
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 17, no. 3, pp. 329–362 (2013)
DOI: 10.7155/jgaa.00296

Multi-level Verticality Optimization:
Concept, Strategies, and Drawing Scheme

Markus Chimani 1 Philipp Hungerländer 2

1Theoretical Computer Science, Uni Osnabrück, Germany
2Discrete Mathematics and Optimization, Uni Klagenfurt, Austria

Abstract

In traditional multi-level graph drawing—known as Sugiyama’s frame-
work—the number of crossings is considered one of the most important
goals. Herein, we propose the alternative concept of optimizing the ver-
ticality of the drawn edges. We formally specify the problem, discuss its
relative merits, and show that drawings that are good w.r.t. verticality in
fact also have a low number of crossings. We present heuristic and exact
approaches to tackle the verticality problem and study them in practice.

Furthermore, we present a new drawing scheme (inherently bundling
edges and drawing them monotonously), especially suitable for verticality
optimization. It works without the traditional subdivision of edges, i.e.,
edges may span multiple levels, and therefore potentially allows to tackle
larger graphs.

Submitted:
October 2011

Reviewed:
April 2012

Revised:
October 2012

Reviewed:
July 2013

Revised:
July 2013

Accepted:
July 2013

Final:
July 2013

Published:
July 2013

Article type:
Regular paper

Communicated by:
M. Kaufmann

Markus Chimani was funded by a Carl-Zeiss-Foundation juniorprofessorship while conducting

this research.

E-mail addresses: markus.chimani@uni-osnabrueck.de (Markus Chimani)

philipp.hungerlaender@aau.at (Philipp Hungerländer)

http://dx.doi.org/10.7155/jgaa.00296
mailto:markus.chimani@uni-osnabrueck.de
mailto:philipp.hungerlaender@aau.at

330 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

1 Introduction

One of the most common drawing paradigms for hierarchical graphs, known as
Sugiyama’s framework [31], is based on the following idea: First, we place the
nodes of a graph on different levels, effectively fixing their y-coordinates. Edges
spanning multiple levels are subdivided into chains of (sub)edges such that each
(sub)edge only spans one level, resulting in a proper level graph. The second step
is to fix an ordering of the nodes on their levels such that a certain optimization
goal (usually the number of crossings) is minimized. As a third step, the nodes
are assigned x-coordinates, consistent with the ordering, such that, e.g., the
number of bends is minimized or the edges’ verticality is maximized. (Sub)edges
are thereby always drawn as straight lines.

In this paper we discuss a somehow inverse approach to the problem of
finding a good node order on the levels, focusing on third step’s optimization
goal. We observe that when thinking about a drawing where the edges are
drawn mostly vertical, we will usually also have a low number of crossings.
Furthermore, edges tend to cross only on a very local scale (i.e., edges will
usually not cross over a large horizontal distance), increasing the drawing’s
readability [29]. Hence, perhaps the combination of maximum verticality and
low crossing number leads to (qualitatively) better drawings than the traditional
minimum crossing number in conjunction with high verticality.

The assumption that high verticality leads to few crossings and good draw-
ings is also supported by the following observation: The barycenter heuristic is
one of the earliest, and still probably the most common heuristic to quickly solve
the layered crossing minimization problem in practice, especially for large-scale
graphs. Yet, the heuristic does actually not actively try to minimize crossings,
but iteratively decides on positions p of nodes on layer i, such that p lies at
(or close to) the barycenter of the positions of its adjacent nodes on level i− 1.
So, the heuristic is in fact mainly trying to optimize our verticality problem!
Its crossing minimization properties arise only in the wake of this optimization
goal.

As we will briefly discuss below, our problem is a special form of an ordering
problem, which also arises in areas unrelated to graph drawing. As such, we call
the problem Multi-level Vertical Ordering (MLVO). When specifically talking
about the graph drawing application, i.e., finding orderings of the nodes on
their levels such that the edges are drawn as vertical as possible (see a precise
definition below) we use the term Multi-level Verticality Optimization, which,
nicely enough, gives rise to the same abbreviation.

As we will see, MLVO is a natural quadratic ordering problem (QOP). We
will show that MLVO is NP-hard and closely related to the traditional problem
of multi-level crossing minimization (MLCM), where one seeks node orders such
that the number of crossings in multi-level drawings is minimized. MLCM has
received a lot of attention not only within the graph drawing community, but
in combinatorial optimization in general; see, e.g., [2, 6] for overviews on strong
heuristics and exact algorithms to tackle the problem. MLVO is also related to
the problem of multi-level planarization (MLP) [27, 13], i.e., find node orders

JGAA, 17(3) 329–362 (2013) 331

which minimize the number of edges that have to be removed in order to obtain
a planar (sub)drawing. This problem has been proposed as a possible substitute
for MLCM, suggesting that it can result in more aesthetically pleasing drawings.

1.1 Focus and Contribution

The focus of this paper is to present the concept and specification of MLVO
in its native graph drawing setting, discuss its relative merits and challenges,
show its solvability via various algorithmic strategies, and give an overview on
possible further extensions. Therefore, it is beyond the scope of this paper to
give in-depth details of inner working of the rather complex exact algorithms
to tackle the problem. For such a discussion see [5], where we consider ILP-,
QP-, and SDP-based algorithms to tackle the base problem of MLVO. Although
graph drawing is the main (and most developed) application area, MLVO can
also be interesting in other, very diverse, application fields like scheduling and
multiple ranking. Herein, we focus on the graph drawing issue, and refer to [5]
for short descriptions of the latter.

In the next section, we will formally discuss the concept of verticality, its
application to proper level graphs, and propose the MLVO problem as an alter-
native to the steps 2&3 in the traditional Sugiyama framework. We will also
show that MLVO is already NP-hard for the problem restricted to two levels.

Thereafter (Section 3), we propose a different new drawing style based on the
verticality concept; it does not require to subdivide the edges after layering the
graph in Sugiyama’s first step. It seems that this is one of the first approaches
allowing the direct use of non-proper level graphs within the Sugiyama frame-
work, without any (not even implicit) subdivision of long edges. — In [11], an
approach to bound the number of nodes per subdivided edge has been presented,
and in [2] explicit subdivisions are avoided by modeling the chain of (implicit)
subdivision nodes via a single vertical block.

In Section 4 we show how to adopt commonly known MLCM paradigms in
order to obtain simple heuristics to solve MLVO in practice and for large graphs.
We conclude this section with presenting a sophisticated exact approach based
on semi-definite programming (SDP), which dominates any exact approaches
based on integer linear programs (ILPs) or quadratic programming (QP)—we
refer the reader to the more mathematically oriented companion paper [5] for
details on this approach1. Herein, we are mainly interested in the SDP’s appli-
cation to the graph drawing scenario. Additionally, the SDP approach can also
be used as an exact quadratic compactor for Sugiyama’s third stage, i.e., after
minimizing crossings.

In Section 5 we present experiments based on all these algorithms and com-
pare the approach to the traditional MLCM concept. We conclude this paper
with discussing several extensions to MLVO that can be interesting in practice.

1We note that the content of the companion paper is as disjoint from this paper as possible:
it virtually only deals with SDP, QP, and ILP approaches from a polyhedral point of view
(for the core MLVO problem, without GD specific extensions) and gives a short overview on
further application areas (in scheduling and ranking) besides graph drawing.

332 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

2 Verticality and Proper Drawings

In the remainder of this paper, we will always consider the following input: Let

G = (V,E) with V =
⋃̇p
i=1Vi be a level graph, where we draw the nodes Vi on

the i-th level. The function ` : V → {1, . . . , p} gives the level on which a node
resides. The edges are directed, i.e., (v, u) ∈ E induces `(v) < `(u); v and u
are the source and target node, respectively. Furthermore, let G′ = (V ′, E′)

with V ′ =
⋃̇p
i=1V

′
i , E′ =

⋃̇p−1
i=1E

′
i, and E′i ⊆ V ′i × V ′i+1 for all 1 ≤ i < p,

be the corresponding proper level graph. Thereby, the original edges E are
subdivided into segments such that each edge in E′ connects nodes of adjacent
levels. Clearly, we have Vi ⊆ V ′i for all levels i. The additional nodes created
by this operation are called long-edge dummy nodes, or LEDs for short.

MLCM and MLP are usually applied to proper level graphs, as only the
introduction of LEDs (or similar constructions, as in the aforementioned [2])
allows to concisely describe their feasible solutions and objective values. Opti-
mizing these problems means solving p−1 dependent, sequentially linked bilevel
QOPs (one for each pair of adjacent levels). We will see that MLVO cannot only
be applied in such a setting (resulting in proper drawings), but also directly to
non-proper graphs (resulting in non-proper drawings): this gives rise to “true”
multi-level QOPs as all levels can directly interact with each other.

2.1 Verticality

We define the colloquial term verticality via its inverse, non-verticality : The
non-verticality d(e) of a straight-line edge e is the square of the difference in the
horizontal coordinates of its end nodes. Then, d(E) :=

∑
e∈E d(e) denotes the

overall non-verticality of a solution. Using only this notion, we could arbitrarily
optimize a drawing by scaling the horizontal coordinates. Hence we consider
grid drawings, i.e., the nodes’ positions are mapped to integral coordinates,
thereby relating verticality to the drawing’s width. Clearly, we only consider
adjacent integrals for the y-coordinates.

It remains to argue why non-verticality has to be a quadratic term: assume
we would only consider a linear function, then even a small example as the
one depicted in Fig. 1(a) would result in multiple solutions that are equivalent
w.r.t. their objective values, even though the bottom one is clearly preferable
from the readability point of view. Intuitively, we prefer multiple slightly non-
vertical edges, over few but very non-vertical edges. In fact, this argument
brings our model in line with the argument of observing crossings only on a
local scale.

2.2 Complexity of Verticality Optimization

Consider the decision variant of MLVO, i.e., given some value M we ask whether
there exist node orderings such that the obtained non-verticality is at most M .

JGAA, 17(3) 329–362 (2013) 333

(a) linear cost (b) proper, narrow

(c) proper, wide (d) non-prop., wide

Figure 1: Example drawings regarding verticality maximization: (a) equivalent
quality with respect to a linear objective function, (b)–(d) different drawing
paradigms, cf. text. Original nodes are drawn as large gray circles, LEDs as
black small circles, PDs (on the empty grid points) are omitted for readability.

Theorem 1 The decision variant of MLVO is NP-complete, already when con-
sidering only two levels.

Proof: We reduce from the NP-complete Partition problem, i.e., given a set
of n numbers a1, . . . , an ∈ N with

∑
1≤i≤n ai = 2B, does there exist a partition

of these numbers such that the sum in both subsets is exactly B? For details
on the complexity of the Partition problem see Subsection 3.1.5 of Garey and
Johnson [15] or the original paper of Karp [21].

Consider the following MLVO instance with two levels, arising from some
Partition instance. For each ai, 1 ≤ i ≤ n, we introduce ai many nodes
Ui = {vi,1, . . . , vi,ai} to V1 and analogously ai many nodes U ′i = {v′i,1, . . . , v′i,ai}
to V2. Then we connect every node of Ui with every node U ′i . Finally, we add
two additional nodes t ∈ V1 and t′ ∈ V2, and connect all nodes of V2 with t. We
now have 2B + 1 nodes on each level.

An MLVO solution is surely optimal if it achieves the following two proper-
ties:

1. The node t is on position B + 1, independent of the ordering of the nodes
in V2: since the width of both levels is equal and odd and t is adjacent
to all nodes in V2 any other position would result in strictly larger non-
verticalities.

334 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

2. Consider the nodes Ui, U
′
i corresponding to some number ai. Their optimal

arrangement is to tightly pack all nodes of Ui (U ′i , respectively) horizon-
tally, and Ui being vertically exactly below U ′i . Any other arrangement
would result in strictly larger non-verticalities.

Now, we define M as the non-verticality caused by a solution fulfilling both
properties.2 If a solution with non-verticality M is achievable, then the node t
partitions the numbers of the Partition instance into two groups with equal
sum B: for any ai, all its nodes are either left or right of t (as they are tightly
packed), and there are exactly B nodes to the left and to the right of t. Vice
versa, if the Partition instance is satisfiable, then an MLVO solution with
non-verticality M exists. �

Interestingly, and in contrast to MLCM, the variant where the order on one
layer is fixed, turns out to be polynomially solvable:

Theorem 2 2-level MLVO, where the node order on one level is fixed, can be
solved in O(|E|+ n3) running time where n is the number of nodes on the free
level.

Proof: Let Vfree = {1, 2, . . . , n} denote the nodes on the free level. We may
attribute the non-verticality of any edge in the graph to its node in Vfree . Clearly,
the non-verticalities attributed to any node v ∈ Vfree depend only on its own
position within its level and not on the position of any other node in Vfree . Thus
we can independently compute the sum of non-verticalities attributed to a node
i when located at position j for all 1 ≤ i, j ≤ n and store the values as the
i-j-entries of an n × n matrix N . Computing this matrix takes O(|E| + n2)
time.

Now, finding an optimal ordering for this variant of MLVO is equivalent
to solving the Linear Assignment Problem on matrix N . This can be done in
polynomial time, e.g., in O(n3) with the Hungarian method [9, 23, 26, 32]. �

Notice that both complexity theorems hold true if we compute the non-
verticality simply as the sum of the linear horizontal distances of all edges.

2.3 Proper Drawing Scheme

We can consider two distinct alignment schemes, due to the fact that the node
partitions V ′i have different cardinalities. Let ω′ := max1≤i≤p |V ′i | denote the
width of the widest level. In the narrow alignment schemes, we require the
nodes on the levels to lie on directly adjacent x-coordinates (Fig. 1(b)). Then,
we would usually like to center the distinct levels w.r.t. each other, i.e, a level i
may only use the x-coordinates {δ′i, . . . , δ′i+|V ′i |−1}, with the level’s width offset
δ′i := b(ω′−|V ′i |)/2c. The benefit of this alignment scheme is that a simple linear
order of the nodes per layer already fully describes the solution. Yet, note that

2We can use the quadratic degree and complete-bipartite constraints to state M explicitly.

JGAA, 17(3) 329–362 (2013) 335

in most cases such an alignment scheme will not result in aesthetically pleasing
drawings.

In the wide alignment scheme (Fig. 1(c)), nodes are not restricted to lie on
horizontally neighboring grid coordinates. In order to model this, we only need
to expand the graph by adding positional dummy nodes (PDs) to each level such
that all levels have ω′ many nodes. All PDs have degree 0. In the following, we
will simply consider any (proper) level graph G (G′, respectively), which may
or may not be augmented with PDs. In graph drawing practice, we will usually
only use this wide alignment scheme.

Monotonous drawings. Considering drawings optimal w.r.t. MLVO, we may
want to force an additional monotonicity property. Within the Sugiyama frame-
work, each edge is drawn using only strongly monotonously increasing y-coor-
dinates. inverting the edge direction). It would be nice to have a similar prop-
erty along the x-axis over all edge segments corresponding to an original edge.
We say a drawing is monotonous, if all original edges are weakly monotonous
along the x-axis. More formally, let e = (u, v) ∈ E be any edge in the (non-
proper) level graph G, e1 = (u = u0, u1), e2 = (u1, u2), ..., ek = (uk−1, uk = v)
the corresponding chain of edges in G′, and x : V ′ → N the mapping of
nodes to x-coordinates in the final drawing. Then a drawing is monotonous,
if x(u) ≤ (≥) x(v) implies x(ui) ≤ (≥) x(ui+1) for all 0 ≤ i < k.

Even though this might be counterintuitive at first, an optimal MLVO so-
lution does not induce this property. We may, however, explicitly ask for this
property to hold, giving rise to the monotonous MLVO problem.

3 Non-Proper Drawing Scheme

When looking at typical Sugiyama-style drawings, we often observe that LEDs—
even though they are never explicitly drawn—are given too much space: Objec-
tively, it is unreasonable for LEDs to require as much horizontal space as a real
node. This was also considered, e.g., in [11]. Therefore, current drawing algo-
rithms try hard to “bundle” multiple long edges into one dense channel (whose
width is constant, disregarding the number of its elements), to improve overall
readability of large, dense graphs; see, e.g., [28]. Yet, such methods usually still
use LEDs.

Herein, we show that a drawing scheme can be devised which makes LEDs
completely unnecessary, cf. Figs. 1(d) and 2. We will, however, retain PDs as
described above to allow a wide alignment scheme on our grid. A particularly
interesting side effect of working without LEDs is that the considered graph stays
smaller. Thus, this method allows more involved, time-consuming methods (as,
e.g., our exact SDP-approach) to be applicable to larger original graphs.

Consider a non-proper level graph G for which we have computed a solution
to (non-proper) MLVO, i.e., we have an ordering of the nodes on their layers
and non-verticality of an edge is measured simply as the square of the horizontal
coordinate difference of its end nodes. We now describe how to generate a

336 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

(a) unix (b) world

(c) sm96

Figure 2: Examples of the non-proper drawing scheme with (near-)optimal ver-
ticality, cf. Sect. 5, all with prespecified layering.

drawing realizing such an order and verticality. A working python code of this
algorithm is available at http://www.cs.uos.de/theoinf.

3.1 Hypothetical and shifted routing

The y- and x-coordinates of the nodes are fixed by the layering (`) and node
order per layer, respectively. As a general idea—called the hypothetical rout-
ing—we want to draw each edge vertically up to the level directly below the
target node. Only there, the edge bends to be drawn as a line with the computed
non-verticality.

Clearly, there are problems with this simple concept: Firstly, routing edges
strictly vertical may require to draw them through other nodes—we may say
an edge overlaps a node. Secondly, vertical segments of multiple edges would
partially coincide—we may say the two edges overlap each other. If two edges
have exactly one point (other than a common end point) in common, we say the
edges cross. Observe that we hence also consider it a crossing if the target node

http://www.cs.uos.de/theoinf

JGAA, 17(3) 329–362 (2013) 337

of an edge coincides with an interior point of another edge. By construction, the
number of common points between any two edges can only be 0, 1, or infinite.

In order to achieve a readable drawing, we have to avoid any edge-node or
edge-edge overlaps. Therefore, we have to relax the hypothetical routing such
that we route an edge e = (u, v) vertically “close to” the x-coordinate of the
source node (i.e., shifted by some small s(e)). More formally, the edge starts
at the coordinate (x(u), `(u)), has a first bend point at (x(u) ± s(e), `(u) + 1)
shifting the edge either to the left or to the right (depending on the edge’s overall
direction), and is routed vertically until the point (x(u)± s(e), `(v)− 1) where
it bends to go straight to the end point (x(v), `(v)). For short edges or s(e) =
0, some bend points may vanish in the obvious way. When s(e) is assumed
small enough, the overall non-verticality of this routing is roughly equivalent
to the non-verticality achieved by the hypothetical routing. In particular, as
the maximum shifting value tends to 0, the drawing’s overall non-verticality
converges to that of the hypothetical routing for the whole graph.

Observe that vertical edges (i.e., x(u) = x(v)) are somehow special as it is
per se not clear, whether s(e) should be added or subtracted; we will discuss
this uncertainty later. Our overall goal is to obtain a shifted routing with the
following properties:

(P1) there are no edge-node and no edge-edge overlaps,

and there are only two types for crossings:

(P2) two edges cross exactly once if their hypothetical routings cross,

(P3) a vertical edge e1 may cross (at most once) another edge e2, if e2’s source
node is an interior point of e1’s hypothetical routing, but e2’s target node
is not.

Observe that this induces that adjacent edges do not cross. In order to achieve
these properties, the shift values s(e) for the edges have to be chosen carefully.

Monotonous drawings. Clearly, the hypothetical drawing is monotonous in
the x- and y-coordinates, as well as strictly monotonous (i.e., in their general
direction). Due to our shifting, this property (necessarily) gets slightly violated
for edges drawn strictly vertical in the hypothetical routing. We may say a
drawing is β-monotonous for some β, if edges with identical source and target
x-coordinates deviate from this coordinate by at most β at any point, and all
other edges are drawn monotonously.

3.2 Computing Shifts

Let V − ⊆ V denote the original nodes (in contrast to possible PDs). Larger
y (x) coordinates are higher (more right, respectively) in the drawing. We will
first compute shift labels σ for all edges in the graph. Afterwards, these labels
will be transformed into actual shift values (see below): for now it is sufficient
to think of a formula of the type s(e) = ε · σ(e) for some small ε > 0.

338 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

Computing Shift Labels. See also Algorithm 1. The key idea is to sort
all edges with a common source node from the inside (no shift) to the outside
(large shifts) such that adjacent edges will not cross. By considering these source
nodes from top to bottom, we ensure that all edges starting above the currently
considered node already have computed shift labels: the new shift labels can
take them into account in order to not cross through these other edges (unless
required by the hypothetical routing). Also, we can observe that each edge, at
the time of its labeling, is crossing free except possibly for its last segment (from
the level directly beneath the target node to the target node itself).

We iteratively consider all nodes v ∈ V −, in decreasing order of their y-
coordinate. For all edges e ∈ Ev := {(v, u) ∈ E : `(u) > `(v)} that have v as
their source node, we will compute an integer label σ(e).

To these ends, we further subpartition Ev into E<v , E
=
v , E

>
v depending on

whether the target node ue of an edge is left (x(ue) < x(v)), directly above
(x(ue) = x(v)), or right (x(ue) > x(v)) of v, respectively. For all nodes w ∈ V we
store the smallest free label σl(w), σr(w) to its left and right side, respectively.
Initially, these labels are 1 for w ∈ V − and 0 otherwise. Now, let Ve := {w ∈
V : x(w) = x(v) ∧ `(v) < `(w) < `(ue)} be the set of nodes vertically above
v, but below the edge’s target node. Then, σlmax(e) := maxv∈Ve

σl(v) denotes
the smallest possible label for e. If Ve = ∅, we set the value to 0 as we do not
require any shift for e. Define σrmax(e) analogously.

First, consider the vertical edges E=
v . Let E=,l

v , E=,r
v be any partition of

E=
v —see below for a discussion of a proper choice—into edges that should be

shifted to the left or to the right, respectively, if necessary. Now, sort E=,l
v (E=,r

v

is analogous) by increasing layer of the target nodes, and iteratively (using
the sorted order of the edges) assign integral labels. To label an edge e, set
σ(e) := σlmax(e) and afterwards σl(w) := σ(e) + 1 for all w ∈ Ve.

Now consider the set E<v (E>v is analogous) and sort it by decreasing `(ue),
where ue is the edge’s target node; edges within the same equivalence class w.r.t.
this measure are sorted by increasing |x(ue)−x(v)|. We can draw all edges that
span only one level as straight lines and remove them from E<v for the following
discussion. Iterating over the edges e in sorted E<v , we again set σ(e) := σlmax(e)
and afterwards σl(w) := σ(e) + 1 for all w ∈ Ve. Observe that subsequent edges
in sorted E<v are always labeled 1 larger than their direct predecessor. In this
scheme it may happen that the first edges of sorted E<v and E>v are labeled 0.
If this is the case, we increase all labels of the set where the first edge has the
lower target node (breaking ties arbitrarily) by 1, to avoid co-linear lines due to
not shifting two edges.

From Shift Labels to Shift Values. The simple notion of computing shift
values via ε · σ(e) would require the nodes to be drawn with a width smaller
than 2ε. To avoid this, we can simply and consistently offset all shift values,
if there is an original node to be passed by the edge. Let 0 < α < β < 0.5
be prespecified parameters describing the distance of minimum and maximum
shift, hence, allowing node sizes of width < 2α. Let σ∗ be the largest overall

JGAA, 17(3) 329–362 (2013) 339

Algorithm 1 Computing shift labels

Require: level graph G = (V =
⋃̇p
i=1Vi, E), original nodes (not PDs) V − ⊆ V .

Ensure: shifting labels σ for the edges
1: function LabelEdge(edge e = (v, u), side) . side ∈ {l, r}
2: Ve := {w ∈ V : x(w) = x(v) ∧ `(v) < `(w) < `(ue)}

.those are the nodes that e would go through in the hypothetical
routing

3: σ(e) := max{0,maxw∈Ve σ
side(w)}

.choose smallest possible shift distance far enough from any of Ve
4: for all w ∈ Ve do σside(w) := σ(e) + 1

.set next free shift distance for all nodes where e passes by

5: procedure ComputeShiftLabels
6: for all v ∈ V − do
7: σl(v) := 1, σr(v) := 1 . next free shift distance left/right of v

8: for all v ∈ V \ V − do
9: σl(v) := 0, σr(v) := 0 . we may pass through PDs

10: for all v ∈ V − in decreasing order of `(v) do
11: Let Ev be the edges with source v, and (E<v , E

=
v , E

>
v) their partition

in whether their target node is left, directly above, or right of v,
respectively.

12: Let (E=,l
v , E=,r

v) be any partition of E=
v (cf. text).

13: for all e = (v, u) ∈ E=,l
v in increasing order of `(u) do

14: LabelEdge(e, l)

15: for all e = (v, u) ∈ E=,r
v in increasing order of `(u) do

16: LabelEdge(e, r)

17: Sort E<v : edge (v, u1) is before (v, u2) iff `(u1) > `(u2) or `(u1) =
`(u2)∧x(u1) > x(u2). Remove edges (v, u) with `(v) = `(u)−1 from
the list.

18: for all e = (v, u) ∈ E<v (in sorted order) do
19: LabelEdge(e, l)

20: Sort E>v : edge (v, u1) is before (v, u2) iff `(u1) > `(u2) or `(u1) =
`(u2)∧x(u1) < x(u2). Remove edges (v, u) with `(v) = `(u)−1 from
the list.

21: for all e = (v, u) ∈ E>v (in sorted order) do
22: LabelEdge(e, r)

23: Let el = (v, ul) ∈ E<v , er = (v, ur) ∈ E>v be the first edges in sorted
E<v , E

>
v

24: if σ(el) = σ(er) = 0 then . E=
v = ∅ and the hypothetical routings

of el, er do not pass through an original
node

25: if `(ul) < `(ur) then
26: Increase σ(e) by 1, for all e ∈ E<v
27: else
28: Increase σ(e) by 1, for all e ∈ E>v

340 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

label, then δ := (β−α)/max{1, σ∗−1} denotes the shift difference between two
neighboring edges. For any node v ∈ V − we compute the actual shift value for
each emanating edge: If there is an edge e0 in Ev with label 0, we set s(e0) = 0.
If e0 exists and e0 6∈ E=

v , let α′ := 0; otherwise α′ := α. For any other edge
e ∈ Ev, we then set s(e) := (σ(e)− 1) · δ + α′.

3.3 Analysis of the drawing algorithm

By the fact that the maximum shift distance is bounded by β, and non-vertical
edges are only shifted into the direction of its target node, we have:

Observation 1 The drawing obtained by the above non-proper drawing algo-
rithm is β-monotonous.

Considering the order and strategy in which the labels are chosen, it is not
too hard to see:

Lemma 1 The drawing obtained by the above non-proper drawing algorithm
satisfies the crossing properties (P1)–(P3).

Proof: Assume two edges would overlap, conflicting (P1). Since the maximum
shift value β < 0.5, both edges would have a common source node. Yet, by
construction, any two adjacent edges have different shift values (and/or direc-
tions) in the end. Also, by construction, any original node w is initialized with
σl(w) = σr(w) = 1, and hence any edge with a hypothetical routing overlapping
w will have a label ≥ 1 and hence not overlap w in the shifted drawing.

Assume there would be a crossing between two edges even though they
are not allowed to cross due to (P2),(P3). By construction the drawing is β-
monotonous with β < 0.5 and there can be no crossings between two vertical
edges violating (P3). Assume ea is a non-vertical edge crossing some other edge
eb even though their hypothetical routings did not cross. By definition of shifted
routings, the existence of such a crossing induces that both source nodes have
the same x-coordinate. If both edges are adjacent on their source node v, they
would have gotten distinct labels and by the property of sorting the edges Ev
they would not cross. If eb is vertical, its source node has to be above ea’s source
node. But then, it was labeled earlier than ea, and the smallest feasible label
for ea would have been chosen larger than eb’s label. Analogously, if both edges
are non-vertical and non-adjacent, one of them, say eb starts above ea’s source
node. Again, they cannot cross, because ea’s label was chosen to be larger then
any other label along its path, in particular, also larger than eb’s label. Observe
that the latter argument also shows that non-adjacent edges cross at most once.

�

Hence, the pure orderings of the nodes per layer already induce the required
number of crossings, up to crossings due to vertical edges. These are decided by
the respective l,r-partitions of the vertical edges, i.e., the partitions of E=

v into
E=,l
v , E=,r

v , for all v ∈ V −.

JGAA, 17(3) 329–362 (2013) 341

Lemma 2 Fixing all l,r-partitions, the above drawing algorithm requires the
minimum possible number of crossings. Yet, even when given the node orders
per level, obtaining l,r-partitions that lead to the overall minimum number of
crossings is NP-hard.

Proof: The first part follows from the algorithmic description and the fact that
properties (P1)–(P3) are satisfied (Lemma 1). The NP-hardness follows from
the fact that already a single column of vertically arranged nodes constitutes
the NP-hard fixed linear crossing number problem [24]. �

In practice, the partition problem is usually not critical: the number of
crossings between pairs of vertical edges is usually dominated by the crossings
involving non-vertical edges. In fact, in our implementation we settle on a very
simple, yet seemingly sufficient, heuristic: during the algorithm, we greedily pick
the side where the edge attains the smaller label; we break ties by classifying
edges whose source node v is on the left (right) half of the drawing as E=,l

v

(E=,r
v , resp.). This tie breaking can be motivated as follows: Considering a

node v on the left side of the drawing, it will usually have more adjacent nodes
to its right than to its left side. Our decision will hence usually lead to fewer
crossings.

Based on the fact that all sorting is done on integral values, we can conclude:

Theorem 3 The above drawing algorithm generates a non-proper drawing of a
level graph G = (V,E) with specified node orders per level in O(|V |+ |E|) time.
The edges’ routings are monotonous in their y-coordinates, β-monotonous in
their x-coordinate, and realize the minimal number of crossings (w.r.t. the given
node orders and l,r-partitions).

Proof: The properties w.r.t. monotonicity and crossings follow from the above
Observation 1 and Lemmata 1 and 2. It remains to discuss the running time.
Every edge is labeled exactly once, and is contained in precisely one set Ev.
The partitioning of a set Ev can be done in linear time. Regarding sorting
the partitioned subsets, we observe that both the labels and the x-coordinates
are integer values bounded by O(|V |), and hence linear time sorting algorithms
are applicable. The lexicographic sorting (of E<v , E

>
v) can be achieved using

radix sort, using any stable linear time sorting algorithm as the inner sorting
algorithm. �

4 Solving MLVO

4.1 Barycenter and Median

We already noted in the introduction that traditional MLCM heuristics in fact
often optimize the drawings’ verticality (in a narrow alignment scheme setting).
In particular, we can use the traditional approach of computing the barycenter
or median for the nodes, by only looking at fixed positions of the nodes one

342 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

level below/above (in case of proper drawings), or on any level below/above
(in case of non-proper drawings), and sort them accordingly, cf. [22]. Iterating
this procedure for all layers both in the upward and downward direction (i.e.,
alternatingly consider the levels below or above) until no more improvement
is possible minimizes the number of crossings only indirectly, but the edges’
verticality directly.

When considering the wide alignment scheme, we observe that we cannot
compute reasonable values for PDs as they have no incident edges. Therefore, we
first only compute the barycenter/median for the original nodes—we call these
values the desired locations of the nodes—and sort them accordingly. Recall that
these positions are (in general) fractional values. Then, we try to disperse the
PDs (necessary to achieve the layer width ω′) into this list such that the desired
locations numerically coincide with their final positions in the list (including the
PDs) as good as possible. In other words, the idea is to fill the list with PDs
such that large differences between the desired locations are filled up with PDs,
whereas there are no PDs between original nodes with similar desired location.
In the end, the PDs should be places such that the average location distance
between neighboring nodes in the sorted list is as close to 1 as possible, given
that the fractional location of original nodes is fixed. We do so heuristically by
iteratively putting the PDs between two adjacent desired location values d1, d2
with largest gaps, and set the PD’s location value to min{(d1 + d2)/2, d1 + 1}.
Consider this order of the nodes (i.e., sorted by increasing (fractional) location
value). We choose integer x-coordinates of a node according to its position in
this sorted list.

Observe that, alternatively, Sugiyama’s originally proposed idea (see [31, 22])
to find x-coordinates (also based again on the barycenter heuristic) could also
be adopted. Preliminary tests showed no significant differences between both
methods, with slight benefits for our above described method.

4.2 Local Optima via 2-Opt and Sifting

Consider an initial node order per level, either by random assignment or by
applying the above barycenter or median heuristic. We can apply local opti-
mization strategies to further improve the solution. Herein, we describe two
implementation-wise simple, yet promising approaches, which are known from
various different optimization problems, including MLCM.

The first approach is a 2-Opt strategy, i.e., we iteratively pick all possible
pairs of nodes v1, v2 on a common layer, where at least one node is not a PD. We
then exchange their positions and reevaluate the overall verticality. Clearly, we
are only interested in the change of the solution value, and therefore it suffices to
compute ∆d := dbefore(E1) + dbefore(E2)− dafter(E1)− dafter(E2), where E1, E2

are the edges having v1, v2 as one of their end points, respectively. We finally
apply this modification only if ∆d is positive. The process stops when no more
improving node pair can be found.

Similarly, we can devise a sifting strategy (cf. [3] for the context of crossing
minimization). We pick any two nodes v1, v2 (both may be PDs) on a common

JGAA, 17(3) 329–362 (2013) 343

layer. Let Vv1,v2 be the nodes between these, w.r.t. the current node order on
this level. We then shift all nodes {v1} ∪ Vv1,v2 by one position towards the old
position of v2, and move v2 to the former position of v1. To decide whether
this is an improvement, we have to evaluate the non-verticalities of the edges
incident to {v1, v2} ∪ Vv1,v2 . Again, we only perform improving steps and the
process stops when no more such step is possible.

4.3 SDP

Herein, we only very briefly outline an exact approach for MLVO based on
semidefinite programming (SDP). We refer to [5] for the companion paper that
deals almost exclusively with ILP, QP, and SDP aspects of the problem. (How-
ever, see Appendix 7 for a brief overview.)

At the core of our approach, we use variables yuv ∈ {−1, 1}, for any pair
of nodes on a common layer, to specify a linear order of the nodes per layer;
the variable is 1 if u lies left of v, and −1 otherwise. It turns out that SDP
approaches are particularly able to solve ordering problems (via the help of
several constraint classes which would be beyond the scope of this paper) and
allow the direct inclusion of our objective function: Coarsely speaking, we can
measure the verticality of an edge (u, v) by counting the nodes which, according
to the linear order, lie left of u and v, respectively, and take the square of the
countings’ difference.

In our experiments, we will alternatingly compute the relaxation of this SDP
(i.e., we replace the variable domains by reals −1 ≤ yuv ≤ 1) to obtain a lower
bound; based on this solution, we apply a hyperplane rounding strategy to
obtain feasible solutions, i.e., upper bounds. We iterate this process until the
gaps coincide (after rounding the lower bound to the next integer above), or an
iteration limit is reached.

MLVO after MLCM (MLVAC). Our MLVO SDP cannot only be used di-
rectly after the Sugiyama’s first stage, but we can also apply it after a second
stage crossing minimization, i.e., after solving an MLCM problem. By fixing
the order of the original nodes (non-PDs), the SDP becomes an exact quadratic
compactor for Sugiyama’s third stage. Such a fixing can be achieved either by
dropping the fixed variables altogether and corresponding modifications to the
constraint matrix, or by introducing equality constraints on the respective vari-
ables. In our experiments, we used the latter approach due to code simplicity.
Implementing the reduction strategy would assumingly lead to further improved
running times.

Let p : V → {0, 1, . . . , ω} be the relative position function, where p(u) = 0
means that the relative position of node u is not fixed. We ask for the following
constraint to hold for two nodes u<̇v ∈ Vm with p(u) > 0, p(v) > 0

yuv = 1, if p(u) < p(v), yuv = −1, if p(u) > p(v). (1)

344 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

We can further strengthen the semidefinite relaxation by adding ζ − 1 linear-
quadratic constraints that we get from multiplying (1) with an arbitrary order-
ing variable yst, s<̇t ∈ Vn.

We also have to adapt the SDP heuristic. We fix the ordering of the “real”
nodes and LEDs before hyperplane rounding and then only allow to flip signs
of variables involving PDs.

5 Computational Experience

We compare the relative benefits of the different drawing schemes and solution
methods discussed above and showcase their visual results. Therefore we apply
the exact SDP approach and the heuristics proposed in the previous section to
solve MLVO on a variety of test sets. The aim is to investigate their general
applicability and behavior, on a wider range of instances. We refrain from an
in-depth merit evaluation between MLCM and MLVO, as this would be beyond
the scope of this paper. All computations were conducted on an Intel Xeon
E5160 (Dual-Core) with 24 GB RAM, running Debian 5.0 in 32bit mode. The
SDP algorithm runs on top of MatLab 7.7, whereas the heuristics are imple-
mented in C++. The SDP approach leaves some room for further incremental
improvement as we restrict the number of iterations to control the overall com-
putational effort. For the heuristic, we give the total running time and best
found solution, considering 500 independent runs. We observe that while (for
larger graphs) this is beneficial to fewer runs, there are nearly no more improve-
ments in the solution quality when further increasing this number. All graphs
considered in this section (including their optimal solutions, where available),
as well as an implementation of the non-planar drawing style, are online at
http://www.cs.uos.de/theoinf.

5.1 Polytopes and instances from the literature

First we consider input graphs from three different sources, which are often
considered in related experimental investigations, e.g., [20, 18, 13, 6]. Table 1
gives the instances’ central properties: Polyt. are graphs modeling the incidence
relation between faces (corner, edge, 2D-face,...) of a polytope. Gr.viz. are the
largest graphs in the Graphviz gallery [17], a set of diverse real-world graphs
from different applications. Other collects further graphs, as the worldcup in-
stances [1] (historic results up until 1986 and 2002), and the social networks
MS88 [25] and SM96 [30] (used in multiple prior MLCM publications).

We conducted the MLVO experiments for proper and non-proper graphs, al-
ways using the wide alignment scheme. Table 2 gives an overview of our results.
We observe that the SDP relaxation is tight enough to give surprisingly small
gaps for all the instances. For the heuristics we observe that the pure median
and barycenter heuristic behave very similar but only give weak results. The
local search routines are still fast and offer vastly superior solutions. Interest-
ingly, due to the multiple runs performed for each instance, it turns out that it

http://www.cs.uos.de/theoinf

JGAA, 17(3) 329–362 (2013) 345

Proper Non-proper
Instance p |V ′| |E′| ω′ ζ |V | |E| ω ζ

P
o
ly

t. Octahedron 3 26 48 12 199
always properDodecahedron 3 62 120 30 1306

Cube4 4 80 208 32 1985

G
r.

v
iz unix 11 59 66 11 606 41 48 7 232

world 9 116 137 20 1711 48 69 9 325
profile 9 92 116 28 3403 61 85 14 820

O
th

er

MS88 3 37 80 15 316 already proper
worldcup86 4 35 55 19 685 25 45 11 221
worldcup02 4 50 65 23 1013 31 46 14 365
SM96-full 7 108 179 26 2276 63 134 14 638

Table 1: Instance properties (wide alignment scheme). Cube4 corresponds to a

4-dimensional cube. p gives the number of levels, ω(′) denotes the width of the
levels, ζ gives the dimension of the SDP cost matrix.

is usually most beneficial to start with a random initial order, than one based
on the median or barycenter heuristic; this avoids to repetitively find the same
weak local optima. Generally, 2-opt gives slightly weaker results than sifting or
both (i.e., using both methods alternatingly). The latter two variants are virtu-
ally indistinguishable w.r.t. solution quality, but both (which starts with 2-opt)
is usually faster. Comparing the upper bounds obtained by the SDP (based on
hyperplane rounding of the SDP relaxation) to our special-purpose local-search
heuristics, there is no clear winner. We conclude that simply using both—as
they run fast anyhow—may be the best alternative.

Dropping the LEDs and solving the non-proper MLVO based on SDPs of
smaller dimension, allows us to go well beyond the graph sizes to which exact
approaches to MLCM (which cannot be directly applied to the non-proper set-
ting) are restricted. The general behavior of the heuristic approaches is similar
(although faster, of course) to the observations noted above.

5.2 Graphs with varying densities

Motivated by these results, we now consider a synthetic benchmark set where
we have control over the density parameter: We generated a set of instances
having p ∈ {2, 3, 6, 11, 20} layers and n ∈ {6, . . . , 22} vertices on each layer.
For each combination of p and n, we consider random instances with densities
d ∈ {0.1, 0.3, 0.5, 0, 7, 0.9}, where each potential edge has equal probability of
being selected. Hence we have

⌊
dn2
⌋

edges between each pair of layers for the

non-proper graphs and
⌊
dn2
⌋

edges between each pair of adjacent layers for the
proper graphs. For each triple (p, n, d), we report the average over 10 generated
instances. We compare the SDP bounds obtained by the SDP relaxation and
rounding heuristic and the upper bounds achieved by the local search heuristic
both with random initial order and 500 independent runs.

346 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

SDP Heuristic
Instance d∗ time d50 d500 time500

Proper
P

o
ly

t. Octahedron 239+5 0:03:28 244 244 0.70
Dodecahedron 1815+81 29:55:48 1837 1834 10.78
Cube4 5279+121 80:49:47 5364 5360 33.74

G
r.

v
iz unix 58+5 1:19:41 74 69 1.73

world 331+95 54:30:21 486 479 14.84
profile 876+169 95:45:58 962 959 21.57

O
th

er

MS88 155+2 0:52:17 157 157 2.62
Worldcup86 349+26 1:44:46 368 356 2.60
Worldcup02 385+15 7:19:38 405 399 6.44
SM96-full 658+36 137:21:07 809 758 39.78

Non-proper

G
r.

v
iz unix 30+3 0:10:11 34 33 0.28

world 103+7 0:43:50 114 109 0.62
profile 254+5 3:11:43 266 260 1.87

O
th

er Worldcup86 113+3 0:31:30 116 116 0.44
Worldcup02 150+1 0:36:42 156 151 0.73
SM96-full 408+9 2:16:06 435 421 3.54

Table 2: Different approaches for proper and non-proper MLVO with wide align-
ment scheme. The time is suitably given either in seconds or as hh:mm:ss.
d∗ = X+Y gives the final lower bound X and upper bound X + Y of the ver-
ticality. The heuristic uses a random initial order and both local optimization
schemes (starting with 2-opt) alternatingly. We give the best results after 50
and 500 independent runs; the time is specified as the total for 500 independent
runs.

Tables 3 and 4 collect the results for the proper and non-proper graphs,
respectively. Thereby, we always choose p and n such that the SDP matrix’s
size stays roughly the same, i.e., its dimension is 300–500.

For the proper graphs, the SDP relaxation is very tight and yields, in con-
junction with the SDP rounding heuristic, surprisingly small gaps and very often
even the optimal solution. The number of instances solved to optimality grow
with growing density, while the according average absolute gaps dwindle. The
local-search heuristic is clearly outperformed, independent of the graph density
and especially for instances with many layers.

For the non-proper graphs, the absolute SDP gaps are much larger in general.
While we solve some instances to optimality for graphs with p ≤ 6 layers,
hardly any instance could be solved to optimality for p ≥ 11. Interestingly,
in the non-proper case the local search heuristic clearly outperforms the SDP
rounding heuristic on graphs with many layers, while the rounding heuristic
seems preferable for graphs with few layers. All these observations seem to be
quite independent of the graph density.

JG
A
A

,
17(3)

329–362
(2013)

347

Non-proper graphs with varying densities
d = 0.1 0.3 0.5 0.7 0.9

SDP Heuristic SDP Heuristic SDP Heuristic SDP Heuristic SDP Heuristic
p n ζ X, t, gap t, ghs X, t,gap t, ghs X, t,gap t, ghs X, t,gap t, ghs X, t,gap t, ghs

2
20 381 1, 24:24, 2.0 1.6, 2.5 7, 17:57, 0.5 3.3, 0 9, 16:46, 0.1 4.9, 0 7, 18:36, 0.4 6.3, 0 10, 15:29, 0 7.0, 0
21 421 0, 29:37, 3.7 1.9, 2.1 1, 31:05, 2.5 4.2, 0.1 6, 23:46, 0.7 6.1, 0 7, 24:55, 0.3 8.2, 0 9, 20:42, 0.1 8.3, 0
22 463 1, 37:45, 3.9 2.3, 0.5 4, 35:54, 1.5 5.0, 0.1 3, 35:49, 1.2 8.1, 0 6, 33:53, 1.4 9.5, 0 9, 24:55, 0.2 10.0, 0.1

3
16 361 1, 22:02, 2.7 1.5, 0.8 6, 17:06, 0.5 3.1, 0.1 6, 17:33, 0.8 4.5, 0 7, 17:35, 0.8 6.1, 0 10, 12:16, 0 6.5, 0
17 409 1, 27:23, 3.3 2.0, 2.2 4, 26:49, 1.8 3.9, 0.1 1, 28.43, 1.9 6.2, 0 8, 22:34, 0.8 8.0, 0 10, 19:45, 0 8.6, 0
18 460 0, 38:25, 3.7 2.6, 2.0 3, 35:46, 1.7 4.9, 0 4, 35:08, 2.2 8.4, 0.1 4, 33:29, 2.3 9.8, 0.1 7, 28:57, 0.3 11.2, 0

6
11 331 0, 19:05, 3.4 1.0, 7.5 8, 12:33, 0.5 2.2, 1.5 9, 14:03, 0.1 3.1, 0.5 10, 11:24, 0 4.1, 0 10, 10:52, 0 4.4, 0
12 397 0, 26:56, 4.4 1.4, 10.9 5, 23:46, 1.1 2.9, 2.2 8, 20:11, 0.3 4.3, 0.9 5, 24:24, 0.8 5.7, 0.1 10, 17:00, 0 6.0, 0
13 469 0, 40:26, 5.5 2.0, 10.1 3, 39:09, 2 4.2, 3.3 5, 35:20, 1.1 6.3, 1.5 8, 31:32, 0.5 8.0, 0.4 7, 33:56, 0.3 8.6, 0.9

11
8 309 0, 28:33, 6.7 0.6, 4.5 10, 12:23, 0 1.4, 6.3 10, 11:51, 0 2.1, 2.7 10, 12:49, 0 2.5, 1.5 10, 12:50, 0 2.6, 2.4
9 397 0, 37:22, 6.6 1.0, 14.1 10, 23:21, 0 2.2, 8.9 8, 25:32, 0.5 3.4, 6.1 10, 23:57, 0 4.3, 4.1 10, 24:32, 0 4.3, 3.0
10 495 0, 55:47, 9.5 1.6, 20.2 6, 43:24, 0.7 3.5, 12.5 6, 46:29, 0.4 5.1, 6.8 8, 49:32, 0.2 6.5, 8.1 10, 43:39, 0 6.6, 2.7

20
6 301 0, 30:01, 8.3 0.5, 4.0 10, 8:05, 0 1.0, 12.7 10, 9:45, 0 1.5, 9.4 10, 12:03, 0 1.9, 3.3 10, 14:18, 0 1.8, 4.6
7 421 0, 49:53,12.3 0.8, 6.9 10, 23:17, 0 1.9, 21.9 10, 25:01, 0 2.8, 12.5 10, 27:15, 0 3.4, 13.6 9, 32:11, 0.1 3.5, 11.0
8 561 0,1:27:17,23.2 1.3, 10.1 10,1:06:12, 0 3.3, 38.6 10,1:00:41, 0 4.6, 24.3 10,1:13:03, 0 6.0, 19.1 10,1:06:45, 0 5.9, 14.8

Table 3: Different approaches on random proper graphs with representatively chosen values for d, n and p. As before, ζ denotes
the resulting dimension of the SDP matrix. “X” denotes the number of instances solved to optimality (out of 10),“t” gives
the average time (either in seconds or as hh:mm:ss) over the solved instances. “ghs” gives the gap between the local-search
heuristic solution and the SDP upper bound; here, this value is always positive, i.e., the SDP upper bound is stronger than
the local-search heuristic.

348
M

.
C

h
im

an
i

an
d

P
.

H
u

n
gerlän

d
er

M
u

lti-level
V

ertica
lity

O
p
tim

iza
tio

n

Non-proper graphs with varying densities
d = 0.1 0.3 0.5 0.7 0.9

SDP Heuristic SDP Heuristic SDP Heuristic SDP Heuristic SDP Heuristic
p n ζ X, t, gap t, ghs X, t, gap t, ghs X, t, gap t, ghs X, t, gap t, ghs X, t, gap t, ghs

3
16 361 1, 26:52, 4.1 1.9, 0.7 7, 23:15, 0.5 4.2, 0.2 6, 22:06, 0.4 6.2, 0 9, 21:56, 0.2 9.3, 0 8, 20:28, 0.4 10.4, 0
17 409 0, 36:49, 3.5 2.5, 0.3 3, 32:47, 1.5 5.5, 0 7, 29:34, 0.4 8.7, 0 5, 32:25, 1.0 11.3, 0 6, 28:47, 0.9 13.4, 0
18 460 0, 45:14, 5.9 3.1, 2.1 4, 42:08, 1.7 7.0, 0 1, 45:53, 3.2 10.5, 0.1 1, 46:44, 2.1 14.3, 0 5, 39:15, 2.2 16.8, 0

6
11 331 3, 21:00, 1.4 2.2, 0.2 3, 22:15, 4.7 5.2, 0 5, 21:49, 3.9 9.1, -0.6 2, 23:20, 1.8 12.7, 0 4, 21:37, 2.1 15.4, 0
12 397 1, 33:26, 6.5 2.9, 1.3 1, 35:03, 8.0 7.9, 0.5 0, 35:14, 11.2 13.1, -0.2 0, 35:09, 15.6 17.3, -1.9 3, 34:38, 3.7 22.0, 0.1
13 469 0, 51:02, 10.4 4.1, 2.8 0, 50:58, 18.9 11.0, -2.4 0, 52:15, 20.9 18.5, -1.5 0, 53:16, 13.8 25.0, 0 0, 52:16, 9.6 30.2, -0.1

11
8 309 1, 22:07, 6.5 2.3, 0.3 1, 21:12, 12.3 6.6, -0.4 0, 23:08, 18.7 11.3, -0.8 0, 23:28, 22.8 16.2, -8.0 0, 22:27, 5.4 20.3, 0.2
9 397 0, 34:30, 15.4 3.8, 1.2 0, 37:06, 36.3 10.7, -6.6 0, 36:30, 64.7 19.6, -27.8 0, 38:38, 28.1 26.3, 0.3 0, 37:00, 28.4 31.9, -1.5
10 496 0, 55:45, 47.7 5.9, -6.5 0,1:00:28, 79.5 17.7, -20.6 0,1:02:15, 65.5 29.6, -11.8 0,1:02:00, 67.0 43.1, -7.0 0,1:00:26, 94.5 47.5, -28.2

20
6 301 0, 21:55, 17.8 3.5, 0.3 0, 23:31, 48.6 9.3, -4.3 0, 22:57, 59.3 16.4, -14.6 0, 22:24, 73.8 23.6, -18.3 0, 21:53, 57.2 30.4, -20.4
7 421 0, 40:37, 89.4 5.9, -25.8 0, 45:32,147.9 18.1, -41.4 0, 46:39,149.5 33.1, -42.3 0, 46:37,182.4 45.7, -70.5 0, 43:17,109.3 60.0, -34.8
8 561 0,1:26:48,110.8 9.8, -21.7 0,1:42:55,264.3 31.1, -67.1 0,1:42:54,292.7 56.0, -84.4 0,1:38:15,227.2 82.8, -34.7 0,1:42:42,259.5 106.5,-109.5

Table 4: Different approaches on random non-proper graphs with representatively chosen values for d, n and p. As before,
ζ denotes the resulting dimension of the SDP matrix. “X” denotes the number of instances solved to optimality (out of
10),“t” gives the average time (either in seconds or as hh:mm:ss.) over the solved instances. “ghs” gives the gap between the
local-search heuristic solution and the SDP upper bound; this value is negative (red) if local search is stronger than the SDP
bound.

JGAA, 17(3) 329–362 (2013) 349

5.3 Real-world graphs

Next, we investigate our algorithms on two well-known larger benchmark sets,
which were also considered in the context of (exact) multi-level crossing mini-
mization [6]. The Rome graphs [8] contain 11,528 instances with 10–100 nodes
and, although originally undirected, can be unambiguously interpreted as di-
rected acyclic graphs, as proposed in [10]. The North DAGs [7] contain 1,158
DAGs, with 10–99 arcs. Consistent with [6], we consider two different ways of
layering the graphs of both benchmark sets: the optimal LP-based algorithm
by [14] and the layering resulting from compacting an upward planarization [4].
Both yield similar results in terms of MLVO running time and solvability. Our
benchmark instances, except for very small graphs, are all sparse (d ≈ 0.1) and
have many layers (p ≥ 10). Non-proper instances with narrow alignment scheme
are quite trivial for nearly all Rome and North instances. Therefore we only
consider the more challenging wide alignment scheme in the following.

Our main finding is that the overall observation w.r.t. the heuristic vari-
ants hold. Yet, as the layerings introduce many more LEDs than the graphs
considered before, the advantage of not requiring LEDs becomes even more
pronounced: considering the largest graphs of the North DAGs (Rome graphs)
with originally more than 90 edges (nodes), a single run of the heuristic requires
only 6ms (2ms) on average, whereas the proper graphs require 1.8sec (0.8sec,
resp.). Similarly, the SDP approach is applicable to all Rome and nearly all
North graphs (98%) in the non-proper setting, as the approach works well up
to ζ ≈ 5000. Using the proper drawing scheme, the SDP approach is applicable
to 80% of the graphs with originally up to 60 nodes (Rome graphs) or 40 edges
(North DAGs).

We again compare the upper bounds obtained by the SDP rounding heuris-
tic with the local search heuristic both with random initial order and 500 in-
dependent runs in detail. Thereby, we disregard graphs with SDP dimension
ζ > 1000—considering larger dimensions would have been prohibitive in the
context of the sheer amount of instances in the benchmark sets. However,
observe that previous experiments (Table 2) considered instances with substan-
tially larger ζ. Figures 3(a),3(b) give the average running time of the exact
SDP algorithm dependent on graph sizes and drawing scheme. Figures 4(a)–
4(d) show the gaps of the heuristics to the SDP lower bound, again considering
different graph sizes and drawing schemes.

The running times and number of discarded instances grow strongly with
the instance size for both Rome and North graphs. Considering the non-proper
drawing scheme the local-search heuristic is clearly advantageous for both Rome
and North graphs whereas SDP rounding heuristic performs better on proper
graphs. These findings perfectly match the results for random graphs with
d = 0.1 and p ≥ 10 of the previous subsection.

350 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

(a) Rome graphs (b) North DAGs

Figure 3: Running times for Rome graphs and North DAGs, both in the proper
and the non-proper setting. The right axes and dotted lines give the number
of instances (relative to the original full instance set) not discarded due to too
large constraint matrices. Thus the higher the percentage, the higher is the
significance of the obtained average runtimes. Observe that the larger graphs
are too large for the proper scheme, but are still applicable in the non-proper
setting.

5.4 Combining MLVO with MLCM

Finally we compare the SDP approach for MLCM to its closest relative in the
MLVO setting: proper MLVO with narrow alignment scheme; cf. Table 5. We
observe that MLVO is harder than MLCM from an optimization point of view:
in general, the MLVO-SDP requires more computation time and cannot close
the optimality gap as often. Additionally we apply the SDP to MLVAC (MLVO
after MLCM), i.e., proper MLVO with wide alignment scheme and fixed crossing
minimal orderings for the non-PDs. MLVAC also yields surprisingly small gaps,
but is essentially harder to solve than the other two problem types as using the
wide alignment scheme increases the SDP’s dimension. Comparing the results
for MLVAC with the ones for proper MLVO from Table 2 shows that the optimal
solutions of MLCM and MLVO are closely related but always different.

We conclude with some example figures. Figure 5 visually compares MLVO
to MLVAC within the proper drawing style, showcasing the potential merit of
verticality optimization over focusing on the crossing number. Already Figure 2
showcased the non-proper drawing style; Figure 6 shows the applicability of this
drawing style, in conjunction with a near-optimal MLVO solution, for a large
Rome graph.

JGAA, 17(3) 329–362 (2013) 351

(a) Rome graphs, proper (b) North DAGs, proper

(c) Rome graphs, non-proper (d) North DAGs, non-proper

Figure 4: Absolute gaps between the heuristic solutions and the lower bound
obtained by the SDP. Again, the right axes and dotted lines give the percentage
of non-discarded instances.

352
M

.
C

h
im

an
i

an
d

P
.

H
u

n
gerlän

d
er

M
u

lti-level
V

ertica
lity

O
p
tim

iza
tio

n

MLCM MLVO MLVAC
Instance z∗ d time z d∗ time d∗(z∗) time

P
o
ly

t. Octahedron 80 264 10.66 81 261+1 0:02:37 243+1 0:11:49
Dodecahedron 393+1 3096 4:40:09 399 3051+27 3:31:58 1851+15 7:57:00
Cube4 1192+3 6594 7:10:19 1247 6336+86 7:57:46 5414+32 36:23:34

G
r.

v
iz unix 0 141 0.25 7 111 0:04:27 86+5 1:01:46

world 46 847 1:13:49 83 620+41 6:33:10 459+29 17:46:48
profile 37 2767 0:53:34 75 1303+9 7:09:51 1363+38 178:54:16

O
th

er

MS88 91 300 2.79 109 249 0:01:27 154+4 0:48:26
Worldcup86 49 762 25.3 72 559 0:05:43 506+5 2:01:36
Worldcup02 45 790 0:01:33 63 501+1 1:24:56 520+9 3:17:16
SM96-full 162 1491 0:53:29 222 1212+13 8:47:37 711+67 61:30:45

Table 5: Comparing Proper MLVO with narrow alignment scheme with MLCM, and combining them to MLVAC. The columns
z∗ and d∗ give the optimal solutions (or final bounds) of MLCM and MLVO, respectively. The columns z, d give the crossing
number and non-verticality of the found solution. d∗(z∗) gives bounds on the optimal non-verticality with assured minimal
crossing number. The time is suitably given either in seconds or as hh:mm:ss.

JGAA, 17(3) 329–362 (2013) 353

Figure 5: Instance profile drawn as a proper level graph (SDP upper bounds,
not necessarily optimal). The top drawing optimizes the verticality (MLVO),
whereas the bottom drawing optimizes the number of crossings (in fact, the
latter solves MLVAC, i.e., it optimizes verticality within a crossing optimal
solution).

6 Extensions

6.1 Edge-weights and drawing areas

In all the above approaches, including the SDP, it is straight forward to allow
edge-weights. These can be used to model edges which are more important
to be drawn relatively vertical than others, or to penalize non-verticalities for
long edges more than for short ones (or vice versa) in the non-proper drawing
scheme.

In practice, it can be interesting to consider other outer shape drawings
than the rectangular array dominated by the width of the largest layer. Clearly,
it is trivial to allow wider drawings, potentially resulting in less overall non-
verticality by adding more PDs to the layers. Similarly, we can approximate
any convex shape (e.g., a circular disc) by adding fewer or more PDs to the
layers and shifting the first x-coordinate per layer via an offset, as suitable.
We can model more general drawing shapes, including holes, by occupying any
forbidden position p with a fixed-position PD u (yet note that edges may still

354 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

Figure 6: Rome graph No. 8861 (94 nodes) drawn with non-proper drawing
style and near-optimal verticality (achieved by the SDP).

JGAA, 17(3) 329–362 (2013) 355

be routed close to these positions) by asking∑
v∈V`(u)

v 6=u

yuv = ω + 1− 2p+ g`(u).

Thereby (and also in the following) we use the function g`(u) :=
(ω − |V`(u)|) mod 2 to distinguish even and odd cases.

6.2 Monotonicity

In the non-proper drawing style we already observed that all edges are drawn
(β-)monotonously along the x-coordinate, but this is not necessarily the case for
proper drawings. While such a requirement is complicated to efficiently imple-
ment within our heuristic schemes, it is simple to include in the SDP approach.
Conceptually, we require that, for all pairs of consecutive edge segments, their
horizontal differences ∆i,∆i+1 do not have different signs, i.e., ∆i ·∆i+1 ≥ 0.

More formally, let e = (u, v) ∈ E be any original edge in the non-proper
level graph G spanning k levels with the corresponding edge chain along the
nodes 〈u = u0, u1, u2, . . . , uk = v〉 in G′. Monotonicity of the edge is equivalent
with feasibility of the following system of inequalities

[x(ui+1)− x(ui)][x(ui+2)− x(ui+1)] ≥ 0, i ∈ {0, . . . , k − 2}.

Substituting the x-terms therein via

x (ui) = −1

2

∑
v∈Vm+i

v 6=ui

yuiv +
ω + 1− g`(ui)

2
,

yields feasible constraints on Z. We can further strengthen the semidefinite
relaxation by additionally generating the analogous constraints for nodes on
non-adjacent layers:

[x(ui)− x(uh)][x(ul)− x(uj)] ≥ 0, h < i, j < l ∈ {0, . . . , k}.

6.3 Node sizes

In many real-world scenarios, it can be interesting to consider nodes of vary-
ing size. Before, any node required exactly one grid point; generally, we may
introduce nodes requiring dx × dy grid points. A horizontal stretch is easy
to incorporate: when considering the absolute grid position of a node we not
only compute the number of nodes to its left, but the sum of their horizontal
stretches.

To incorporate vertical stretches, we copy the node on all its respective levels
and connect them from level to level with dummy edges. Now, we only generate
solutions where these dummy edges are strictly vertical and not crossed, both of
which can be achieved in the SDP straight-forwardly: For the former, we simply

356 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

add corresponding equalities. For the latter, let u be a node vertically stretched
between layers `0 and `1, x(u) its x-coordinate, and (w0, w1) any other edge
with `0 < `(w1) ≤ `1 (i.e., a potentially crossing edge). We require

[x(w0)− x(u)][x(w1)− x(u)] ≥ 0.

Interestingly, the introduction of node sizes itself makes the problem NP-
hard. Recall from Theorem 2 that verticality optimization is polynomial time
solvable for two layers, if the order on one of the layers is fixed. However we
have:

Theorem 4 The decision variant of MLVO with given node sizes is strongly
NP-complete. This holds even when restricted to two levels, where the node
order on one level is fixed but the nodes on the other level have given widths.

Proof: We reduce from the strongly NP-complete 3-Partition problem, i.e.,
given a set A of 3m numbers a1, . . . , a3m ∈ N with

∑
1≤i≤3m ai = mB, do there

exist m disjoint subsets S1, . . . , Sm of A such that the sum of the numbers of
each subset is exactly B?

Consider the following MLVO instance with two levels, arising from some
3-Partition instance. For each ai, 1 ≤ i ≤ n, we introduce a node with
horizontal stretch ai to V2. Then we add 2m − 2 further nodes ti ∈ V1, ui ∈
V2, 1 ≤ i ≤ m− 1, with horizontal stretch 1 and connect ti with ui. Finally we
introduce mB PDs to V1 such that the width of both levels is (B+ 1)m− 1 and
fix ti, 1 ≤ i ≤ m− 1, at position iB + 1.

An MLVO solution is clearly optimal if the nodes ui, 1 ≤ i ≤ m − 1,
are located at the positions iB + 1 as the non-verticality of such a solution is
zero. Hence we set M to zero. Now, if a solution with non-verticality zero is
achievable, then the nodes ui, 1 ≤ i ≤ m − 1, partition the numbers of the
3-Partition instance into m groups with equal sum B. Vice versa, if the 3-
Partition instance is satisfiable, then an MLVO solution with non-verticality
zero exists. �

7 Conclusions and Further Thoughts

We suggested the concept of verticality as an explicit quadratic optimization
goal. We showed first approaches to tackle the problem in practice and derived a
new drawing style based on this concept; the latter allows to meaningfully aban-
don the graph-enlarging edge subdivision intrinsic to the traditional Sugiyama
scheme. Our concept offers interesting further topics for research:

• In our test set, verticality-wise optimal drawings are typically very good
w.r.t. the crossing number, and vice versa. Yet, it is an open (graph
theoretic) question, how much these two measures can deviate in their re-
spectively optimal drawings. In other words, how bad (in terms of crossing
number) can a verticality-wise optimal drawing become, and vice versa?

JGAA, 17(3) 329–362 (2013) 357

• It seems worthwhile to investigate further, more involved, algorithms that
close the gap between our simple heuristics and the computationally ex-
pensive SDP approach. Can, e.g., sifting-based algorithms like [2] be
adopted to efficiently work for verticality optimization? Quite generally,
MLVO seems to be an interesting playground to study how to adopt the
extended research on MLCM algorithms to a new but related field.

• Intentionally, this article leaves one central question unanswered: Is a
verticality-optimal drawing “better” in terms of perception than a crossing
minimum drawing. Answering this question goes well beyond the scope of
this paper: on the one hand it would require a well-constructed user study.
On the other hand, such a study is not yet feasible: As noted above, we
are still missing algorithms to obtain practically near-optimal solutions for
graphs too large for our SDP. Only then, we can compare such results to
(near-)optimal MLCM solutions in a meaningful way.

358 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

References

[1] A. Ahmed, X. Fu, S.-H. Hong, Q. H. Nguyen, and K. Xu. Visual analysis
of history of world cup: A dynamic network with dynamic hierarchy and
geographic clustering. In VINCI’2009, pages 25–39. Springer, 2010. doi:

10.1007/978-1-4419-0312-9_2.

[2] C. Bachmaier, F. J. Brandenburg, W. Brunner, and F. Hübner. Global k-
level crossing reduction. JGAA, 15(5):631–659, 2011. doi:10.7155/jgaa.
00242.

[3] R. S. C. Matuszewski and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In GD’1999, LNCS 1731, pages 217–224, 1999.
doi:10.1007/3-540-46648-7_22.

[4] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward
crossing minimization. ACM J. Experimental Algorithmics, 15, 2010. doi:
10.1145/1671970.1671975.

[5] M. Chimani and P. Hungerländer. Exact approaches to multi-level ver-
tical orderings. INFORMS Journal on Computing, online-before-print id.
1120.0525, March 2013. doi:10.1287/ijoc.1120.0525.

[6] M. Chimani, P. Hungerländer, M. Jünger, and P. Mutzel. An SDP approach
to multi-level crossing minimization. Journal of Experimental Algorithmics,
17:3.3:3.1–3.3:3.26, Sept. 2012. doi:10.1145/2133803.2330084.

[7] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassi-
nari, F. Vargiu, and L. Vismara. Drawing directed acyclic graphs: An
experimental study. Int. J. Comp. Geom. and App., 10(6):623–648, 2000.
doi:10.1142/S0218195900000358.

[8] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algorithms.
Comp. Geom., 7(5–6):303–325, 1997. doi:10.1016/S0925-7721(96)

00005-3.

[9] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264,
1972. doi:10.1145/321694.321699.

[10] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for mixed
upward planarization. Journal of Graph Algorithms and Applications,
7(2):203–220, 2003. doi:10.7155/jgaa.00067.

[11] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An efficient implemen-
tation of sugiyama’s algorithm for layered graph drawing. JGAA, 9(3):305–
325, 2005. doi:10.7155/jgaa.00111.

http://dx.doi.org/10.1007/978-1-4419-0312-9_2
http://dx.doi.org/10.1007/978-1-4419-0312-9_2
http://dx.doi.org/10.7155/jgaa.00242
http://dx.doi.org/10.7155/jgaa.00242
http://dx.doi.org/10.1007/3-540-46648-7_22
http://dx.doi.org/10.1145/1671970.1671975
http://dx.doi.org/10.1145/1671970.1671975
http://dx.doi.org/10.1287/ijoc.1120.0525
http://dx.doi.org/10.1145/2133803.2330084
http://dx.doi.org/10.1142/S0218195900000358
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.7155/jgaa.00067
http://dx.doi.org/10.7155/jgaa.00111

JGAA, 17(3) 329–362 (2013) 359

[12] I. Fischer, G. Gruber, F. Rendl, and R. Sotirov. Computational expe-
rience with a bundle method for semidefinite cutting plane relaxations
of max-cut and equipartition. Math.Prog., 105:451–469, 2006. doi:

10.1007/s10107-005-0661-9.

[13] G. Gange, P. J. Stuckey, and K. Marriott. Optimal k-level planarization
and crossing minimization. In GD’10, LNCS 6502, pages 238–249, 2010.
doi:10.1007/978-3-642-18469-7_22.

[14] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19(3):214–230, 1993.
doi:10.1109/32.221135.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[16] M. Goemans and D. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
J. ACM, 42:1115–1145, 1995. doi:10.1145/227683.227684.

[17] Graphviz gallery, http://www.graphviz.org/Gallery.php, Nov. 2010.

[18] P. Healy and A. Kuusik. The vertex-exchange graph: A new concept for
multilevel crossing minimisation. In GD’99, LNCS 1731, pages 205–216,
1999. Extended version as TR UL-CSIS-99-1, Univ. Limerick, Ireland,
1999. doi:10.1007/3-540-46648-7_21.

[19] J.-B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and minimization
algorithms (vol. 1 and 2). Springer, 1993.

[20] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach
to the multi-layer crossing minimization problem. In GD’97, LNCS 1353,
pages 13–24, 1997. doi:10.1007/3-540-63938-1_46.

[21] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972. doi:10.1007/978-3-540-68279-0_8.

[22] M. Kaufmann and D. Wagner. Drawing Graphs. LNCS 2025, Springer,
2001.

[23] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Re-
search Logistic Quarterly, 2:83–97, 1955. doi:10.1002/nav.3800020109.

[24] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing min-
imization in linear embeddings of graphs. IEEE Trans. Comput., 39:124–
127, 1990. doi:10.1109/12.46286.

[25] M. May and K. Szkatula. On the bipartite crossing number. Control and
Cybernetics, 72:85–97, 1988.

http://dx.doi.org/10.1007/s10107-005-0661-9
http://dx.doi.org/10.1007/s10107-005-0661-9
http://dx.doi.org/10.1007/978-3-642-18469-7_22
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1145/227683.227684
http://www.graphviz.org/Gallery.php
http://dx.doi.org/10.1007/3-540-46648-7_21
http://dx.doi.org/10.1007/3-540-63938-1_46
http://dx.doi.org/10.1007/978-3-540-68279-0_8
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/12.46286

360 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

[26] J. Munkres. Algorithms for the assignment and transportation prob-
lems. SIAM Journal of the Society for Industrial and Applied Mathematics,
5(1):32–38, 1957. doi:10.1137/0105003.

[27] P. Mutzel and R. Weiskircher. Two-layer planarization in graph draw-
ing. In ISAAC’1998, LNCS 1533, pages 69–78, 1998. doi:10.1007/

3-540-49381-6_9.

[28] L. Nachmanson, S. Pupyrev, and M. Kaufmann. Improving layered graph
layouts with edge bundling. In GD’2010, LNCS 6502, 2010. doi:10.1007/
978-3-642-18469-7_30.

[29] H. C. Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In GD’1997, LNCS 1353, pages 248–259, 1997. doi:

10.1007/3-540-63938-1_67.

[30] F. Shieh and C. McCreary. Directed graphs drawing by clan-based de-
composition. In GD’95, LNCS 1027, pages 472–482, 1996. doi:10.1007/

BFb0021831.

[31] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Sys., Man, Cyb., 11(2):109–
125, 1981. doi:10.1109/TSMC.1981.4308636.

[32] N. Tomizawa. On some techniques useful for solution of transportation
network problems. Networks, 1(2):173–194, 1971. doi:10.1002/net.

3230010206.

http://dx.doi.org/10.1137/0105003
http://dx.doi.org/10.1007/3-540-49381-6_9
http://dx.doi.org/10.1007/3-540-49381-6_9
http://dx.doi.org/10.1007/978-3-642-18469-7_30
http://dx.doi.org/10.1007/978-3-642-18469-7_30
http://dx.doi.org/10.1007/3-540-63938-1_67
http://dx.doi.org/10.1007/3-540-63938-1_67
http://dx.doi.org/10.1007/BFb0021831
http://dx.doi.org/10.1007/BFb0021831
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1002/net.3230010206
http://dx.doi.org/10.1002/net.3230010206

JGAA, 17(3) 329–362 (2013) 361

APPENDIX

An overview on the SDP approach

We sketch an exact method for (non-)proper MLVO3 by analyzing matrix lift-
ings of ordering problems. Let us introduce bivalent linear ordering variables
assuming some fixed total order <̇ of the nodes (e.g., based on their indices)

yuv ∈ {−1, 1}, ∀u, v ∈ Vi, 1 ≤ i ≤ p, u<̇v.

The variables shall be 1 if u is left of v and −1 otherwise. For notational
simplicity, we also use the shorthand yvu := 1 − yuv for u<̇v. It is well-known
that feasible orderings can be described via 3-cycle inequalities

−1 ≤ yuv + yvw − yuw ≤ 1, ∀u, v, w ∈ Vi, 1 ≤ i ≤ p, u<̇v<̇w. (2)

Taking the vector y collecting the yuv, we can define the multi-level quadratic
ordering (MQO) polytope

PMQO := conv

{ (
1
y

)(
1
y

)>
: y ∈ {−1, 1}, y satisfies (2)

}
.

Now the non-convex equation Y = yy> can be relaxed to the constraint
Y − yyT < 0, which is convex due to the Schur-complement lemma. Moreover,
the main diagonal entries of Y correspond to y2uv, and hence diag(Y) = e, the
vector of all ones. To simplify our notation, we introduce

Z = Z(y, Y) :=

(
1 yT

y Y

)
, (3)

where ζ := dim(Z) = 1 +
∑p
i=1

(|Vi|
2

)
and Z = (zij). We have Y − yyT < 0 ⇔

Z < 0. Hence, PMQO is contained in the elliptope E := { Z : diag(Z) = e, Z <
0 }. In order to express constraints on y in terms of Y , we reformulate them as
quadratic conditions in y. For (2) this gives

yuvyvw − yuvyuw − yuwyvw = −1, ∀u, v, w ∈ Vi, 1 ≤ i ≤ p, u<̇v<̇w. (4)

We can assign a semidefinite cost matrix C to give d(E) for any given feasible
ordering y and can compute MLVO by solving d∗ = min { 〈C,Z〉 : Z ∈ IMQO },
where

IMQO := { Z : Z partitioned as in (3), satisfies (4), Z ∈ E , y ∈ {−1, 1} }.

By dropping the integrality of y, we get a basic semidefinite relaxation for
MLVO that can be tightened in multiple ways, e.g. via metric- and Lovász-
Schreiver cuts. See [5] for details.

3Both cases are virtually identical for the SDP approach.

362 M. Chimani and P. Hungerländer Multi-level Verticality Optimization

To make the SDP computationally tractable, we only maintain the con-
straints Z < 0 and diag(Z) = e explicitly, and deal with the other constraints
via Lagrangian duality using subgradient optimization techniques (in particular,
the bundle method [19, 12]). We obtain upper bounds via the hyperplane round-
ing method [16], supplemented by a repair strategy. Again, we refer to [5] for
details. Therein, it is also shown that this approach clearly dominates—both
theoretically and practically—other approaches based on linear or quadratic
programs.

	Introduction
	Focus and Contribution

	Verticality and Proper Drawings
	Verticality
	Complexity of Verticality Optimization
	Proper Drawing Scheme

	Non-Proper Drawing Scheme
	Hypothetical and shifted routing
	Computing Shifts
	Analysis of the drawing algorithm

	Solving MLVO
	Barycenter and Median
	Local Optima via 2-Opt and Sifting
	SDP

	Computational Experience
	Polytopes and instances from the literature
	Graphs with varying densities
	Real-world graphs
	Combining MLVO with MLCM

	Extensions
	Edge-weights and drawing areas
	Monotonicity
	Node sizes

	Conclusions and Further Thoughts

