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Abstract

The point placement problem is to determine the positions of a set of
n distinct points, P = {p1, p2, p3, . . . , pn}, on a line uniquely, up to trans-
lation and reflection, from the fewest possible distance queries between
pairs of points. Each distance query corresponds to an edge in a graph,
called point placement graph (ppg), whose vertex set is P . The uniqueness
requirement of the placement translates to line-rigidity of the ppg. In this
paper we show how to construct in 2 rounds a line-rigid point placement
graph of size 4n/3 + O(1) from certain small-sized graphs called 6:6 jew-
els. This improves an earlier result that used cycle-graphs on 5 vertices.
More significantly, we improve the lower bound on 2-round algorithms
from 17n/16 to 12n/11.
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1 Introduction

1.1 The problem

Let P = {p1, p2, ..., pn} be a set of n distinct points on a line L. In this paper,
we address the problem of determining a unique placement (up to translation
and reflection) of the pi’s on L, by querying distances between some pairs of
points pi and pj , 1 ≤ i, j ≤ n.

The resulting queries can be represented by a point placement graph (ppg,
for short), G = (P,E), where each edge e in E joins a pair of points pi and pj
in P if the distance between these two points on L is known and the length of
e, |e|, is the distance between the corresponding pair of points (Note the dual
use of pi to denote a point on L as well as a vertex of G).

We will say that G is line rigid or just rigid when there is a unique placement
for P . Thus, the original problem reduces to the construction of a line rigid ppg,
G.

Let’s take some simple examples to illustrate the ideas involved. Suppose we
have just 3 points {p1, p2, p3} on a line whose positions we want to know. Three
different ppgs, up to relabelling, are possible (omitting the trivial case when
E = ∅) as shown in Fig. 1 below. Fig. 1(a) corresponds to the situation when
the distance between a pair of points, say p1 and p2, is known. For Fig. 1(b),
the distances between 2 pairs of points, say {p1, p2} and {p2, p3}, are known.
Fig. 1(c) is the ppg when all the pairwise distances are known.

p1 p1 p1

p2 p2 p2

p3 p3p3

(a) (b) (c)

Figure 1: Some point placement graphs for 3 points

Clearly, for the ppg of Fig. 1(a) a unique placement is not possible since the
point p3 can be anywhere relative to p1 and p2. The same is true of Fig. 1(b)
- say we place p1 and p2 first, but then the position of p3 relative to p2 is
ambiguous. However, a unique placement is possible for the ppg of Fig. 1(c) as
long as the length of one edge is the sum or absolute difference of the lengths
of the other two. Thus, if we first place p1 and then place p2 to p1’s right, p3
will be placed between p1 and p2 if the sum of its distances from p1 and p2 is
|p1p2|, and to the left of p1 or to the right of p2 if the absolute difference of the
distances is equal to |p1p2|. In other words, the ppg of Fig. 1(c) is rigid.

The last case suggests a simple algorithm for the unique placement of n
points. Query the distance between two points, say p1 and p2. The position of
each of the remaining points pi, i ≥ 3 is determined by querying the distances
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from pi to p1 and p2; pi lies between p1 and p2 if the sum of the distances is
equal to |p1p2|, and to the left of p1 or to the right of p2 if the difference of
the distances is equal to |p1p2|. The corresponding ppg shown in Fig. 2 is then
rigid. The number of queries made is 2n− 3, which is of the form αn+ β.

p1 p2

p3

p4

pn

Figure 2: Query graph using triangles

The principal goal is to make α as small as possible. With this in mind,
let’s look at the more complicated and illuminating case when we have 4 points.
Many different ppg’s are possible. We can dispense with those that have fewer
than 4 edges since in these cases a unique placement is clearly not possible.
Fig. 3 below shows the possible ppg’s, up to relabelling, with 4 and 5 edges.

p1 p4 p4

p2 p2 p2

p1 p1p3

p3 p3

p4

(a) (b) (c)

Figure 3: Some point placement graphs for 4 points

The ppg of Fig. 3(a) is not rigid, for while the triangle formed by p1, p2
and p3 is rigid, the point p4 can be placed to the left or right of p3, making
the placement non-unique. The ppg of Fig. 3(b) is interesting in that if the
two pairs of opposite edges are equal then there is no unique placement. This
is easily seen by drawing the ppg as a rectangle as shown in Fig. 4(a) below
and then giving a horizontal right shear to the top edge p2p3 so that p2 and
p3 lie on the same line as p1 and p4, giving us the linear configuration shown
in Fig. 4(b). A horizontal left shear produces the linear configuration shown in
Fig. 4(c), which cannot be obtained from the linear configuration of Fig. 4(b)
by translation and/or reflection.

The ppg of Fig. 3(c) is rigid since we have 2 triangles attached to the edge
p1p3, each of which is rigid. Thus, it is the ppg of Fig. 3(b) for which we have
a structural rigidity condition, namely, |p1p2| 6= |p3p4| or |p2p3| 6= |p1p4| [4].
This means that if we want to extend our previous algorithm for the unique
placement of n points, by first placing two nodes, say, p1 and p2 on L and then



136 M. S. Alam & A.Mukhopadhyay Point Placement Problem

p1 p1p4 p4p2 p2p3 p3

(a)

p1

p2 p3

p4

(b) (c)

Figure 4: Point placement graph in the shape of a quadrilateral (a) with opposite
edges being equal have 2 placements as shown in (b) and (c)

building rigid quadrilaterals by querying distances from p1 and p2 with respect
to two new nodes at a time, we must make sure that we meet the structural
condition on the rigidity of each new quadrilateral.

To build a rigid ppg we need to do the queries in rounds. Here is a 2-round
algorithm due to Damaschke [6]. Let the number of points be n = 2b + 4,
where b is a positive integer. In the first round, we make 2b+ 3 distance queries
represented by the edges in the graph in Fig. 5. There are b children pi (i =
3, ..., b+ 2) rooted at p1 and b+ 2 children pj (j = b+ 3, ..., 2b+ 4) rooted at p2.

p1 p2

b leaves b+ 2 leaves
pi pj

Figure 5: Query graph for first round in a 2-round algorithm using quadrilaterals

In the second round, for each edge p1pi (i = 3, ..., b+2) we find an edge p2pj
rooted at p2 satisfying the rigidity condition |p1pi| 6= |p2pj |. We can ensure
this condition by having 2 extra edges at p2, in view of the following basic
observation [7]:

Observation 1 At most two equal length edges can be incident to any node in
a ppg.

By Observation 1, there are at most 2 edges p2pj such that |p1pi| = |p2pj |.
So, for each edge p1pi an edge p2pj will always be found such that |p1pi| 6=
|p2pj |. Then for each i (i = 3, ..., b + 2), we query the distance pipj to form a
quadrilateral p1pipjp2. It will be line rigid since |p1pi| 6= |p2pj |. It will fix the
positions of pi and pj relative to p1 and p2. For each of the 2 unused leaves pj ,
the distance p1pj is queried in the second round to form the triangle p1pjp2. It
will fix the position of pj relative to p1 and p2.

The number of queries made over the two rounds to construct this rigid ppg
is 3b+ 5, i.e., 3n/2− 1. There are two noteworthy points: (a) we have reduced
the value of α from 2 for the first algorithm to 3/2 for the second, and (b) there
is a price for this - we have to query the edges in two rounds.

What if the number of points is greater than 6 but odd? Let n = 2b + 5,
where b is a positive integer. We make an unique placement of the first 2b + 4
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nodes using the above algorithm, and query the distances of the last odd node
from any two nodes. Distance queries for this node can be made in either of the
2 rounds.

1.2 Motivation

The motivation for studying this problem stems from the fact that it arises in
diverse areas of research, to wit computational biology, learning theory, compu-
tational geometry, etc.

In learning theory [6] this problem is one of learning a set of points on
a line non-adaptively, when learning has to proceed based on a fixed set of
given distances, or adaptively when learning proceeds in rounds, with the edges
queried in one round depending on those queried in the previous rounds.

The version of this problem studied in Computational Geometry is known
as the turnpike problem. The description is as follows. On an expressway
stretching from town A to town B there are several gas exits; the distances
between all pairs of exits are known. The problem is to determine the geometric
locations of these exits. This problem was first studied by Skiena et al. [11]
who proposed a practical heuristic for the reconstruction. A polynomial time
algorithm was given by Daurat et al. [8].

In computational biology, it appears in the guise of the restriction site map-
ping problem. Biologists discovered that certain restriction enzymes cleave a
DNA sequence at specific sites known as restriction sites. For example, it was
discovered by Smith and Wilcox [12] that the restriction enzyme Hind II cleaves
DNA sequences at the restriction sites GTGCAC or GTTAAC. In lab experi-
ments, by means of fluorescent in situ hybridization (FISH experiments) biolo-
gists are able to measure the lengths of such cleaved DNA strings. Given the
distances (measured by the number of intervening nucleotides) between all pairs
of restriction sites, the task is to determine the exact locations of the restriction
sites.

The turnpike problem and the restriction mapping problem are identical,
except for the unit of distance involved; in both of these we seek to fit a set
of points to a given set of interpoint distances. As is well-known, the solution
may not be unique and the running time is polynomial in the number of points.
While the point placement problem, prima facie, bears a resemblance to these
two problems it is different in its formulation - we are allowed to make pairwise
distance queries among a distinct set of labeled points. It turns out that it is
possible to determine a unique placement of the points up to translation and
reflection in time that is linear in the number of points.

1.3 Prior work

Early research on this problem was reported in [10, 9]. In this paper, our first
principal reference is [6], where it was shown that the jewel (Fig. 8) and K2,3

are both line rigid, as also how to build large rigid graphs of density 8/5 (this is
an asymptotic measure of the number of edges per node as the number of nodes
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go to infinity) out of the jewel. In a subsequent paper, Damaschke [7] proposed
a randomized 2-round strategy that needs (1+o(1))n distance queries with high
probability and also showed that this is not possible with 2-round deterministic
strategies. Our second principal reference is the work of [4] who improved many
of the results of [6]. Their principal contributions are the 3-round construction
of rigid graphs of density 5/4 from 6-cycles and a lower bound on the number
of queries necessary in any 2-round algorithm.

1.4 Our contribution

In this paper, we determine conditions under which generalizations of the jewel,
called m : n jewels, remain line rigid. In [2] we showed how to construct in
2 rounds a line rigid ppg on n points, using an instance of a 5:5 jewel as the
basic component. The number of edges queried during this construction is
10n/7 +O(1). In this paper we extend this result to 6:6 jewels, constructing in
2 rounds a line rigid ppg with 4n/3 +O(1) queries. This improves the result in
[4] for constructing a ppg of the same size in 2 rounds using 5-cycles. We also
improve substantially the lower bound on any 2-round algorithm from 17n/16
in [4] to 12n/11.

2 Generalized jewels

The examples described in the Introduction demonstrates well how small ppg’s
that are inherently rigid or rigid under some structural conditions can be glued
together into a large rigid ppg. In this section we introduce a novel type of ppg,
namely an m : n jewel, several copies of which we plan to glue together to form
a large rigid ppg.

A generic m : n jewel consists of an m-vertex cycle C1 and another n-vertex
cycle C2 that are joined by a strut going between two vertices Y (of C1) and Z
(of C2), and hinged at a third common vertex, X (Fig. 6). An instance of an
m : n jewel is obtained by the placement of the nodes that describe the cycles
C1 and C2.

X

Y Z

C1 C2

Figure 6: A generic m : n jewel

To attain our goal we need to determine the structural conditions that make
a chosen instance of the m : n jewel line rigid. In this, the idea of a layer graph
introduced by Chin et al. [4] comes in handy. We first choose two orthogonal
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directions x and y (actually, any 2 non-parallel directions will do). A graph G
admits a layer graph drawing if the following 4 properties are satisfied:

P1 Each edge e of G is parallel to one of the two orthogonal directions, x and
y.

P2 The length of an edge e is the distance between the corresponding points
on L.

P3 Not all edges are along the same direction (thus a layer graph has a two-
dimensional extent).

P4 When the layer graph is folded onto a line, by a rotation either to the left
or to the right about an edge of the layer graph lying on this line, no two
vertices coincide.

Chin et al. [4] proved the following result:

Theorem 1 A ppg G is line rigid iff it cannot be drawn as a layer graph.

In the next section, we obtain structural conditions under which chosen
instances of the m : n jewels remain rigid for small values of m and n by
drawing them as layer graphs. Before we do that, we establish a few useful facts
about the generic m : n jewel. The first is this.

Theorem 2 If cycles C1 and C2, consisting of m and n nodes respectively, are
line rigid then so is any m : n jewel made up of these two cycles.

Proof: Since C1 and C2 are rigid their respective vertices have unique linear
layouts. Then in order for an m : n jewel to have a layer graph drawing these
placements would have to be in the orthogonal directions x and y. Suppose the
vertex Y is placed on the x-axis and the vertex Z on the y-axis, then the edge
Y Z of the m : n-jewel is not parallel to either the x or the y direction. Hence,
the m : n jewel cannot be drawn as a layer graph and must, therefore, be rigid.

�

As a direct consequence of the theorem we have the following corollary:

Corollary 3 If an m : n jewel has a layer graph representation then in this
representation at least one of C1 or C2 is a layer graph.

In order to obtain the structural conditions that make a cycle rigid, we draw
all possible layer graph representations of it and find the structural conditions
for the rigidity of each of these. The logical AND of all these conditions is our
answer. The second corollary is this:

Corollary 4 The union of the set of all the structural conditions that make
C1 rigid with those that make C2 rigid, constitute a sufficient set of structural
conditions that make an m : n jewel rigid.
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We shall take this route in the next two sections to obtain the structural
conditions for the rigidity of chosen instances of the m : n jewels for some small
values of m and n.

It should be noted that a cycle with a fixed set of nx x-parallel edges and
thus a fixed set of ny y-parallel edges can be drawn as a layer graph in different
ways. They are all considered to be equivalent. For example, the three layer
graph drawings of a 5-cycle in Fig. 7 are considered to be equivalent. From now
on, for an equivalent class of layer graphs we shall draw just one of them - not
all. We shall not use the term class either. By a particular layer graph, we shall
mean the class of layer graphs that are equivalent to it. Thus, two layer graph
drawings of an n-vertex cycle are distinct from each other if at least one edge
has different orientations in the two graphs.

p1 p4 p4

p2 p2 p2

p1p5

p3 p3

p4

(a)

p3

p1p5 p5

(b) (c)

Figure 7: Equivalent layer graphs for a class of layer graphs of a 5-cycle

As we shall resort to exhaustive enumerations of all the layer graph repre-
sentations of a cycle, the following theorem [2] is useful for checking that we
have the correct number.

Theorem 5 There are 2n−1 − n2−n+2
2 different layer graph representations of

an n-vertex cycle.

2.1 4:4 and 5:4 Jewels

The following observation is fundamental. A formal proof can be found in [6].

Observation 2 A 4-cycle XAY B is line rigid if |XA| 6= |Y B| or |XB| 6= |Y A|.

Two 4-cycles joined together as in Fig. 8 is called a jewel in [6]. It is an
instance of a generic 4 : 4 jewel that we will use in the rest of our discussion.
To begin with, we prove the following theorem:

Theorem 6 The 4:4 jewel of Fig. 8 is line rigid.

Proof: We claim that cycles XAY B and XQZP are both line rigid. Let the
edge Y Z is x-parallel. Three cases arise:

Case 1 The 4-cycle XAY B is line rigid, while the 4-cycle XQZP has a layer
graph representation.

Since XQZP is a 4-cycle evidently its layer graph can be a rectangle only.
Let the vertices of the line rigid 4-cycle XAY B lie on the x-parallel line
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X

B

A

Z

P

Q

Y

Figure 8: An instance of a 4 : 4 jewel

X

A

Z

P

Q

Y

B
C

Figure 9: An instance of a 5 : 4 jewel

through Y . Then for the rectangular layer graph XQZP the diagonally
opposite vertices X and Z lie on an x-parallel line collinear with Y Z.
Consequently, XQZP cannot have a 2-dimensional extent. This violates
property P1 of a layer graph. Thus the 4-cycle XQZP cannot be drawn
as a layer graph.

To complete the argument assume that the vertices of the line rigid 4-cycle
XAY B lie on the y-parallel line through Y . Then the only way we can
draw the 4-cycle XQZP as a layer graph such that X and Z are non-
adjacent is to place one of the two vertices P or Q at Y . As this violates
property P4 that a layer graph should have, the 4-cycle XQZP can not
be drawn as a layer graph.

Thus, the 4-cycle XQZP does not have a layer graph representation when
the 4-cycle XAY B is line rigid.

Case 2 An identical argument as in Case 1 proves that a layer graph represen-
tation of the 4-cycle XAY B is impossible when the 4-cycle XQZP is line
rigid.

Case 3 Finally, assume both the 4-cycles have layer graph representations.

Evidently, each of these is a rectangle only. As X and Y are non-adjacent
vertices, they are diagonally opposite vertices of the rectangle XAY B.
Likewise, X and Z are diagonally opposite vertices of the rectangleXQZP .

The arguments adduced for Case 1 can once again be used to show that it
is not possible to draw the 4-cycle XAY B as a layer graph if X lies on the
x- or y-parallel lines passing through Y or on any of the x- or y-parallel
lines passing through Z.

Assume otherwise. Now, X and Y are diagonally opposite vertices of the
rectangle XAY B while X and Z are diagonally opposite vertices of the
rectangle XQZP . Therefore a vertex of the 4-cycle XAY B must coincide
with a vertex of the 4-cycle XQZP on an x-parallel line collinear with
Y Z. As this violates property P4 that a layer graph should have, the cycles
XQZP and XQZP cannot have simultaneous layer graph representations.

Thus, none of the two 4-cycles of the jewel has a layer graph representation.
By Theorem 1 both the cycles are line rigid, and by Theorem 2 the 4:4 jewel is
line rigid. �



142 M. S. Alam & A.Mukhopadhyay Point Placement Problem

Unlike the 4:4 jewel of Fig. 8, the 5:4 jewel of Fig. 9 is not intrinsically line
rigid. As a prelude to our discussion in the following sections, it is interesting
to find the structural conditions (or simply conditions) that make it line rigid.

We first determine the conditions that make the cycle XABY C line rigid.
By Theorem 5, there are five distinct layer graph representations of the 5-
cycle XABY C, shown in Fig. 10. As remarked earlier, each is a canonical
representative of an entire class of layer graph representations; referring to Fig.
10(a) for example, other representations can be obtained by varying the position
of A on the supporting line of XB.

It is impossible to extend the layer graph representations of the 5-cycle
XABY C shown in Figs. 10(a) and (b) into a layer graph representation of the
entire 5:4 jewel of Fig. 9 without one of the vertices P or Q coinciding with one
of the vertices B or C.

However, it is possible to extend each of the layer graph representations of
Figs. 10(c)-10(e) into a layer graph representation of our 5:4 jewel. The layer
graph representations of Figs. 10(c)-10(e) can be prevented by insisting on the
condition |XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB| respectively. By Theorem
1, these collectively constitute a set of sufficient conditions for the line rigidity
of the 5-cycle XABY C.

For the 4-cycle XPZQ the rigidity condition is |XP | 6= |ZQ| (Observa-
tion 2). Thus by Corollary 4, the set of sufficient conditions for the rigidity of the
5:4 jewel of Fig. 9 is {|XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB|, |XP | 6= |ZQ|}.

We note in passing that for each of the configurations in Figs. 10(c)-10(e),
we have an alternate condition that prevents its drawing as shown. Thus for ex-
ample |XA| 6= ||CY |±|Y B|| also prevents the layer graph drawing of Fig. 10(c).
With the help of the label mapping (X,C, Y,B,A) to (p3, p4, p5, p1, p2) we can
see that this condition encapsulates the 3 different conditions corresponding to
the 3 equivalent layer graphs representations shown in Fig. 7. In such situations,
whenever possible, we choose the simpler condition, unless the other one is more
useful for the construction of a ppg.

X A B

YC

X A

B

YC

X A

BYC

X A

BY

C

X A

BY

C

(a) (b) (c) (d) (e)

Figure 10: Different layer graph representations of a 5-cycle

Theorem 7 The 5:4 jewel of Fig. 9 is line rigid if its edges satisfy the set of
conditions {|XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB|, |XP | 6= |ZQ|}.
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3 Algorithm based on a 5:5 jewel

We next consider the more complex case of the 5:5 jewel of Fig. 11. From now
on, we will refer to it simply as the 5:5 jewel.

By Theorem 5 there are exactly 5 distinct layer graph representations of a
5-cycle (see Fig. 10). Thus, the set of 5 distinct conditions in Lemma 1 are
sufficient to ensure the line-rigidity of the 5-cycle XABY C.

Lemma 1 A 5-cycle XABY C is line rigid if its edges satisfy the following
conditions:

|XC| 6= |Y B|, |XA| 6= |Y C|, |XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB| (1)

Proof: Omitted. A formal proof appears in [4]. �

X

A

Z

P

Q

Y

B
C R

Figure 11: An instance of the 5:5 jewel

For the 5-cycle XPQZR these conditions are:

|XR| 6= |ZQ|, |XP | 6= |ZR|, |XR| 6= |PQ|, |ZR| 6= |PQ|, |XP | 6= |ZQ|.

By Corollary 4, these 10 conditions collectively constitute a sufficient set of
conditions for the line-rigidity of the 5:5 jewel.

Our goal is to glue several copies of the 5:5 jewel of Fig. 11 into a large ppg,
as we did in the case of quadrilaterals in section 1.1. All of these will have a
common strut Y Z. As each jewel will account for 7 new nodes in lieu of 10 new
edge queries, we expect α to be 10/7. This indeed turns out to be the case. The
challenge here is to design the ppg in such a way that the rigidity conditions are
satisfied for every jewel.

The rigidity conditions for a cycle, in their current form, involve all its edges.
This requires to query the lengths of all of its edges in the first round to check if
the rigidity conditions are satisfied. This does not provide us with the flexibility
of choice that we need to meet the rigidity conditions in a 2-round algorithm.
The edge lengths may not satisfy the conditions. If any condition is not satisfied
then the cycle and thus the whole jewel may not be line rigid because our set
of conditions is sufficient (Theorem 2). Now, the 2-dimensional stretch of a
layer graph gives a pointer - we can avoid involving one edge of a cycle from
all the rigidity conditions for it. We shall avoid AB and PQ from the rigidity
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conditions for the two 5-cycles. Then the cycles will be rigid irrespective of the
lengths of those edges. And the rigidity conditions for the cycles will involve all
of their other edges. Again, in each rigidity condition we need to have at least
one edge in it for which we can choose edge length, from among the options
for edge lengths for that particular edge, that satisfies the condition. We shall
provide options for choosing each of the edges Y B and ZQ.

There will be rigidity conditions of each cycle that will not involve these
edges, i.e., Y B or ZQ. We cannot meet those rigidity conditions in a 2-round
algorithm. We need to avoid other edge(s) from the rigidity conditions of a cycle
and/or provide options for choosing edge(s) for a cycle. We shall avoid XC and
XR from the rigidity conditions for the two cycles. Then we shall have options
for choosing edges Y C and ZR to satisfy the rigidity conditions.

Thus, we shall avoid AB, PQ, XC and XR from the rigidity conditions. For
each 5-cycle we shall replace each of its rigidity conditions that involve any of
these edges. We shall replace that condition by a set of condition(s) that prevent
the cycle from being drawn as the layer graph representation that corresponds
to that condition.

Looking ahead slightly, Fig. 18 describes the structure of our proposed ppg.
It has a pool of edges hanging from each end of the strut Y Z and a set of
2-pronged subgraphs. The lengths of the edges of this ppg are queried in the
first round. In the second round, we join each 2-pronged subgraph to a pair of
edges incident to Y and another pair of edges incident to Z to form a 5:5 jewel,
making sure that all the rigidity conditions satisfied.

Over the rest of this section we show how to replace the rigidity conditions
of the 5-cycle XABY C that involve XC and/or AB with rigidity conditions
that exclude these edges. To replace a condition we shall find another set of
conditions that prevents the drawing of the 5-cycle XABY C as a layer graph
in the configuration corresponding to that condition. For example, to replace
the condition |XC| 6= |Y B|, corresponding to the layer graph of Fig. 10(a), we
shall find a set of conditions that prevent the drawing of the layer graph of the
5-cycle in the configuration of Fig. 10(a).

Our first attempt will be to use other edges in the layer graph drawing corre-
sponding to a given rigidity condition involving XC and/or AB. If this does not
suit our purpose, the basic strategy will be to embed the layer graph drawing
corresponding to such a rigidity condition into all possible layer graph drawings
of the 5:5 jewel and derive a rigidity condition from each such embedding.

The rigidity conditions that we will consider for replacement are:

|XC| 6= |Y B|, |XC| 6= |AB|, |Y C| 6= |AB|

3.1 Replacing |XC| 6= |AB|
This condition has been derived from the layer graph drawing shown in Fig. 10(c).
This figure shows that an alternate rigidity condition is

|XA| 6= ||Y B| ± |Y C||, (2)
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which we use to replace |XC| 6= |AB|.

3.2 Replacing |XC| 6= |Y B|
This rigidity condition corresponds to the layer graph drawing of Fig. 10(a).
||XA| ± |AB|| 6= |Y C| is an alternate rigidity condition corresponding to the
layer graph drawing in Fig. 10a) of the 5-cycle XABY C. However, it involves
the edge AB that we wish to avoid. We shall find an alternate set of rigidity
conditions. For this, we find all possible layer graph drawings of the 5:5 jewel in
which the layer graph of Fig. 10(a) is embedded. Then we find conditions which
prohibit those layer graph drawings. Consequently, those conditions will replace
|XC| 6= |Y B|, because there will be no layer graph for the 5:5 jewel in which the
layer graph of Fig. 10(a) is embedded. We shall follow this method whenever
we cannot use any rigidity condition for a 5-cycle XABY C or XPQZR that
involves some edges of the corresponding cycle only. We have the following
lemma for the replacement of the current condition:

Lemma 2 The 5-cycle XABY C of the 5:5 jewel of Fig. 11 cannot be drawn
as the layer graph of Fig. 10(a) if the edges of the jewel satisfy the following
conditions:

{|ZR| 6= |Y B|, |ZR| 6= |Y C|} (3)

Proof: We argue below that there are exactly 4 possible layer graph drawings
of the 5:5 jewel in which the layer graph of Fig. 10(a) lies embedded. Two cases
arise depending on the orientations of Y Z:

• Y Z is horizontal (Fig. 12)

Z is necessarily distinct from C, while Y Z and Y B are mutually perpen-
dicular. Consider the edges on the path XRZ of the 5:5 jewel. If XR were
vertical, then ZR would have to be horizontal, forcing R to coincide with
C. Thus, XR must be horizontal and consequently, RZ must be vertical.

Next, we consider the edges on the path XPQZ. XP can be horizontal
or vertical. If XP is horizontal then PQ must be vertical, else Q and R
will coincide. This forces QZ to be horizontal giving us the layer graph of
Fig. 12(a).

If XP is vertical, then PQ must be horizontal; otherwise, Q will coin-
cide with C. This forces QZ to be vertical, giving us the layer graph of
Fig. 12(b).

In these layer graphs, the edges Y C and Y Z are on a horizontal line
CY Z, and are parallel to XR. The vertical edges XC and ZR connect
the parallel edges. So, we must have |XC| = |ZR|. Thus, these layer
graphs are not possible if |ZR| 6= |Y B|.

• Y Z is vertical (Fig. 13)
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Q

Figure 12: Replacing the condition |XC| 6= |Y B| when Y B and Y Z are mutually
perpendicular

Identical arguments as adduced for the case when Y Z was assumed hori-
zontal, gives us the layer graph drawings of Fig. 13(a) and Fig. 13(b).

For both the configurations of Fig. 13 the edges XC and XR are on a
vertical line XRC, while the edges Y B and Y Z are on a vertical line
BZY . The edge Y C is horizontal and connects those two parallel lines.
The edge ZR is horizontal and connects the two vertical lines XRC and
BZY . So, we must have |ZR| = |Y C|. Thus, these layer graphs are not
possible if |ZR| 6= |Y C|.
It follows that there is no layer graph for the 5:5 jewel in which the layer
graph in Fig. 10(a) of the 5-cycle XABY C is embedded if the edges of the
jewel satisfy Eq. 3. Hence, the 5-cycle XABY C of the 5:5 jewel of Fig. 11
cannot be drawn as the layer graph of Fig. 10(a) if the edges of the jewel
satisfy the conditions in Eq. 3.

�

X A B

YC

ZR

QP

(a) (b)

X A B

YC

P

ZR
Q

Figure 13: Replacing the condition |XC| 6= |Y B| when Y B and Y Z are collinear

3.3 Replacing |Y C| 6= |AB|
This rigidity condition corresponds to the layer graph drawing of Fig. 10(e).

We argue below that there are exactly 12 possible layer graph drawings of
the 5:5 jewel in which the layer graph of Fig. 10(e) lies embedded. There are 2
main cases to consider.
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• Y Z is vertical and Y B is orthogonal to it:

The path XRZ is made up of a vertical segment XR, followed by a hori-
zontal segment ZR, else R will coincide with C. If we consider the path
XPQ, by a similar argument when XP is horizontal PQ must be vertical.
If QZ were vertical, then P would have to coincide with C. Thus, QZ is
horizontal. This gives us the layer graph drawing of Fig. 14(a).

If XP is vertical, we can argue similarly as in the last paragraph that PQ
must be horizontal and QZ vertical. This gives us the layer graph drawing
of Fig. 14(b).

X A

BY

C

Z R

P

(a)

Q

X A

BY

C

Z R

Q P

(b)

Figure 14: Replacing the condition |Y C| 6= |AB| when Y Z and Y B are perpen-
dicular to each other. There is only one position for R.

{|Y B| 6= ||XA| ± |XC||} is an alternate rigidity condition for the 5-cycle
XABY C with the layer graph drawing as in (Fig. 10(e)). This condition
however involves the edge XC that we wish to avoid. For both the layer
graph drawings of Fig. 14, Y B and Y Z being mutually perpendicular, the
edges Y C and Y Z are on a line CY Z, and they are parallel to XR. So,
we must have |XC| = |ZR|. Using this, we get the replacement rigidity
condition {|Y B| 6= ||XA| ± |ZR||}.

• Y B and Y Z are collinear:

3 subcases arise depending upon the orientations of ZR and XR.

– ZR is perpendicular to Y B and Y Z, and XR is perpendicular to ZR
(Fig. 15). In this case there are 4 distinct placements of the edges
XP , PQ and QZ giving rise to 4 distinct layer graph drawings of the
5:5 jewel (Fig. 15(a)-(d)).

In all the 4 layer graph drawings the edges Y Z and XR are horizontal
and collinear, while the edge ZR is vertical and connects those two
parallel edges. The edges Y B and XA are horizontal and collinear,
while the edge AB is vertical and connects those two parallel edges.
Y Z and Y B are collinear, and so are XR and XA. Therefore, we



148 M. S. Alam & A.Mukhopadhyay Point Placement Problem

must have |AB| = |ZR| and the replacement rigidity condition for
this subcase is |Y C| 6= |ZR|.
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BY
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P Q

Z

R

(a)
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BY

C

Q Z

R

P
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BY

C

Q

P

Z

R

(c) (d)

(b)

Figure 15: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear,
ZR is perpendicular to BY Z and XR is perpendicular to ZR

– ZR is perpendicular to Y B and Y Z, and XR and ZR are collinear.
In this case XP , PQ and QZ can be placed in 2 distinct config-
urations (Fig. 16). In these configurations of the jewel the 5-cycle
XABY C cannot be drawn as a layer graph in the present configura-
tion if ||XA| ± |XC|| 6= |Y B|. In both the configurations of the layer
graph of the jewel Y C and XRZ are parallel, and both of XC and
Y Z connect them. We must have |XC| = |Y Z|. We can rewrite the
condition as ||XA| ± |Y Z|| 6= |Y B| for this subcase.

X A

BY

C P

QZ

R

X A

BY

C

P

Q

Z

R

(a) (b)

Figure 16: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear,
and ZR and XR are perpendicular to BY Z

– ZR is collinear with Y B and Y Z (Fig. 17). In this case, XR is
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necessarily perpendicular to ZR, while XP , PQ and QZ can be
in 4 distinct configurations. In all of these, the 5-cycle XABY C
cannot be drawn as a layer graph in the present configuration if
||XA| ± |XC|| 6= |Y B|. Since |XC| = ||Y Z| ± |ZR|| in all 4 layer
graphs, the condition can be replaced by ||XA|±|Y Z|±|ZR|| 6= |Y B|
for this subcase.
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Z B

Q
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R
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C Q
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Y
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Z BQ

P

R

(c)

(b)

(d)

Figure 17: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear
and ZR is collinear with them. XR can only be perpendicular to ZR.

Thus, we have the following lemma:

Lemma 3 The 5-cycle XABY C of the 5:5 jewel of Fig. 11 cannot be drawn as
a layer graph in the configuration of Fig. 10(e) if the edges of the jewel satisfy
the following conditions:

|Y B| 6= ||XA| ± |ZR||, |Y C| 6= |ZR|, ||XA| ± |Y Z|| 6=
|Y B|, ||XA| ± |Y Z| ± |ZR|| 6= |Y B|.

3.4 Rigidity Conditions

From conditions (1)-(2) and Lemmas 2- 3, we have the following result for the
line-rigidity of the 5-cycle XABY C of the 5:5 jewel:

Lemma 4 The 5-cycle XABY C of the 5:5 jewel XABY CPQZR of Fig. 11 is
line rigid if the edges of the jewel satisfy the following set of conditions:
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{|ZR| 6= |Y B|, |ZR| 6= |Y C|, |XA| 6= |Y C|, |XA| 6= ||Y B| ± |Y C||, |XA| 6=
|Y B|, |ZR| 6= ||Y B| ± |XA||,

|ZR| 6= ||Y B| ± |XA| ± |Y Z||, |Y B| 6= ||XA| ± |Y Z||}.

We thus have an amplified set of sufficient conditions to satisfy.
Similarly, we have the following result for the line-rigidity of the other 5-cycle

XPQZR of the 5:5 jewel:

Lemma 5 The 5-cycle XPQZR of the 5:5 jewel XABY CPQZR of Fig. 11 is
line rigid if the edges of the jewel satisfy the following set of conditions:

{|Y C| 6= |ZQ|, |Y C| 6= |ZR|, |XP | 6= |ZR|, |XP | 6= ||ZQ| ± |ZR||, |XP | 6=
|ZQ|, |Y C| 6= ||ZQ| ± |XP ||,

|Y C| 6= ||ZQ| ± |XP | ± |Y Z||, |ZQ| 6= ||XP | ± |Y Z||}.

By Corollary 4, the union of the two sets of conditions in Lemmas 4 and
5 constitutes a set of sufficient conditions for the line rigidity of the 5:5 jewel
of Fig. 11. Taking care of one overlapping condition between the two sets of 8
conditions, we have 15 distinct conditions for the line-rigidity of the 5:5 jewel
and hence the following lemma.

Lemma 6 The 5:5 jewel XABY CPQZR of Fig. 11 is line rigid if its edges
satisfy the following set of conditions:

1. |Y B| /∈ {|XA|, ||XA| ± |Y Z||},

2. |Y C| /∈ {|XA|, ||Y B| ± |XA||},

3. |ZQ| /∈ {|XP |, |Y C|, ||XP |± |Y Z||, ||Y C|± |XP ||, ||Y C|± |XP |± |Y Z||},

4. |ZR| /∈ {|XP |, |Y B|, |Y C|, ||Y B| ± |XA||, ||Y B| ± |XA| ± |Y Z||, ||ZQ| ±
|XP ||}.

In the next section we show how to construct a composite ppg made up of
5:5 jewels such that all the 15 rigidity conditions listed above are satisfied for
each of one these.

3.5 Algorithm

We use a pair of points {Y, Z} as reference points. We query the edge length
|Y Z| and the pairwise distances of some other suitable nodes in the first round.
All the nodes will be placed relative to Y and Z. Now we consider the second
round. We select nodes in groups of 7 nodes each in such a way that the pairwise
distances of the union of each group of nodes {X,A,B,C, P,Q,R} and {Y,Z}
satisfy the conditions in Lemma 6. Then we query the remaining necessary
pairwise distances of the union to form a 5:5 jewel. The jewel will be line rigid
by Lemma 6 irrespective of the lengths of the edges AB,CX,PQ and RX, since
no condition of the lemma involves any of these edges. The unused nodes are
made line rigid by using triangle as the ppg.
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Algorithm 1. First a bit of nomenclature. To indicate the affiliations of the
vertices X,A,B,C, P,Q,R to different copies of a 5:5 jewel, we use the following
indexing scheme: X → Xi, A→ Ai, B → Bj , C → Bk, P → Pi, Q→ Qm and
R→ Ql.

Let the number of points be n = 7b+30, where b is a positive integer. In the
first round, we make 6b + 29 distance queries represented by the edges in the
graph in Fig. 18. There are 2b+ 6 children Bj(j = 1, ..., 2b+ 6) rooted at Y and
2b+ 22 children Ql(l = 1, ..., 2b+ 22) rooted at Z. The remaining 3b nodes are
organized into groups of 3 as (Ai, Xi, Pi) (i = 1, ..., b) and the distances |AiXi|
and |XiPi|, (i = 1, ..., b) are queried.

...

Y Z

Bj Bk Ql Qm

Xi

Ai Pi

b 2-links

2b+ 6 leaves 2b+ 22 leaves

...... ...

...

Figure 18: Queries in the first round for a 5:5 jewel

In the second round, for each 2-link (AiXi, XiPi) we find a pair of edges
Y Bj and Y Bk, rooted at Y satisfying Conditions 1 and 2 of Lemma 6; next, we
find a pair of edges ZQm and ZQl, rooted at Z satisfying Conditions 3 and 4
of Lemma 6.

Then for each i, (i = 1, ..., b), we query the distances |AiBj |, |XiBk|, |XiQl|
and |PiQm| to form a 5:5 jewel XiAiBjY BkPiQmZQl. Its edges will satisfy all
the rigidity conditions of Lemma 6.

For each of the 6 unused leaves Bj of the tree rooted at Y , we query the
distance |BjZ| to form the triangle Y BjZ. Likewise, for each of the 22 unused
leaves Ql of the tree rooted at Z we query the distance |QlY | to form the triangle
Y QlZ. �

The following theorem establishes the correctness of our algorithm.

Theorem 8 The ppg constructed by Algorithm 1 is line rigid.
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Proof: Consider an arbitrary 2-link (PiXi, XiAi). We show that the 5:5 jewel
constructed by Algorithm 1 using the edges of this 2-link is line rigid.

Consider the selection of the edge Y Bj for the jewel in the second round.
From Condition 1 of Lemma 6, |Y Bj | cannot be equal to |XiAi|, ||XiAi|+ |Y Z||
or ||XiAi| − |Y Z||. By Observation 1 there can be at most 2 edges rooted at
Y that are equal to a given length. Hence there are at most 6 edges rooted
at Y that do not qualify to be chosen as Y Bj . By adding 6 extra leaves at Y
we provide the room needed to choose Y Bj for each of the 2-links (PiXi, XiAi)
with i = 1, ..., b, so that the rigidity conditions on this edge are satisfied.

An identical argument shows that the 6 additional leaves at Y enables us to
choose Y Bk in the second round so that the rigidity conditions on this edge are
satisfied for each of the 2-links (PiXi, XiAi) with i = 1, ..., b.

Consider next the selection of the edge ZQm for the jewel in the second
round. From Condition 3 of Lemma 6, |ZQm| cannot be equal to |XiPi|, |Y Bk|,
|XiPi|+ |Y Z|, ||XiPi| − |Y Z||, |Y Bk|+ |Y Z|, ||Y Bk| − |Y Z||, |XiPi|+ |Y Bk|+
|Y Z|, ||XiPi|− |Y Bk|+ |Y Z||, ||XiPi|+ |Y Bk|− |Y Z||, ||XiPi|− |Y Bk|− |Y Z||.
Again from Observation 1 it follows that there are at most 20 edges rooted at Y
that do not qualify to be chosen as ZQm. Adding 22 extra leaves at Z provides
us with the room needed to choose ZQm for each of the 2-links (PiXi, XiAi)
with i = 1, ..., b, so that the rigidity conditions on this edge are satisfied.

There will be at most 20 edges ZQm rooted at Z that do not satisfy the
conditions on it as stated in Lemma 6 (Observation 1). In addition to the 2b
edges necessary to construct the b jewels there are 22 extra edges rooted at Z.
So, for each set of 2-link (PiXi, XiAi) and 3-link (BjY,BkY, Y Z) with i = 1, ..., b
(BjY depends on PiXi and XiAi, and BkY depends on PiXi, XiAi and BjY ),
we can always find an edge Y Qm that satisfies the condition on it as stated in
Lemma 6.

Finally, consider the second-round selection of the edge ZQl for the jewel.
From Condition 4 of Lemma 6 there are 11 rigidity conditions on |ZQl|, and
hence by Observation 1, there will be at most 22 edges ZQl rooted at Z that
are not eligible to be chosen. In addition to the 2b edges necessary to construct
the b jewels there are 22 extra edges rooted at Z. So, for each set of 2-link
(PiXi, XiAi) and 4-link (BjY,BkY, Y Z,ZQm) with i = 1, ..., b, the 22 extra
edges rooted at Z provide us with the latitude to always find an edge ZQl that
satisfies the rigidity conditions on it.

So, for each 2-link (AiXi, XiPi) we can always find edges Y Bj , Y Bk, ZQl

and ZQm for the 5:5 jewel of Fig. 11 such that the conditions for rigidity
(Lemma 6) are satisfied. Each of the b 5:5 jewels of Fig. 11 with Y Z as an
edge is constructed in the second round by satisfying the rigidity conditions of
Lemma 6. So, they are line rigid and, for each i, (i = 1, ..., b), the positions
of Xi, Ai, Bj , Bk, Pi, Qm and Ql are fixed relative to Y and Z. Each of the re-
maining 6 leaves of Y forms a triangle (Y Bj , BjZ,ZY ) with Y Z as an edge. So,
their positions are fixed relative to Y and Z. Each of the remaining 22 leaves
of Z forms a triangle (ZQl, QlY, Y Z) with Y Z as an edge. So, their positions
are fixed relative to Y and Z.

Hence, the whole ppg is line rigid. �
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Theorem 9 10n/7 + 99/7 queries are sufficient to place n distinct points on a
line in two rounds.

Proof: We need 6b + 29 queries in the first round and 4b + 28 queries in the
second round. In total 10b + 57 pairwise distances are to be queried for the
placement of 7b+ 30 points. We have 10b+ 57 = 10/7∗ (7b+ 30)−300/7 + 57 =
10n/7 + 99/7. �

It is worth noting that our algorithm needs at least 37 points to work. When
we have fewer points we can switch to the quadrilateral algorithm, described
in the Introduction. The 2-round 5-cycle algorithm of Chin et al. [4] a total of
4/3n+ 34/3

√
n queries for the placement of n points. Thus, our 5:5 jewel algo-

rithm does better when n ≤ 4076. This provides the motivation for considering
6:6 jewels, which we do next.

4 Algorithm based on a 6 : 6 jewel

The principal ideas underlying this algorithm are similar to the algorithm based
on 5:5 jewel of the last section. So we will skip the repetitive details when there
is no scope for confusion.

Fig. 19 shows the ppg for an instance of the 6:6 jewel that we shall use in
the construction of our composite ppg. For brevity we will refer to left cycle as
C1 and the right cycle as C2, and by 6:6 jewel we will mean the instance shown.

X

B

C R

Q

A P

Y

D S

Z

Figure 19: A 6 : 6 jewel

By Theorem 5, the 6-cycle XABY CD has 16 different layer graph represen-
tations (Fig. 20), giving us the following 16 conditions for its line-rigidity,

|Y C| 6= |XD|, |Y B| 6= |CD|, |Y C| 6= |AB|, |Y B| 6= |XA|, |XD| 6= |AB|,
|XA| 6= |CD|, |Y B| 6= |XD|, |AB| 6= |CD|, |Y C| 6= |XA|, |Y B| 6= ||Y C|± |XD||,
|Y C| 6= ||XA| ± |XD||, |Y B| 6= ||XD| ± |CD||, |Y B| 6= ||XA| ± |XD||,
|Y B| 6= ||Y C| ± |XA||, |XA| 6= ||Y C| ± |CD||, |XA| 6= ||Y B| ± |CD||. (4)

Similarly, we have another set of 16 conditions for the line-rigidity of the
cycle C2, viz.,

|ZR| 6= |XS|, |ZQ| 6= |RS|, |ZR| 6= |PQ|, |ZQ| 6= |XP |, |XS| 6= |PQ|, |XP | 6=
|SR|, |ZQ| 6= |XS|, |ZR| 6= |XP |, |PQ| 6= |RS|, |ZQ| 6= ||ZR| ± |XS||, |ZR| 6=
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Figure 20: Different layer graph representation of a 6-cycle

||XP | ± |XS||, |ZQ| 6= ||XS| ± |RS||, |ZQ| 6= ||XP | ± |XS||, |ZQ| 6=
||ZR| ± |XP ||, |XP | 6= ||ZR| ± |RS||, |XP | 6= ||ZQ| ± |RS||.

By Corollary 4, the conjunction of these two sets of conditions constitutes a
set of sufficient conditions for the line-rigidity of the 6:6 jewel above.

4.1 Finding substitutes

We would like to make the 6:6 jewel line rigid irrespective of the lengths of
the edges AB,CD,PQ and RS as this allows us to query the remaining edges
in such a way that the rigidity conditions are satisfied. Towards this goal,
we reformulate 16 conditions (8 from each cycle) involving these edges with
alternate sets of conditions, satisfying which we also satisfy the replaced ones.

We use the left cycle, C1 = XABY CD, as a running example to demonstrate
these replacements.

4.1.1 Replacing |AB| 6= |CD|

The layer graph for the 6-cycle C1 corresponding to this condition is shown
in Fig. 20(h). From the figure it is evident that we can replace this with the
condition

||Y B| ± |Y C|| 6= ||XA| ± |XD|| (5)

since this will also prevent the layer graph drawing of the cycle as in Fig. 20(h).
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4.1.2 Replacing |XA| 6= |CD|

The layer graph of C1 corresponding to this condition is shown in Fig. 20(f). To
replace this condition we follow a similar strategy as for the 5:5 jewel, except
for a small twist: we draw all possible layer graphs of the 6:6 jewel, excluding
the chain XSRZ, in which the layer graph of Fig. 20(f) is embedded. The
condition |XA| 6= |CD| is then amplified into the set of conditions that prevent
the drawing of the layer graph representation of the 6-cycle corresponding to this
condition (Fig. 20(f)). Two cases arise, depending on whether Y Z is horizontal
or vertical.

• Y Z is horizontal:

Here Z and X have different x and y coordinates. XP , PQ and QZ can
have 4 different orientations as shown in Figs. 21(a) - 21(d). The following
conditions will prevent the layer graph drawings of the 6-cycle XABY CD
in Fig. 20(f), when Y Z is horizontal:

|ZQ| 6= ||XA| ± |XP || (Fig. 21(a)),
||Y C| ± |Y Z|| 6= ||XD| ± |XP || (Fig. 21(b)),
|ZQ| 6= |XA| (Fig. 21(c)) and
||ZQ| ± |Y C| ± |Y Z|| 6= ||XD| ± |XP || (Fig. 21(d)).
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Figure 21: Replacing condition |XA| 6= |CD| when Y Z is horizontal

• Y Z is vertical and |Y Z| = |XA|:
In this case only one layer graph is possible as shown in Fig. 22. We can
replace |XA| 6= |CD| with |Y Z| 6= |XA|. This will prevent the layer graph
drawing of the 6-cycle XABY CD in Fig. 20(f) when Y Z is vertical and
|Y Z| = |XA|.



156 M. S. Alam & A.Mukhopadhyay Point Placement Problem

ZX D
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Figure 22: Replacing condition |XA| 6= |CD| when Y Z is vertical and |Y Z| =
|XA|

• Y Z is vertical and |Y Z| 6= |XA|:
Here Z and X have different x and y coordinates. XP , PQ and QZ can
have 6 different orientations as shown in Fig. 23(a) - 23(f). These layer
graphs give rise to the following set of conditions that prevents the layer
graph drawing of the 6-cycle XABY CD as in Fig. 20(f), when Y Z is
vertical and |Y Z| 6= |XA|:
||ZQ| ± |Y Z|| 6= |XA| (Fig. 23(a)), |Y C| 6= ||XD| ± |XP || (Fig. 23(b)),

||ZQ|±|Y Z|| 6= ||XA|±|XP || (Fig. 23(c)), ||ZQ|±|Y C|| 6= ||XD|±|XP ||
(Fig. 23(d)),

||ZQ|± |Y C|| 6= |XD| (Fig. 23(e)) and |Y Z| 6= ||XA|± |XP || (Fig. 23(f)).
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Figure 23: Replacing condition |XA| 6= |CD| when Y Z is vertical and |Y Z| 6=
|XA|

Thus, we have the following lemma:
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Lemma 7 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(f) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||XA| ± |XP ||, ||Y C| ± |Y Z|| 6= ||XD| ± |XP ||, |ZQ| 6=
|XA|, ||ZQ| ± |Y C| ± |Y Z|| 6= ||XD| ± |XP ||,

|Y Z| 6= |XA|, ||ZQ| ± |Y Z|| 6= |XA|, |Y C| 6= ||XD| ± |XP ||,
||ZQ| ± |Y Z|| 6= ||XA| ± |XP ||, ||ZQ| ± |Y C|| 6=

||XD| ± |XP ||, ||ZQ| ± |Y C|| 6= |XD|, |Y Z| 6= ||XA| ± |XP ||.

4.1.3 Replacing |XD| 6= |AB|

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(e). This layer graph is the same as that in Fig. 20(f) if we interchange
A with D and B with C. By this interchange of the labels in Lemma 7 we have
the following lemma for the replacement of condition:

Lemma 8 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(e) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||XD| ± |XP ||, |Y B| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6=
||Y B| ± |Y Z| ± |XA| ± |XP ||, |ZQ| 6= |XD|,

|Y Z| 6= |XD|, |ZQ| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= ||Y B| ± |XA||,
|Y Z| 6= ||XD| ± |XP ||, |ZQ| 6= ||Y B| ± |XA| ± |XP ||, |ZQ| 6=

||Y Z| ± |XD||, |Y B| 6= ||XA| ± |XP ||.

4.1.4 Replacing |Y C| 6= |AB|

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(c). Fig. 24 shows all the possible layer graphs of the 6:6 jewel, excluding
the chain XSRZ, in which the layer graph of Fig. 20(c) is embedded (different
configurations for P and Q are combined in the same figure).

From Fig. 24 we see that the condition |Y C| 6= |AB| can be replaced by the
following conditions:
|ZQ| 6= ||Y C| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= |XP |, |ZQ| 6=

||Y B| ± |Y Z| ± |XA| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XA| ± |XP ||
(Fig. 24(a)),
|Y B| 6= ||Y Z| ± |XA|| (Fig. 24(b)),
|ZQ| 6= ||Y B|± |XA||, |Y C| 6= ||Y Z|± |XP ||, |ZQ| 6= ||Y C|± |Y Z|± |XP ||,

|ZQ| 6= ||Y B| ± |XA| ± |XP || (Fig. 24(c)).

Thus, we have the following lemma:

Lemma 9 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(c) if the edges of the jewel satisfy
the following conditions:
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Figure 24: Replacing condition |Y C| 6= |AB|

|ZQ| 6= ||Y C| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= |XP |,
|ZQ| 6= ||Y B| ± |Y Z| ± |XA| ± |XP ||,

|ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XA| ± |XP ||, |Y B| 6= ||Y Z| ± |XA||,
|ZQ| 6= ||Y B| ± |XA||,

|Y C| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XP ||,
|ZQ| 6= ||Y B| ± |XA| ± |XP ||.

4.1.5 Replacing |Y B| 6= |CD|

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(b). This layer graph is the same as that in Fig. 20(c) if we interchange
A with D and B with C. By this interchange of the labels in Lemma 9 we have
the following lemma for the replacement of this condition:

Lemma 10 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(b) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||Y B| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XD||, |Y B| 6= |XP |,
|ZQ| 6= ||Y C| ± |Y Z| ± |XD| ± |XP ||, |ZQ| 6= |Y B|,

|Y C| 6= ||Y Z| ± |XD| ± |XP ||, |Y C| 6= ||Y Z| ± |XD||, |ZQ| 6= ||Y C| ± |XD||,
|Y B| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XP ||,

|ZQ| 6= ||Y C| ± |XD| ± |XP ||.

4.1.6 Replacing |Y C| 6= ||XA| ± |CD||

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(o). Fig. 25 shows all the possible layer graphs of the 6:6 jewel, excluding
the chain XSRZ, in which the layer graph of Fig. 20(o) is embedded.

From Fig. 25 we see that the condition |Y C| 6= ||XA|±|CD|| can be replaced
by the following conditions:

|ZQ| 6= ||Y Z|± |XD|± |XP ||, |ZQ| 6= |XA|, |Y Z| 6= ||XD|± |XP ||, |ZQ| 6=
||XA| ± |XP || (Fig. 25(a)),
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Figure 25: Replacing condition |Y C| 6= |XA| ± |CD|

|ZQ| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6= |XD|, |Y Z| 6= ||XA| ± |XP ||,
|ZQ| 6= ||XD| ± |XP || (Fig. 25(b)).

Thus, we have the following lemma:

Lemma 11 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(o) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= |XA|, |Y Z| 6= ||XD| ± |XP ||,
|ZQ| 6= ||XA| ± |XP ||,

|ZQ| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6= |XD|, |Y Z| 6= ||XA| ± |XP ||,
|ZQ| 6= ||XD| ± |XP ||.

4.1.7 Replacing |Y B| 6= ||XD| ± |CD||

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(l). Fig. 26 shows all the possible layer graphs of the 6:6 jewel, excluding
the chain XSRZ, in which the layer graph of Fig. 20(l) is embedded.

From Fig. 26 we see that the condition |Y B| 6= ||XD|±|CD|| can be replaced
by the following conditions:
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Figure 26: Replacing condition |Y B| 6= |XD| ± |CD|
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|ZQ| 6= ||Y B| ± |Y Z| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XP ||, |ZQ| 6=
||Y C| ± |XP || (Fig. 26(a)),
|ZQ| 6= ||Y C| ± |Y Z| ± |XP ||, |ZQ| 6= |Y B|, |Y C| 6= ||Y Z| ± |XP ||,

|ZQ| 6= ||Y B| ± |XP || (Fig. 26(b)).

Thus, we have the following lemma:

Lemma 12 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(l) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||Y B| ± |Y Z| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XP ||,
|ZQ| 6= ||Y C| ± |XP ||,

|ZQ| 6= ||Y C| ± |Y Z| ± |XP ||, |ZQ| 6= |Y B|, |Y C| 6= ||Y Z| ± |XP ||,
|ZQ| 6= ||Y B| ± |XP ||.

4.1.8 Replacing |Y B| 6= ||XA| ± |CD||

The layer graph of the 6-cycle corresponding to this condition is as shown in
Fig. 20(p). Fig. 27 shows all the possible layer graphs of the 6:6 jewel, excluding
the chain XSRZ, in which the layer graph of Fig. 20(p) is embedded.

From Fig. 27 we see that the condition |Y B| 6= ||XA|±|CD|| can be replaced
by the following conditions:
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Figure 27: Replacing condition |Y B| 6= |XA| ± |CD|

|ZQ| 6= ||Y C| ± |XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6=
||XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA| ± |XP ||, |ZQ| 6= ||Y C| ± |XD||,
|Y B| 6= ||Y Z| ± |XA| ± |XP || (Fig. 27(a)),
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|Y B| 6= ||Y Z| ± |XA|| (Fig. 27(b)),

|Y C| 6= ||Y Z| ± |XD|| (Fig. 27(c)),

|Y B| 6= ||XA|±|XP ||, |ZQ| 6= ||Y C|±|XD||, |ZQ| 6= ||Y B|±|XA|±|XP ||,
|ZQ| 6= ||Y B| ± |XA||, |Y C| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ±
|XD| ± |XP || (Fig. 27(d)).

Thus, we have the following lemma:

Lemma 13 The 6-cycle XABY CD of the 6:6 jewel of Fig. 19 cannot be drawn
as a layer graph in the configuration of Fig. 20(p) if the edges of the jewel satisfy
the following conditions:

|ZQ| 6= ||Y C| ± |XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||,
|Y C| 6= ||XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA| ± |XP ||,

|ZQ| 6= ||Y C| ± |XD||, |Y B| 6= ||Y Z| ± |XA| ± |XP ||, |Y B| 6= ||Y Z| ± |XA||,
|Y C| 6= ||Y Z| ± |XD||, |Y B| 6= ||XA| ± |XP ||, |ZQ| 6= ||Y C| ± |XD||,

|ZQ| 6= ||Y B| ± |XA| ± |XP ||, |ZQ| 6= ||Y B| ± |XA||,
|Y C| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XD| ± |XP ||.

4.2 Rigidity Conditions

From conditions (4)-(5) and Lemmas 7- 13 we have the following lemma for the
line-rigidity of the 6-cycle XABY CD of the 6:6 jewel of Fig. 19:

Lemma 14 The 6-cycle XABY CD of the 6:6 jewel XABY CDPQZRS of
Fig. 19 is line rigid if the edges of the jewel satisfy the following conditions:

|Y Z| /∈ {|XA|, |XD|, ||XA| ± |XP ||, ||XD| ± |XP ||},

|Y B| /∈ {|XA|, |XD|, |XP |, ||XA| ± |XD||, ||XA| ± |XP ||, ||XA| ± |Y Z||,
||XP | ± |Y Z||, ||XA| ± |XP | ± |Y Z||},

|ZQ| /∈

{|XA|, |XD|, |Y B|, ||XA| ± |XP ||, ||XD| ± |XP ||, ||XA| ± |Y Z||,
||Y B|± |XA||, ||XD|± |Y Z||, ||Y B|± |XP ||, ||XA|± |XP |± |Y Z||,
||XD| ± |XP | ± |Y Z||, ||Y B| ± |XA| ± |XP ||, ||Y B| ± |XA| ± |Y Z||,
||Y B| ± |XP | ± |Y Z||, ||Y B| ± |XA| ± |XP | ± |Y Z||},

|Y C| /∈

{|XD|, |XA|, |XP |, |ZQ|, ||ZQ| ± |XD||, ||ZQ| ± |XP ||, ||Y B| ±
|XA||, ||Y B|± |XD||, ||XA|± |XD||, ||XD|± |XP ||, ||XD|± |Y Z||,
||XP |± |Y Z||, ||XD|± |XP |± |Y Z||, ||ZQ|± |XD|± |XP ||, ||ZQ|±
|XD| ± |Y Z||, ||ZQ| ± |XP | ± |Y Z||, ||ZQ| ± |XD| ± |XP | ± |Y Z||
}.

Similarly, we have the following lemma for the line-rigidity of the other 6-
cycle XPQZRS of the 6:6 jewel:



162 M. S. Alam & A.Mukhopadhyay Point Placement Problem

Lemma 15 The 6-cycle XPQZRS of the 6:6 jewel XABY CDPQZRS of
Fig. 19 is line rigid if the edges of the jewel satisfy the following conditions:

|Y Z| /∈ {|XP |, |XS|, ||XA| ± |XP ||, ||XA| ± |XS||},

|Y B| /∈ {|XP |, |XS|, ||XA| ± |XP ||, ||XP | ± |Y Z||, ||XS| ± |Y Z||, ||XA| ±
|XS||, ||XA| ± |XP | ± |Y Z||, ||XA| ± |XS| ± |Y Z||},

|ZQ| /∈

{|XA|, |XS|, |Y B|, |XP |, ||XA| ± |XP ||, ||XA| ± |Y Z||, ||Y B| ±
|XA||, ||Y B|± |XP ||, ||XP |± |XS||, ||XP |± |Y Z||, ||XA|± |XP |±
|Y Z||, ||Y B|± |XA|± |XP ||, ||Y B|± |XA|± |Y Z||, ||Y B|± |XP |±
|Y Z||, ||Y B| ± |XA| ± |XP | ± |Y Z||},

|ZR| /∈

{|XS|, |XP |, |XA|, |Y B|, ||ZQ| ± |XP ||, ||ZQ| ± |XS||, ||XP | ±
|XS||, ||Y B| ± |XS||, ||XA| ± |XS||, ||XA| ± |Y Z||, ||Y B| ± |XA||,
||XS|± |Y Z||, ||XA|± |XS|± |Y Z||, ||Y B|± |XA|± |XS||, ||Y B|±
|XS| ± |Y Z||, ||Y B| ± |XA| ± |Y Z||, ||Y B| ± |XA| ± |XS| ± |Y Z||}.

By Corollary 4, the union of the two sets of conditions in Lemmas 14 and 15
constitutes a set of sufficient conditions for the line-rigidity of the 6:6 jewel of
Fig. 19. Taking care of overlapping conditions between the two sets of condi-
tions, we have 74 distinct conditions for the line-rigidity of the 6:6 jewel and
hence the following lemma:

Lemma 16 The 6:6 jewel XABY CDPQZRS of Fig. 19 is line rigid if its
edges satisfy the following conditions:

1. |Y Z| /∈ {|XA|, |XD|, |XP |, |XS|, ||XA| ± |XP ||, ||XD| ± |XP ||,
||XA| ± |XS||},

2. |Y B| /∈
{|XA|, |XD|, |XP |, |XS|, ||XA| ± |XD||, ||XA| ± |XP ||,
||XA| ± |Y Z||, ||XP | ± |Y Z||, ||XS| ± |Y Z||, ||XA| ± |XS||,
||XA| ± |XP | ± |Y Z||, ||XA| ± |XS| ± |Y Z||},

3. |ZQ| /∈

{|XA|, |XS|, |XD|, |Y B|, |XP |, ||XA|±|XP ||, ||XD|±|XP ||,
||XA| ± |Y Z||, ||Y B| ± |XA||, ||XD| ± |Y Z||, ||Y B| ± |XP ||,
||XP | ± |XS||, ||XP | ± |Y Z||, ||XA| ± |XP | ± |Y Z||, ||XD| ±
|XP | ± |Y Z||, ||Y B| ± |XA| ± |XP ||, ||Y B| ± |XA| ± |Y Z||,
||Y B| ± |XP | ± |Y Z||, ||Y B| ± |XA| ± |XP | ± |Y Z||},

4. |Y C| /∈

{|XD|, |XA|, |XP |, |ZQ|, ||Y B| ± |XA||, ||Y B| ± |XD||,
||XA| ± |XD||, ||XD| ± |XP ||, ||XD| ± |Y Z||, ||XP | ± |Y Z||,
||ZQ| ± |XD||, ||ZQ| ± |XP ||, ||Y B| ± |XA| ± |XD||, ||XD| ±
|XP | ± |Y Z||, ||ZQ| ± |XD| ± |XP ||, ||ZQ| ± |XD| ± |Y Z||,
||ZQ| ± |XP | ± |Y Z||, ||ZQ| ± |XD| ± |XP | ± |Y Z|| },
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5. |ZR| /∈

{|XS|, |XP |, |XA|, |Y B|, ||ZQ| ± |XP ||, ||ZQ| ± |XS||,
||XP | ± |XS||, ||Y B| ± |XS||, ||XA| ± |XS||, ||XA| ± |Y Z||,
||Y B| ± |XA||, ||XS| ± |Y Z||, ||ZQ| ± |XP | ± |XS||, ||XA| ±
|XS| ± |Y Z||, ||Y B| ± |XA| ± |XS||, ||Y B| ± |XS| ± |Y Z||,
||Y B| ± |XA| ± |Y Z||, ||Y B| ± |XA| ± |XS| ± |Y Z||}.

In the next section we show how a composite ppg can be constructed by
satisfying all the 74 conditions for each such jewel.

4.3 Algorithm

It is interesting to note that the substitution mechanism has generated rigidity
conditions on the strut Y Z (Condition 1 of Lemma 16). This implies that,
unlike the case for a 5:5 jewel, we will need a pool of nodes, S, for which the
pairwise distances of all pairs are known and from which we choose the end
nodes of a strut in order to meet the rigidity conditions on Y Z. We have to
choose the size of S carefully. Since there are 10 conditions on the length of an
Y Z, from Observation 1 it follows that there must be at most 21 edges incident
to the end-node Y , when we are looking for the other end-node Z of a strut.

However, if we use 22 designated nodes for the selection of Z for a particular
Y it may happen that all the 6:6 jewels get attached to the same designated
node Z. This hinders our goal of obtaining a better value for α than previously
known.

Thus, we would like to attach the 6:6 jewels to the designated nodes in such
a way that the number of jewels attached to two distinct nodes differ at most
by 1. Let the valence of a node in this set be the number of times it is used as
the end node of a strut to attach a jewel. The following lemma tells us how big
S must be.

Lemma 17 A set S of 42 nodes is sufficient to ensure that the valence of two
nodes in S differ by at most 1.

Proof: To build a 6:6 jewel we set, say Y , to a lowest valence node in S. Of the
remaining 41 nodes, at most 20 nodes may not be chosen as Z because of the
conditions on Y Z (Condition 1 of Lemma 16). From the remaining candidate
nodes that satisfy the conditions on Y Z we set Z to the one with lowest valence.
This way we can attach the first 11 6:6 jewels to 22 fixed nodes that do not have
any 6:6 jewel attached to them. Thus, each of these 22 nodes will have valence
1; the rest are of valence 0.

Next we can keep selecting at least 1 node (as Y , say) from the 20 nodes of
valence 0 until all are used up. The valence of this 20-node set will be raised to
1. If the second node is not found in that group we can choose it from the other
group of valence 1, raising its valence to 2. Now, there is no node of valence 0, at
least 22 nodes of valence 1 while the rest are of valence 2. Note that when both
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the nodes of a pair are chosen from the set of nodes of valence 0 the number
of nodes of valence 1 is increased by 2. Consequently, the number of nodes of
valence 1 remains even. When only one node is chosen from the set of nodes
of valence 0, there being at least 22 nodes of valence 1 we can choose the other
node from this set. This increases the number of nodes of valence 1 by 1 and
decreases it by 1 at the same time. Thus, in both the cases there will always
be an even number of nodes of valence 1. If there are more than 20 nodes of
valence 1 we can choose pairs of nodes for Y and Z from nodes of valence 1
until exactly 20 nodes remain. Eventually, there will be 20 nodes of valence 1
and 22 of valence 2.

We shall show that we can attach the 6:6 jewels in such a way that at any
point of time the fixed nodes will have at most 3 consecutive levels of valence.
For this we use induction. Let us assume that there are 20 nodes of valence d
and 22 nodes of valence d+ 1.

We can choose at least 1 node from valence d nodes and at most 1 node from
valence d+ 1 nodes with a total of 2 to form a 6:6 jewel until there is no node
of valence d. Then there will be at least 22 nodes of valence d+ 1. The rest are
of valence d+ 2. As above we argue similarly to show that there will always be
an even number of nodes of valence d+ 1.

If there are more than 20 nodes of valence d + 1 we can use them in pairs
as in the initial round above until the number of degree d+ 1 nodes are exactly
20. The rest 22 will be of degree d+ 2. Now the situation is the same as when
we started except that the levels have increased by 1. �

The set S of 42 nodes can be set as the vertices of 8 4:4 jewels hanging from a
common strut. Since each 4:4 jewel is line rigid so is this configuration. We will
call the nodes in S fixed since we can fix their placement on a line by querying
the edges of this ppg.

From Condition 2 of Lemma 16 we see that we need 48 extra edges for the
selection of an Y B that satisfies all the conditions on it as stated in the lemma.
Similarly, by Conditions 3, 4 and 5 of Lemma 16 we need 98 extra edges for
ZQ, 96 extra edges for Y C and 96 extra edges for ZR respectively. Thus, 98
extra edges at Y and Z will suffice to satisfy all the conditions on these edges.
In addition to these extra 98 edges we need 2 more edges to accommodate the
difference of 1 6:6 jewel that can be attached to them. Thus, we need a total of
100 extra edges at each of the 42 nodes of S.

The main idea underlying the algorithm below is to construct multiple copies
of a 6:6 jewel over two rounds to ensure their rigidity. We use the set of nodes
S as reference points. Any set of 42 points is chosen as S. The pair of nodes
{Y,Z} that make up the strut Y Z (see Fig. 19) of a 6:6 jewel, is chosen from
the set S. As part of the first round, a line rigid layout of S is fixed by attaching
eight 4:4 jewels of Fig. 8 from a common strut. The common strut of the 4:4
jewels joins two nodes of S. Pairwise distances of some other suitable nodes are
also queried in the first round.

Now we consider the second round. Let S′ = P r S be the complement of
S. In the second round, the positions of all the nodes of S′ are fixed relative
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to the nodes in S by first selecting groups of 9 nodes each from S′ and placing
them relative to a pair of nodes {Y,Z} of S. For this, we select a node Y ∈ S
which has the lowest valence of 6:6 jewel of Fig. 19 and a 5-link (X,A,D, P, S).
Then we select a node Z ∈ S such that it has the lowest valence of 6:6 jewel
of Fig. 19 and that |Y Z| satisfies all the conditions of rigidity on it as stated
in Condition 1 of Lemma 16. Thereafter, the nodes B,C,Q and R of S′ are
selected such that the conditions of rigidity on |Y B|, |ZQ|, |Y C| and |ZR| as
stated in respectively Conditions 2, 3, 4 and 5 of Lemma 16 are satisfied. Then
we query the remaining necessary pairwise edge distances |AB|, |CD|, |PQ| and
|RS| of the group to form a 6:6 jewel. The jewel will be line rigid by Lemma 16
irrespective of the lengths of the edges AB,CD,PQ and RS, since no condition
of the lemma involves any of these edges. The unused nodes of S′ are made line
rigid by using 4-cycle as the ppg.

Algorithm 2. As in Algorithm 1, we use the following indexing scheme:
X → Xi, A → Ai, B → Bj , C → Bk, D → Di, P → Pi, Q → Qm, R → Ql,
S → Si, Y → Yu and Z → Yv.

Let the total number of points be n. We attach b 6:6 jewels (Fig. 19) to each
of 20 fixed nodes in S and b + 1 to the remaining 22. This gives us a total of
21b+ 11 jewels.

In the first round, we make distance queries represented by the edges of the
graph in Fig. 28. All the nodes Yu (u = 1, ..., 42) (or, Yv, v = 1, ..., 42) in the
subgraph enclosed by the rectangle are fixed in the first round by using the 4:4
jewel of Fig. 8 as the ppg. There are 8 4:4 jewels (Fig. 8) attached to a common
strut, 42 nodes and 65 edges in the subgraph. Each vertex Yu (u = 1, ..., 42)
(or, Yv, v = 1, ..., 42) has 2b+ 100 leaves to attach b or b+ 1 6:6 jewels (Fig. 19).
Since there will be 21b + 11 6:6 jewels we have 21b + 11 groups of 5 nodes
(Ai, Di, Si, Pi, Xi) (i = 1, ..., 21b+ 11). We query the distances |AiXi|, |DiXi|,
|SiXi| and |PiXi|, (i = 1, ..., 21b+ 11) in the first round. We will make a total
of 168b+ 4309 pairwise distance queries in the first round for the placement of
n = 189b+ 4297 points.

Ai Pi

...

Di Si

Yu

Bj Bk

Subgraph of 42 nodes whose positions are
fixed in the 1st round using 4:4 jewel as ppg

... ...

Yv

Ql Qm

... ...

2b + 100 leaves 2b + 100 leaves

Xi 21b + 11 4-links

Figure 28: Queries in the first round for 6:6 jewel
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In the second round, for each 4-link (Ai, Di, Si, Pi, Xi), i = 1, ..., 21b + 11,
we construct a 6:6 jewel (Fig. 19), satisfying all its rigidity conditions as in
Lemma 16. For each such 4-link we select a node Yu, from the subgraph of 42
fixed nodes Yu/Yv(u, v = 1, ..., 42;u 6= v), that has the lowest valency of 6:6
jewel of Fig. 19. Since all the 42 nodes Yu, u = 1, ..., 42, are fixed in the first
round, for any pair of such fixed nodes (Yu, Yv)(u, v = 1, ...42;u 6= v) we can find
the distance |YuYv|. So, for each pair of nodes (Yu, Yv)(u, v = 1, ..., 42;u 6= v),
we shall use (Yu, Yv) as an edge in the construction of the 6:6 jewel of Fig. 19.
Now from the subgraph of 42 fixed nodes we select another node Yv(v 6= u)
such that the length |YuYv| satisfies all the conditions of rigidity on it as stated
in Condition 1 of Lemma 16 and that it has the lowest valency of 6:6 jewel
of Fig. 19 among all such qualifying nodes. We note that we can always find
such node Yv, because there will be at most 20 edges YuYv whose length do not
satisfy the rigidity conditions on it (Condition 1 of Lemma 16) whereas we have
41 nodes for choosing the node Yv.

Then we find an edge YuBj rooted at Yu satisfying the conditions of rigidity
on it as stated in Condition 2 of Lemma 16, then we find another edge YvQm

rooted at Yv satisfying the conditions of rigidity on it as stated in Condition
3 of Lemma 16, then we find another edge YuBk rooted at Yu satisfying the
rigidity conditions on it as stated in Condition 4 of Lemma 16 and, finally,
we find another edge YvQl rooted at Yv satisfying the rigidity conditions on it
as stated in Condition 5 of Lemma 16. Then for each i, (i = 1, ..., 21b + 11),
we query the distances |AiBj |, |DiBk|, |SiQl| and |PiQm| to form a 6:6 jewel
XiAiBjYuBkDiPiQmYvQlSi. Its edges will satisfy all the rigidity conditions of
Lemma 16. Thus, all the 21b+11 4-links will be consumed to construct 21b+11
jewels. For this 84b+ 44 edges will be queried.

There will be unused leaves Bj (or Ql) numbering 100 for each of 20 fixed
nodes Yu (u = 1, ..., 42) (or, Yv, v = 1, ..., 42) and 98 for each of 22 fixed nodes
Yu (u = 1, ..., 42) (or, Yv, v = 1, ..., 42). The total number of such unused nodes
is 4156. We use a 4-cycle ppg to fix them in the second round. As before, for
each pair of nodes (Yu, Yv)(u, v = 1, ..., 42;u 6= v), we shall use YuYv as an edge
in the construction of the 4-cycle. For each unused node Bj rooted at Yu we
find another node Ql rooted at Yv such that |YuBj | 6= |YvQl|. Then the 4-cycle
BjYuYvQl will be line rigid (Observation 2). Then we query the distance |BjQl|
to complete the 4-cycle.

Note that we can always find a node like Ql. For after repeated selection
of such matching pairs of edges there may remain at most 2 edges YuBj rooted
at Yu of length equal to that of the same number of edges rooted at Yv (Ob-
servation 1). In such a situation we switch the matching to match such edges
rooted at Yu with edges other than those same length edge/s rooted at Yv - this
is always possible because there are at most 2 edges rooted at Yv that have the
same length (Observation 1).

For 4156 unused nodes (after the construction of the 6:6 jewel) there will be
2078 4-cycles, and 2078 edges will be queried to complete the 4-cycles. The total
number of queries in the second round will be (84b+44)+2078, i.e., 84b+2122.�
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Theorem 10 The ppg constructed by Algorithm 2 is line rigid.

Proof: The proof is similar to that of Theorem 8 for the line rigidity of the ppg
constructed by Algorithm 1 and is omitted. �

The number of queries in the first and second rounds are 168b + 4309 and
84b + 2122 respectively. Thus, in 2 rounds a total of 252b + 6431 pairwise
distances are to be queried for the placement of 189b + 4297 points. It is in-
teresting to note that our algorithm would need at least 4486 points to work,
which makes it reasonably practical. When we have fewer points we can use
Algorithm 1 instead.

Now, 252b + 6431 = (252/189) ∗ (189b + 4297) − (4/3) ∗ 4297 + 6431 =
4n/3+(19293−17188)/3 = 4n/3+2105/3. Thus, we have the following theorem:

Theorem 11 4n/3 + 2105/3 queries are sufficient to place n distinct points on
a line in two rounds.

A consequence of the last theorem is that our 6:6 jewel algorithm is better
than the 5-cycle algorithm of Chin et al. [4] for n ≥ 11851.

5 Lower Bound for Two Rounds

In this section we revisit the adversarial argument given by [4] to establish a
lower bound on 2-round algorithms. We show that a deeper analysis improves
the lower bound substantially.

Let A denote any 2-round algorithm and B an adversary. The latter returns
a value for the distance between any two points queried by A. B can also assign
value to the distance between a pair of points not queried by A. While A’s
goal is to make as few distance queries as possible, B intends to keep the linear
placement of the points as ambiguous as possible.

In the first round, A queries the distances between pairs of nodes correspond-
ing to the edges E1 of the ppg, G1 = (V,E1). In response, B returns queried
edge-lengths consistent with the following 3-part strategy.

A vertex of degree 3 or more of a ppg (in particular G1) will be called heavy.

S1. The placement of all heavy nodes is fixed and the lengths of the edges
incident to these nodes are set.

S2. For each node of degree 2 that is connected to a node of degree 1, the length
of one of the two edges incident to the degree 2 node is set to a fixed value
c > 0.

S3. Let Pk = p1, p2, ..., pk(k ≥ 2) be a maximal path of degree 2 nodes, pi, i =
1, . . . , k; p0 and pk+1 are 2 non-degree 2 nodes adjacent to p1 and pk
respectively.

First B sets |pi−1pi| = |pi+1pi+2| for i = 1 (mod 3).
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If both p0 and pk+1 are heavy nodes, then it sets |pipi+1| = |pi−1pi+2| for
i = 1 (mod 3) and also fixes the layout of the nodes pi, i = 0 (mod 3).

Otherwise, if at least one of them, say pk+1, is of degree one B sets
|pkpk+1| = |pk−2pk−1|. Also, except for the edges whose length is c, B
sets the lengths of the rest of the edges to lie between 2c and 3c.

Lemma 18 Strategies S2 and S3 of B are mutually consistent.

Proof: Consider a path Pk of degree 2 nodes in G1 such that both p0 and
pk+1 have degree 1. If k = 1, only S2 comes into play and in this case B sets
|p1p2| = c. For all k ≥ 4, B sets |p1p2| = c, |pk−1pk| = c in accordance with S2
and the lengths of all other edges in accordance to S3. Figs. 29(c)-29(f) serve
as examples of this length assignment since for any k, the total number of edges
is a multiple of 3 as in Fig. 29(d), or a multiple of 3 plus 1 as in Fig. 29(e), or
a multiple of 3 plus 2 as in Fig. 29(f).

For k = 2 and k = 3 B makes the length assignments as shown Figs. 29(a)-
(b), which are again consistent with S2 and S3.

If p0 is heavy, then B does not have to set |p1p2| to c. �

In the second round, A queries the distances between new pairs of nodes
corresponding to the edges E2 of the ppg, G2 = (V,E1 ∪ E2). In response, B
returns queried edge-lengths consistent with the following strategy:

S4. Let p1, p2, ..., pk(k ≥ 2) be a maximal path of degree 2 nodes of length at
least 2 in G1. Let p0 and pk+1 be non-degree 2 nodes adjacent to p1 and
pk respectively.

If at least one of them, say pk+1, is of degree 1 in the first round and if, for
some i with i = 1 (mod 3) and i < k, no edge is connected to either pi or
pi+1 in the second round by the algorithm then B sets |pipi+1| = |pi−1pi+2|
for one of those values of i in the second round.

Or, if no edge is connected to either pk−1 or pk in the second round by A,
then B sets |pk−1pk| = |pk−2pk+1|.

An important observation is in order: the above strategies of B do not
prevent A from making a linear placement of the vertices of a maximal path
of degree 2 nodes that joins a heavy node to a node of degree 1 in distinct
positions.

Let p0 be a heavy node. Consider all the maximal paths Pk of degree 2 nodes
incident to p0, whose other end is of degree 1. For each path, B computes the
sum of the lengths of all the edges in the path. Let lmax be the maximum of all
the sums. B maintains an interval of this length on either side of p0 free from
the placement of the nodes that lie on a path Pk incident to p0 whose other end
is a heavy node. This is ensured as follows:

1. The distance between p0 and an adjacent heavy node is at least lmax.
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Figure 29: The residual parts of maximal paths of degree 2 nodes that will
satisfy Step 2

2. Let Pk = p0p1p2. In this case, B sets |p0p1| > lmax. If Pk = p0p1...pk+1,
where k > 1, B sets |p0p1| = |p2p3| > lmax and |p1p2| > 2|p0p1|. This
ensures that all the vertices of the prefix segment p0p1p2p3 of the path
is at a distance farther than lmax away from p0. Clearly the remaining
vertices on Pk, however placed, will also be at a distance farther than
lmax.

The strategies adopted by B bound the lengths of maximal paths formed by
degree 2 nodes in G2. The precise results are given in the next 3 lemmas.

Lemma 19 In G2, the length of a longest chain of consecutive edges from E1

that terminates on a heavy node at each end of the chain is 4.

Proof: Let p0 and pk+1 be non-degree 2 nodes adjacent to a maximal path
Pk = p1, p2, ..., pk, (k ≥ 4), of degree 2 nodes in G1.
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We first consider the case when both of p0 and pk+1 are heavy nodes of G1.
Given strategy S3 of B, if for an i < k, with i = 1 (mod 3), A attaches no edge
to either pi or pi+1 in the second round then their positions will be ambiguous
(Observation 2). Thus, the lemma is settled for this case.

Consider the case when pk+1 is of degree 1. In view of strategies S3 and S4 of
B, A must attach an edge at pi or pi+1 in the second round, for i < k and i = 1
(mod 3), to make the placements of these nodes unambiguous (Observation 2).
Thus, the lemma is settled for this case also. �

Lemma 20 A maximal path Pk of degree 2 nodes in G2 that contains at least
one edge of E2 can have at most 2 consecutive edges of E1.

Proof: Let Pk(k ≥ 2) be a maximal path of degree 2 nodes in G1; p0 and pk+1

are non degree 2 nodes adjacent to p1 and pk respectively, one of which is of
degree 1 in G1.

Suppose p0 is of degree 1 in G1. In view of strategy S3 of B, if no edge is
connected to either pi or pi+1 for some i = 1 (mod 3) then following strategy
S4, B will set |pipi+1| = |pi−1pi+2| for one of those values of i in the second
round. Thus, there must be an edge connected to either pi or pi+1 for all i = 1
(mod 3). In particular, A must add an edge to be incident to p1 or p2 (when
i = 1).

If pk+1 is of degree 1 then following strategy S3 the adversary sets |pkpk+1| =
|pk−2pk−1| in the first round. If A attaches no edge to either pk−1 or pk in the
second round, then following S4, B sets |pk−1pk| = |pk−2pk+1|. This makes the
placements of the nodes pk−1 and pk ambiguous (Observation 2). Thus, A must
attach an edge to pk−1 or pk to preempt B.

Thus, for both the cases, there will be at most 2 nodes of degree at most 2
at an end of a path of degree 2 nodes of G1, if the end node is of degree 1. The
algorithm will place them in the second round by introducing edge/s to one or
both of them. Thus, in a maximal path of degree 2 nodes in G2 that contains
at least one edge from E2 there can be at most 2 consecutive edges from E1. �

Lemma 21 The number of nodes in any maximal path of degree 2 nodes in G2

is at most 3.

Proof: If a maximal path of degree 2 nodes of G2 consists of edges from E1

only then by Lemma 19 its length is at most 3.
Now we consider maximal path of degree 2 nodes of G2 that contains at least

one edge from E2. In such a path there cannot be three consecutive edges from
E1 (Lemma 20). Suppose the number of degree 2 nodes in such a maximal path
is 4. Let the nodes be p1, p2, p3 and p4. Let p0 and p5 be heavy nodes adjacent
to p1 and p4 respectively. Since any maximal path of degree 2 nodes in G2 can
have at most 2 consecutive edges from E1 the edges p0p1, p1p2, p2p3, p3p4 and
p4p5 can be from E1 or E2 in the following 5 combinations:

1. E2, E1, E2, E1, E1

2. E2, E1, E1, E2, E1
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3. E1, E2, E1, E2, E1

4. E1, E1, E2, E2, E1

5. E1, E1, E2, E1, E1

For combination 1, B can set the length of the 2 edges in E2 so that |p0p5| =
|p1p2| + |p2p3| and |p0p1| = |p4p5| − |p3p4| (Fig. 30). Then by Theorem 1 the
6-cycle p0p1p2p3p4p5 would not be line rigid. Similarly, for the combinations 2-4
B can make the graph ambiguous. As for combination 5, following S2 B can set
|p1p2| = |p3p4| = c, and can set the length of p2p3 in the second round in such
a way that |p2p3| = |p4p5|+ |p5p0|+ |p0p1| (Fig. 31). The 6-cycle p0p1p2p3p4p5
would not be line rigid then (Theorem 1). �
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Figure 30: Maximal path of degree 2
nodes inG2 for the combination of edges
E2, E1, E2, E1, E1
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Figure 31: Maximal path of degree
2 nodes in G2 for the combination
of edges E1, E1, E2, E1, E1

The density of a ppg, G = (V,E) is defined as the ratio |E|/n, where n = |V |.
We establish the following lower bound on the density of a ppg constructed by
any 2-round algorithm.

Theorem 12 The minimum density of any line rigid ppg for two round queries
is at least 12/11.

Proof: Let each edge of G have weight 1, which we split evenly between the
vertices in V that define it. If wi is the accumulated weight of the i-th vertex,
clearly

∑n
i=1 wi = |E| so that n ∗mini{wi} ≤ |E|. Thus, mini{wi} is a lower

bound on the density.
We can get a more precise estimate. Observe that a ppg has 2 types of nodes,

heavy ones (already defined before) and nodes lying on maximal paths of degree
2 nodes that we call light nodes. If an edge joins two light nodes or two heavy
nodes then the edge weight is divided equally between the nodes. Otherwise,
the light node gets 1/2 + g of the weight and the heavy node 1/2 − g of the
weight , where 0 ≤ g ≤ 1/2.

The density of a heavy node is at least 3(1/2−g). As for light nodes, we note
that by Lemma 21 each maximal path of degree 2 nodes has length k, where
k ≤ 3. The total edge weight of such a path is 2(1/2 + g) + (k − 1). Thus the
average density of each node in such a path is 1 + 2g/k. It is minimum when
k = 3. Thus, the density of a light node is at least 1 + 2g/3.

The minimum average density for all nodes in G2 is thus
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max min{3/2− 3g, 1 + 2g/3} = 12/11

when g = 3/22. �

6 Conclusions

It would be quite a challenge to extend this result to 7:7 and 8:8 jewels. The most
important contribution of this paper is the improvement to the lower bound for
2-rounds algorithms. Improving this further is a challenging open problem. An
interesting direction for further research is to consider learning a set of points
on the plane. We are not aware of any published work on this topic.

It might also be interesting to explore the ties of this problem with problems
studied under the banner of rigidity theory (see [5, 3]).
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