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Maximal Neighborhood Search and Rigid
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Abstract

A rigid interval graph is an interval graph which has only one clique
tree. In 2009, Panda and Das show that all connected unit interval graphs
are rigid interval graphs. Generalizing the two classic graph search algo-
rithms, Lexicographic Breadth-First Search (LBFS) and Maximum Cardi-
nality Search (MCS), Corneil and Krueger propose in 2008 the so-called
Maximal Neighborhood Search (MNS) and show that one sweep of MNS is
enough to recognize chordal graphs. We develop the MNS properties of rigid
interval graphs and characterize this graph class in several different ways.
This allows us obtain several linear time multi-sweep MNS algorithms for
recognizing rigid interval graphs and unit interval graphs, generalizing a
corresponding 3-sweep LBFS algorithm for unit interval graph recognition
designed by Corneil in 2004. For unit interval graphs, we even present a
new linear time 2-sweep MNS certifying recognition algorithm.
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1 Introduction

For any nonnegative integers n and m we use the notation [n] for the set of first
n positive integers and write 〈m+1, n〉 for [n]\ [m]. For any set S of cardinality
n, an ordering of S is just a bijection from [n] to S and two orderings σ and
σ′ of S are said to be the reversal of each other if σi = σ′n+1−i for every
i ∈ [n]. Let G be a graph on n vertices. A selection rule S is a map from
2V (G) \ {V (G)} to 2V (G) \ {∅} such that T ∩ S(T ) = ∅ for any T ( V (G).
A graph search algorithm with a selection rule S determines an ordering τ of
V (G) by selecting τ1 ∈ S(∅) and then going on inductively to pick τi+1 from
S({τ1, . . . , τi}) for every i ∈ [n − 1]. We call S({τ1, . . . , τi}) a slice at time
i + 1 in the process of generating the ordering τ with the selection rule S, or
merely a slice of τ , and denote it by the simplified notation Sτ (i + 1), hoping
that the selection rule is clear from context. Many different orderings may be
generated by the same selection rule as there are many ways of breaking ties by
choosing one element from a given slice. If S′ is a new selection rule satisfying
S′(T ) ⊆ S(T ) for any T ∈ 2V (G)\{V (G)}, we may think that we are introducing
additional rule of breaking ties into the original search algorithm corresponding
to S and then restrict the output vertex orderings to a smaller range. For any
graph search algorithm A with a selection rule S, any graph G and u ∈ V (G)
satisfying u ∈ S(∅), we write A(G, u) for the search algorithm applied to G
with a selection rule S′ such that S′(∅) = {u} and S′ = S elsewhere. Each
vertex ordering produced by A on a graph G will be called an A ordering of G
and the last vertex of an A ordering is referred to as an A end-vertex of G.

A multi-sweep graph search algorithm generates several orderings τ1, τ2, . . .
of the vertex set of a graph in turn with selection rules S1,S2, . . . in each sweep
respectively. Usually, the rule Si will rely on the previous orderings τ1, . . . , τi−1.
It is expected that these orderings will be better and better in some sense and
the final ordering will provide us what we want, say a good certificate for either
the membership or the nonmembership of the graph in certain graph class.

The Maximal Neighborhood Search (MNS) [7] is the graph search algorithm
that at each step always picks a vertex whose set of neighbors already explored
is maximal with respect to set inclusion. A graph search algorithm is an MNS

type algorithm if all possible output vertex orderings of the algorithm are MNS

orderings. Both LBFS [10, 23] and MCS [28, 29] are MNS type algorithms and
have simple linear time implementations. Another quite useful and easily im-
plementable MNS type algorithm is the so-called LDFS algorithm [7], which can
run with a log factor off linear [14] (a more complicated version has a log log
factor [5, 26]). A special implementation of MCS, called LMCS, is also an MNS

type algorithm and is proposed to study chordal powers of graphs [3]. It worths
mentioning that LBFS is a special breadth-first search while MNS may not be any
breadth-first search.

Generalizing the idea of LBFS+ [17, 24], for any graph search algorithm A
with selection rule S, any graph G and any ordering τ of V (G), let us propose
here the graph search algorithm A+(G, τ), which produces an ordering σ of
V (G) such that for each i ∈ [|V (G)|], after σ1, . . . , σi−1 are determined, σi is
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chosen to be the vertex in S({σ1, . . . , σi−1}) that appears last in τ . We mention
that LDFS+ can be implemented in the same time as LDFS [5]. Additionally,
LBFS+ can be executed in linear time as with LBFS itself [4, 10].

For any graph search algorithm A with selection rule S, given any graph
G on n vertices and any u ∈ V (G), the algorithm A4(G, u) visits the graph
according to an ordering τ such that τ1 = u and for any i ∈ [n−1], after τ1, . . . , τi
are determined, τi+1 is a vertex in S({τ1, . . . , τi}) whose closed neighborhood is
minimal with respect to set inclusion. Let us explain briefly that LBFS4(G, u)
has a simple linear time implementation. We first construct in linear time an
ordering ρ of V (G) such that ρn = u and deg(ρ1) ≥ · · · ≥ deg(ρn−1). It is easy
to see that we can then use any efficient execution of LBFS+(G, ρ) as a way of
implementing LBFS4(G, u).

An interval representation I of a graph G maps each v ∈ V (G) to an interval
of reals I(v) = [`I(v), rI(v)] 6= ∅ such that vw ∈ E(G) if and only if v 6=
w and I(v) ∩ I(w) 6= ∅. If rI − `I takes the constant value 1, the interval
representation I is named a unit interval representation. A graph admitting
an interval representation and a unit interval representation, respectively, is
called an interval graph and a unit interval graph (UIG). Chordal graphs are
the intersection graphs of sets of subtrees of a common host tree, which are also
those graphs without chordless cycles of length at least four. It is apparent that
{unit interval graphs} ⊆ {interval graphs} ⊆ {chordal graphs}.

Let G be a graph on n vertices and let τ be an ordering of V (G). We
use NG[v] and NG(v) for the closed neighborhood and the open neighborhood
of v in G, respectively. A vertex v of G is simplicial if NG[v] is a clique. A
vertex v of G is admissible if there are no vertices x and y such that there
is an x, v-path avoiding NG[y] and there is an y, v-path avoiding NG[x]. The
set of vertices of G which are both simplicial and admissible is denoted by
AS(G). For any j, k ∈ [n], we define NG,τ [j] = {i ∈ [n] : τi ∈ NG[τj ]},
N≥kG,τ [j] = NG,τ [j] \ [k − 1] and N≤kG,τ [j]= NG,τ [j] ∩ [k]. For each j ∈ [n], set
`G,τ (j) = min{i : i ∈ NG,τ [j]} and rG,τ (j) = max{i : i ∈ NG,τ [j]}. If
τjτj+1 ∈ E(G) for every j ∈ [n− 1], then τ is a consecutive ordering of G. We
call τ an I-ordering of G if 〈j, rG,τ (j)〉 ⊆ NG,τ [j] for every j ∈ [n] [8] and we
call τ a UI-ordering of G if 〈`G,τ (j), rG,τ (j)〉 = NG,τ [j] for every j ∈ [n] [4].
The ordering τ is a perfect elimination ordering (PEO) provided τi is simplicial
in G[τ1, . . . , τi] for each i ∈ [n]. If τ is an MNS ordering and each of its MNS slices
other than Sτ (1) is a clique, we call τ a perfect slice ordering (PSO) of G. We
refer to τ as an RI-ordering of G provided it is both a consecutive I-ordering
and a PSO. The set of all maximal cliques of G is denoted by C (G). A clique
tree T of G is a tree with C (G) as its vertex set such that it holds for every
v ∈ V (G) that the nodes of T containing v induce a subtree of T . A clique tree
which is a path is called a clique path. A rigid chordal graph is a graph with a
unique clique tree and a rigid chordal graph is a rigid interval graph (RIG) if it
has a clique path.

Theorem 1 [7, §2.6] The MNS end-vertices of a chordal graph are simplicial.
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Theorem 2 For any rigid interval graph G, AS(G) coincides with its set of
MNS end-vertices.

Theorem 3 Let G be a graph having a clique tree T . Then G is a rigid chordal
graph if and only if we cannot find three different maximal cliques Ci, Cj and
Ck such that

{CiCj , CjCk} ⊆ E(T ) and (Ci ∩ Cj) \ Ck = ∅. (1)

Let G be a graph and let µ be an ordering of C (G). For each v ∈ V (G),
define `µ(v) = minv∈µi i and rµ(v) = maxv∈µi i. For any v, w ∈ V (G), we write
v ≺µ w provided `µ(v) < `µ(w) or `µ(v) = `µ(w), rµ(v) < rµ(w). An ordering
τ of V (G) is compatible with an ordering µ of C (G) if τ is a linear extension of
the partial order ≺µ. We say that an ordering τ of V (G) is left-compatible with
the ordering µ of C (G) provided `µ(τ1) ≤ · · · ≤ `µ(τ|V (G)|).

Theorem 4 Let G be a graph with m maximal cliques. (i) If a path [µ1, . . . , µm]
is the unique clique tree of G, then any ordering τ of V (G) which is compatible
with µ must be an RI-ordering. (ii) If G has an RI-ordering τ , then G is a rigid
interval graph and has a clique path [µ1, . . . , µm] such that τ1 ∈ µ1 \ µ2.

Theorem 5 [22] A graph is a unit interval graph if and only if it has a UI-
ordering.

As can be seen from Theorems 3, 4 and 5, rigid interval graphs include
connected unit interval graphs [20, Lemma 2.9] and those chordal graphs having
at most two maximal cliques that contain simplicial vertices [1, Theorem 4.3].
For later reference, we list below the result on the unit interval graphs. It is
noteworthy that connected unit interval graphs are also characterized by the
unique existence of so-called straight enumerations [9, Corollary 2.5].

Theorem 6 [20, Lemma 2.9] A connected unit interval graph must be a rigid
interval graph.

A graph G is prime provided that any subset S of V (G) satisfying 1 < |S| <
|V (G)| contains two vertices u, v such that NG(u) \ S 6= NG(v) \ S. Hsu [12,
Theorem 4.1] observes that every prime interval graph has a unique maximal
clique arrangement in certain sense.

Example 7 Fig. 1(a) is a rigid chordal graph but not any rigid interval graph.
Fig. 1(b) is not any rigid interval graph; its vertex ordering 1, 2, 3, 4, 5 is both a
PSO and an I-ordering but not consecutive. Fig. 1(c) is a rigid interval graph
but not a unit interval graph. Fig. 1(d) is a connected unit interval graph with a
UI-ordering 1, 2, 3, 4, 5; Its vertex ordering 1, 3, 2, 4, 5 is an RI-ordering but not
any UI-ordering. Fig. 1(e) is a prime interval graph, has a unique clique path,
but has totally three clique trees.
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1 2 3 4 5 6

(a)

1 2 3 4 5

(b)

1 2 3 4 5 6

(c)

1 2 3 4 5

(d)

1 2 3 4 5 6

(e)

1 2 3 4 5

(f)

Figure 1: Six graphs.

In 2004, Corneil [4] presents a 3-sweep LBFS algorithm for the recognition
of unit interval graphs and argues that it is the most easily implementable unit
interval graph recognition algorithm thus known. We refer to [27, p. 194] for
some interesting comments on what is a simple algorithm. Following the idea
of this 3-sweep LBFS algorithm, we propose here two simple multi-sweep MNS

algorithms, 2MNS-UI/RIA and 3MNS-UI/RIA, for recognizing unit/rigid interval
graphs based on an MNS type algorithm A.

2MNS-UI/RIA(G)
1 . Input a connected graph G on n vertices
2 . Output a statement declaring whether or not G is a unit/rigid
3 . interval graph
4 Generate an MNS ordering σ of V (G);
5 Do A4(G, σn) to yield a sweep τ ;
6 if τ is a UI-ordering/RI-ordering of G
7 then conclude that G is a unit/rigid interval graph;
8 else conclude that G is not any unit/rigid interval graph.

3MNS-UI/RIA(G)
1 . Input a connected graph G on n vertices
2 . Output a statement declaring whether or not G is a unit/rigid
3 . interval graph
4 Generate an MNS ordering δ of V (G);
5 Do A(G, δn) yielding a sweep σ;
6 Do A+(G, σ) yielding a sweep τ ;
7 if τ is a UI-ordering/RI-ordering of G
8 then conclude that G is a unit/rigid interval graph;
9 else conclude that G is not any unit/rigid interval graph.
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Theorem 8 The algorithm 2MNS-UI/RIA outputs a UI-ordering when the input
is a connected unit interval graph and outputs an RI-ordering when the input is
a rigid interval graph.

Theorem 9 The algorithm 3MNS-UI/RIA outputs a UI-ordering when the input
is a connected unit interval graph and outputs an RI-ordering when the input is
a rigid interval graph.

A connection between 2MNS-UI/RIA and 3MNS-UI/RIA is illustrated in the
next result.

Theorem 10 Let G be a rigid interval graph on n vertices and let δ, σ, and τ
be the three orderings of G generated by 3MNS-UI/RIA(G) based on an MNS type
algorithm A. Then τ is an output of the algorithm A4(G, σn).

Here is one more characterization of rigid interval graphs in terms of MNS
properties, the proof of which indeed suggests a simple 4-sweep MNS algorithm
for recognizing rigid interval graphs.

Theorem 11 Let G be a graph on n vertices. Then G is a rigid interval graph if
and only if it has two consecutive orderings τ and ρ such that τ is an I-ordering,
ρ is an MNS ordering and ρ1 = τn.

A certifying algorithm [18] is one whose output contains not only an answer
of acceptance/rejection but also a certificate for the user to easily convince him-
self that the particular output is correct or something buggy happens in the
implementation or design of the algorithm. Meister proposes a special breadth-
first search, called min-LexBFS, and designs a certifying recognition algorithm
for unit interval graph which basically consists of three sweeps of min-LexBFS
[19, Theorem 16]. Note that min-LexBFS is incomparable with LBFS and even
incomparable with MNS. Hell and Huang [11] modify Corneil’s 3-sweep LBFS al-
gorithm for recognizing unit interval graphs into a certifying algorithm. With an
additional sweep to search for a certificate of membership/nonmenbership fol-
lowing the output ordering of the second MNS sweep, we can even turn 2MNS-UIA

into a certifying algorithm, called T-MNSA, for recognizing unit interval graphs.
It may worth pointing out that the nonmembership certificate of our certifying
algorithm is the same with that of the algorithm of Meister [19] and is different
with that used in the algorithm of Hell and Huang [11].

To prepare for our discussion of T-MNSA in Section 2, we need some more
concepts. An asteroidal triple (AT) is a set of three vertices such that each pair
of vertices is joined by a path that avoids the closed neighborhood of the third.
Let G be a graph and let a, b, c, d be four vertices in G. We say that {a, b, c, d}
is a claw centered at a in G provided b, c and d are three independent vertices
from the neighbors of a in G.

Theorem 12 [15, 21] A graph is an interval graph if and only if it is AT-
free and chordal; An interval graph is a unit interval graph if and only if it is
claw-free.
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Theorem 13 Let G be a connected graph without any chordless 4-cycle. Let u
be both a simplicial vertex and an MNS end-vertex of G. Let A be an MNS type
algorithm and let τ be an ordering produced by A4(G, u). Then either τ is a
UI-ordering of G or G contains either a claw or an AT.

In Section 2, we prove Theorem 13, introduce T-MNSA and demonstrate its
correctedness and implementation. In Section 3, we prove Theorems 2, 3, 4,
8, 9, 10 and 11 and then demonstrate the correctedness and implementation
of 2MNS-UI/RIA and 3MNS-UI/RIA. Finally, we conclude the paper with some
remarks in Section 4.

2 Certifying algorithm for recognizing UIG

Lemma 1 Let G be a graph on n vertices and let i ∈ [n]. Let τ be an MNS

ordering of G such that it holds for every j ∈ [i− 1] that

N≥j+1
G,τ [j] ⊆ NG,τ [j + 1]. (2)

Then the following statements are true: (i) N
≤min{r,t}
G,τ [t] = 〈`G,τ (t),min{r, t}〉

for every r ∈ [i] and t ∈ [n]; (ii) `G,τ (j) ≤ `G,τ (k) for every j, k ∈ [n] such that
j ≤ i+ 1 and j < k; (iii) If i = n, then τ is a UI-ordering of G.

Proof: To prove (i), it suffices to verify it for r = i. As a consequence of Eq.
(2), for 1 ≤ j ≤ j + s ≤ i we have

N≥j+sG,τ [j] ⊆ N≥j+sG,τ [j + s] (3)

If `G,τ (t) ≤ i, claim (i) follows from Eq. (3) by putting j = `G,τ (t) and j + s =

min{i, t}. If `G,τ (t) > i, we have N
≤min{i,t}
G,τ [t] = ∅ = 〈`G,τ (t),min{i, t}〉 and so

claim (i) still follows.

If j = 1, then `G,τ (j) = 1 ≤ `G,τ (k) and thus claim (ii) is trivial. As-

sume then j > 1. Since j − 1 ≤ i, an application of (i) gives N
≤min{j−1,j}
G,τ [j] =

〈`G,τ (j),min{j−1, j}〉 = 〈`G,τ (j), j−1〉 andN
≤min{j−1,k}
G,τ [k] = 〈`G,τ (k),min{j−

1, k}〉 = 〈`G,τ (k), j − 1〉. By the rule of MNS, N
≤min{j−1,j}
G,τ [j] ( N

≤min{j−1,k}
G,τ [k]

cannot happen and so `G,τ (j) ≤ `G,τ (k) follows, finishing the proof of (ii).

To deduce (iii), we pick arbitrarily k ∈ [n] and intend to show NG,τ [k] =

〈`G,τ (k), rG,τ (k)〉. It follows from (i) that N≤kG,τ [k] = 〈`G,τ (k), k〉. It thus re-
mains to verify τ(j′)τ(k) ∈ E(G) for each j′ ∈ 〈k+ 1, rG,τ (k)〉. But (ii) implies
`G,τ (j′) ≤ `G,τ (rG,τ (k)) ≤ k. Accordingly, by (i) again, k ∈ 〈`G,τ (j′), k〉 =

N
≤min{k,j′}
G,τ [j′], completing the proof. �

Corollary 14 A graph G on n vertices is a unit interval graph if and only if it
has an MNS ordering τ such that Eq. (2) is fulfilled for all j ∈ [n− 1].
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Proof: The backward direction is a consequence of Theorem 5 and Lemma
1. We now address the other direction. Let the graph G have a unit interval
representation I and let τ be an ordering of V (G) such that `I(τ1) ≤ · · · ≤
`I(τn). It is easy to see that τ is what we want, finishing the proof. �

Lemma 2 Let G be a connected graph on n vertices and let σ be an MNS ordering
of G. If G[V (G) \NG[σn]] has at least two different connected components, say
A and B, then there exist a ∈ A, b ∈ B and c ∈ NG(σn) such that {a, b, c, σn}
is a claw in G centered at c.

Proof: Set p = min{i : σi ∈ A} and q = min{i : σi ∈ B}. Without
loss of generality, assume that p < q. Observe that NG[σq] ⊆ NG(σn) ∪ B
and hence, as σq is the earliest vertex in B visited by σ, we conclude that

N≤q−1G,σ [n] ⊇ N≤q−1G,σ [q]. Considering the fact that n > q, the rule of MNS then
enables us assert that

N≤q−1G,σ [n] = N≤q−1G,σ [q]. (4)

Furthermore, the connectedness of G and the rule of MNS ensure that there is a
path in G[σ1, . . . , σq] connecting σp ∈ A and σq ∈ B, which shows that there

are r ∈ [q − 1] and s ∈ N≤q−1G,σ [n] such that σr ∈ NG(σs) ∩ A. Subsequently,
according to Eq. (4), we can check that the four vertices σn, a = σr, b = σq,
and c = σs form a desired claw in G, finishing the proof. �

Proof of Theorem 13: Let n = |V (G)|.

Case 1. It holds N≥i+1
G,τ [i] ⊆ NG,τ [i+ 1] for all i ∈ [n− 1]. We conclude

from Lemma 1 (iii) that τ is a UI-ordering of G.

Case 2. We can find a minimum i ∈ [n−1] such that N≥i+1
G,τ [i] * NG,τ [i+

1]. By Lemma 1 (ii), it holds p ≤ q where p = `G,τ (i) and q = `G,τ (i + 1).

Take s ∈ N≥i+1
G,τ [i] \ NG,τ [i + 1]. Lemma 1 (i) says N≤iG,τ [i + 1] = 〈q, i〉 while

the connectedness of G gives N≤iG,τ [i+ 1] 6= ∅. This then leads to τiτi+1 ∈ E(G).
Since u = τ1 is simplicial, the MNS rule forces i > 1 and so we have p < i; it is
obvious that q < i+ 1. Let us record what we know about E(G) now here:

{τpτi, τqτi+1, τiτs, τiτi+1} ⊆ E(G), τi+1τs /∈ E(G). (5)

Case 2.1. p < q. It follows from Lemma 1 (ii) that p < q ≤ `G,τ (s) and
hence p /∈ NG,τ [i + 1] ∪ NG,τ [s]. Noting Eq. (5) additionally, we find that the
set {τi, τi+1, τs, τp} is a claw in G with τi being its center.

Case 2.2. p = q. By Lemma 1 (i), it holds N≤i−1G,τ [i] = N≤i−1G,τ [i + 1] =

〈p, i− 1〉. Henceforth, recalling N≥i+1
G,τ [i] * NG,τ [i+ 1], the rule of MNS4 implies

the existence of an element t ∈ N≥i+2
G,τ [i + 1] \ NG,τ [i] = NG,τ [i + 1] \ NG,τ [i].
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In light of Eq. (5) now, as G[τs, τi, τi+1, τt] cannot be a 4-cycle, we obtain
τtτs /∈ E(G). Here are what we know on E(G) in this case:

{τpτi, τpτi+1, τiτs, τiτi+1, τtτi+1} ⊆ E(G), {τi+1τs, τtτi, τtτs} ∩ E(G) = ∅. (6)

Case 2.2.1. p = q > 1. As G is connected, we can find an element k ∈
N≤p−1G,τ [p]. By Lemma 1 (ii), we deduce from min{s, t} > i+ 1 that k < p = q =
min{`G,τ (i), `G,τ (i+ 1), `G,τ (s), `G,τ (t)} and hence get to

{i, i+ 1, s, t} ∩NG,τ [k] = ∅. (7)

Case 2.2.1.1. s ∈ NG,τ (p). Making use of Eqs. (6) and (7), we see that
{τp, τi+1, τs, τk} is a claw in G centered at τp.

Case 2.2.1.2. t ∈ NG,τ (p). By Eqs. (6) and (7), {τp, τi, τt, τk} is a claw with
τp at the center.

Case 2.2.1.3. Neither s nor t lies in NG,τ (p). By Eqs. (6) and (7), we
can check that [τt, τi+1, τi, τs] is a path missing NG[τk], [τs, τi, τp, τk] is a path
missing NG[τt] and [τk, τp, τi+1, τt] is a path missing NG[τs]. In all, we find that
{τs, τt, τk} is an AT of G.

Case 2.2.2. p = q = 1. According to Eq. (6), {i, i+ 1} ⊆ NG,τ [1] and τsτi+1,
τtτi /∈ E(G). Because τ(1) = u is a simplicial vertex of G, this leads to {s, t} ∩
NG,τ [1] = ∅. Let A and B be the connected components of G[V (G) \ NG[τ1]]
such that τs ∈ A and τt ∈ B.

Case 2.2.2.1. A = B. This means that τs and τt can be connected by a path
P which misses NG[τ1]. In view of Eq. (6) and the fact that τs, τt /∈ NG[τ1], we
see that {τs, τt, τ1} is an AT with three certificate paths [τs, τi, τ1], [τ1, τi+1, τt]
and the path P .

Case 2.2.2.2. Now assume that A 6= B. Recall that τ1 = u is an MNS

end-vertex. By Lemma 2, there exist a ∈ A, b ∈ B and c ∈ NG(τ1) such that
{τ1, c, a, b} is a claw centered at c, completing the proof. �

Given any MNS type algorithm A, we now present an algorithm which we
call T-MNSA, or the Two-Sweep MNS UIG Certifying Algorithm based on A.
Note that Theorems 1, 5, 12 and 13 validate the correctness of this algorithm.
In the following pseudocodes of T-MNSA, we use annotations to indicate the
correspondence between the parts of the algorithm with Theorem 1 and the
different cases distinguished in the proof of Theorem 13.

T-MNSA(G)
1 . Input a connected graph G with |V (G)| = n
2 . Output an answer that G is a UIG as well as one of its UI-orderings
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3 . or a certificate showing that G is not a UIG
4 Generate an MNS ordering σ of G
5 if σ is not a PEO
6 then return an induced cycle of length at least four
7 . Theorem 1
8 Do A4(G, σn) to yield an ordering τ

9 N≥i+1
G,τ [i]← {k : k ≥ i+ 1 and τk ∈ NG[τi]}

10 for i← 2 to n− 1
11 do if N≥i+1

G,τ [i] * N≥i+1
G,τ [i+ 1]

12 then p← min{j : τj ∈ NG[τi]}
13 q ← min{j : τj ∈ NG[τi+1]}
14 . Case 2: we must have p ≤ q by Lemma 1
15 Pick an s ∈ N≥i+1

G,τ [i] \N≥i+1
G,τ [i+ 1]

16 if p < q
17 then return {τi, τi+1, τs, τp} is a claw
18 . Case 2.1
19 Choose a t so that τt ∈ NG[τi+1] \NG[τi]
20 . Case 2.2
21 if p = q > 1
22 then pick a k such that k < p and τk ∈ NG(τp)
23 if τs ∈ NG(τp)
24 then return {τp, τi+1, τs, τk} is a claw
25 . Case 2.2.1.1
26 if τt ∈ NG(τp)
27 then return {τp, τi, τt, τk} is a claw
28 . Case 2.2.1.2
29 return {τs, τt, τk} is an AT with certificate paths
30 [τs, τi, τp, τk], [τk, τp, τi+1, τt] and [τt, τi+1, τi, τs]
31 . Case 2.2.1.3
32 . We now have p = q = 1, τs, τt ∈ V (G) \NG[τ1]
33 A← the connected component of G−NG[τ1] containing τs
34 B ← the connected component of G−NG[τ1] containing τt
35 if A = B
36 then P ← a path in A connecting τs and τt
37 return {τs, τt, τ1} is an AT with three certificate
38 paths P, [τs, τi, τ1] and [τ1, τi+1, τt]
39 . Case 2.2.2.1
40 else choose c ∈ NG(A) ∩NG(B) ∩NG(τ1)
41 choose a ∈ A ∩NG(c), b ∈ B ∩NG(c)
42 return {τ1, c, a, b} is a claw
43 . Case 2.2.2.2
44 return τ is a UI-ordering of the UIG G
45 . Case 1

Step 4 can be done with any easily implementable MNS type algorithm, say
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LBFS or MCS. Step 6 can be done in linear time using the algorithm of [30]. As
mentioned in Section 1, one way to implement Step 8 is to adopt A as LBFS

and then follow the implementation technique of LBFS+. Finally, a UI-ordering
is very easy to test [4, p. 377] and so our algorithm really provides a good
membership certificate.

Theorem 15 [6, Theorem 3.1] Let G be an arbitrary graph. Then every vertex
from AS(G) must be an LBFS end-vertex.

Corollary 16 A connected graph G is a unit interval graph if and only if
AS(G) 6= ∅, G is AT-free and contains neither induced 4-cycle nor claw.

Proof: The “only if” part is trivial and so we just need to prove the “if”
direction. By Theorem 15, any vertex from AS(G) must be both simplicial and
an MNS end-vertex. Accordingly, Theorem 13 implies the result. �

3 MNS properties of RIG/UIG

Lemma 3 Let G be a graph with m maximal cliques and µ an ordering of
C (G) such that [µ1, . . . , µm] is a clique path of G. (i) If an ordering τ of V (G)
is both consecutive and left-compatible with µ, then (µi+1 ∩ µi+2) \ µi 6= ∅ for
every i ∈ [m − 2]. (ii) If G has a PSO τ which is left-compatible with µ, then
(µi ∩ µi+1) \ µi+2 6= ∅ for every i ∈ [m− 2].

Proof: (i) Pick i ∈ [m − 2] and let s = max{r : τr ∈ µi+1}. We aim to show
that τs ∈ (µi+1 ∩ µi+2) \ µi, or equivalently, as [µ1, . . . , µm] is a clique path of
G, that `µ(τs) = i + 1 and rµ(τs) ≥ i + 2. Because τ is left-compatible with µ
and none of µi+1 \ µi and µi+2 \ µi+1 can be empty, the maximality of s gives
`µ(τs) = i+ 1 and `µ(τs+1) = i+ 2. On the other hand, since τ is a consecutive
ordering, we have τsτs+1 ∈ E(G) and so rµ(τs) ≥ `µ(τs+1) ≥ i+ 2, as wanted.

(ii) Take i ∈ [m− 2] and choose s = min{r : τr ∈ µi+1 \ µi+2}. We want to
show that τs ∈ (µi ∩ µi+1) \ µi+2. For this, we need only check that `µ(τs) ≤ i.
If `µ(τs) ≥ i+ 1, then s > 1 and `µ(τs) = rµ(τs) = i+ 1. Pick τt ∈ µi+2 \ µi+1

and so τtτs /∈ E(G). Owing to the fact that τ is left-compatible with µ, it holds

s < t. For any p ∈ N≤s−1G,τ [s], the minimality assumption on s together with

NG[τs] ⊆ µi+1 forces τp ∈ µi+1 ∩ µi+2 and hence p ∈ N≤s−1G,τ [t]. This means
that {τs, τt} ⊆ Sτ [s]. Recall that τ is a PSO and s > 1 and so Sτ [s] should be
a clique. This implies that τtτs ∈ E(G), reaching a desired contradiction. �

Lemma 4 Let G be a graph with m maximal cliques and n vertices. (i) If G
has a clique path [µ1, . . . , µm], then any ordering τ of G which is left-compatible
with µ must be an I-ordering of G. (ii) If G has an I-ordering τ , then G has a
clique path [µ1, . . . , µm] such that τ is left-compatible with µ.

Proof: (i) Take 1 ≤ i < j < k ≤ n. Since τ is left-compatible with µ, we see that
`µ(τi) ≤ `µ(τj) ≤ `µ(τk). If τiτk ∈ E(G), we will further have `µ(τk) ≤ rµ(τi)
and hence `µ(τi) ≤ `µ(τj) ≤ rµ(τi) and so τiτj ∈ E(G) follows.
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(ii) As τ is an I-ordering, we can get an interval representation I of G by
putting `I(τi) = i and rI(τi) = rG,τ (i) for each i ∈ [n]. Let µ be the natural
clique ordering of C (G) such that ∩v∈µiI(v) is to the left of ∩v∈µjI(v) whenever
i < j. It is not difficult to see that τ is left-compatible with µ. �

Proof of Theorem 3: We first prove the backward direction. Let T ′ be any
clique tree of G and we want to show that T ′ = T. Take any two maximal
cliques C and Ĉ which are adjacent in T ′. Let the path in T connecting C and
Ĉ be [C = Ci1 , . . . , Cik = Ĉ] and then our task is to derive k = 2. By way of

contradiction, suppose that k > 2. Pick x ∈ C \ Ĉ and y ∈ Ĉ \C. From Eq. (1)

and k > 2 we find that there exists vj ∈ (Cij∩Cij+1
)\Cij+2

⊆ (Cij∩Cij+1
)\Ĉ for

each j ∈ [k−2] and there exists vk−1 ∈ (Cik−1
∩Ĉ)\Cik−2

⊆ (Cik−1
∩Ĉ)\C. This

means that [x, v1, . . . , vk−1, y] is a path in G[V (G)\(C∩ Ĉ)]. Since CĈ ∈ E(T ′)

and T ′ is a clique tree of G, we know that C ∩ Ĉ should be an x, y-separator in
G, arriving at a desired contradiction.

We next suppose that T is the unique clique tree of G and try to show that
no three different maximal cliques Ci, Cj and Ck can satisfy Eq. (1). Otherwise,
replacing the edge CiCj by the new edge CiCk will yield from T a new clique
tree of G, contradicting with the uniqueness of T. �

Proof of Theorem 4: (i) Let n = |V (G)|. By Lemma 4, τ is an I-ordering of
G. We further check that τ is consecutive. Pick i ∈ [n−1] and we want to show
that τiτi+1 ∈ E(G). As τ is an I-ordering, it suffices to find a k > i such that
τiτk ∈ E(G). If rµ(τi) = m, because τ is left-compatible with µ, we see that
NG(τi) ⊇ {τi+1, . . . , τn} and so we are done. Otherwise, as G is a rigid interval
graph, Theorem 3 implies that we can find τk ∈ (µrµ(τi) ∩ µrµ(τi)+1) \ µrµ(τi)−1
where we regard µ0 as the empty set. It is clear that τiτk ∈ E(G). It is also not
hard to see that τi ≺µ τk and so, as τ is compatible with µ, we get i < k, showing
that this τk is what we are searching for. Finally, we need to show that τ is a
PSO. Take s ∈ 〈2, n〉 and make the convention that µ0 = µ1 and µm+1 = ∅.
Since τ is left-compatible with µ, it holds N≤s−1G,τ [i] ⊆ N≤s−1G,τ [s] for every i ∈
〈s, n〉. Because G is a rigid interval graph and τ is compatible with µ, Theorem 3
asserts the existence of a t ∈ [s−1] such that τt ∈ (µ`µ(τs)∩µ`µ(τs)−1)\µ`µ(τs)+1.
We can now conclude that Sτ [s] is a subset of µ`µ(τs) and hence a clique.

(ii) By Lemma 4, G has a clique path [µ1, . . . , µm] such that τ is left-
compatible with µ. It is clear that τ1 ∈ µ1. But τ1 ∈ µ2 is impossible as
that will force Sτ [2] ⊇ (µ1 ∪ µ2) \ {τ1} ⊇ µ14µ2 while µ14µ2 cannot be a
clique. Now, an application of Lemma 3 and Theorem 3 then completes the
proof. �

The next simple theorem is the crux in our work to understand the MNS

structure of rigid interval graphs. If we view MNS as traversing maximal cliques
rather than vertices (a clique is traversed when its last vertex has been tra-
versed), Theorem 3 together with Theorem 17 says that by applying an MNS

type algorithm on a rigid interval graph we simply explore outward from one
maximal clique in two directions and “flood” the unique clique path with an
expanding wave that grows and finally stops at an end-clique.
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Theorem 17 Let G be a graph with a clique path P = [µ1, . . . , µm] and let τ
be an MNS ordering of G. Then, there exists s ∈ [m] such that the following
hold: (i) τ1 ∈ µs; (ii) If (µi ∩ µi+1) \ µi+2 6= ∅ holds for each i ∈ 〈s,m− 2〉 and
s ≤ `µ(τr) < `µ(τp), then r < p; (iii) If (µi+2 ∩ µi+1) \ µi 6= ∅ holds for each
i ∈ [s− 2] and s ≥ rµ(τr) > rµ(τp), then r < p.

Proof: Let q be the maximum number such that {τ1, . . . , τq} is a clique in G.
By the MNS rule, we see that {τ1, . . . , τq} must indeed form a maximal clique C
of G. Take s so that C = µs and then claim (i) is satisfied.

By symmetry, it remains to verify (ii) in the sequel. Since µ corresponds
to a clique path of G and vertices in µs appear earlier than those outside of
µs in the ordering τ , we see that for any v ∈ ∪mt=sµt, those neighbors of v
appeared earlier than v in the ordering τ must all lie in ∪mt=sµt. It is also clear
that [µs, . . . , µm] is a clique tree of G[∪mt=sµt]. Henceforth, there is no loss
of generality in assuming that s = 1. The remaining proof is by induction on
`µ(τr). When `µ(τr) = 1, we have r ≤ q < p and hence the claim is trivially
true. Consider now `µ(τr) = i + 1 > 1. Without loss of generality, we assume
that p = min{t : `µ(τt) > i+ 1}. This assumption as well as the fact that P is

a clique path tell us that N≤p−1G,τ [p] ⊆ N≤p−1G,τ [r]. Because τ is an MNS ordering,

to get r < p it is sufficient to show N≤p−1G,τ [r] \ N≤p−1G,τ [p] 6= ∅. Pick t so that
τt ∈ (µi ∩ µi+1) \ µi+2 ⊆ (µi ∩ µi+1) \ µ`µ(τp). Since `µ(τt) ≤ i, the induction

assumption gives t < p and hence t ∈ N≤p−1G,τ [r] \N≤p−1G,τ [p], as desired. �

Example 18 Let G be the graph depicted in Fig. 1(f). The MNS orderings
starting at 1 can be listed as 1, 2, 3, 4, 5 and 1, 2, 4, 3, 5. Both orderings are
I-orderings and this is also predicted by Lemma 4 (i) and Theorem 17. Observe
that the former is even a UI-ordering but the latter is not any UI-ordering.

Lemma 5 Let G be a unit interval graph with a clique path [µ1, . . . , µm]. Every
ordering τ of V (G) which is compatible with µ is a UI-ordering of G.

Proof: Suppose that 1 ≤ p < q < r ≤ |V (G)| and that τpτr ∈ E(G). Our
task is to show τpτq, τqτr ∈ E(G). Since τ is compatible with µ, τpτr ∈ E(G)
and p < q < r, we can obtain τpτq ∈ E(G). To finish the proof, by Theorem
12, we need only show the existence of a claw in G under the assumption of
τqτr /∈ E(G). Since τ is compatible with µ, τpτr ∈ E(G), τqτr /∈ E(G) and
p < q, we see that `µ(τp) < `µ(τq). Take τt ∈ µ`µ(τp) \ µ`µ(τp)+1. It is no hard
to check that {τp, τt, τq, τr} constitutes a claw centered at τp, as desired. �

The part of Theorem 8 on unit interval graphs follows directly from Theo-
rems 1, 12 and 13. Note that our ensuing proof of Theorem 8 is valid for both
unit interval graphs and rigid interval graphs.

Proof of Theorem 8: Recall from Theorem 6 that all connected unit interval
graphs are rigid interval graphs. Let [µ1, . . . , µm] be the unique clique path of
the input rigid interval graph G. By Theorem 4 and Lemma 5, it suffices to show
that τ is compatible with µ or its reversal. We need only consider the case of
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m > 1. Applying Theorems 3 and 17 on σ yields τ1 = σn ∈ (µ1\µ2)∪(µm\µm−1).
Without loss of generality, assume τ1 ∈ µ1 \µ2. Applying Theorems 3 and 17 on
τ yields that τ is left-compatible with µ. Take 1 ≤ i < j ≤ n and suppose that
`µ(τi) = `µ(τj). Since τ is left-compatible with µ, τi and τj both lie in Sτ [i].

Observe that NG(v) = ∪rµ(v)t=`µ(v)
µt \ {v} for each v ∈ V (G). Therefore, the rule

of A4(G, σn) gives rµ(τi) ≤ rµ(τj) and this completes the proof. �

Theorem 9 is immediate from Theorems 6, 8 and 10. But our proof of
Theorem 10 here will rely on the following proof of Theorem 9.

Proof of Theorem 9: Let [µ1, . . . , µm] be the clique path of the input rigid
interval graph G. As in the proof of Theorem 8, our task is to show that τ
is compatible with µ or its reversal when m > 1. Theorems 3 and 17 applied
on δ says that σ1 = δn ∈ (µ1 \ µ2) ∪ (µm \ µm−1). Without loss of generality,
suppose that σ1 ∈ µm \ µm−1. An application of Theorems 3 and 17 on σ gives
that σn ∈ µ1 \ µ2 and that σ is left-compatible with µ′, the reversal of µ.
Utilizing Theorems 3 and 17 again yields that τ is left-compatible with µ. It is
now sufficient to show that for any 1 ≤ i < j ≤ n fulfilling `µ(τi) = `µ(τj) we
have rµ(τi) ≤ rµ(τj). Let τi = σi′ and τj = σj′ . The assumption `µ(τi) = `µ(τj)
means that τj lies in the MNS slice of τ when τi is to be chosen. According
to the rule of A+, the reason that the A+ slice of τ at time i consists of
τi itself can only be i′ > j′. Because σ is left-compatible with µ′, we get
rµ(τi) = rµ(σi′) = m + 1 − `µ′(σi′) ≤ m + 1 − `µ′(σj′) = rµ(σj′) = rµ(τj), as
desired. �

Proof of Theorem 10: According to the proof of Theorem 9, we can assume
that τ is compatible with an ordering µ of C (G) that gives the unique clique
path of G. Take i ∈ 〈2, n〉 and let Sτ (i) be the MNS slice of τ at time i. Let
`µ(τi) = p and rµ(τi) = q. Then, we have `µ(x) = p and rµ(x) ≥ q for any
x ∈ Sτ (i). Consequently, we now get to NG[τi] ⊆ ∩x∈Sτ (i)NG[x]. Since this

holds for all i ≥ 2, it is clear that τ is an output of the algorithm A4(G, σn). �

Proof of Theorem 11: For the forward direction, we use 3MNS-UI/RIA to
generate in turn the orderings δ, σ and τ of G. We further do A+ (G, τ) to get
an ordering ρ. Applying Theorem 9 on the first three sweeps δ, σ and τ shows
that τ is an RI-ordering. Utilizing Theorem 9 again on the last three sweeps σ,
τ and ρ, we find that ρ is an RI-ordering with ρ1 = τn.

We now turn to the backward direction. The graphG is surely a rigid interval
graph when |C (G)| = m ≤ 2. We thus assume m > 2. As observed in Lemma
4, G has a clique path [µ1, . . . , µm] such that the I-ordering τ is left-compatible
with µ. Noting that τ is even consecutive, we conclude from Lemma 3 that

(µi+1 ∩ µi+2) \ µi 6= ∅ (8)

for every i ∈ [m − 2]. Let µ′ be the reversal of µ. As τ is left-compatible with
µ, it holds ρ1 = τn ∈ µm \ µm−1 = µ′1 \ µ′2. By Theorem 17 and Eq. (8), the
MNS ordering ρ must be left-compatible with µ′. Because ρ is assumed to be
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consecutive, Lemma 3 now asserts for every i ∈ [m− 2] that

(µm−i ∩ µm−i−1) \ µm−i+1 = (µ′i+1 ∩ µ′i+2) \ µ′i 6= ∅. (9)

In view of Theorem 3, Eqs. (8) and (9) verify the validity of the backward
direction, as desired. �

Theorems 8 and 9 as well as the proof of Theorem 11 provide three multi-
sweep MNS algorithms for recognizing unit/rigid interval graphs. The algorithm
corresponding to Theorem 11 does not involve recognizing RI-orderings but
those corresponding to Theorems 8 and 9 do require us recognize an RI-ordering.
Let us illustrate here how to do this in linear time. Let G be a graph with n
vertices and m edges. It is known that checking a UI-ordering or an I-ordering
only takes linear time [4, 10]. Henceforth, we focus on checking whether or not

a given I-ordering τ of G is an RI-ordering. Observe that N≤iG,τ [k] ⊆ N≤iG,τ [j] for
any 1 ≤ i < j < k ≤ n, which implies that τ is an LBFS/LDFS/LMCS/MCS/MNS
ordering and the LBFS/LDFS/LMCS/MCS/MNS slice at time i + 1 is Sτ (i + 1) =

{τs : s > i,N≤iG,τ [s] = N≤iG,τ [i + 1]}. Consequently, we only need to check for
all i ∈ [n − 1] whether or not Sτ (i + 1) are cliques. A key observation is
that if Sτ (i + 1) = {τi+1, . . . , τs} is a clique, then so is Sτ (i′) = {τi′ , . . . , τs}
for every i′ ∈ 〈i + 1, s〉. Since both LBFS [10, 23] and MCS [28, 29] are MNS

type algorithms and have simple linear time implementations, we can efficiently
determine a sequence of numbers 1 = t1 < · · · < tq = n such that Sτ (tj + 1) =
{τtj+1, . . . , τtj+1

} for j ∈ [q− 1]. To tell whether or not τ is a PSO now reduces
to checking whether or not Sτ (tj + 1) is a clique for every j ∈ [q− 1]. This then
confirms that we can recognize an RI-ordering in O(n+m) time and so all the
MNS algorithms reported in this paper have simple linear time implementations.

Theorem 19 Let G be a graph with a clique path P = [µ1, . . . , µm]. (i) Each
vertex v ∈ µ1 ∪ µm is admissible. (ii) If P is even the unique clique tree of G,
then every admissible vertex comes from µ1 ∪µm and AS(G) = µ1 when m = 1
and AS(G) = (µ1 \ µ2) ∪ (µm \ µm−1) when m ≥ 2.

Proof: To prove the first statement, without loss of generality, we assume that
v ∈ µ1. Let u and w be any vertices of G with `µ(u) ≤ `µ(w). Then, for
any v, w-path Q in G, it follows from ∪x∈Q〈`µ(x), rµ(x)〉 ⊇ 〈`µ(v), rµ(w)〉 ⊇
[`µ(w)] 3 `µ(u) that some vertex of Q appears in NG[u], hence showing that v
is admissible.

We now direct our attention to (ii). As the case of m = 1 is trivial, we may
assume m ≥ 2. Note that a vertex from µ1 ∪ µm is simplicial if and only if it
lies in (µ1 \ µ2) ∪ (µm \ µm−1). This combined with (i) reduces our task to
showing that v is not admissible provided 1 < i = `µ(v) ≤ rµ(v) = j < m. Take
x ∈ µ1\µ2 and y ∈ µm\µm−1. By Theorem 3, there exist x1 ∈ (µ1∩µ2)\µm, . . . ,
xi−1 ∈ (µi−1 ∩µi) \µm and this ensures that a subsequence of x, x1, . . . , xi−1, v
gives rise to a path connecting x and v in G that misses NG[y]. By symmetry,
there is a path connecting y and v that misses NG[x]. We thus conclude that v
is not admissible, finishing the proof. �

Proof of Theorem 2: This follows from Theorems 3, 15, 17 and 19. �
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4 Concluding remarks

As with the multi-sweep graph search recognition of (unit) interval graphs, it is
largely believed that LBFS is the correct graph traversal algorithm to be used.
When discussing their interval graph recognition algorithm, Korte and Möhring
[13, p. 74] make the comments that “BFS together with lexicographical tie
breaking are essential for these results”. After establishing some structural the-
orem, Simon [25] asserts that “Probably this theorem explains why lexBFS has
to be preferred to maximum cardinality search in some applications like recog-
nizing interval graphs”. In [4, p. 373] Corneil gives the following description
of his 3-sweep LBFS algorithm for recognizing unit interval graphs: “The first
sweep is an arbitrary LBFS to find a “left-anchor”. The following two LBFS

sweeps, with a specific tie-breaking rule, provide an ordering of V that satisfies
the “neighbourhood condition” if and only if G is a unit interval graph.” Our
work here develops the idea of Corneil in several aspects. Firstly, we find that
to get a UI-ordering of a unit interval graph, the first LBFS sweep in Corneil’s
algorithm can be replaced by an MNS sweep, the second LBFS+ sweep by another
MNS sweep and the third LBFS+ sweep by an MNS+ sweep, which may be a bit
surprising due to the above comments of Korte-Möhring and Simon. Secondly,
we find that our 3-sweep algorithm as well as its 2-sweep and 4-sweep variants
(Theorems 8, 9 and 11) apply essentially to rigid interval graphs, a superclass of
unit interval graphs, where an RI-ordering should be in place of a UI ordering
as a membership certificate (Theorem 4). Thirdly, we suggest an algorithm A4
for any MNS algorithm A and use A4 to derive a certifying algorithm T-MNSA

for recognizing unit interval graphs. Lastly, we have a better understanding of
the role of each MNS sweep in 3MNS-UI/RIA: Roughly speaking, as seen from the
proof of Theorem 9, the first sweep of MNS can capture an end-interval/ “left-
anchor”, a second sweep of MNS then sorts the left end-points of the intervals and
gives us an I-ordering of those intervals and finally a third sweep of MNS sorts the
right end-points for each group of intervals whose left end-points are nearby in
certain sense and then reconstructs a required UI-ordering/RI-ordering. Note
that we also earn more understanding of what is the “left-anchor” in a unit/rigid
interval graph (Theorems 2 and 19); also see [16, Lemma 4.25].

The key idea of this paper is the formulation of the concept of rigid interval
graphs and a realization of the fact that many earlier results on unit interval
graphs may be better understood as results for rigid interval graphs. We develop
here structural and algorithmic properties of rigid interval graphs, especially its
properties related to MNS type algorithms. It seems interesting to see which kind
of insight can be obtained on the rigid interval graphs and related graph classes
from other viewpoints, say with the help of the PQ-tree techniques [2].

Building on some deep results from [8], we design a simple linear time 4-sweep
LBFS algorithm for recognizing interval graphs in [16]. Compared with the work
in [8, 16] on multi-sweep LBFS algorithms for recognizing interval graphs, our
algorithms for recognizing rigid/unit interval graphs in this paper can work with
much wider MNS type algorithms, the algorithm analysis is much easier and each
step of the algorithm can be much more transparent to the users – all these
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are mainly due to the intrinsic simplicity of the rigid interval graphs from the
viewpoint of clique tree representation.
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[3] A. Brandstädt, V. D. Chepoi, and F. F. Dragan. Perfect elimination order-
ings of chordal powers of graphs. Discrete Mathematics, 158(1–3):273–278,
1996. doi:10.1016/0012-365X(95)00081-7.

[4] D. G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of
unit interval graphs. Discrete Applied Mathematics, 138(3):371–379, 2004.
doi:10.1016/j.dam.2003.07.001.

[5] D. G. Corneil, August 9, 2011. Private communication to Yaokun Wu.
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