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Abstract

We study the maximum flow problem in directed H-minor-free graphs
where H can be drawn in the plane with one crossing. If a structural
decomposition of the graph as a clique-sum of planar graphs and graphs
of constant complexity is given, we show that a maximum flow can be
computed in O(n logn) time. In particular, maximum flows in directed
K3,3-minor-free graphs and directed K5-minor-free graphs can be com-
puted in O(n logn) time without additional assumptions.
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1 Introduction

Computing maximum flows is fundamental in algorithmic graph theory, and
has many applications. Although flows can be computed in polynomial time for
arbitrary graphs, it is of interest to find classes of graphs for which flows can
be computed more quickly. Classes of note include planar graphs [2, 13, 19, 20,
23, 25, 27, 28, 31, 42], where the fastest current algorithms take O(n log log n)
time for undirected graphs [24] and O(n log n) for directed graphs [2]; graphs
of bounded genus [4, 5], where the best running time is O(n log2 n log2 C) for
undirected graphs with integer capacities that sum to C; graphs with small
crossing number [21], where the best running time is O(k3n log n) for k crossings;
and graphs of bounded treewidth [17], where the best running time is O(n).

Planar graphs, graphs of bounded genus, and graphs of bounded treewidth
are all examples of minor-closed graph families, families of graphs closed under
edge contractions and edge deletions. According to the Robertson–Seymour
graph minor theorem [38], any minor-closed graph family can be described as the
X-minor-free graphs, graphs that do not have as a minor any member of a finite
set X of non-members of the family; for instance, the planar graphs are exactly
the {K5,K3,3}-minor-free graphs [40]. In many cases the properties of a graph
family are closely related to the properties of its excluded minors: for instance,
the minor-closed graph families with bounded treewidth are exactly the families
of X-minor-free graphs for which X includes at least one planar graph [35], and
the families with bounded local treewidth (a functional relationship between the
diameter of a graph and its treewidth) are exactly those for which X includes
at least one apex graph, a graph that can be made planar by removing a single
vertex [11]. If X includes a graph that can be drawn in the plane with a
single pair of crossing edges, then the X-minor-free graphs have a structural
decomposition as a clique-sum of smaller graphs that are either planar or have
bounded treewidth [8, 36]. In this last case we say that the family of X-minor-
free graphs is one-crossing-minor-free; families of this type include the K3,3-
minor-free graphs and K5-minor-free graphs, since K3,3 and K5 are one-crossing
graphs (Figure 1).

In this paper we consider flows in one-crossing-minor-free graph families. We
provide O(n log n) algorithms to compute maximum flows in any directed H-
minor-free graph, where H is a fixed one-crossing graph and where the structural
decomposition of the graph is provided as part of the input. In the case of K3,3-
minor-free graphs and K5-minor-free graphs, algorithms are known that can find
such a decomposition efficiently [1, 33], and by combining our techniques with
those known decomposition algorithms we provide an O(n log n) time algorithm
for maximum flow in directed K3,3-minor-free and K5-minor-free graphs without
requiring the decomposition to be part of the input.

Our main motivation for looking at flows in one-crossing-minor-free graphs
is to try to make progress towards finding flows in arbitrary minor-closed graph
families. Currently the best known algorithms for such families are those which
are for arbitrary sparse graphs [16, 32, 10, 15], so this paper represents a first
attempt at using known structural properties of minor-closed families to improve
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Figure 1: One-crossing drawings of K5 (left), K3,3 (center), and the Wagner
graph (right).

the running time over these bounds. We note that other problems with fast
planar algorithms have also generalized to minor-closed graph families, such
as computing good separators [34], minimum spanning trees [30], and shortest
paths [39]

Like one-crossing-minor-free graphs, graphs in more general minor-closed
families have a structural decomposition in terms of bounded-genus surfaces,
clique-sums, apexes (a constant number of vertices that can be adjacent to ar-
bitrary subsets of each of the bounded-genus surfaces), and vortexes (bounded-
treewidth graphs glued into faces of the bounded-genus surfaces) [7, 37]. How-
ever, these decompositions are greatly simplified in the one-crossing-minor-free
case: the surfaces are planes and there are no apexes or vortexes [36]. To handle
the general case, we would need to combine clique-sums, bounded-genus, apexes,
and vortexes. The problem of flows on bounded genus surfaces has been pre-
viously examined [4, 5] and the present work focuses on clique-sums, as these
are the main feature in the structural decomposition for one-crossing-minor-free
graphs. Recent work details a near linear time algorithm for multi-source multi-
sink flows in planar graphs [3], which is equivalent to a 2-apex planar graph since
one can simply add a source apex and connect to all sources and a sink apex
and connect to all sinks. However, it remains unclear how to handle apexes in
arbitrary bounded genus graphs and vortexes in any setting.

As an important tool in our results, we greatly simplify the mimicking net-
works of Hagerup et al [17] for multiterminal flow networks in the case of four
terminals with a single source, leading to significantly reduced constant factors
in the running time of algorithms that use these networks. Similar simplifica-
tions had been achieved in the undirected case [6] but to our knowledge our
small directed mimicking network is novel.
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2 Preliminaries

2.1 Flows and Cuts

A flow network is a directed graph G = (V,E), where each (directed) edge e ∈ E
has an associated nonnegative real capacity ce, along with two distinguished
vertices s and t which are called the source and sink, respectively. A flow in
this graph is a set of nonnegative real values fe for each edge e ∈ E such that
fe ≤ ce for every e ∈ E and

∑
uv∈E fuv =

∑
vu∈E fvu for every v ∈ V − {s, t}.

The value of the flow is the amount of net flow going from s to t, or
∑

sv∈E fsv.
A cut in a flow network is a set of edges separating s from t; the capacity

of the cut is the sum of the capacities of all the edges that cross the cut in
the direction from s to t. Clearly, the value of any flow is less than or equal
to the value of any cut. The classic max-flow min-cut theorem states that the
maximum possible flow from s to t is in fact equal to the minimum possible cut.

In our setting, we will need to know the maximum possible flow that can
travel through a subgraph of the input graph; this will allow us to simplify
the graph by removing the subgraph and replacing it with an equivalent (but
much smaller) subgraph. To do this, we compute an external flow. In external
flow networks, instead of a single source and sink, we have a set of terminals
Q = {q1, . . . qk} where each terminal qi has associated with it a number xi; we
require that

∑
i xi = 0. If xi is positive then it is interpreted as a supply, and

if xi is negative it is interpreted as a demand. (It may also be the case that xi

is zero, in which case xi carries neither a supply nor a demand.) A realizable
external flow is a set of k values (x1, . . . , xk) for (q1, . . . , qk), along with a flow
f such that

∑
(qi,v)∈E f(qi,v)−

∑
(v,qi)∈E f(v,qi) = xi for all i. Basically, the flow

remains balanced at every vertex in V \ Q, and the imbalance of flow at each
vertex in qi ∈ Q is exactly xi.

It will be helpful to define a special case of external flow networks, which we
call single-source external flow networks. A single-source external flow network
is, simply, an external flow network for which only q1 may have a positive supply
xi; every other terminal has xi ≤ 0 indicating that it is either a demand node
or is inactive as a terminal. As before, a realizable single-source external flow is
a realizable external flow subject to this constraint on the values of xi.

We define S 6→ T , for sets of terminals S and T in an external flow network,
to be the minimum value of a cut for which every terminal in S is on the source
side of the cut and every terminal in T is on the sink side of the cut. We
will further abbreviate the notation by writing strings of symbols instead of
bracketed set notation for the sets of terminals on each side of the cut; e.g.,
s 6→ abc should be interpreted as an abbreviation for {s} 6→ {a, b, c}.

2.2 Mimicking networks

Let G be an external flow network or single-source external flow network with a
fixed specification of the edge capacities and a fixed ordered set of terminals Q,
but where the supply and demand quantities xi remain variable. A key ingre-
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dient for our technique, as formalized by Hagerup et al. [17], is the concept of a
mimicking network, a network H that has the same terminals as G and has the
same realizable external flows, but may have many fewer edges and vertices than
G. In what amounts to a form of separator based sparsification [12], Hagerup
et al. solve flow problems on bounded-treewidth networks by repeatedly replac-
ing subnetworks of the given network with smaller mimicking networks. Their
construction of mimicking networks is based on an observation of Gale [14]:

Lemma 1 [17] An external flow (x1, . . . , xk) is realizable in a network G =
(V,E) with terminals Q = {q1, . . . , qk} if and only if the following relations are
satisfied:

k∑
i=1

xi = 0 (1)∑
qi∈S

xi ≤
(
S 6→ (Q \ S)

)
, for all S ⊆ Q with ∅ 6= S 6= Q. (2)

Essentially, this means that in order to understand the possible flow patterns
in a subnetwork with k terminals, one needs only to know the (2k−2) minimum
cut values from a nonempty subset of terminals to its nonempty complement.
If two networks have the same minimum cut values for each subset then they
behave the same with respect to flows. Based on this observation, Hagerup et

al. show that there exists a replacement network of at most 22
k−2 vertices that

behaves equivalently to any k-terminal network:

Lemma 2 [17] Given any external flow network G with k terminals, there exists

a flow network having at most 22
k−2 vertices which has the same external flow

value as G.

Specifically, the mimicking network of Lemma 2 can be constructed from G
by finding a set of 2k − 2 minimum cuts, one for each partition of the terminals
into two nonempty subsets, and by collapsing subsets of vertices in G into a
single supervertex whenever all vertices in the subset are on the same side of
every cut. Note that the mimicking network is not necessarily a minor of G, as
the collapsed subsets need not form connected subgraphs of G.

However, the size of the mimicking networks formed by Lemma 2, while
constant, is large. Our algorithms will involve external flow networks with up
to four terminals, and if we applied Lemma 2 directly we might get as many as
16384 vertices in our mimicking networks. It is possible to reduce the number
of vertices in the construction of Hagerup et al. from a power of two to a
Dedekind number by requiring nested partitions of the terminals to have nested
cuts, but this would still lead to 168 vertices for the mimicking network of a four-
terminal network. We will describe in Section 3 a simpler mimicking network of
Chaudhuri et al. [6] for external flows with at most three terminals, and a new
mimicking network for single source external flows with at most four terminals
that are both much smaller, requiring at most one nonterminal vertex.
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Figure 2: A K3,3-free graph expressed as a 2-sum of planar graphs and copies
of K5 (left), and a K5-free graph expressed as a 3-sum of planar graphs and
copies of the Wagner graph (right). The edges forming the cliques of the clique-
sum operations are shown as solid black (if they remain in the final graph) or
dashed (if they were removed after the clique-sum operation); the colors of the
remaining edges identify the subgraphs entering into the clique-sum operations.

2.3 Structure of minor free graphs

A minor of a graph G is a graph that can be formed from G by contracting and
removing edges. A graph family F is minor-closed if every minor of a graph in
F also belongs to F . If X is a finite set of graphs, the X-minor-free graphs are
the graphs G such that no minor of G belongs to X; the X-minor-free graphs are
obviously a minor-closed graph family, and (much less obviously) the Robertson–
Seymour graph minor theorem [38] states that every minor-closed graph family
has this form. If F is the family of X-minor-free graphs, then X is the set of
forbidden minors for F ; for instance, K5 and K3,3 are the forbidden minors for
the planar graphs. We will abuse notation and abbreviate the {H}-minor-free
graphs (where H is a single graph) as the H-minor-free graphs.

A clique-sum is an operation that combines two graphs by identifying the
vertices in two equal-sized cliques in the two graphs, and then possibly removing
some of the edges of the cliques. A k-sum is a clique-sum where all cliques have
at most k vertices. More generally, we will say that a given graph is a k-
sum of a collection of more than two graphs if it can be formed by repeatedly
replacing pairs of graphs of the collection by their k-sum. Clique-sums are
closely related to vertex-connectivity of graphs: for instance, the decomposition
of a biconnected graph into triconnected components, formalized in the SPQR-
tree (described in Section 2.4), gives a representation of the graph as a 2-sum
of triconnected graphs, cycles, and two-vertex multigraphs [9, 22, 29].

Besides their relation to connectivity, clique-sums have also played an im-
portant role in describing the structure of minor-closed graph families since the
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proof by Wagner [40] that K5-minor-free graphs are exactly the graphs that
can be formed by 3-sums of planar graphs and the 8-vertex nonplanar Wag-
ner graph, the graph formed by adding four edges connecting opposite pairs of
vertices in an 8-cycle (Figure 2, right). Wagner [41] and D. W. Hall [18] also
proved that K3,3-minor-free graphs are exactly the 2-sums of planar graphs and
the five-vertex complete graph K5 (Figure 2, left). These two characterizations
of H-minor-closed families can be generalized to any H-minor-free graph with
the property that H can be drawn in the plane with only a single edge crossing,
as K3,3 and K5 both can. In this case, the H-minor-free graphs can always be
decomposed into 3-sums of planar graphs and graphs of bounded treewidth [36].

Algorithmically, a decomposition of a K3,3-minor-free graph into a 2-sum of
planar graphs and K5 can be computed in linear time [1]. Essentially, this is
simply a matter of constructing the SPQR tree and verifying that all tricon-
nected components are either planar or K5. As has been shown more recently, a
decomposition of a K5-minor-free graph into a 3-sum of planar graphs and the
Wagner graph can also be constructed in linear time [26, 33]. While decomposi-
tion of graphs in any H-minor-free family (where H is a one-crossing graph) into
3-sums of planar graphs and graphs of bounded treewidth have been directly
considered [8], the current fastest algorithm to compute this decomposition is
recent work by Grohe et. al which computes the graph minor decomposition for
any fixed minor graph. However, the polynomial O(n2) is too high to lead to
improved running times for flow algorithms, so we will assume that a decomposi-
tion has been given to us as part of the input. In case a future development leads
to linear time algorithms for decomposition of one-crossing-minor-free graphs,
this assumption may be removed.

2.4 SPQR trees

The SPQR tree of a graph is a formalized method of decomposing the graph
into a 2-sum of simpler multigraphs, its triconnected components [9, 22, 29]. In
order to have a self-contained exposition, we describe it briefly here. The SPQR
tree is properly defined only for 2-connected graphs; to apply it to graphs that
may not be 2-connected, they need to be first decomposed into 2-connected
components and the SPQR tree construction applied separately to each such
component.

A cycle is a 2-connected graph with n vertices and n edges; a bond is a
multigraph with two vertices and three or more edges, each of which has the
same two endpoints. Then an SPQR tree is a tree with the following properties:

• Each node ti of the SPQR tree is associated with a multigraph Gi that is
either a nontrivial 3-connected simple graph (an “R” node), a cycle (an
“S” node), or a bond (a “P” node).

• Each tree edge titj of the SPQR tree is associated with a multigraph edge
eij in Gi and another multigraph edge eji in Gj . These two multigraph
edges eij and eji are known as virtual edges.
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R

R

S

P

R

Figure 3: An graph (left) and its SPQR tree (right). Each tree node is shown
with its corresponding triconnected component: a bond for the P node, a cycle
for the S node, and triconnected graphs for the R nodes. The dashed black lines
connect pairs of virtual edges (solid black) in these components; the original
graph is formed by gluing together and then removing each pair of virtual edges.

• Each multigraph edge can be a virtual edge for at most one SPQR tree
edge.

• Every SPQR tree edge connects two “R” nodes or two nodes of different
types from each other.

• Each “P” node has at most one non-virtual edge.

A tree of this type represents a graph G that is formed by repeated 2-sum
operations. Each 2-sum glues together the two designated virtual edges eij and
eji for an SPQR tree edge and then deletes the glued-together edge. The order
in which the 2-sums are performed does not affect the final result. Each edge
that is not virtual, in the graph associated to each node, survives to become an
edge in the overall graph. The graphs associated with the SPQR tree nodes are
known as the triconnected components of G.

Conversely, any 2-connected graph with two trivial exceptions, the graphs
K1 and K2, has a unique representation as an SPQR tree; this representation
can be constructed in linear time [9, 22]. In order to handle the two exceptions,
we allow as a special case an SPQR tree with one “Q” node associated with one
of these two exceptional graphs.



JGAA, 17(3) 201–220 (2013) 209

a b

c

x

a �→ bc

b �→ ac

c �→ abab �→ c

bc �→ a

ac �→ b

a b c

x

s

s �→ a (s �→ ab) −

(s �→ a)
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(s �→ bc) +

(s �→ a) −
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(s �→ ac) +
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(s �→ b) +

(s �→ a) −
(s �→ ab)

(s �→ c) +

(s �→ ab) −
(s �→ abc)

Figure 4: Mimicking networks for an external flow network with three termi-
nals a, b, and c (left), and for a single-source external flow network with four
terminals s, a, b, and c (right). In the single-source mimicking network, a, b,
and c are permuted if necessary so that s 6→ a ≥ max{s 6→ b, s 6→ c} and
s 6→ ab ≥ s 6→ ac.

3 Small mimicking networks

We show in this section that any three-terminal external flow network, and
any four-terminal single-source external flow network, may be replaced by a
mimicking network with at most one non-terminal vertex.

Lemma 3 Let P , Q, and R be a partition of the terminals of any external flow
network into three subsets. Then (P 6→ Q ∪R) ≤ (P ∪Q 6→ R) + (P ∪R 6→ Q)
and (P ∪Q 6→ R) ≤ (P 6→ Q ∪R) + (Q 6→ P ∪R).

Proof: If C1 and C2 are minimum cuts separating P ∪ Q from R and P ∪ R
from Q, respectively, then C1 ∪ C2 separates P from both Q and R, and has
capacity at most (P ∪ Q 6→ R) + (P ∪ R 6→ Q); therefore, the minimum cut
value P 6→ Q ∪ R must be at most this capacity. The other inequality follows
by a symmetric argument. �

Lemma 4 (Chaudhuri et al. [6]) Any external flow network with three ter-
minals has a mimicking network with four vertices and six edges.

Proof: Let the three terminals of flow network G be a, b, and c, and form
a network that consists of these three terminals together with a fourth vertex
d, in the form of a star K1,3 with six edges connecting d in both directions to
each terminal. For each terminal q, set the capacity of the edge from q to d
to the minimum cut amount q 6→ ({a, b, c} \ {q}) as measured in G, and set
the capacity of the edge from d to q to be ({a, b, c} \ {q}) 6→ q. It follows from
Lemma 3 that each minimum cut separating one of the terminals from the other
two consists of a single edge, and therefore that the capacity of this cut in the
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mimicking network exactly matches the capacity of the corresponding cut in G.
The correctness of the mimicking network then follows by Lemma 1. �

It is tempting to try an even simpler network, a triangle with three vertices
and six edges, in place of the four-vertex network of Lemma 4, but as Chaudhuri
et al. observe this does not work: the triangle can only mimic networks for which
(a 6→ bc)+(b 6→ ac)+(c 6→ ab) = (ab 6→ c)+(ac 6→ b)+(bc 6→ a), and this equality
is not necessarily true in other three-terminal external flow networks. However,
in undirected flow networks, it is possible to form an undirected triangle network
as a mimicking network, as shown in [6]: the capacity of the edge from a to b
should be 1

2

(
(a 6→ bc) + (b 6→ ac) − (c 6→ ab)

)
and symmetrically for the other

three edges.
We also need mimicking networks for four terminals, but only for single-

source external flows. In this case, the following variant of Lemma 1 is helpful.

Lemma 5 A single-source external flow (x1, . . . , xk) is realizable in a network
G = (V,E) with terminals Q = {q1, . . . , qk} if and only if the following relations
are satisfied:

k∑
i=1

xi = 0 (3)∑
qi∈S
−xi ≤ (x1 6→ S), for all nonempty S ⊆ Q \ {x1}. (4)

Proof: Augment G by a sink vertex t, add an edge of capacity −xi from each
terminal qi (i > 1) to t, and set the demand on t to x1. The result follows
by the classical max-flow min-cut theorem: the desired single-terminal external
flow exists if and only if the augmented graph has a two-terminal flow meeting
the given demands, if and only if it has no cut with capacity less than x1. But
any cut in the augmented graph has a capacity equal to its capacity in the
original graph plus the sum of the demands for the terminals on the source side
of the cut, and each inequality in the statement of the lemma can be restated
as requiring the capacities of some of these cuts to be at least x1. So a cut with
capacity less than x1 exists, if and only if at least one of these inequalities is
violated. �

Lemma 6 Let P , Q, R, and S be four disjoint sets of terminals in an external
flow network G. Then (P 6→ Q ∪ R ∪ S) + (P ∪ Q ∪ R 6→ S) ≤ (P ∪ Q 6→
R ∪ S) + (P ∪R 6→ Q ∪ S).

Proof: Let C1 and C2 be minimum cuts separating P ∪Q from R∪S and P ∪R
from Q∪ S, respectively. Let A be the set of vertices of G on the source side of
C1, and let B be the set of vertices of G on the source side of C2. We consider
three subsets of the edges in C1 ∪C2: the edges from A∩B to G \ (A∩B), the
edges from A ∪ B to G \ (A ∪ B), the edges in both A ∩ B to G \ (A ∩ B) and
in A ∪ B to G \ (A ∪ B), and any remaining edges that go in either direction
between A \B and B \A.
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The first of these three subsets of edges forms a cut separating P from
Q∪R∪S, and the second of these three subsets of edges forms a cut separating
P ∪Q∪R from S. We also note that any edges in the third set (and so in both
the first and the second above) are counted twice in |C1| + |C2|, so the total
value of |C1|+ |C2| is at least equal to (P 6→ Q∪R∪ S) + (P ∪Q∪R 6→ S). �

Lemma 7 Any single-source external flow network with four terminals has a
mimicking network with five vertices and seven edges.

Proof: Given a single-source external flow network G, with terminals s, a, b,
and c, we may assume without loss of generality (by permuting the final three
terminals, if necessary) that s 6→ a is at least as large as s 6→ b and s 6→ c, and
that s 6→ ab is at least as large as s 6→ ac. We create a mimicking network with
a single nonterminal vertex x and with the following seven edges:

• An edge from s to a with capacity s 6→ a.

• An edge from s to b with capacity (s 6→ ab)− (s 6→ a).

• An edge from s to c with capacity (s 6→ abc)− (s 6→ ab).

• An edge from a to x with capacity (s 6→ bc) + (s 6→ a)− (s 6→ abc).

• An edge from b to x with capacity (s 6→ ac) + (s 6→ ab)− (s 6→ a)− (s 6→
abc).

• An edge from x to b with capacity (s 6→ b) + (s 6→ a)− (s 6→ ab).

• An edge from x to c with capacity (s 6→ c) + (s 6→ ab)− (s 6→ abc).

Lemmas 3 and 6 can be used to show that all edge capacities in this network are
non-negative. As we now verify, each of the seven minimum cuts from s to any
subset of terminals in this network has the same capacity as the corresponding
minimum cut in G:

• Every cut separating s from a must cut edge sa, so the cut that separates
only that edge is the minimum cut, and has capacity s 6→ a.

• Every cut separating s from {a, b} must cut edges sa and sb, so the cut
that separates only those two edges is the minimum cut, and has capacity
s 6→ ab.

• Every cut separating s from {a, b, c} must cut edges sa, sb, and sc, so the
cut that separates only those three edges is the minimum cut, and has
capacity s 6→ abc.

• There are three minimal cuts from s to {b, c}: the cut {sa, sb, sc}, the cut
{ax, sb, sc}, and the cut {xb, xc, sb, sc}. The first of these has capacity
(s 6→ abc) ≥ (s 6→ bc), the second has capacity s 6→ bc, and the third is at
least as large as the second by Lemma 3, so the minimum cut has capacity
s 6→ bc.
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• The minimal cuts from s to {a, c} are the cut {sa, sb, sc} with capacity
s 6→ abc, the cut {sa, sc, bx} with capacity s 6→ ac, and the cut {sa, sc, xc}
which is at least as large as the previous cut by Lemma 3. Therefore the
minimum cut has capacity s 6→ ac.

• There are three minimal cuts from s to b: the cut {sa, sb}, the cut {ax, sb},
and the cut {xb, sb}. The first of these has capacity (s 6→ ab) ≥ (s 6→ b),
the second has capacity at least equal to s 6→ b by Lemma 6, and the third
has capacity s 6→ b, so s 6→ b is the minimum cut value.

• Among the cuts from s to c, the ones that cut off another terminal from s
as well as c fall into one of the previous cases, and therefore have capacity
at least s 6→ c. There are two remaining minimal cases: the cut {sc, ax, bx}
with capacity (s 6→ bc)− (s 6→ abc) + (s 6→ ac), at least as large as s 6→ c
by Lemma 6, and the cut {sc, xc} with capacity s 6→ c. Therefore, the
minimum cut value is s 6→ c.

Since all of these cuts have the same value as the corresponding cuts in G, it
follows by Lemma 5 that the network constructed as above is a valid mimicking
network for G. �

The mimicking networks described in Lemmas 4 and 7 are shown in Figure 4.
We note that it is important for our techniques that the mimicking network for
a three-terminal network is planar and has its three terminals in a single face
of its planar embedding (more strongly, in fact, it is outerplanar); however, we
do not rely on the planarity of the four-terminal mimicking network.

4 Flow algorithm

Recall first that any H-minor free graph G (where H is a one-crossing graph)
can be decomposed into 3-sums of planar and bounded treewidth graphs; we
refer to these smaller graphs as components of the clique-sum decomposition.
In order to handle the case that three or more components are glued together
by a 3-sum at a single shared clique, we may represent the decomposition as a
2-colored tree, in which the vertices of one color represent the components of the
decomposition and the vertices of the other color represent the cliques at which
they are glued together. We may identify two distinguished components of the
decomposition, one containing s and another containing t, where s and t are the
two terminals of our given flow problem; if s or t is part of a clique on which
multiple components are glued, then the distinguished component containing
that terminal may be chosen arbitrarily among all components containing it.
The two distinguished components are necessarily connected by a path in the
clique-sum decomposition tree (possibly a path of length zero).

The vertices of G that belong to the cliques of the clique-sum decomposi-
tion, in effect, will form terminals in each component, so any flows into and
out of components of the decomposition can be treated as an external flow
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computations. Our algorithm will iteratively replace each component in the de-
composition with a mimicking network of constant size. However care is needed
in ordering these computations, as some components may have more than a
constant number of vertices that belong to cliques of the decomposition and we
can only use mimicking networks for components that have a constant number
of terminals. We perform this replacement in two phases: in the first phase,
the components that are replaced do not belong to the path from s to t of the
decomposition tree, and in the second phase the replaced components lie along
this path.

Refining the decomposition. For technical reasons it is necessary to ensure
that the planar components in our decomposition are only glued together by
3-sums along their faces, which we achieve by refining the given clique-sum
decomposition tree. To do so, we make the following changes, each of which
replaces one of the components in the decomposition by a clique-sum of smaller
components:

• If any component of the decomposition is not biconnected, replace it with
the 1-sum of its biconnected components, glued together by 1-sums at its
articulation vertices.

• If any component of the decomposition is biconnected but not tricon-
nected, find an SPQR tree representing it as a 2-sum of its triconnected
components [9, 22, 29], as outlined in Section 2.4.

• At this stage of refinement, each component is triconnected, and in partic-
ular each planar component has a unique planar embedding. Within each
planar component, find all the triangles at which 3-sums are glued, and
compare them against the list of triangular faces of the graph. The gluing
triangles that are not faces are separating triangles of the component, and
may be used to partition each planar component into a 3-sum of smaller
planar components.

All these refinements may be performed in linear time, and after this stage each
gluing triangle in each planar component of the decomposition forms a face of
the component.

Simplification phase I: components off the terminal path. Next, we
deal with all components that are not on the s to t path in the clique-sum
decomposition tree. Our algorithm iteratively finds a component Ci that is a
leaf in the clique-sum decomposition tree; let Cj be the component to which Ci

is glued by a clique-sum, one step closer to the s–t path. Then Ci is connected
to Cj and the rest of the graph via at most three vertices, so we can treat
the flow calculation within that component as an external flow problem with
at most three terminals. Since the subgraph is either planar or of bounded
treewidth, we can in O(n log n) time compute the min-cut values of all 6 possible
partitions of its terminals, and by Lemma 4, we can replace the component Ci
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with a mimicking network C ′i of at most four vertices. We then split into cases
according to how Ci and Cj fit into the rest of the clique-sum decomposition
tree:

• If Cj is a bounded-treewidth component, then C ′i can be glued directly
into Cj by performing the clique-sum that connects these two components,
forming a decomposition tree with one fewer component. The treewidth
of the merged component is the maximum of 3 and the treewidth of Cj

(using the fact that the mimicking network for Ci is at worst an oriented
form of K4), so after any number of repetitions of steps of this type the
treewidth remains bounded.

• If Cj is a planar component, and Ci connects to Cj via one or two terminals
or via a triangle of three terminals that is not used for any other 3-sum
in the decomposition tree, then again C ′i can be immediately glued into
Cj forming a decomposition tree with one fewer component. Due to the
planar structure of our three-terminal mimicking networks and due to the
fact that the gluing triangle is a face of Cj , this step preserves both the
planarity of Cj and the property that all gluing triangles in the new larger
planar component are still faces of their component.

• If Cj is a planar component and the gluing triangle of Ci is shared with
another four-vertex replacement network C ′h, then C ′h and C ′i may be
merged into a single mimicking network. Then, if this merged component
is the only component that uses that gluing triangle, it may be glued into
Cj as in the previous case.

• In the remaining cases, we replace Ci by C ′i in the decomposition tree but
do not merge it with Cj .

After all simplifications of this type have been performed, the initial decomposi-
tion tree will have all leaves iteratively removed until none remain; therefore, it
must have the structure of a path of components connecting s to t, where each
of the gluing triangles in this path may also be connected to a single mimicking
network off the path.

Simplification phase II: components along the terminal path. To com-
plete the algorithm we will perform a similar sequence of replacements along
the path from s to t. However, we must use a slightly different technique, since
we may now need to deal with four terminals at a time: s and the three vertices
in the 3-sum connecting the first two components in the s–t path. Additionally,
after some of the replacements in this final stage of the algorithm, we will have
to compute flows in networks that are neither planar nor of bounded treewidth,
but that can be made planar by the removal of a constant number of edges; a
result of Hochstein and Weihe [21] allows us to compute minimum cuts in these
graphs in near-linear time. In this stage of the algorithm, as long as s and t
belong to different components, we perform the following steps:
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• Let Ci be the component containing s and Ti be the set of vertices in the
clique-sum connecting Ci to the next component in the s–t path.

• Compute the minimum cut amounts between s and each nonempty subset
of Ti, using the algorithm of Hochstein and Weihe [21] if Ci has been
formed by adding a constant number of edges to a planar component,
and the algorithm of Hagerup et al. [17] if Ci is a bounded-treewidth
component.

• Replace Ci by a mimicking network C ′i for single-source external flows (as
described in Lemma 7) using the computed cut amounts.

• Glue C ′i, and (if it exists) the other mimicking network sharing the same
gluing triangle, into the next component in the s–t path, forming a path
with one fewer component. If the next component was planar, it becomes
a graph formed from a planar graph by adding a constant number of edges,
while if it had bounded treewidth, its new treewidth is again bounded by
the maximum of its old treewidth and 3.

Eventually this simplification will leave us with a planar or bounded treewidth
graph containing both s and t, and we can compute the maximum flow between
them directly in near linear time.

Reversing the simplifications and constructing a flow. We then reverse
the sequence of simplifications we have performed, replacing each mimicking net-
work with the larger network it replaced; for each such replacement we perform
a single flow computation to find valid flow amounts forming the same external
flow as in the mimicking network. At the end of this reversal of the simplifica-
tion process, we will have a correct maximum flow in the original network that
we were given as input.

We summarize our results as a theorem.

Theorem 1 If we are given as input a decomposition of a directed flow net-
work into a 3-clique-sum of planar and bounded-treewidth components, then in
O(n log n) time we may compute a maximum flow between any two terminals s
and t of the network.

Corollary 2 For any fixed one-crossing graph H, maximum flows in directed
H-minor-free flow networks may be computed in O(n log n) time once a clique-
sum decomposition of the network has been found.

In the case of K5-free and K3,3-free graphs, we can find a clique-sum decom-
position in O(n) time [1, 33]. The case of K3,3-free graphs is particularly simple,
since it uses only 2-sums, and therefore involves simpler mimicking networks.

Corollary 3 We may compute maximum flows between any two terminals in
a K5-free or K3,3-free directed flow network in O(n log n) time.
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5 Conclusions

We have shown how to find flow in near linear time when the input graph
is a clique-sum of planar and bounded tree-width graphs by using mimicking
networks to iteratively simplify the graph. This technique allows us to use
known near linear algorithms in each bounded tree-width or planar component
of the decomposition.

There is no added generality in considering 4-sums of planar graphs in place
of 3-sums (any 4-sum involving a planar graph can be rearranged into a combina-
tion of 3-sums), but our methods immediately generalize to 2-sums of bounded-
genus graphs and bounded-treewidth graphs. Flow computation in 3-sums of
bounded genus graphs is more problematic due to the possible existence of non-
facial non-separating triangles.

The larger goal, however, is computing flow quickly in more arbitrary minor-
free families of graphs. Since flow can be computed efficiently in bounded genus
and bounded tree-width graphs, the primary remaining open questions are those
of computing flow in graphs with vortices or apexes, since these are the relevant
building blocks for more general minor free families.
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