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Abstract

We study contact representations of edge-weighted planar graphs, where vertices
are represented as interior-disjoint rectangles or rectilinear polygons and edges are
represented as contacts of vertex boundaries whose contact lengths represent the
edge weights.

For the case of rectangles, we show that, for any given edge-weighted planar
graph whose outer face is a quadrangle, that is internally triangulated and that
has no separating triangles, we can construct in linear time an edge-proportional
rectangular dual (contact lengths are equal to the given edge weights and the union
of all rectangles is again a rectangle) or report failure if none exists. In the case
of arbitrarily many outer vertices, we show that deciding whether a square layout
exists is NP-complete. If the orientation of each contact is specified by a so-called
regular edge labeling and edge weights are lower bounds on the contact lengths,
a corresponding rectangular dual that minimizes the area and perimeter of the
enclosing rectangle can be found in linear time. On the other hand, without a given
regular edge labeling, the same problem is NP-complete, as is the question whether
a rectangular dual exists given lower and upper bounds on the contact lengths.

For the case of rectilinear polygons, we give a complete characterization of
the polygon complexity required for representing connected internally triangulated
graphs: For outerplanar graphs and graphs with a single inner vertex polygon,
complexity 8 is sufficient and necessary, and for graphs with two adjacent or multiple
non-adjacent internal vertices the required polygon complexity is unbounded.
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1 Introduction

Representing graphs by intersections or contacts of geometric objects has a long history
in graph theory and graph drawing, which is covered in monographs and surveys [13,21].
For example, Koebe’s circle packing theorem from 1936 establishes that every planar
graph has a contact representation by touching disks (and vice versa) [16]; more recently
it was shown that every planar graph is the intersection graph of line segments [6].

In this paper we are interested in a special class of contact representations for plane
graphs, namely hole-free side-contact representations using rectangles and rectilinear
polygons. In a rectilinear representation of a plane graph G = (V,E) every vertex v ∈V
is represented as a simple rectilinear polygon P(v) and there is an edge e = uv ∈ E if
and only if P(u) and P(v) have a non-trivial common boundary or contact path s(e)
(i.e., length |s(e)|> 0). It is further required that the union

⋃
v∈V P(v) forms a simple

rectilinear polygon itself, i.e., there are no holes in the representation. A standard
assumption, which we will make throughout this paper, is that G is an internally
triangulated plane graph. This excludes the degenerated case of four polygons that meet
in a single point. A rectangular dual [17] of a graph G is a dissection of a rectangle
into rectangles, which represents G as a contact graph; rectangular duals are thus an
interesting special case of rectilinear representations, where all polygons and their union
are rectangles. Rectangular duals and rectilinear representations with low-complexity
polygons have practical applications, e.g., in VLSI design, cartography, or floor planning
and surveillance in buildings [22]. In these applications, the area of vertex polygons
and/or the boundary length of adjacent polygons often play an important role, e.g., in
building surveillance polygon area is linked to the number of persons in a room and
boundary length represents the number of transitions from one room to the next. This
and similar examples immediately raise the question of representing a given weighted
graph so that the weights control areas and lengths in a contact representation.

Previously, rectilinear representations and rectangular duals have been studied only
for unweighted graphs [17,19] and vertex-weighted graphs [2,3,10], where the polygon
areas must be proportional to the vertex weights. This paper covers the remaining open
aspect of representing edge-weighted graphs as touching rectilinear polygons. A natural
way of encoding edge weights in a rectilinear representation is to require that the contact
lengths of all adjacent vertex polygons are proportional to the given edge weights. So
we define an edge-proportional rectilinear representation (EPRR) of an edge-weighted
graph (G,ω : E→ R+) as a rectilinear representation in which additionally the contact
length |s(e)|= ω(e) for every edge e ∈ E.

Related work. It is known that unweighted graphs always have a rectilinear represen-
tation using rectangles, L-shaped and T-shaped polygons, i.e., at most 8-gons, and that
there are some graphs for which complexity 8 is necessary [19, 26]. The class of un-
weighted graphs that have a rectangular dual is characterized as all plane triangulations
without separating triangles [17, 18]. Orientation-constrained rectangular duals have
also been considered [10].

For vertex-weighted graphs the goal is to find area-proportional rectilinear represen-
tations, in which the area of a polygon P(v) is proportional to the weight of vertex v. In
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a series of papers the polygon complexity that is sufficient to realize any weighted graph
was decreased from 40 corners [7] over 34 corners [14], 12 corners [4], 10 corners [1]
down to 8 corners [2], which is best possible due to the earlier lower bound of 8 [26].
Weighted rectangular duals have also been studied before, e.g., van Kreveld and Speck-
mann [25] presented several algorithms to compute rectangular duals with low area error.
Eppstein et al. [10] gave a necessary and sufficient condition for rectangular duals to be
area-universal, i.e., rectangular duals that can realize arbitrary vertex weights without
changing their combinatorial structure. They also showed that, for a given combinatorial
structure of the dual and given vertex weights, it can be efficiently tested whether these
weights can be represented as the perimeters of the vertex rectangles rather than their
areas. Biedl and Genc [3] showed that testing whether a rectangular representation with
prescribed areas exists is NP-hard if the complexity of the outer face is unbounded.

Drawing planar graphs with edge weights as standard node-link diagram, where
edge lengths are proportional to the edge weights, is an NP-hard problem [9] but can be
decided in linear time for planar 3-connected triangulations [5].

Contribution. In Section 2 we consider rectangular duals. We present a linear-time
algorithm that decides whether a given graph G has an edge-proportional rectangular
dual (EPRD) with four outer rectangles and constructs it in the positive case. However,
if G has arbitrarily many outer vertices, it can have exponentially many EPRDs, and
it is NP-complete to decide whether there exists one such dual that forms a square.
Moreover, if the combinatorial structure, i.e., the orientation of each edge of the dual, is
specified, we use existing tools to find a rectangular dual where |s(e)| ≥ ω(e) for all
e ∈ E and the size, i.e., the area or perimeter, of the outer rectangle is minimum. On the
other hand, without a fixed combinatorial structure, we prove NP-completeness of the
problem to find a representation where the lengths of the contact segments are lower
and upper bounded. We also show that finding optimal duals for given lower bounds on
|s(e)| under various criteria over all combinatorial structures is NP-complete.

In Section 3, we consider edge-proportional rectilinear representations and show
that for representing outerplanar graphs polygon complexity 8 is sometimes necessary
and always sufficient. The class of outerpillars (outerplanar graphs whose weak dual is
a caterpillar, i.e., a tree for which a path remains after removing all leaves) always has
edge-proportional rectilinear representations of complexity 6, but already outerlobsters
(outerplanar graphs whose weak dual is a lobster, i.e., a tree for which a caterpillar
remains after removing all leaves) require complexity 8. If, on the other hand, the graph
has two adjacent or multiple non-adjacent internal vertices, polygons of unbounded
complexity are sometimes necessary. This completely characterizes the complexity of
edge-proportional rectilinear representations for internally triangulated graphs.

2 Rectangular duals with contact length specifications
In this section we consider rectangular duals of edge-weighted planar graphs. In
Section 2.1 we study duals with fixed contact lengths (EPRDs). In Section 2.2 we
investigate the problem of finding optimal duals, i.e., duals with minimum width, height
and area, for lower-bounded contact lengths and fixed combinatorial structure. In
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Section 2.3 we show that for specified lower and upper bounds on contact lengths and
variable combinatorial structure it is NP-complete to decide the existence of a suitable
rectangular dual. Finally, in Section 2.4, we show that finding optimal duals with lower-
bounded contact lengths over all possible combinatorial structures is NP-complete.

2.1 Rectangular duals with fixed contact lengths
In the first part of this section, we present a linear-time decision and construction
algorithm for edge-proportional rectangular duals (EPRDs) with four outer rectangles.
In the second part, we show that if arbitrarily many outer rectangles are allowed, the
number of EPRDs might be exponential, and finding an EPRD that forms a square is
NP-complete.

2.1.1 Four outer rectangles

He [12] proved that a planar graph G has a rectangular dual with four rectangles on the
boundary if and only if (1) every interior face of G is a triangle and the outer face is
a quadrangle, and (2) G has no separating triangles. We call a graph satisfying these
conditions properly triangular planar (PTP). Moreover, we denote the four vertices on
the boundary of the outer face by vN ,vW ,vS and vE in counterclockwise order.

A rectangular dual R of a PTP graph G = (V,E) defines an orientation and a partition
of the internal edges of G into two sets T1 and T2. The set T1 contains the edges e for
which s(e) is horizonal, the remaining edges are in T2. The orientation is obtained by
orienting uv ∈ T1 from u to v if R(u) is below R(v), similarly uv ∈ T2 is oriented from u
to v if R(u) is to the left of R(v). For a vertex v and one of the partitions Ti, i = 1,2, we
denote by T←i (v) and T→i (v) the incoming and outgoing edges of v that are contained
in Ti, respectively. Note that for a specified botommost rectangle the orientation can be
uniquely derived from the partition [11]. The orientation and partition then satisfies the
following properties.

1. For each vertex v, a counterclockwise enumeration of its incident edges starting
with the rightmost edge in T→1 (v) encounters first the edges in T→1 (v), then
in T←2 (v), then in T←1 (v) and finally in T→2 (v), and

2. all interior edges incident to vN , vW , vS and vE are in T←1 (vN), T→2 (vW ), T→1 (vS)
and T←2 (vE), respectively.

We call any partition and orientation of the edges satisfying these properties a
regular edge labeling (REL). In his work, He [12] showed that every PTP graph admits
a REL, and that a corresponding rectangular dual can be constructed from a REL in
linear time.

It is not hard to see that a REL derived from an edge-proportional rectangular dual
has additional properties, following from the fact that for each rectangle the total length
of the contacts on the left and right side as well as on the top and bottom side are the
same, respectively.

∑
e∈T←1 (v)

ω(e) = ∑
e∈T→1 (v)

ω(e), ∑
e∈T←2 (v)

ω(e) = ∑
e∈T→2 (v)

ω(e). (1)
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Figure 1: Prior to the insertion of the next inner rectangle there is always a U-shape for
which there exists a vertex whose corresponding rectangle needs to be inserted at the
lower left corner of the U-shape in a unique way.

We call any REL satisfying this condition an edge proportional REL (EPREL). In
the following we show that a weighted PTP graph G = (V,E) has a unique EPREL, if
one exists. Moreover, we show how to test the existence of such an EPREL in linear
time and how to construct a corresponding edge-proportional rectangular dual.

Lemma 1 For an inner vertex v, any one of the sets T←1 (v),T→1 (v),T←2 (v) or T→2 (v) of
an edge-proportional REL completely fixes the orientation and the partition of the edges
incident to v. A corresponding orientation and partition can be found in O(deg(v)) time
if it exists.

Proof: Assume T←1 (v) is known, the other cases are symmetric. Let ω1 =∑e∈T←1 (v) ω(e)
and let further ω2 = (∑uv∈E ω(uv)−2ω1)/2. It follows from condition (1) that neces-
sarily ∑e∈T←2 (v) = ∑e∈T→2 (v) = ω2. Due to the requirement of the REL for the ordering
of the edges around v, there is at most one way to orient and partition the edges incident
to v such that condition (1) holds. It can be found in O(deg(v)) time by a simple
counterclockwise traversal of the edges incident to v, starting from the last edge in the
known set T←1 (v). �

Observe that if the partition and orientation of the edges incident to a vertex v is
determined, the shape of the rectangle representing v is completely fixed. Moreover, the
conditions on the edges incident to vN ,vW ,vS and vE completely specify a rectangle RI
into which the remaining rectangles have to be inserted. We construct an ordering of the
internal vertices v1, . . . ,vn−4 such that we can iteratively apply Lemma 1 to determine
uniquely the shape of their rectangle as well as the position where they have to be
inserted in RI . Since we are completely guided by necessary conditions, this either
results in a correct edge-proportional rectangular dual, or the procedure fails at some
point, in which case an edge-proportional rectangular dual does not exist.

We maintain the following invariants in each step i.

1. The position and dimension of R(v1), . . . ,R(vi) are uniquely determined.

2. All contacts between already inserted rectangles or the boundary polygon RI have
correct lengths.

3. The upper boundary of the polygon
⋃i

j=1 R(v j)∪R(vS)∪R(vW )∪R(vE) is an
x-monotone chain.

Note that initially i = 0 and all properties hold. By the third property there exists a U-
shape on the upper boundary whose bottom side is horizontal, i.e., there are two vertical
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segments adjacent to and above the bottom side. Let u be the lowest rectangle bounding
this U-shape from the left and let u1, . . . ,uk denote the rectangles bounding the U-shape
from below; see Fig. 1. The corner at R(u) and R(u1) implies that if G admits an edge-
proportional rectangular dual, then there exists a unique vertex v that is not yet inserted,
and that is incident to both u and u1. We choose this vertex as the next vertex vi. Its
adjacencies to the vertices u1, . . . ,u j for some j ≤ k completely determine its contacts
from below, and hence T←1 (v). By Lemma 1 its shape is completely determined.
Moreover, the position is fixed as well due to the corner between R(u) and R(u1). This
implies Invariant 1. Invariant 2 is either satisfied or an edge-proportional rectangular
dual does not exist since we only followed necessary conditions. Finally, Invariant 3
holds due to the choice of the U-shape. The whole algorithm can be implemented to run
in linear time.

Theorem 1 For an edge-weighted PTP graph G there exists at most one edge-proportional
rectangular dual. It can be computed in linear time if it exists.

Proof: The correctness is already shown, it remains to deal with the running time. The
main issues are to a) quickly find a suitable U-shape b) find a corresponding vertex v that
can be inserted and c) check whether the insertion produces only correct adjacencies.

For b) and c), observe that given the adjacent vertices u and u1 of a U-shape as
in Fig. 1, the vertex v must belong to the unique triangular face of G containing the
edge uu1 and a not-yet inserted vertex. Therefore, given u and u1, v can be found in
O(1) time. Determining the shape of R(v) with Lemma 1 takes O(deg(v)) time. If the
test in Lemma 1 fails, the algorithm terminates and reports that no edge-proportional
rectangular dual of G exists. One can test in time proportional to the number of contacts
of R(v) to previously inserted rectangles, whether they all correspond to edges of G.
This takes O(deg(v)) time if the test is successful and at most O(|V |) time if the test
fails, but then the algorithm stops.

For a), we store the rectangles that have been inserted, but are not yet covered, in
a doubly linked list, sorted from left to right. Each concave bend (x or y) in the upper
contour of the inserted rectangles is a candidate for a left or right boundary of a U-shape
as shown in Fig. 1. These candidates are stored as tuples x(u,v) or y(u,v) for a pair of
rectangles R(u), R(v) with a collinear vertical boundary, such that R(u) is to the left
of R(v). Each candidate stores the pointers to both of its rectangles.

We store the candidates in a doubly linked list L, sorted by the x-coordinates of
the common vertical boundaries of the associated rectangles. Each U-shape appearing
during the insertion is characterized by a consecutive x - y pair of candidates. After the
insertion of a new rectangle, at most two new candidates arise, at most two disappear,
and L can be updated in O(1) time. The arising x - y pairs in L that form a U-shape
can be found in O(1) time and are pushed onto a stack S, which is used to pick the
next U-shape. Since this stack does not become empty before the last step, a U-
shape suitable for insertion can be found in O(1) time in each step. It follows that
inserting a new rectangle R(v) takes time O(deg(v)), and hence the total running time is
O(|E|) = O(|V |). �
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Figure 2: (a) graph G4 defined by a rectangular dual. (b) Cycles E1 (green), E2 (blue),
E3 (red), E4 (orange). (c) An EPRD of G4 for the PARTITION instance a1 = 2, a2 = 5,
a3 = 7, a4 = 11. Contacts are labeled by the assigned lengths.

2.1.2 Many outer rectangles

In the previous section, each of the four outer rectangles formed an entire side of the
rectangle RI into which all inner rectangles had to be inserted. Due to this fact, the
orientation of each segment forming the boundary of RI was fixed. For example, the left
boundary of RI was formed by the segments corresponding to the inner edges incident
to vW etc. This is no longer the case if we allow more then four outer rectangles. The left
boundary of RI can now be formed by segments which belong to several outer rectangles.
Since the lengths of the edges on the boundary of the dual are unspecified, neither are
the shapes of the outer rectangles. Thus the orientations of the boundary segments of RI
are no longer unique, which introduces a degree of freedom that makes the problem
hard. In fact, now there can exist an exponential number of possible realizations, and
optimizing over all of them is NP-complete, even if we fix the four corners of the dual:

Theorem 2 Given an inner-triangulated edge-weighted plane graph G = (V,E,ω)
without separating triangles and four or more outer vertices including vll , vlr, vur and vul ,
it is NP-complete to decide whether there exists an edge-proportional rectangular
dualR such thatR forms a square whose lower left, lower right, upper left and upper
right corner rectangles are R(vll), R(vlr), R(vul) and R(vur), respectively.

The proof is a reduction from the NP-complete problem PARTITION: given posi-
tive integers a1, . . . , am, decide whether there exists a subset P ⊆ {1, . . . ,m}, such
that ∑i∈P ai =

1
2 ∑

m
i=1 ai =: σ .
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Figure 3: Layouts of G3 corresponding to all possible partitions of {2,5,7}. The two
square layouts correspond to the solutions P = {7} and P = {2,5}.

In our reduction proof, for a given PARTITION instance, we shall define an inner-
triangulated edge-weighted plane graph Gm = (V,E,ω) and prove that it has a square
rectangular dual with specified contact lengths if and only if the PARTITION instance
has a solution. We first show how to build Gm for an arbitrary m. For now, we ignore
edge weights. It is easier to describe Gm by a corresponding rectangular dualRm; see
Figure 2a. It is formed by 2m+3 rows of rectangles. Every odd row starts and ends
with a 2×1 rectangle and has 2m−1 rectangles of dimension 3×1 in between. Rows 2
and 2m+2 contain 4m+1 rectangles with dimensions 1×1 and 2×1 placed in alternat-
ing order from left to right starting and ending with a 1×1 square. The remaining even
rows contain 2m+1 rectangles with dimensions 1×3 and 5×3 placed in alternating
order from left to right starting and ending with a 1× 3 rectangle. Obviously, Gm is
inner triangulated and has no separating triangles. For ease of notation, we shall refer to
vertex v ∈V by integer coordinates (x,y) if the corresponding rectangle R(v) is the xth
rectangle in row y inRm. The vertices (1,1), (2m+1,1), (2m+1,2m+3), (1,2m+3)
are selected as respective corners.

We define some special outer vertices: for j = 1, . . . ,m, let s j denote the ver-
tex (2 j,1), n j the vertex (2(m− j)+ 2,2m+ 3), w j the vertex (1,2 j+ 1) and e j the
vertex (2m+ 1,2(m− j)+ 3); see Figure 2a. We also define a subset F ⊆ V (gray
rectangles in Figure 2a): in each even row and also in the first and last row of Rm,
each rectangle in an odd position corresponds to a vertex in F and each rectangle in an
even position to a vertex in V \F . In all the remaining rows, each rectangle in an even
position corresponds to a vertex in F and each rectangle in an odd position to a vertex
in V \F .

We now describe the edge weight assignment ω . For each vertex s j, e j, n j and w j,
j = 1, . . . ,m, we set the weights of the five incident edges to 1, a j, 1, a j, 1 (in circular
order, such that both outer edges have weight 1). From the specified contact lengths it
follows that each such outer vertex has exactly two possible realizations in an EPRD:
rectangles R(s j) and R(n j) are either 1× (1+a j) or (2a j +1)×1 and rectangles R(w j)
and R(e j) are either 1× (2a j +1) or (1+a j)×1. We call the second and fourth edge
of such a vertex flippable, and the corresponding contacts can be either both horizontal
or vertical. We shall use these choices to encode to which partition the element a j is
assigned to. Figure 3 shows layouts of G3 corresponding to each possible partition
of {2,5,7}.
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For each j = 1, . . . ,m, we define a set of edges E j ∈ E that forms a cycle in Gm. To
define E j, we start at w j and follow its lower flippable edge. Then, at each inner vertex
we follow the edge opposite to the previous one taken (note that all inner vertices of Gm
have even degree). As we proceed, the first coordinate of visited vertices increases by 1
and the second decreases by 1 until we reach the third row at the vertex (2 j− 1,3).
We proceed to the vertex (4 j− 2,2) and then reach s j via its left flippable edge. We
continue the cycle E j in a similar manner: we leave s j via its right flippable edge and
follow opposite edges (after we pass the third row, both coordinates increase by 1) until
we reach e j via its lower flippable edge. We proceed analogously via n j and finally
return to w j via its upper flippable edge. Figure 2b shows all such cycles for m = 4.
Using some simple calculations on the coordinates of the vertices lying on the cycles E j,
we can prove the following facts: (1) each E j is a simple cycle; (2) each edge uv
with u,v ∈ V \F belongs to exactly one E j, and each E j contains only such edges
between vertices in V \F ; (3) each vertex of degree 8 in Gm lies on exactly two cycles Ei
and E j; all remaining vertices in V \F lie on exactly one cycle.

We can now present the complete edge weight assignment ω . For an edge e= uv∈E
with u or v in F we set its weight ω(e) to either 1 or 3 according to the length of the
corresponding contact in the dualRm shown in Figure 2a. Each remaining edge e ∈ E
lies on exactly one cycle E j. We set ω(e) = a j. This assignment has the following effect
on possible realizations of inner rectangles.

Let v ∈V be an inner vertex of Gm. By construction, v has even degree, and each
pair of opposing edges incident to v has the same weight. Then, every two contacts
corresponding to such a pair of opposing edges must lie on opposite sides of the
rectangle R(v). Each inner vertex v ∈ V \F on a cycle E j has one pair of opposing
incident edges both lying on E j. Thus, the corresponding contacts of length a j must
lie on opposite sides of the rectangle R(v). This also holds for flippable edges incident
to s j, e j, n j and w j. It follows that all contacts corresponding to edges on E j must have
the same orientation.

We claim that all rectangles corresponding to vertices in F (gray in Figure 2)
have fixed dimensions and orientations. It is easy to see that rectangles (1,4), (1,6),
. . . , (1,2m) on the left boundary as well as rectangles (2m+ 1,4), (2m+ 1,6), . . . ,
(2m+1,2m) on the right boundary must be 1×3 rectangles. Both outer edges adjacent
to each such vertex must correspond to horizontal contacts of length 1, and the remaining
contact of length 3 must be vertical. Also, rectangles (2,5), (2,7), . . . , (2,2m−1) as
well as (2m,5), (2m,7), . . . , (2m,2m−1) are 3×1 rectangles. By applying the above
observation to all gray inner 1×3 or 3×1 rectangles of degree 4 and their neighbors of
degree 8 in Figure 2 iteratively from left to right, we see that the shapes and orientations
of all rectangles R(v), v ∈ F , deg(v) = 4, must be fixed. For example, we know that the
contact between (1,5) and (2,5) must be vertical. By the above observation, so must be
the contacts between (2,5) and (3,5), (3,5) and (4,5), etc.

Furthermore, the contact (1,3)-(2,3) must be vertical. Thus, (2,3) must be a 3×1
rectangle. This observation allows us to fix all remaining gray rectangles: since the
contact (2,3)− (2,2) is horizontal, so is (1,1)− (2,2). Thus, (1,1) is a 2×1 rectangle.
By similar arguments, (4,3), (6,3), . . . , (2m,3), (3,1), (5,1), . . . , (2m−1,1), (2,2m+
1), (4,2m+1), . . . , (2m,2m+1), (3,2m+3), (5,2m+3), . . . , (2m−1,2m+3) must
be 3×1 rectangles, and the corner rectangles are 2×1. We can now prove Theorem 2.



450 Nöllenburg et al. Edge-weighted contact representations

Proof of Theorem 2: Let a1, . . . , am be an instance of PARTITION. The graph Gm
has O(m2) vertices and can be constructed in time polynomial in m as described above.
Assume there exists an edge-proportional rectangular dualR of Gm that forms a square.
We define

P = { j | 1≤ j ≤ m, contacts inR corresponding to edges on E j are horizontal}.
The width of R is 4+ 3(m− 1)+m+ 2∑ j∈P a j and the height is 4+ 3(m− 1)+m+
2∑ j∈{1,...,m}\P a j. SinceR is a square, P solves the PARTITION instance.

Now let P be a solution of the PARTITION instance. We extend Gm to an edge-
weighted PTP graph G′m by adding four outer vertices vW , vS, vE and vN . We connect
all vertices whose rectangle inRm lies on the left boundary to vW , those on the lower
boundary to vS etc. For such a new edge e incident to a vertex v ∈ F we set ω(e)
to 1, 2 or 3 according to the length of the corresponding boundary segment of the
gray rectangle R(v) in Figure 2. For a new edge e incident to a vertex v /∈ F we
set ω(e) as follows: if v has been on the lower or upper boundary, i.e., v ∈ {n j,s j} for
some j = 1, . . . ,m, we set ω(e) = 2a j+1 if j ∈ P and ω(e) = 1 if j /∈ P. If v has been on
the left or right boundary, i.e. v ∈ {w j,e j} for some j = 1, . . . ,m, we set ω(e) = 2a j +1
if j /∈ P, and ω(e) = 1 if j ∈ P. We now color the edges of the PTP graph G′m: if an
edge e is incident to a vertex v ∈ F , we color e red if the corresponding segment s(e) lies
on the upper or lower boundary of the gray rectangle R(v) and blue otherwise. For an
edge e ∈ E j, we color e red if j ∈ P and blue otherwise. All edges incident to vS and vN
are colored red, and all edges incident to vW and vE blue. By considering all types of
vertices in G′m, it can be easily verified that this coloring partitions incident edges of
each inner vertex into four non-empty contiguous subsets of alternating colors. This
induces an undirected REL of G′m. Fusy [11] showed that there is a bijection between
directed and undirected RELs that preserves the coloring. Also, for each vertex, the two
red subsets of edges have the same total weight, and so do the two blue subsets. Thus,
there exists an edge-proportional REL of G′m. As will be shown in the next subsection
(see Corollary 2), it follows that G′m has an edge-proportional rectangular dualR, such
that red edges of Gm correspond to horizontal contacts inR and blue to vertical. Since P
solves the PARTITION instance, the inner rectangles inR must form a square.

This decision problem is contained in NP: we can guess an orientation for each
contact corresponding to an edge e ∈ E of the given graph G = (V,E). Then we can
check whether it induces an edge-proportional rectangular dual of G that forms a square
with given corners in linear time, e.g. using an insertion algorithm similar to the one in
the previous subsection. �

Theorem 2 implies that minimizing the aspect ratio and maximizing the area of an
edge-proportional rectangular dual are difficult.

Corollary 1 Maximizing the area and minimizing the aspect ratio of a rectangular dual
with given contact lengths and unspecified contact orientations is NP-hard.

2.2 Rectangular duals with minimum contact lengths
Next we consider a slightly relaxed version of the problem, where we assume that the
input consists of a REL, which combinatorially describes the rectangular dual, and a
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weight function specifying minimum contact lengths for all edges. The task is then to
find a rectangular dual according to the given REL that minimizes the total size of the
layout. Note that in this setting any instance is feasible since any given rectangular dual
can be scaled to become a feasible solution.

Using the method of He [12] we can construct in linear time a rectangular dual R
of the PTP graph G that realizes the given REL, but does not yet satisfy the edge-
length constraints. We can either modify He’s algorithm to directly compute a suitable
rectangular dual in linear time, or take a slightly different perspective on the problem.
The rectangular dual R of G can also be seen as an orthogonal representation with
rectangular faces of the dual graph G? of G, where every degree-3 vertex corresponds
to a face of G and every orthogonally drawn edge corresponds to two adjacent faces.
This allows us to use a modified version of a linear-time compaction algorithm for
orthogonal drawings [8, Chapter 5.4] that respects the minimum contact length ω(e) for
each e ∈ E as the minimum length of the corresponding dual edge e?. The main idea
of the approach is to define two independent planar edge-weighted st-graphs Nhor and
Nver, the first one using the edges in T1, the other one the edges in T2. Tamassia [24]
described an algorithm to compute two weighted topological numberings on Nhor and
Nver from which the coordinates of all vertices of R (or G?) can be obtained. These
numberings immediately minimize the total height, total width and area of R subject to
the length constraints.

Theorem 3 For a weighted PTP graph (G,ω) with a given REL, a corresponding
rectangular dual with minimum width, height, and area of the inner rectangles can be
computed in linear time such that each edge e is represented by a contact of length at
least ω(e).

In particular, if the given REL is edge-proportional, the algorithm computes an edge-
proportional rectangular dual. Conversely, an edge-proportional rectangular dual directly
induces an edge-proportional REL.

Corollary 2 A weighted PTP graph admits an edge-proportional REL if and only if it
admits an edge-proportional rectangular dual.

2.3 Rectangular duals with minimum and maximum contact lengths
and variable REL

Unlike in the case of precisely specified contact lengths (and no REL specification)
or lower-bounded contact lengths with fixed REL covered in the previous sections, it
becomes NP-hard to decide the existence of a rectangular dual if no REL is specified
and we are given lower and upper bounds for the contact lengths that must be respected.

Theorem 4 Given a PTP graph G = (V,E) with two edge-weight functions α,β : E→
R+ with α(e)≤ β (e) for all e ∈ E, it is NP-complete to decide if G has a rectangular
dual R = {R(v) | v ∈ V} so that for every edge e ∈ E the contact segment s(e) has
length α(e)≤ |s(e)| ≤ β (e).
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Note that if the REL is fixed, the same problem can be solved in polynomial time,
e.g. by linear programming or by adding upper edge capacities to the MinCost Flow
approach in [8, Chapter 5.4].

The proof is a gadget proof reducing from the NP-complete problem PLANAR
3SAT [20]. PLANAR 3SAT is the satisfiability problem for Boolean formulae φ in
conjunctive normal form with at most three variables per clause, which are planar in
the sense that the induced bipartite variable-clause graph Hφ consisting of a vertex for
every variable, a vertex for every clause, and an edge for every occurrence of a variable
in a clause, is planar. Such a graph Hφ can be drawn on a grid of polynomial size
with all variable vertices placed on a horizontal line and the clause vertices connected
in a comb-shaped manner from above or below that line [15]. In our reduction, we
create an edge-weighted PTP graph Gφ for a PLANAR 3SAT formula φ , which has a
rectangular dual (mimicking the above mentioned drawing of Hφ ) if and only if φ is
satisfiable. In the next three subsections we describe how to construct Gφ in detail: for
each component type of the variable-clause graph Hφ like variables, pipes and clauses
we present corresponding edge-weighted subgraphs of Gφ and their realizations as
rectangular layouts with suitable contact lengths. We show that all realizations are
unique up to truth values of the associated variables of φ . Finally, we use this fact
to show that rectangular layouts of Gφ with suitable contact lengths correspond to
satisfying assignments of φ , and vice versa.

2.3.1 Variables and pipes

The basic building block for the variable gadgets and their links to the clause gadgets is
a 5-vertex graph (type-2 gadget) flanked by three auxiliary isomorphic 7-vertex graphs
(type-1 gadgets), see Figure 4. The important property of this subgraph is that it has
only two valid realizations as a rectangle contact graph, one of which encodes the value
true, the other one the value false, and both of which have the same outer shape. We
shall show that any other attempt to realize this subgraph violates either the edge length
constraints or requires non-rectangular vertex regions. We now describe both gadgets in
detail. We say that an edge e has weight x if α(e) = β (e) = x and weight x : y if α(e) = x
and β (e) = y.

A type-1 gadget is a 6-cycle with one inner vertex, see Figure 5. Let a, b, c, d, e
and f be the outer vertices ordered counterclockwise around the inner vertex g. Each
outer vertex has degree 5 in Gφ . Let the edge weights α and β be set as in Figure 5. This
edge weight assignment has the following effect on the dimensions of the rectangles:
each of the rectangles R(a), R(b), R(c), R(d), R(e) and R( f ) must have dimensions
1×2 or 2×1, and R(g) must be a 1×3, 2×2 or 3×1 rectangle. This leads us to the
only three possible realizations of a type-1 subgraph shown in Figure 5b, 5c and 5d
(disregarding rotations). The same holds if we merge the two dashed edges with both
weights 1 adjacent to the vertex b or e, respectively, to single edges with weight 2.

A type-2 gadget is a 4-cycle with one inner vertex, see Figure 6. Let h, i, j and k
be the outer vertices ordered counterclockwise around the inner vertex `. The rect-
angle R(`) must be a 1× 1 square. According to the edge weight assignment, the
rectangles R(h), R(i), R( j) and R(k) must have perimeters between 13 and 15. If the
contacts corresponding to the four edges hi, i j, jk and kh have alternating orientations
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Figure 4: The standard building block formed by a type-2 gadget and three type-1
gadgets. (a) Edge-weighted contact graph. Thick edges have weights α(e)= 1, β (e)= 2.
(b) We make sure only the middle case is possible. Due to the purple dashed rectangles
and the degrees of a and c, the layouts in (c) are not possible. The only two possible
layouts are shown in (d). If the total length of the contacts corresponding to the dashed
edges is at most 7, the contacts of length 1 corresponding to the dash-dotted edges force
the lower and upper type-1 gadget to form 5×3 rectangles horizontally centered at the
type-2 gadget. The left one encodes the value true and the right one false.
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The subgraph in (a) has exactly three possible realizations with respect to the specified
edge weights: (b), (c) and (d).

3

3

3h

i j

`

k

3

1:2
3:4

3:4

(a)

`
h

i j

k

(b)

h

i j

k
`

(c)

`

(d)

`

(e)

`

(f)

Figure 6: The type-2 gadget and its realizations.

like in Figure 6b or 6c, each of the four outer rectangles must have dimensions 3×4
or 4×3. Otherwise (see Figure 6d, 6e and 6f), one of these rectangles must have height
or width at least 7. But then it has perimeter at least 16. Thus, the two realizations
in Figure 6b and 6c are the only possible ones, and the complete type-2 gadget has
dimensions 7×7.

To form a standard building block for our reduction proof, we shall connect a type-2
gadget to at least three type-1 gadgets, see Figure 4. Using additional vertices (like the
purple vertex x in the figure) we can force the type-1 gadgets to be centered at the type-2
gadget they are connected to. In other words, only the middle case in Figure 4b should
be possible. Due to the edge weights, the rectangle R(x) must have dimensions 3×1.
The vertices a, c, d, f in Figure 4a have degree 5 in Gφ . Therefore, the upper and
lower boundaries of the corresponding green rectangles R(a), R(c), R(d), R( f ) must be
completely covered by the purple 3×1 rectangles, so the layouts in Figure 4c are not
possible. Thus, the left type-1 gadget forms a 3×5 rectangle centered vertically at the
type-2 gadget.

We shall use two options for the dashed edges on the right of the subgraph in
Figure 4b. In the first option, there are six dashed edges adjacent to k and j with
weights 1, 1:2, 1, 1, 1:2, 1 (from top to bottom), see Figure 4b, left. In the second
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Figure 7: Two variable gadgets connected by buffer rectangles R(r), R(s), R(t). The
relative positions of the gadgets are fixed and form a single horizontal row.

option, the dashed edges adjacent to k and j respectively are merged to a single edge
with weight 3 : 4, see Figure 4b, right. In both cases, the total length of the contacts
corresponding to the dashed edges is between 6 and 8. We shall make sure that this
length is always at most 7. For example, this is the case when the dashed edges belong
to another type-1 gadget to the right of the subgraph in Figure 4b. As we shall see later,
this assumption also holds if we have other gadgets (an inverter or a replicator) on the
right. Also, it always holds for the second option, because a single rectangle can only
have contacts with total length at most 7 to a type-2 gadget. Since the dash-dotted edges
in Figure 4b correspond to contacts of length 1, both the lower and the upper type-1
gadget must be 5×3 rectangles centered horizontally at the type-2 gadget. The only
two possible layouts are shown in 4d. Let the left one encode the value true and the
right one false.

Several copies of the building block can be attached to each other both vertically
and horizontally so that the green 7-vertex subgraphs (type-1 gadgets) link two adjacent
blue 5-vertex subgraphs (type-2 gadgets). This synchronizes the states of all blocks:
either all linked blocks are in the true state or all are in the false state. This allows us
to create horizontal variable gadgets with vertical branches leading towards the clause
gadgets. We create 90◦ pipe bends in the same way. Two different variable gadgets are
separated by three buffer vertices (or rectangles) that do not link the gadget states while
fixing relative positions of the gadgets, see Figure 7.
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Figure 8: (a) The inverter gadget subgraph. Thick edges have weight 1 : 2. (b) R(a)
and R(c) must have different orientations. (c) The only two possible realizations.

2.3.2 Inverters and replicators

For the reduction, we shall need the ability to invert the state of the incoming truth value.
We shall achieve this by defining an inverter gadget, see Figure 8. The rectangles R(a),
R(b), R(c), R(i), R( j), R(k) must have dimensions 1×2 or 2×1, R(`) and R(m) must
be 6× 1 rectangles and R( f ) a 2× 2 square. Both R(d) and R(h) are either 1× 3
or 2×2. Furthermore, R(b) must be oriented vertically. Due to the shape of R(d), the
rectangles R(a) and R(c) can not be vertical at the same time, so the total length of
the contacts corresponding to dashed edges in Figure 8b is at most 7. If R(d) is 2×2,
both R(a) and R(c) must be oriented horizontally, see Figure 8b. This is not possible,
since each non-covered boundary piece of the blue rectangles in Figure 8b must have
length 1. Thus, either R(a) or R(c), but not both, are oriented horizontally, and R(d) is
a 1×3 rectangle.

Due to the specified edge weights, the rectangles R(e) and R(g) are either 2× 2,
3×1 or 4×1. If R(a) is horizontal, then R(e) is 2×2, R(h) is 1×3 and R(g) is 4×1.
The case in which R(c) is horizontal is symmetric. Due to an argument similar to the
one for the building block in Figure 4, the purple rectangles force the inverter to be
centered vertically at the type-2 gadget. Thus, we have exactly one realization of the
inverter for each truth value of the connected variable, see Figure 8c.
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Figure 9: (a) The replicator gadget subgraph. Thick edges have weight 1 : 2. (b) The
only two possible realizations.

To unify our construction, we define replicator gadgets. These gadgets do not invert
the truth value of a variable, but they have the same dimensions (6×7) as the inverters.
The corresponding edge-weighted contact subgraph is depicted in Figure 9. Due to the
specified edge weights, R(a), R(b), R(c), R(e), R( f ) and R(g) must be 1×2 or 2×1
rectangles, R(i) and R( j) must be 2× 3 and R(d) and R(h) must be 3× 1. Thus, we
have exactly one realization for each truth value, see Figure 9b.

2.3.3 Clauses

It remains to describe the clause gadget, whose rectangular layout is shown in Figure 10.
It takes three inputs, two from the left side and one from below or above depending
on whether the clause gadget is placed above or below the variable row. Note that the
input from below or above is duplicated. Each input port consists either of an inverter
or a replicator gadget. The type of the port gadget depends not only on whether the
literal in the clause is positive or negative, but also on the position of the port in the
clause gadget: The top left and the bottom right ports use an inverter for a positive literal
and a replicator for a negative one; the bottom left and top right ports use a replicator
for a positive literal and an inverter for a negative one. This configuration has the
following effect on the two core rectangles R(l) and R(r) of the clause gadget, whose
contact length is bounded by α(lr) = 19 and β (lr) = 20. Every false literal stretches
its adjacent rectangle R(l) or R(r) vertically by a length of 1 (in fact by a length of 2 for
R(r) since the last literal is duplicated). If all literals are true then both R(l) and R(r)
have height 19 and also |s(lr)|= 19. By inspecting all cases one can see that as long as
one literal is true we have 19≤ |s(lr)| ≤ 20, but as soon as all three literals are false the
contact length becomes |s(lr)|= 21 violating the specified upper bound. This is exactly
the behavior needed for the clause gadget.
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Figure 10: (a) Clause gadget subgraph for the clause x∨ y∨ z and (b) the layout for the
state x = 0, y = 1, z = 1. The contact length |s(lr)| of the two yellow rectangles R(l)
and R(r) is 20.

2.3.4 Putting all blocks together

All presented building blocks can be laid out on an orthogonal grid subdivided into 10×
10 tiles (most of these tiles have a 7×7 block in one corner, see Figure 11, which shows
the rectangular dual of the entire graph Gφ for an example formula φ ). In order to create
an actual PTP graph, the remaining gaps between the described gadgets must be filled
by dummy rectangles, i.e., dummy vertices in Gφ . This is always possible and can be
done systematically. All building blocks, except for the clause gadget, have the same
top-level structure: they are all formed by 7×7 blocks, with 3×5 blocks connected
to their left and right and 5×3 blocks connected to their top and bottom. As can be
verified in Figure 11, the clause gadgets are compatible with this pattern.

The remaining holes are filled with dummy rectangles with dimensions 7× 7,
5×3, 3×5, 3×1 and 1×7 in a manner demonstrated in Figure 11. In the resulting
layouts, no four rectangles meet in a single point. Thus, the contact graph Gφ is inner
triangulated. We add four outer vertices to make it PTP. The lower and upper bounds
on the lengths of the contacts between dummy and non-dummy rectangles can be
extracted from the presented gadget subgraphs (the corresponding edges are indicated
as stubs in the drawings). For a contact s(e) between two dummy rectangles, we set
the weights α(e) = β (e) to the desired length of the contact according to Figure 11.
Note that for our proof we do not have to show that the dummy rectangles have unique
realizations: it suffices to show that they can be used to fill the holes in the fixed “skeleton”
of the rectangular dual formed by the gadgets (colored rectangles in Figure 11).

We use the presented gadgets to prove Theorem 4.

Proof of Theorem 4: Let φ be a PLANAR 3SAT formula. As mentioned above, the
variable-clause graph Hφ can be drawn on an orthogonal grid of size polynomial in
the size of φ . Furthermore, the number of vertices in each gadget subgraph is O(1)
or polynomial for the variable gadgets. Thus, the graph Gφ can be constructed in
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w̄ ∨ ȳ ∨ z̄

w = 1 x = 0 y = 0 z = 1

19

︷ ︸︸ ︷
︷

︸︸
︷

10

10

Figure 11: Rectangular dual of the graph Gφ for the planar 3Sat formula φ = (w∨ x∨
z)∧ (x̄∨ y∨ z̄)∧ (w̄∨ ȳ∨ z̄) with the satisfying variable assignment w = 1, x = 0, y = 0,
z = 1.

polynomial time. As we have shown above, the positions of type-1 and type-2 gadgets
in a layout whose contact lengths respect α and β are fixed, and the respective choice
of realization depends only on the truth value of the corresponding variable.

If φ is satisfiable, we choose realizations of the gadgets according to the truth value
of the corresponding variable in a satisfying variable assignment. By the properties of
the clause gadgets, all rectangles can be realized in a way that respects the prescribed
bounds on the contact lengths. Thus, a suitable rectangular dual of Gφ exists.

Now let R be a rectangular dual of Gφ that respects the bounds on the contact
lengths specified by α and β . Then, in each clause gadget, the contact between the
two yellow rectangles R(l) and R(r) must have length at most 20, so at least one of the
connected type-2 gadgets must have the realization corresponding to the truth value
true. Since all type-1 and type-2 gadgets connected to the same variable gadget are
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Figure 12: Clause gadget for the proof of Theorem 5 for the clause x∨ y∨ z. Each false
literal stretches either width or height of the yellow rectangle R(x) by 1. Thus, only in
the case (c) for x = y = z = 0 its area exceeds γ(x) = 220.

synchronized among each other, we can extract a satisfying truth value assignment for φ

directly fromR. This shows NP-hardness.
The decision problem is contained in NP . If we guess a REL of G which fixes

the orientation of each contact, we can test the existence of a rectangular dual which
respects α and β in polynomial time, e.g., using linear programming. �

A variant of the problem with lower bounded contact lengths and upper bounded
rectangle areas turns out to be NP-hard as well as the next theorem shows.

Theorem 5 Given a PTP graph G = (V,E) with an edge-weight function ω : E→ R+

and a vertex-weight function γ : V → R+, it is NP-hard to decide if G has a rectangular
dualR= {R(v) | v ∈V} so that

(i) for every edge e ∈ E the contact segment s(e) has length |s(e)| ≥ ω(e) and

(ii) for every vertex v ∈V the rectangle R(v) has area |R(v)| ≤ γ(v).

Sketch of the proof: The proof is very similar to the proof of Theorem 4. See the
diploma thesis of Roman Prutkin [23] for more details. Except for the clause gadget,
we use the same gadgets. However, the uniqueness of the realization up to the truth
value must now be forced by a suitable assignment of minimal contact lengths specified
by ω and maximal rectangle areas specified by γ . These assignments can be defined
according to the layouts in Figures 5 to 9. We omit detailed specifications of the
weighted subgraphs at this point and present only the new clause gadget.

The clause gadget is shown in Figure 12. Note that the positions of type-1 and
type-2 gadgets are fixed. The gadget takes three inputs: two from the left and one from
below (if the clause lies above the variable row) or from above (if the clause lies below
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the variable row). At each input port we again place either an inverter or a replicator
gadget. The upper left and the upper input port (if the clause lies below the variable
row) use an inverter for a positive literal and a replicator for a negative one. The lower
left and the lower input port (if the clause lies above the variable row) use a replicator
for a positive literal and an inverter for a negative one.

This definition has the following effect on the area of the yellow rectangle R(x),
which is upper-bounded by γ(x) = 220: The position of the left boundary of R(x) is
fixed, and the coordinates of the upper, lower and right boundaries are determined by
the truth value of the incoming variable, such that each false literal increases either the
width or height of R(x) by 1. Thus, the area of R(x) is 231 > γ(x) only in the case when
all three literals are false, and in all other seven cases it is at most 220 = γ(x). Now it is
straightforward to adapt the proof of Theorem 4.

It is not obvious whether the problem is contained in NP . Unlike for the case in
Theorem 4, it is unclear whether the decision problem in Theorem 5 can be solved in
polynomial time for a fixed REL: a similar linear programming approach doesn’t seem
to work here, since the area constraints are non-linear and also not necessarily positive
semidefinite. �

2.4 Minimizing layout size for specified minimum contact lengths

In Section 2.2 we have demonstrated that for a given PTP graph G = (V,E), a fixed
REL and lower bounds on the contact lengths specified by ω , a rectangular layout of
minimum size can be found in linear time. In this section, we consider the problem of
finding the smallest layout of G with respect to the lower bounds ω over all RELs of G.
First, we shall consider area minimization and show the following theorem:

Theorem 6 Given an edge-weighted PTP graph G = (V,E,ω) and a bound A ∈Q+, it
is NP-complete to decide whether a rectangular dual R= {R(v) | v ∈V} exists such
that the total area ofR is at most A and for each edge e ∈ E the corresponding contact
segment s(e) inR has length at least ω(e).

The proof is a reduction from the NP-hard problem PARTITION. Let a1, . . . , am be
an instance of PARTITION and σ := 1

2 ∑
m
i=1 ai. We set ε = 1

4(2m+5) and am+1 = ε . For
our reduction proof, we define graphs G j, j = 1, . . . ,m recursively; see Figure 13. The
Graph G1 is a 4-cycle s1, e1, n1, w1 with the inner node s0. The edges w1s1 and e1n1
have weight a1; see Figure 13a. Figure 13d shows how to construct G j+1 from G j. We
insert G j into a 4-cycle s j+1, e j+1, n j+1, w j+1 and connect s j+1 to s j and e j, then e j+1
to e j and n j, then n j+1 to n j and w j and, finally, w j+1 to w j and s j. For i = 1, . . . , j,
edges wisi and eini have weight ai, and all other edges in G j have weight ε .

From now on we shall consider only duals of G j in which R(s j) is the lower left,
R(w j) the upper left, R(n j) the upper right and R(e j) the lower right rectangle. The
graph G1 has exactly two such duals; see Figure 13b and 13c. There are exactly two
possible realizations of the four outer rectangles R(s j), R(w j), R(n j) and R(e j) of G j;
see Figure 13e and 13f. The gray rectangle in the figures is replaced by a suitable dual
of G j−1. Note that in Figure 13f this dual is rotated by 90◦ clockwise compared to the
layout in Figure 13e.
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Figure 13: The recursively defined graphs G j, j = 1, . . . ,m. Gray dashed edges do not
belong to G j. Black unlabeled edges have weight ε . (a), (b), (c): Graph G1 (black
edges) and both its realizations. (d) Recursive construction of G j+1 from G j. (e), (f):
Each dual of G j−1 can be extended to a dual of G j in exactly two ways.

LetR j be a rectangular dual of G j. We define

H(R j) = {i ∈ N | 1≤ i≤ j, contact s(wisi) is horizontal inR j},
V (R j) = {i ∈ N | 1≤ i≤ j, contact s(wisi) is vertical inR j}.

Note that the contacts corresponding to edges wisi, siei, eini, niwi must have alternating
orientations. The main idea of our reduction proof is to encode a partition by orien-
tations of the contacts with minimum lengths ai, i = 1, . . . ,m. The following lemma
shows that each partition can be encoded by a dual of Gm. We say that a rectangular
dual R of G j with the lower left rectangle R(s j), upper left rectangle R(w j), upper
right rectangle R(n j) and lower right rectangle R(e j) respects a partition P = (PH ,PV )
of {1, . . . , j}, j ∈ PH , ifR respects ω , H(R j) = PH and V (R j) = PV .

Lemma 2 Consider a graph G j, 1≤ j ≤m, and a partition P = (PH ,PV ) of {1, . . . , j},
j ∈ PH . The following statement holds. (1) There exists a rectangular dual R that
respects P . (2) Each dualR of G j that respects P has width and height at least

wP := 2 ∑
i∈PH

ai +(2|PV |+1)ε,

hP := 2 ∑
i∈PV

ai +(2|PH |+1)ε

respectively. (3) There exists a dual R j of G j with width wP and height hP that
respects P .
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Figure 14: The PTP graph G used for the proof of Theorem 6 and its rectangular dual.
Edges are labeled by their weights, unlabeled edges have weight ε .

Proof: We prove (1) first. The claim obviously holds for j = 1. Now let j ≥ 2, and
assume the claim holds for j−1. We consider two different cases.

Case 1: j−1 ∈ PH . Then, we define P′H = PH \{ j}, P′V = PV and apply the claim
inductively to P ′ = (P′H ,P

′
V ) and G j−1. Thus, there exists a rectangular dualR′ of G j−1

that respects P ′. Therefore, H(R′) = P′H = PH \ { j} and V (R′) = PV . Then, we
obtain R with H(R) = PH and V (R) = PV by inserting R′ into the gray rectangle in
Figure 13e.

Case 2: j−1 ∈ PV . We define P′H = PV , P′V = PH \{ j} and apply the claim induc-
tively to P ′ = (P′H ,P

′
V ) and G j−1. Thus, there exists a rectangular dualR′ of G j−1 that

respects P ′. Therefore, H(R′) = P′H = PV and V (R′) = PH \ { j}. We obtain R with
H(R) = PH and V (R) = PV by rotatingR′ by 90◦ clockwise and then inserting it into
the gray rectangle in Figure 13f.

(2) The lower bounds on width and height can be easily verified. For each i ∈H(R),
the contacts corresponding to edges siwi and niei are horizontal, as well as the contacts
corresponding to siei and niwi for i ∈ V (R). Their projections onto the x-axis do not
overlap in the interior, hence the lower bound on the total width holds. A similar
argument holds for the height.

(3) With the tools from Section 2.2 we can construct a dualR j that respects P with
width wP and height hP . �

The PTP graph G=(V,E) used for the reduction is depicted in Figure 14. We define M =
2σ +(2m+ 1)ε < 2σ + 1

4 . The figure shows how the four outer vertices vS, vE , vN ,
vW are connected to the vertices sm+1, em+1, nm+1 and wm+1. The weights of the
corresponding edges are chosen in a way such that in each rectangular dualR of G both
the total width and height of the inner rectangles are at least M+2ε . If they are both
exactly M+2ε , thenR induces a rectangular dualRm of Gm with height and width at
most M; see the gray rectangle in Figure 14. We can now prove Theorem 6.

Proof of Theorem 6: We set A = (M + 4ε)2 = (2σ + (2m + 5)ε)2 = (2σ + 1
4 )

2.
First, assume there exists a solution P of the PARTITION instance a1, . . . ,am and P =
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(P,{1, . . . ,m}\P). Without loss of generality, let m ∈ P. Then, according to Lemma 2,
there exists a rectangular dualRm of Gm with H(Rm) = P with width wP ≤ 2σ +(2m+
1)ε = M and height hP ≤ 2σ +(2m+1)ε = M. The dualRm can then be extended to
a rectangular dualR of G with height and with at most M+4ε and total area A.

Now assume the PARTITION instance has no solution. Since each rectangular
dualRm induces a partition of {1, . . . ,m} by H(Rm), it has height or width at least 2σ +
1. Therefore, each rectangular dualR of G either has width at least 2σ +1 and height at
least M, or vice versa. Thus, its area is at least M(2σ +1)≥ 2σ(2σ +1)> (2σ + 1

4 )
2 =

A. The graph G can be constructed in time polynomial in m. This proves NP-hardness
in Theorem 6.

The decision problem is contained in NP . If we guess an orientation for each
contact in a rectangular dual of G, we can construct a dualR that respects ω and has
minimum width and height in linear time using tools from Section 2.2. �

With similar gadgets we can show that minimizing the perimeter, max(width, height)
or the total edge length of a rectangular dual of a PTP graph G with respect to specified
lower bounds on the contact lengths ω over all RELs of G is NP-complete:

Theorem 7 Given an edge-weighted PTP graph G = (V,E,ω) and a bound A ∈Q+, it
is NP-complete to decide whether a rectangular dual R= {R(v) | v ∈V} exists such
that the perimeter (or max(width,height), or the total edge length) of R is at most A
and for each edge e ∈ E the corresponding contact segment s(e) in R has length at
least ω(e).

3 Length-universal rectilinear layouts
In this section we consider the number of bends required for constructing edge-propor-
tional rectilinear representations (or EPRRs for short) of internally triangulated planar
graphs G = (V,E,ω). In our proofs we assume that the graphs are biconnected because
every internally triangulated graph can be made biconnected by adding vertices in the
outer face. Since our representations preserve the outerplanar embedding, the removal
of the corresponding polygons does not create holes.

The complexity of a rectilinear polygon p is its number of bends, and is denoted
by k(p). The complexity of an EPRR P is k(P) := maxu∈V k(P(u)). The complexity of a
graph G with weight function ω is k(G,ω) = minP∈P k(P), where P denotes all EPRRs
of (G,ω). For a graph class G, the complexity is the maximum complexity for any
graph from G with any weight function ω , i.e., k(G) = maxG∈G maxω : E→R+ k(G,ω).
We are interested in determining k(G) for different classes of graphs.

Theorem 8 For any biconnected internally triangulated graph G with two adjacent
internal vertices and any positive integer k0, there exists a weight function ω such
that k(G,ω)≥ k0.

Let I denote the class of biconnected internally triangulated graphs containing no
adjacent internal vertices; we have k(I)≥ k0 for any positive integer k0.

Proof: For the first part of the theorem let G be a biconnected internally triangulated
graph with two adjacent internal vertices u and v. We define ω such that ω(e) = 1
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Figure 15: A graph that does not admit an edge-proportional rectilinear representation
with 6-gons for d = 55; thin edges have weight 1 and thick edges have weight 4.

for all e 6= uv and ω(uv) = k0 · (deg(u) + deg(v)− 2) =: M. Now, in any contact
representation the polygon P(u)∪P(v) has a boundary of length deg(u)+deg(v)−2.
On the other hand, this polygon necessarily contains the contact path of length M
corresponding to the edge uv. This path has at least M/(deg(u)+ deg(v)− 2) = k0
bends as it would cross the boundary of P(u)∪P(v) otherwise.

For the second part, consider the graph K4 with internal vertex x, outer vertices
a,b,c and all edge weights set to 1 except for ω(ax) = 2. Since ω(ax)≥ω(bx)+ω(cx)
the path s(ax) must have a bend. Now consider a fan-graph on k0 + 2 vertices with
center vertex a, and insert into each fan triangle T a new internal vertex xT connected
with edges of weight 2 to a and weight 1 to the other two vertices of T . By the above
observation the polygon P(a) needs one bend per path s(axT ) for all k0 fan triangles T .

�

This shows that to achieve positive results, we may allow only few isolated interior
vertices. Thus we consider outerplanar graphs and graphs with one internal vertex.

3.1 Outerplanar graphs
In this subsection we study the complexity of edge-proportional rectilinear representa-
tions for internally triangulated outerplanar graphs.

Proposition 1 For the class O of biconnected internally triangulated outerplanar
graphs k(O)≥ 8.

Proof: Consider the family of graphs depicted in Figure 15a. We show that if all
thin edges have weight 1 and the thick edges have weight 4, then for d = 55, the
corresponding weighted graph (G,ω) does not admit a representation with complexity
less than 8. Assume for contradiction that P is a representation with complexity at
most 6. (Note that the complexity of a rectilinear polygon is always even.)
Claim: There exists a chain Q = {vi, . . . ,vi+8} such that the contacts between P(x)
and P(v) with v ∈ Q all lie on a common line.

This follows easily from the fact that there are 55 vertices on the path v1, . . . ,vd , and
to avoid all such chains Q, P(x) would need to bend at least once every 9th contact. But
then we get at least d55/9e= 7 bends on P(x).
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Figure 16: Construction of a rectilinear representation by 8-gons for an outerplanar
graph. (a) A triangle with reference edge e, forming the base case. (b) Inserting P(w)
into the U-shape of uv (red), creating new U-shapes for uw and vw (green).

Claim: Let i and Q be chosen as in the previous claim, and without loss of generality
assume that their contacts lie on a common horizontal line. Then for j = i+3, . . . , i+5,
we have that P(v j) has height more than 3.

Assume for a contradiction that the height of P(v j) is at most 3. Then, as P(v j) has
perimeter at least 2 ·4+5 = 13, it must be realized as an L-shape with an overhang of
width at least 2, say to the left. It follows that P(v j−1) has height at most 1; see Fig. 15b.
But then P(v j−2) has perimeter at most 4 as it is enclosed in a 1×1-box, a contradiction.
The case that the overhang is to the right is symmetric. This proves the second claim.

Now consider P(vi+4). Either its left or right side does not have a bend, and hence
is a vertical segment of length at least 3. Without loss of generality assume that it is
the right side. We then consider vi+4 and vi+5, and their common neighbor ri+4. The
situation is depicted in Fig. 15c. The path s(ri+4vi+5) has length 1, and thus bends at
the reflex point of P(vi+5). Since both P(vi+4) and P(vi+5) have height at least 3 and
P(ri+4) has perimeter 10, P(ri+4) needs two bends in order to achieve the correct contact
lengths with both of them; a contradiction to the assumption that P has complexity 6. �

On the other hand, we describe an algorithm that produces for any outerplanar
graph G with weight function ω a representation with complexity 8.

Proposition 2 For the class O of internally triangulated outerplanar graphs k(O)≤ 8.

Proof: First, we make a given G∈O biconnected while keeping it outerplanar by adding
dummy vertices, see Figure 17. Then, we show that for any biconnected outerplanar
graph G = (V,E) with weight function ω and a reference edge e ∈ E on the outer face,
there exists an edge-proportional rectilinear representation P such that for each edge uv
on the outer face with uv 6= e, there exists a U-shape whose left and right boundary are
formed by the polygons P(u) and P(v), whose open side points to the top, and whose
width is at most ε/2, where ε is the smallest weight of all edges.

For a triangle uvw with reference edge uv this is obviously possible; see Fig. 16a.
We construct the drawing inductively. Let G be an arbitrary graph with reference edge e.
Since G is outerplanar and has more than three vertices, it has a degree-2 vertex w that
is not adjacent to e. By induction G−w has a desired representation P with respect to
the reference edge e. Let u and v denote the two neighbors of w, which are connected by
an edge on the outer face of G−w. Note that the presence of edge uv implies that G−w
remains biconnected. By the properties of P, there is a U-shape for the edge uv. We
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Figure 17: Edge-proportional rectilinear representation with 8-gons for outerplanar inner
triangulated graphs with separating vertices. (a), (b): after inserting x and edges xw, xv,
xu, vertex v is no longer separating. (c) We construct an EPRR with octagons; (d) then
we delete P(x).

then insert a new polygon P(w) into this U-shape as illustrated in Fig. 16b. Obviously,
this preserves all invariants. �

Propositions 1 and 2 imply that for the classO of outerplanar graphs, we have k(O)=
8. We remark that our technique for representing outerplanar graphs with 8-gons extends
to graphs with a single internal vertex, by wrapping the drawing around this central
vertex while creating the U-shapes for the outer edges. Moreover, in the outerplanar
case, it is simultaneously possible to achieve given areas for all vertices by suitably
stretching the polygons to satisfy the area demands. Next, we consider special cases and
show that outerpaths (outerplanar graphs whose weak dual is a path) require six bends,
and that six bends suffice for outerpillars.

Proposition 3 For the class P of internally triangulated outerpaths k(P)≥ 6.

Proof: We show that rectangles are not sufficient, even for outerpaths. Consider the
fan-graph G on 17 vertices consisting of a path v1, . . . ,v16, whose edge weights are
2,1,2,2,1,2, . . . ,2,1,2, and a center vertex u that is connected to all vertices of the path
by edges of weight 1. Assume for a contradiction that G admits an edge-proportional
rectilinear representation by rectangles. Consider four vertices vi,vi+1,vi+2,vi+3 with
contact lengths 2-1-2. We claim that P(u) has a bend for any such sequence.

Assume this is not the case, then all contact paths of vi,vi+1,vi+2 and vi+3 with P(u)
form adjacent, without loss of generality, horizontal segments. Each of these segments
has length 1, and hence the widths of P(vi),P(vi+1),P(vi+2) and P(vi+3) are fixed to 1.
The remaining degree of freedom is to choose their heights. However, ω(vivi+1) = 2
requires that P(vi) and P(vi+1) have height at least 2, and the same argument applies
for P(vi+2) and P(vi+3). However, ω(vi+1vi+2) = 1 requires that the height of P(vi+1)
or P(vi+2) is 1, a contradiction, and P(u) must have a bend during this sequence. Since
there are five such sequences for i = 1,4,7,10,13, it follows that P(u) has at least six
bends. �

Proposition 4 For the class P ′ of internally triangulated outerpillars k(P ′)≤ 6.

Proof: Let G′ be an outerpillar. As a first step, we pick the outerpath G ⊆ G′ that is
obtained by removing all but the two outermost degree-2 vertices of G′; see Fig. 18.
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Figure 18: Construction of an edge-proportional rectilinear representation with 6-gons
for outerpillars. Input graph with an outerpath subgraph, drawn with a thick boundary
(left). An EPRR of the outerpath with U-shapes for the remaining vertices shown as
tiled rectangles (right).

Let P be the path that is dual to G. The path P splits the boundary of the outer face of G
into two paths π1 = u1, . . . ,uk and π2 = v1, . . . ,v` that are internally disjoint, and that
share exactly their endpoints, i.e., u1 = v1 and uk = v`, both of which have degree 2
in G. Let H be larger than the maximum weight, and let W denote the total weight
of all internal edges. Construct a 2H×W box, split it horizontally into two boxes of
size H×W . We then split the upper box into k−2 rectangles P(u2), . . . ,P(uk−1) such
that the width of P(ui) is the sum of the weights of all internal edges of G incident to ui.
We split the lower box into boxes for v2, . . . ,v`−1 analogously; see Fig. 18. Observe that
this ensures correct contact lengths for all internal edges of G. Next, we place rectangles
for u1 and uk as boxes to the left and right of the drawing such that they have the correct
contact lengths. This ensures correct contact lengths except for internal vertices of π1
and π2, respectively, that are adjacent. They touch in a segment of length H, which is
too long. To remedy this, we remove for any such pair vivi+1 occurring in this order
on π1 or π2 a corner of the rectangle of vi+1. This corner is chosen such that its width is
at most half the smallest contact length, and such that afterwards |s(vivi+1)|= ω(vivi+1).
This finishes the construction for outerpaths. For the more general case of outerpillars
observe that there is a small U-shaped gap between any adjacent pair of vertices on the
outer face, and we can hence use the same approach as in the proof of Proposition 2 to
attach further leaves to the central outerpath determined by the spine P. Note that the
polygons can be stretched such that one contact has the correct length, so that only six
bends are necessary. �

This completely characterizes the complexity of length-universal layouts for inter-
nally triangulated graphs. As we have seen outerplanar graphs whose dual is a caterpillar
require complexity 6. The dual of the example graph showing that the 8 bends are
necessary is a lobster. Hence our results are best possible.

One disadvantage is that our drawings have an outer face of high complexity. How-
ever, we can show that one cannot do better. If one limits the complexity of the outer face
to some fixed number K, then there exist outerplanar graphs that require complexity k0
for any positive integer k0 > K.

Proposition 5 For every given k0, K ∈ N, k0, K ≥ 4, there exists an edge-weighted
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Figure 19: (a) Fan graph Gd used in the proof of Proposition 5. Thick edges have
weight M, thin non-dashed edges have weight 1. (b)

outerpath (G,ω) ∈ O such that each edge-proportional rectilinear representation P
of G with complexity k(P)≤ k0 has more than K bends on the outer face.

Proof: Consider the family of outerpaths Gd in Figure 19a, which are triangle fans
around the vertex u containing d− 1 triangles. We set M = 4k0 and select the value
of d to be 5 · (k0 +K + 1)+ 1. Assume there exists an edge-proportional rectilinear
representation P with polygon complexity k(P)≤ k0 and at most K bends on the outer
face. Then there must exist five consecutive neighbors vi, . . . , vi+4 of u, i∈{0, . . . ,d−4},
such that: (1) the contacts between the polygons P(u) and P(vi), . . . , P(u) and P(vi+4)
lie on a single line `1, and (2) the outer boundaries of the polygons P(vi), . . . , P(vi+4)
lie on a single line `2; see Figure 19b. Otherwise, any five consecutive neighbors v j,
. . . , v j+4 would be responsible for at least one bend of the polygon P(u) or the outer
contour Pout. But then, the total number of bends of P(u) and Pout would be at least d

5 −1.
Thus, it would hold k0 +K ≥ d

5 −1 and 5 · (k0 +K +1)≥ d, a contradiction.
Without loss of generality, let ω(vivi+1) = 1 (otherwise, use i+1 instead of i). Then

it is also ω(vi+2vi+3) = 1. Thus, the line `1 must be parallel to the line `2, and the two
lines have distance at most 1 to each other. Therefore, the contact s(vi+1vi+2) between
the polygons P(vi+1) and P(vi+2) must completely fit into a rectangle R of width 4 and
height 1 (dotted blue rectangle in Figure 19b). Thus, P(vi+1) must have at least k0 +1
bends, a contradiction. �

3.2 Graphs with one internal vertex
Next, we show that polygon complexity 8 also suffices to represent every inner trian-
gulated graph with one inner vertex as an edge-proportional rectilinear representation.

Proposition 6 For the class I1 of plane inner triangulated graphs with exactly one
inner vertex k(I1)≤ 8.

Proof: Consider a graph G = (V,E,ω) ∈ I1. We make G biconnected by adding new
vertices as described earlier. Let u be the only inner vertex in G, let d denote its degree,
and let v1, . . . ,vd be its neighbours in counterclockwise order. We set σ = 1

2 ∑
d
i=1 ω(uvi),
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Figure 20: Proof of Proposition 6 for d = 3. For d > 3 we acquire similar octagonal
constructions by subdividing polygons.

`= maxi=1,...,d ω(uvi), j = argmaxi=1,...,d ω(uvi) and ε to be the minimum edge weight
in G. We can always draw P(u) as a rectangle with correct contact lengths and wrap
the polygons P(vi), i = 1, . . . ,d around it such that the contacts between P(u) and P(vi)
have no bends except for at most three polygons P(vi) whose contacts to P(u) have at
most three bends in total:

Case 1: if ` > σ , we draw P(v j) as a U-shaped polygon containing the left, lower
and right boundary of the (2σ − `)× (`−σ) rectangle P(u) and draw the rest of the
polygons P(vi), i 6= j, as L- or ⊥-shapes on the upper boundary of P(u); see Figure 20a.

Case 2: If ` = σ , we draw P(v j) as an L-shaped polygon containing two sides
of P(u) and wrap the other polygons P(vi), i 6= j, around the remaining free corner
of P(u); see Figure 20b.

Case 3: If ` < σ , we can wrap the polygons P(vi) around P(u) such that for at most
three polygons P(vi) the contact between P(vi) and P(u) has exactly one bend each and
for the rest of the polygons it has no bends; see Figure 20c.

In all three cases we can draw the polygons P(vi) around P(u) with at most eight
bends each such that for each consecutive pair P(vi) and P(vi+1) there is a U-shape of
width at most ε/2 pointing outwards. Furthermore, the depth of such a U-shape can be
increased arbitrarily; see arrows in Figure 20.

Consider a pair vi, vi+1 of consecutive neighbors of u, i = 1, . . . ,m. If u is the only
common neighbor of vi and vi+1, the U-shape between the polygons P(vi) and P(vi+1)
remains empty. Otherwise, denote the second common neighbor by ui. The removal
of vi and vi+1 disconnects G. Let V ′i be the vertex set of the component containing ui
and let Gi be the subgraph of G induced by V ′i ∪{vi,vi+1} ⊆ V . Then, Gi ∈ O. We
choose vivi+1 as the reference edge and use the construction from the proof of Proposi-
tion 2. Thus, Gi−{vi,vi+1} can be drawn inside the corresponding ε/2 wide U-shape
with ⊥-shaped polygons. This completes the construction of an edge-proportional
rectilinear representation of G with complexity 8. �

4 Conclusions

In this work, we have introduced the new notion of edge-proportional contact repre-
sentations for edge-weighted planar graphs by encoding the edge weights as contact
lengths. We have presented a constructive linear-time decision algorithm for the exis-
tence of edge-proportional rectangular duals (EPRDs) with four outer rectangles; see
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Section 2.1.1. If arbitrarily many outer rectangles are allowed, it is NP-complete to
decide whether an EPRD that forms a square exists; see Section 2.1.2. We have studied
the problem of finding small rectangular duals for lower-bounded contact lengths. If
the combinatorial structure (REL) of the dual is fixed, optimal duals can be constructed
efficiently with existing tools; see Section 2.2. In Section 2.4, we have proved NP-
completeness for the case of variable RELs. Also, deciding the existence of a dual under
specified lower and upper bounds on the contact lengths is NP-complete, and a similar
decision problem is NP-hard for lower-bounded contact lengths and upper-bounded
rectangle areas; see Section 2.3. Furthermore, in Section 3 we have considered edge-
proportional rectilinear representations (EPRRs) of internally triangulated plane graphs
and have given tight bounds on the necessary and sufficient polygon complexity.

Open problems. We have shown that edge-proportional rectilinear representations
that have bounded polygon complexity for an arbitrary edge-weight function exist only
for a rather restricted class of graphs. To extend the proposed approach to a wider class
of graphs, we have to allow contact lengths that deviate from the specified edge weights.
One option is to interpret the weights as lower bounds on the edge lengths (thus one
could highlight a subsegment of optimal length for each edge) and construct a dual that
minimizes the error. As we have shown, this problem is NP-complete for rectangular
duals. It can be solved exactly using integer linear programming, but so far no efficient
approximation algorithms are known. One could also study this problem for rectilinear
polygons of complexity 6 and above. Other possible trade-offs between the error and
representability of wider classes of graphs are of interest, too.

We have shown that the number of edge-proportional rectangular duals of a graph is
sometimes exponential, and deciding whether there exists an EPRD that forms a square
is NP-complete. Is it also hard to decide whether an EPRD exists at all? Another open
question is whether, for a PTP graph with a fixed REL, we can efficiently decide the
existence of a rectangular dual with lower-bounded contact lengths and upper-bounded
rectangle areas. This would answer the question whether the same decision problem for
variable RELs is contained in NP .

A very interesting challenge is to investigate the complexity of finding layouts with
minimum size for the case that all contact lengths have lower bounds 1. We have
shown NP-completeness for arbitrary edge weights only. In fact, the restriction to unit
weights is equivalent to a long-standing open question posed by He [12]: Given a PTP
graph G, find a rectangular dual of G that can be drawn with minimum area (or minimum
perimeter, or minimum width) such that each contact has length at least 1.
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[6] J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of
segments in the plane. In Proc. 41st Annual ACM Symposium on Theory of
Computing (STOC’09), pages 631–638. ACM, 2009. doi:http://doi.acm.

org/10.1145/1536414.1536500.

[7] M. de Berg, E. Mumford, and B. Speckmann. On rectilinear duals for vertex-
weighted plane graphs. Discrete Mathematics, 309(7):1794–1812, 2009. doi:

10.1016/j.disc.2007.12.087.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

[9] P. Eades and N. C. Wormald. Fixed edge-length graph drawing is NP-hard. Discrete
Applied Mathematics, 28(2):111–134, 1990. doi:10.1016/0166-218X(90)

90110-X.

[10] D. Eppstein, E. Mumford, B. Speckmann, and K. Verbeek. Area-universal and
constrained rectangular layouts. SIAM J. Comput., 41(3):537–564, 2012. doi:

10.1137/110834032.
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