when all vertices are common, only the second phase is needed and
the whole algorithm will solely operate on two PQ-trees – one for each graph.

Before describing the two phases, we give the main idea of maintaining com-
patibility between two PQ-trees. Recall that in Section 2.1 we found compatible
orders for two PQ-trees using projection and intersection of PQ-trees. However,
we were unable to store a set of compatible orderings as a PQ-tree, which is what
we really need, since planarity testing involves building a sequence of PQ-trees
as we add vertices one by one.
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To address this issue we introduce a boolean “orientation” variable attached
to each Q-node to encode whether it is ordered forward or backward. Compati-
bility is captured by equations relating orientation variables. At the conclusion
of the algorithm, it is a simple matter to see if the resulting set of Boolean
equations has a solution. If it does, we use the solution to create compatible
orderings of the Q-nodes of the two PQ-trees. Otherwise the graphs do not have
simultaneous planar embeddings.

In more detail, we create a Boolean orientation variable f(q) for each Q-
node q, with the interpretation that f(q) = true if and only if q has a “forward”
ordering. We record the initial ordering of each Q-node in order to distinguish
“forward” from “backward”. During PQ-tree operations, Q-nodes may merge,
and during planarity testing, parts of PQ-trees may be deleted. We handle
these modifications to Q-nodes by the simple expedient of having an orientation
variable for each Q-node, and equating the variables as needed. When Q-nodes
q1 and q2 merge, we add the equation f(q1) = f(q2) if q1 and q2 are merged in
the same order (both forward or both backward), or f(q1) = ¬f(q2) otherwise.

We now describe the two phases of our simultaneous planarity testing al-
gorithm. To process the private vertices of G1 and G2 in the first phase we
compute for each graph an ordering by contracting G into a single vertex, com-
puting a depth-first search from this vertex and finding a leaf-to-root order of the
resulting tree. With these orderings we can now run the algorithm of Haeupler
and Tarjan for all private vertices as described in Section 3.

Now the processed vertices induce a collection of components, such that each
component has at least one out-edge to a common vertex. Further, for each
component, the planarity test provides an associated PQ-tree representing all
possible cyclic orderings of out-edges for that component. For each component
we look at an arbitrary out-edge that goes to the first common vertex in the st-
order and re-root the PQ-tree for this component to have this edge represented
by the special leaf. This completes the first phase.

For the second phase we insert the common vertices in an st-order. The
algorithm is similar to that described in Section 3 for an st-order but, in addition,
has to take care of merging in the private components as well. We first examine
the procedure for a single graph. Adding the first common vertex v1 is a special
set-up phase which we describe first; we will describe the general addition below.

Adding v1 joins some of the private components into a new component C1

containing v1. For each of these private components we reduce the corresponding
PQ-tree so that all the out-edges to v1 appear together and then delete those
edges. Note that due to the re-rooting at the end of the first phase the special
leaf is among those edges. Thus the resulting PQ-tree represents the linear
orderings of the remaining edges. We now build a PQ-tree representing the
circular orderings around the new component C1 as follows: we take v1vn as
the special leaf, create a new P-node as a root and add all the out-edges of v1
and the roots of the PQ-trees of the merged private components as children of
the root (see Figure 4).

Now consider the situation when we are about to add the common vertex
vi, i ≥ 2. The graph so far may have many connected components but because
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v1vn

T(C1) T(C2) T(Ck)

…

…

T(C1)

Figure 4: Setting up T (C1). The P-node’s children are the outgoing edges of v1
and the PQ-trees for the components that are joined together by v1.

of the choice of an st-ordering, all common vertices embedded so far are in one
component Ci−1, which we call the main component. When we add vi, all
components with out-edges to vi join together to form the new main component
Ci. This includes Ci−1 and possibly some private components. The other private
components do not change, nor do their associated PQ-trees.

We now describe how to update the PQ-tree Ti−1 associated with Ci−1 to
form the PQ-tree Ti associated with Ci. This is similar to the approach described
in Section 3. We first reduce Ti−1 so that all the black edges (the ones incident
to vi) appear together (in any leaf-order of the tree). As before, we call a non-
leaf node in the reduced PQ-tree black if all its leaf descendants are black. For
any private component with an out-edge to vi, we reduce the corresponding
PQ-tree so that all the out-going edges to vi appear together and then delete
those edges. We make all the roots of the resulting PQ-trees into children of a
new P-node pi, and also add all the out-going edges of vi as children of pi. It
remains to add pi to Ti−1 which we do as described below. In the process we
also create a black tree Ji that represents the set of linear orderings of the black
edges.

Case 1: Ti−1 contains a black node x such that all black edges are descendants
of x. Let Ji be the subtree rooted at x. We obtain Ti from Ti−1 by replacing x
and all its descendants with pi and all of its descendants.

Case 2: Ti−1 contains a non-black Q-node x that has a sequence of adjacent
black children. We group all the black children of x and add them as children
(in the same order) of a new Q-node x′. Let Ji be defined as the subtree rooted
at x′. We add an equation relating the orientation variables of x and x′. We
obtain Ti from Ti−1 by replacing the sequence of black children of x (and their
descendants) with pi and all of its descendants (see Figure 5).

Note that we use the orientation variables above for a purpose other than
compatibility. (We are only working with one graph so far.) Standard planarity
tests would simply keep track of the order of the deleted subtree Ji in relation
to its parent. Since we have orientation variables anyway, we use them for this
purpose.
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T(C1) T(Ck)…

…

T(C
i-1
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i
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…

…

Figure 5: (above) Adding vertex vi which is connected to main component
Ci−1 and to private components C1, . . . , Ck. (below) Creating Ti from Ti−1 by
replacing the black subtree[s] by a P-node whose children are the outgoing edges
of vi and the PQ-trees for the newly joined private components.

We perform the same procedure on graph G2. We will distinguish the black
trees of G1 and G2 using superscripts. Thus after adding vi we have black trees
J1
i and J2

i . It remains to deal with compatibility. We claim that it suffices to
enforce compatibility between each pair J1

i and J2
i .

To do so, we perform a unification step in which we add equations between
orientation variables for Q-nodes in the two trees.

Unification step for stage i
We first project J1

i and J2
i to the common edges, as described in Section 2.1,

carrying over orientation variables from each original node to its copy in the
projection (if it exists). Next we create the PQ-tree Ri that is the intersection
of these two projected trees as described in Section 2.1. Initially Ri is equal to
the first tree. The step dealing with Q-nodes (Step 3) is enhanced as follows:

3. For each Q-node q of the second tree, and for each pair a1, a2 of adjacent
children of q do the following: Reduce Ri by adding a consecutivity con-
straint on all the descendant leaves of a1 and a2. Find the Q-node that is
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the least common ancestor of the descendants of a1 and a2 in Ri. Add an
equation relating the orientation variable of this ancestor with the orien-
tation variable of q (using a negation if needed to match the orderings of
the descendants).

Observe that any equations added during the unification step are necessary.
Thus if the system of Boolean equations is inconsistent at the end of the al-
gorithm, we conclude that G1 and G2 do not have a compatible combinatorial
planar embedding. Finally, if the system of Boolean equations has a solution,
then we obtain compatible leaf-orders for each pair J1

i and J2
i as follows: Pick

an arbitrary solution to the system of Boolean equations. This fixes the truth
values of all orientation variables and thus the orientations of all Q-nodes in
all the trees. Subject to this, choose a leaf ordering I of Ri (by choosing the
ordering of any P-nodes). The ordering I can then be lifted back to (compat-
ible) leaf-orders of J1

i and J2
i that respect the ordering of I. The following

lemma shows that this is sufficient to obtain compatible combinatorial planar
embeddings of G1 and G2

Lemma 1 The system of Boolean equations has a solution if and only if G1

and G2 have compatible combinatorial planar embeddings.

Proof: Since each boolean equation in the system is necessary, if the system of
equations does not have a solution then G1 and G2 do not have a compatible
combinatorial embedding.

For the other direction, assume that the system of boolean equations has a
solution. The procedure described above produces compatible leaf orders for all
pairs of black trees J1

i and J2
i . Recall that the leaves of J1

i (resp. J2
i ) are the

out-edges of the component Ci−1 in G1 (resp. G2) and contain all the common
in-edges of vi. Focusing on G1 individually, its planarity test has succeeded,
and we have a combinatorial planar embedding such that the ordering of edges
around vi contains the leaf order of J1

i . Also, we have a combinatorial planar
embedding of G2 such that the ordering of edges around vi contains the leaf
order of J2

i .
The embedding of a graph imposes an ordering of the out-edges around

every main component. We can show inductively, starting from i = n, that the
ordering of the out-edges around the main component Ci−1 in G1 is compatible
with the ordering of the out-edges in the corresponding main component in G2.
Moreover all the common edges incident to vi belong to either Ci−1 or Ci. This
implies that in both embeddings, the orderings of edges around any common
vertex are compatible. Therefore G1 and G2 have compatible combinatorial
planar embeddings. �

4.1 Simultaneous planarity of k graphs

In this subsection we consider a generalization of simultaneous planarity for k
graphs, when each vertex [edge] is either present in all the graphs or present
in exactly one of them. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gk = (Vk, Ek)
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be k planar graphs such that V = Vi ∩ Vj for all distinct i, j and E = Ei ∩ Ej

for all distinct i, j. As before, we call the edges and vertices of G = (V,E)
common and all other edges and vertices private. We show that the algorithm
of Section 4 can be readily extended to solve this generalized version, when the
common graph G is 2-connected.

If G1, G2, . . . , Gk have simultaneous planar embeddings then they clearly
have mutually compatible combinatorial planar embeddings. Conversely if G1,
G2, . . . , Gk have combinatorial planar embeddings that are mutually compati-
ble, then, as before (see the beginning of Section 4), we can first find the planar
embedding of the common subgraph and extend it to the planar embeddings of
G1, G2, . . . , Gk. Thus once again, the problem is equivalent to finding combina-
torial planar embeddings for G1, G2, . . . Gk, that are mutually compatible.

Our algorithm for finding such an embedding works as before, inserting
private vertices first, followed by common vertices. The only difference comes
in the unification step, where we have to take the intersection of k projected
trees instead of 2. Doing this is straightforward: We initialize the intersection
tree to be the first projected tree, and then insert the constraints of all the
other trees into the intersection tree. Finally, Lemma 1 and its proof extend to
multiple graphs.

4.2 Running time

We show that our algorithm can be implemented to run in linear time. (In
the generalization to k graphs, the run time is linear in the sum of the sizes
of the graphs—in other words, a common vertex counts k times.) Computing
the leaf-to-root ordering of a depth-first spanning tree and the st-ordering are
known to be doable in linear time [17]. The first phase of our algorithm uses PQ-
tree based planarity testing with a leaf-to-root order of a depth-first spanning
tree [23], which runs in linear time using the efficient PQ-tree implementation
of Booth and Lueker [7, 8]. The re-rooting between the two phases needs to be
done only once and can easily be done in linear time. The second phase of our
algorithm uses PQ-tree based planarity testing with an st-order, as discussed
in Section 3. This avoids re-rooting of PQ-trees, and thus also runs in linear
time [8,23,30]. The other part of the second phase is the unification step, which
is only performed on the black trees, i.e. the edges connecting to the current
vertex. Note that these edges will get deleted and will not appear in subsequent
stages. Thus we can explicitly store the black trees and the intersection tree
at every stage and allow the unification step to take time linear in the total
size of both black trees. The intersection algorithm can be implemented to run
in linear time, as mentioned in Section 2.1. The last thing that needs to be
implemented efficiently is the handling of the orientation variables. It is easy
to see that once the equations are generated, they can be solved in linear time,
by repeatedly fixing the value of a free variable (true or false), finding all the
equations that contain the variable and recursively (say in a depth-first way)
fixing all the variables so as to satisfy the equations. We now explain how to
generate the variable equations in linear time.
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Note that in the implementation of PQ-trees (see Booth and Lueker [8]) the
children of a Q-node are stored in a doubly-linked list and only the leftmost and
rightmost children have parent pointers. Thus when two Q-nodes, one a child
of the other, merge, we may not know the variable and the orientation of the
parent Q-node. To address this problem, we use labels on certain links of the
doubly-linked list as explained below and compute all the equations generated
by the reductions of a unification step at the end of the step.

For any two adjacent child nodes ci and ci+1 of a Q-node q, either the links
ci → ci+1 and ci+1 → ci are labeled with l and ¬l (respectively), for some literal
l, or they are both unlabeled. The underlying interpretation is that ci appears
before ci+1 in the child ordering of q iff l is true. Thus the literals that we
encounter when traveling from one end to the other of the doubly-linked list,
are all (implicitly) equal. When a Q-node is first created with two child nodes,
say x and y, we create a variable associated with it and label the link from x to
y with the variable and the link from y to x with the negation of the variable.

During the algorithm, there are two types of equations: (1) Equations con-
sisting of literals appearing in Q-nodes of distinct trees. (These can be PQ-trees
of the same graph, as happens in Case 2 of Section 4 or PQ-trees of different
graphs, as happens in step 3 of Unification.) (2) Equations consisting of literals
appearing in Q-nodes of a single tree (created during PQ-tree reductions).

Note that type 1 equations are essentially equations that constrain the order-
ing of child nodes across the two Q-nodes, and we handle them as follows. Let
c1, c2 be any two adjacent child nodes of the first Q-node that are constrained
to appear in the same order as child nodes c′1, c

′
2 of the second Q-node. If the

links between c1 and c2 are unlabeled, we create a new variable x and label
the links c1 → c2 and c2 → c1 with x and ¬x respectively. Similarly, we label
the links between c′1 and c′2, if they are unlabeled. Now we create the equation
that equates the literal associated with c1 → c2 with the literal associated with
c′1 → c′2.

Type 2 equations happen when two Q-nodes merge. In this case the merged
node contains literals from both the Q-nodes. Instead of computing the equation
for each merge immediately, we compute the equations in a lazy fashion at the
end of each unification step as follows. For every Q-node of the two black trees
and the intersection tree obtained from their projections (i.e. the output tree
of the unification step on the black trees), we pass from the first child to the
last child and equate all the literals encountered in the labels of the links. This
clearly takes linear time in the size of the black trees.

Thus we have proved the following Theorem.

Theorem 1 Let G1, G2, . . . , Gk be k planar graphs such that any two of them
share the same 2-connected subgraph. Then we can test whether G1, G2, . . . , Gk

are simultaneously planar in O(
∑k

i=1 |V (Gi)|) time.
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4.3 Simultaneous planar drawings

Our algorithm to test simultaneous planarity finds compatible combinatorial
planar embeddings but does not find actual simultaneous drawings. In this sec-
tion we initiate the study of how to compute “nice” simultaneous drawings. Our
results are preliminary and more theoretical than practical. Two natural goals
are to minimize the number of bends along the polygonal curves representing the
edges and to minimize the number of crossings between the private edges of the
two graphs. We will bound both measures, and will achieve polynomial time,
but the area bound for our drawings is exponential. We limit our discussion to
the case where the common graph is connected.

Theorem 2 Given compatible combinatorial embeddings for two graphs G1 and
G2 whose shared graph is connected and has n vertices, we can find planar
drawings for G1 and G2 in polynomial time such that each pair of private edges
intersects at most once and each edge has at most n bends. Furthermore, any
edge of G1 and any private edge of G2 that joins private vertices of G2 will be
drawn as a straight line segment.

Take a straight-line planar drawing of the first graph, G1. This includes a
straight-line drawing of the common graph G, which we will extend to a planar
drawing of G2.

The main idea is to draw the private parts of G2 inside the faces of the
drawing of G using shortest paths. (Of course, we must offset the shortest
paths slightly to avoid coincident features.) A shortest path inside a polygon
has two crucial properties: it bends only at reflex vertices of the polygon, and
it intersects any line segment contained in the polygon at most once.

Any bend on an edge of G2 will occur in the neighborhood of a common
vertex (a vertex of G). We will maintain the following invariants: (1) each edge
of G2 has at most one bend per common vertex; (2) the boundary of each face
of G2 has at most one reflex bend per common vertex; and (3) any edge of G1

intersects any face of G2 in a single line segment. Property (1) implies that each
edge of G2 has at most n bends. Property (2) allows us to maintain property
(1) as we draw more of G2. Property (3) ensures that private edges of G1 cross
private edges of G2 at most once. Initially, the only part of G2 that is drawn is
G, and the properties are satisfied.

We first draw the private edges of G2 whose endpoints are in G. See Figure 6.
We draw the edges one by one preserving the invariants. Consider one such edge
e. The combinatorial embedding specifies the face, f , of the partial embedding
of G2 that contains the edge. Face f is drawn as a polygon, possibly as the
outside of a polygon in case f is the outer face. Also note that the polygon of
f may have repeated vertices since the common graph may have cut vertices.
In such a case, note that the combinatorial embedding specifies the endpoints
of e unambiguously. The edge e cuts f into two faces. By property (2), any
reflex vertex of the polygon of f is in the neighborhood of a unique common
vertex. Draw the edge e as a shortest path in f , pulling it slightly away from
the boundary of f . Observe that this satisfies our invariants.
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Figure 6: Extending a drawing of G to a drawing of G2. Solid lines indicate a face
of G with a repeated vertex at b (the triangle bzu is outside the face). Private
edges of G1 are drawn with dotted lines. (above) Adding two private edges of
G2 (drawn with dashed lines) that have their endpoints in G, specifically (d, a)
and (c, u), each drawn with a bend in the neighborhood of the common vertex
y. Observe that although there are two bends near y, each face of G2 has only
one reflex bend near y. (below) Adding private vertices of G2. Two connected
components in the private part of G2 are contracted to vertices v1 and v2 and
these vertices are drawn along a shortest path between two neighbours—in this
case the same two neighbours a and b. The corresponding connected components
are then drawn in small disjoint discs around v1 and v2.
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We note that without assuming that the common graph is connected, face
f could be a polygon with holes, and edge e would not necessarily cut f into
two regions. This could then violate property (3) which is why a different
construction is needed for this case.

We now insert into the drawing the private vertices of G2 and their incident
edges. This is done in two stages. In the first stage we contract every connected
component of G2 − (V1 ∩ V2) to a single vertex and add these vertices to the
drawing. In the second stage we expand these vertices to the original connected
components.

For the first stage, we consider the connected components of G2 − (V1 ∩ V2)
one by one. Let C be such a connected component consisting of some private
vertices and their induced edges. We will also be concerned with the edges that
join C to the common graph G. The combinatorial embedding specifies the face,
f , of the partial embedding of G2 that contains C. Face f is drawn as a polygon
and, by property (2), any reflex vertex of the polygon is in the neighborhood of a
unique common vertex. We will contract C to a single vertex v and draw v as a
point together with all the edges joining it to common vertices, while preserving
our invariants. Note that the ordering of edges incident to v is determined from
the orderings of edges incident to the vertices of C. If v is adjacent to only one
common vertex, we can augment G2 to make it adjacent to another common
vertex. Let a and b be two common vertices adjacent to v. Draw a shortest path
inside f from a to b (pulling it away from reflex vertices as before) and place v
at some point interior to a line segment of that path. Thus the edges (v, a) and
(v, b) form 180◦ angles at v. Draw the remaining edges incident to v as shortest
paths in the polygon, pulling the paths slightly away from the boundary of f
and from each other to avoid coincident features. Observe that v is not a reflex
vertex in any of the resulting faces. This construction satisfies our invariants:
(1) each edge has at most one bend per reflex vertex of f ; (2) the boundary
of each resulting face has at most one reflex bend per vertex of f ; and (3) any
edge of G1 intersects any face of G2 in a single line segment.

For the second stage, we take a disc D around each point v, small enough so
that the discs are pairwise disjoint, and so that each disc is disjoint from the rest
of the drawing. See Figure 6 for an example. It remains to find a straight-line
drawing of component C inside disc D while connecting the appropriate vertices
of C to the edges that leave the disc. The basic idea is to fix the points where
edges leave D, and add those points as new vertices, yielding an augmented
graph C ′ whose outer face must be drawn as a fixed convex polygon. This can
be done via Tutte’s graph drawing algorithm. See Figure 7. We now fill in the
details of this approach. First note that a single edge e from v to a common
vertex, say a, may represent multiple edges from vertices of C to a. Suppose
e represents some number t > 1 of edges. Consider the path representing e in
the drawing and suppose it exits disc D at point p. We create t copies of p
closely spaced on D, and replace the path from p to a by t paths that go from
the copies of p to a.

We are now in the situation where every edge e from a vertex x of C to
a common vertex a is represented by a path from a point p(e) on D to a.
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Figure 7: Drawing a connected component C (solid edges) of G2−(V1∩V2) inside
a disc D. Points p(e) on the boundary of the disc D are fixed and become bends
in the edges (dashed) from C to the common graph. The augmented graph C ′

consists of C together with vertices p(e) each joined to the appropriate vertex
of C and a cycle through points p(e) (dotted).

Furthermore, the ordering of the points around D is the same as the ordering
of edges leaving component C. We augment the graph C and its combinatorial
planar embedding by adding, for each such edge e, a vertex p(e) and an edge
(x, p(e)). In case D only has two points on it we add a third dummy vertex.
Finally, we add a cycle through the vertices p(e) in the order around D. Let C ′

be the resulting graph. Augment C ′ to a 3-connected graph. By Tutte’s graph
drawing algorithm [35], there is a planar straight-line drawing of C ′ with the
vertices of the outer face drawn as the fixed convex polygon on the p(e)’s.

Note that we have introduced one extra bend on each edge that goes from
a vertex of C to a common vertex a. We claim that the bound of n bends per
edge is still valid. We claimed earlier that the edge from v to a was drawn with
at most one bend per reflex vertex of the enclosing face f , which gave the upper
bound of n. However, note that a itself is a vertex of f , and does not introduce
a bend. Thus the earlier bound can be tightened to n− 1 bends, and one extra
bend is fine. This completes the proof.

5 Conclusions

We have given a linear-time algorithm to test simultaneous planarity of two
graphs whose shared subgraph is 2-connected. Our algorithm does not require
the two graphs to have the same vertex set. Furthermore, our algorithm works
for the more general case when there are k graphs, any two of which have the
same 2-connected subgraph in common.

We also showed how to construct simultaneous planar drawings while limit-
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ing the number of bends and crossings. Our method applies when the common
graph is connected although we believe the result holds more generally. We
leave as an open question the construction of simultaneous planar drawings on
a small grid.

We conjecture that simultaneous planarity of multiple graphs can be tested
in polynomial time when any vertex/edge is either private to a single graph or
common to all graphs. Our algorithm solves the special case when the common
graph is 2-connected.

Note that simultaneous planarity is known to be NP-hard for three graphs
in general [21]. The three graphs constructed in the reduction have edges in all
possible combinations: edges private to each graph, edges common to all three
graphs, and edges common to a pair of graphs but not the third, for every pair.
Another interesting case of simultaneous planarity for multiple graphs is when
the graphs intersect in layers: the graphs are ordered G1, . . . , Gk, and every
vertex/edge occurs in a consecutive subsequence of the graphs. This layered
structure arises from a graph changing over time, so long as a vertex/edge
does not re-appear after it vanishes. The complexity of layered simultaneous
planarity is open, even for three graphs. For three graphs the layered structure
is equivalent to the condition that if a vertex/edge is in G1 and G3 then it is
also in G2.

A weaker version of simultaneous planarity for two graphs requires only that
each common vertex be represented by the same point—a common edge may be
represented by different curves in the two planar drawings. Any pair of planar
graphs can be represented this way: after choosing arbitrary vertex positions,
each graph can be drawn independently, as shown by Pach and Wenger [34].
It would be interesting to generalize our algorithm to the case where some
designated common edges are allowed to be represented by different curves in
the two drawings. There is also a natural optimization version of the problem:
given two planar graphs with some common vertices and edges, find planar
drawings of the graphs so that every common vertex is drawn as the same point
in the two drawings, and maximize the number of common edges that are drawn
as the same curve in the two drawings.

Lastly, both SPQR-trees [13] and PQ-trees have been used for many pla-
narity related problems and both give rise to distinct representations of all
planar embeddings of a (2-connected) planar graph [11, 13, 23]. Understanding
the strength of both representations and how they relate is an important ques-
tion. Comparing the PQ-tree approach to simultaneous planarity taken here
with the SPQR-tree approach in [2] or [18] might be a good start. The recent
work [6] makes very interesting progress in this direction.
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[21] E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. Simultane-
ous graph embeddings with fixed edges. In Workshop on Graph-Theoretic
Concepts in Computer Science ’06, volume 4271 of LNCS, pages 325—335,
2006. doi:10.1007/11917496_29.

[22] B. Haeupler, K. R. Jampani, and A. Lubiw. Testing simultaneous planarity
when the common graph is 2-connected. In International Symposium on
Algorithms and Computation ’10, volume 6507 of LNCS, pages 410–421,
2011. doi:10.1007/978-3-642-17514-5_35.

http://dx.doi.org/10.1016/0022-0000(85)90004-2
http://dx.doi.org/10.1137/S0097539794280736
http://dx.doi.org/10.1142/S0218195907002276
http://dx.doi.org/10.1142/S0218195907002276
http://dx.doi.org/10.7155/jgaa.00113
http://dx.doi.org/10.1007/978-3-540-77537-9_28
http://dx.doi.org/10.1007/978-3-540-77537-9_28
http://dx.doi.org/10.1016/0304-3975(76)90086-4
http://dx.doi.org/10.1007/978-3-642-00219-9_16
http://dx.doi.org/10.1016/j.comgeo.2011.02.002
http://dx.doi.org/10.1016/j.comgeo.2011.02.002
http://dx.doi.org/10.1007/978-3-540-70904-6_12
http://dx.doi.org/10.1007/978-3-540-70904-6_12
http://dx.doi.org/10.1007/11917496_29
http://dx.doi.org/10.1007/978-3-642-17514-5_35


JGAA, 17(3) 147–171 (2013) 171

[23] B. Haeupler and R. E. Tarjan. Planarity algorithms via PQ-trees (extended
abstract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.
doi:10.1016/j.endm.2008.06.029.

[24] S. Hong and H. Nagamochi. Two-page book embedding and clustered graph
planarity. Technical Report 2009-004, Dept. of Applied Mathematics and
Physics, University of Kyoto, Japan, 2009.

[25] W. Hsu and R. McConnell. PC-trees and circular-ones arrangements.
Theoretical Computer Science, 296(1):99–116, 2003. doi:10.1016/

S0304-3975(02)00435-8.

[26] K. Jampani and A. Lubiw. Simultaneous interval graphs. In International
Symposium on Algorithms and Computation ’10, volume 6506 of LNCS,
pages 206–217, 2011. doi:10.1007/978-3-642-17517-6_20.

[27] K. R. Jampani and A. Lubiw. The simultaneous representation problem for
chordal, comparability and permutation graphs. In Algorithms and Data
Structures Symposium ’10, volume 5664 of LNCS, pages 387–398, 2009.
doi:10.1007/978-3-642-03367-4_34.
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