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Abstract

A mixed plane graph is a plane graph whose edge set is partitioned into
a set of directed edges and a set of undirected edges. An orientation of a
mixed plane graph G is an assignment of directions to the undirected edges
of G resulting in a directed plane graph ~G. In this paper, we study the
computational complexity of testing whether a given mixed plane graph
G is upward planar, i.e., whether it can be oriented to obtain a directed
plane graph ~G such that ~G admits a planar drawing in which each edge
is represented by a y-monotone curve.

Our contribution is threefold. First, we show that upward planarity
can be tested in cubic time for mixed outerplane graphs. Second, we show
that the problem of testing the upward planarity of mixed plane graphs
reduces in quadratic time to the problem of testing the upward planarity
of mixed plane triangulations. Third, we design linear-time testing algo-
rithms for two classes of mixed plane triangulations, namely mixed plane
3-trees and mixed plane triangulations in which the undirected edges in-
duce a forest.
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1 Introduction

Upward planarity is the natural extension of planarity to directed graphs. When
visualizing a directed graph, one usually requires an upward drawing, that is, a
drawing in which the directed edges are curves with monotonically increasing
y-coordinates. A drawing is upward planar if it is planar and upward. Testing
the upward planarity of a directed graph is NP-hard [9]; however, the upward

planarity of a directed graph ~G can be tested in polynomial time if ~G has a
fixed planar (combinatorial) embedding [3], if it has a single source [2, 13], if
it is outerplanar [15], or if it is a series-parallel graph [7]. Exponential-time
algorithms [1] and FPT algorithms [12] for testing upward planarity are known.

In this paper we deal with mixed graphs. A mixed graph is a graph whose
edge set is partitioned into a set of directed edges and a set of undirected edges.
Mixed graphs unify the expressive power of directed and undirected graphs,
as they allow one to simultaneously represent hierarchical and non-hierarchical
relationships. A number of problems on mixed graphs have been studied, e.g.,
coloring mixed graphs [11, 17] and orienting mixed graphs to satisfy connectivity
requirements [5, 6].

Upward planarity generalizes to mixed graphs as follows. A drawing of a
mixed graph is upward planar if it is planar, if the directed edges are curves
with monotonically increasing y-coordinates, and if each undirected edge is a
curve with monotonically increasing or monotonically decreasing y-coordinates.
Hence, testing the upward planarity of a mixed graph is equivalent to testing
whether its undirected edges can be oriented to produce an upward planar
directed graph. Since testing the upward planarity of directed graphs is NP-
hard [9], testing the upward planarity of mixed graphs is NP-hard as well.
However, the question was raised by Binucci and Didimo [4] of determining the
time complexity of testing the upward planarity of mixed plane graphs, that
is, of mixed graphs with a prescribed planar (combinatorial) embedding in the
plane. Binucci and Didimo describe an ILP formulation for the problem and
present experiments showing the efficiency of their solution. Some other graph
drawing questions on mixed graphs (related to crossing and bend minimization)
have been studied in [8, 10].

We show the following results.

• In Section 3 we show that upward planarity can be tested in O(n3) time for
n-vertex mixed outerplane graphs. A mixed outerplane graph is a mixed
plane graph such that all its vertices are incident to the outer face. Our
algorithm uses a characterization for the upward planarity of directed
plane graphs due to Bertolazzi et al. [3] in order to decide the upward
planarity of a mixed outerplane graph G based on the upward planarity
of two subgraphs of G.

• In Section 4 we show how to construct, for every n-vertex mixed plane
graph G, an O(n2)-vertex mixed plane triangulation G′ such that G is
upward planar if and only if G′ is upward planar. A mixed plane trian-
gulation is a mixed plane graph such that all its faces are delimited by
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3-cycles. As a consequence, the problem of testing the upward planarity of
mixed plane graphs is polynomial-time solvable (NP-hard) if and only if
the problem of testing the upward planarity of mixed plane triangulations
is polynomial-time solvable (resp., NP-hard).

• In Section 5, motivated by the previous result, we present algorithms to
test the upward planarity for two classes of mixed plane triangulations,
namely mixed plane 3-trees and mixed plane triangulations in which the
undirected edges induce a forest. Both algorithms are recursive and work
in linear time.

2 Preliminaries

A planar drawing of a graph determines a circular ordering of the edges inci-
dent to each vertex. Two planar drawings of the same graph are equivalent
if they determine the same circular orderings around each vertex. A planar
(combinatorial) embedding is an equivalence class of planar drawings. A planar
drawing subdivides the plane into topologically connected regions, called faces.
The unbounded face is the outer face and the bounded faces are the internal
faces. An edge of G incident to the outer face (not incident to the outer face)
is called external (resp., internal). Two planar drawings with the same planar
(combinatorial) embedding have the same faces. However, they could still differ
in their outer faces. A plane embedding is a planar (combinatorial) embedding
together with a choice for the outer face. A plane graph is a graph with a given
plane embedding. An outerplane graph is a plane graph whose vertices are all
incident to the outer face. A plane triangulation is a plane graph such that all
its faces are delimited by 3-cycles. An outerplane triangulation is an outerplane
graph whose internal faces are delimited by 3-cycles.

A planar drawing of a directed graph is upward if every directed edge is
represented by a Jordan arc γ : [0, 1] → R2 such that the y-coordinate of γ
is a monotonically increasing function. A directed graph is upward planar if
it admits an upward planar drawing. A mixed graph is upward planar if its
undirected edges can be oriented to produce an upward planar directed graph.

A graph is connected if there is a path between every pair of vertices. A k-
connected graph G is such that removing any k− 1 vertices leaves G connected.
A cutvertex is a vertex whose removal disconnects the graph. A bridge is an edge
whose removal disconnects the graph. A separating 3-cycle is a 3-cycle whose
removal disconnects the graph. A block of a graph G is a maximal (both in terms
of vertices and in terms of edges) 2-connected subgraph of G; in particular, a
bridge of G is considered as a block of G. In this paper, when talking about
the connectivity of mixed graphs or directed graphs, we always refer to the
connectivity of their underlying undirected graphs.

In the remainder of the section we present some preliminaries about directed
plane graphs (Subsection 2.1) and about mixed plane graphs (Subsection 2.2).
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2.1 Upward Planarity of Directed Plane Graphs

Bertolazzi et al. [3] characterized the directed plane graphs that are upward
planar. In the first part of this section we briefly present this characterization;
then, we state two simplified versions of it, specifically dealing with directed
outerplane triangulations and directed plane triangulations; finally, we present
one further simplified version of the characterization, again dealing with directed
plane triangulations.

A vertex v in a directed graph is a sink (source) if every edge incident to v
is directed to v (resp., directed from v). A vertex v in a directed plane graph
is bimodal if the edges directed to v are consecutive in the cyclic ordering of
the edges incident to v (which implies that the edges directed from v are also
consecutive). A directed plane graph is bimodal if every vertex is bimodal.

Consider a 2-connected directed plane graph ~G, consider a face f of ~G, and
denote by Cf the simple cycle delimiting f . A vertex v of Cf is a sink-switch
(source-switch) for f if the edges of Cf incident to v are both directed to v
(resp., directed from v). Observe that the number of sink-switches for f and
the number of source-switches for f coincide. The demand of f is defined as
follows: If f is an internal face, then its demand is equal to the number of
sink-switches for f minus 1; if f is the outer face, then its demand is equal to
the number of sink-switches for f plus one. An upward assignment for ~G maps
each source s of ~G to one of the faces s is incident to and each sink t of ~G to
one of the faces t is incident to. An upward assignment for ~G is consistent if it
maps to each face f a number of sources and sinks equal to the demand of f .

The following characterization has been proved by Bertolazzi et al. [3].

Theorem 1 ([3]) A 2-connected directed plane graph is upward planar if and
only if it is acyclic, bimodal, and it admits a consistent upward assignment.

In this paper, we will use the characterization in Theorem 1 when dealing
with two specific classes of directed plane graphs, namely directed outerplane
triangulations and directed plane triangulations. For this reason, we state such
a characterization directly for such graph classes.

We start from directed outerplane triangulations. When dealing with such
graphs, by sink-switch (source-switch) we always mean a sink-switch (resp.,
source-switch) for the outer face. Thus, a vertex v in a directed outerplane graph
~G is a sink-switch (resp., source-switch) if the two external edges incident to v in
~G are both directed to v (resp., directed from v). Also, we call upward outerplane
triangulation a directed outerplane triangulation that is upward planar.

Theorem 2 A 2-connected directed outerplane triangulation ~G is upward pla-
nar if and only if it is acyclic, it is bimodal, and the number of sources plus the
number of sinks in ~G equals the number of its sink-switches (or source-switches)
plus one.

Proof: By Theorem 1, it suffices to prove that ~G admits a consistent upward
assignment if and only if the number of sources plus the number of sinks in ~G
equals the number of sink-switches (or source-switches) plus one.
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First, observe that every internal face f of ~G is delimited by a 3-cycle, hence
there is exactly one sink-switch for f in ~G, provided that ~G is acyclic. It follows
that the demand of every internal face is 0.

For the necessity, since the demand of each internal face is 0, a consistent
upward assignment maps all the sources and sinks of ~G to the outer face. Since
the demand of the outer face equals the number of sink-switches (or source-
switches) plus one, it follows that the number of sources plus the number of

sinks in ~G equals the number of sink-switches (or source-switches) plus one.
For the sufficiency, since the demand of each internal face is 0 and since the

demand of the outer face is equal to the number of sink-switches (or source-
switches) plus one, it follows that assigning all the sources and all the sinks of
~G to the outer face results in a consistent upward assignment. �

We next deal with directed plane triangulations.

Theorem 3 A directed plane triangulation is upward planar if and only if it
is acyclic, it is bimodal, and it has exactly one source and one sink that are
incident to the outer face.

Proof: Let ~G be a directed plane triangulation. By Theorem 1, it suffices to
prove that ~G admits a consistent upward assignment if and only if it has exactly
one source and one sink that are incident to its outer face.

First, observe that every face f of ~G is delimited by a 3-cycle, hence there
is exactly one sink-switch for f in ~G, provided that ~G is acyclic. It follows that
the demand of every internal face is 0 and the demand of the outer face is 2.

For the necessity, since the demand of the outer face is 2, it follows that, for
the assignment to be consistent, ~G has one source s and one sink t incident to
the outer face of ~G. Moreover, since the demand of each internal face is 0, no
vertex is assigned to any internal face, hence no internal vertex of ~G is a source
or a sink.

For the sufficiency, since the demand of each internal face is 0 and since the
demand of the outer face is 2, it follows that assigning the unique source and
sink of ~G to the outer face results in a consistent upward assignment. �

To the best of our knowledge, it has gone unnoticed in the literature that
the bimodality condition in Theorem 3 is redundant, as proved in the following.

Theorem 4 A directed plane triangulation is upward planar if and only if it is
acyclic and it has a single source and a single sink incident to the outer face.

Proof: Consider a directed acyclic plane triangulation T with a single source
s and a single sink t incident to the outer face. By Theorem 3, in order to
prove the statement it suffices to prove that T is bimodal. Suppose, for a
contradiction, that T is not bimodal. Let b be a vertex that is not bimodal,
i.e., there exist directed edges (b, x), (u, b), (b, y), and (z, b) in clockwise order
around it. Consider two monotone paths P (x) = (x = x1, x2, . . . , t) and P (y) =
(y = y1, y2, . . . , t) from x and y to t, respectively. Such paths exist given that t
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is the only sink of T and given that T is acyclic. Denote by t′ the first vertex
shared by P (x) and P (y) (possibly t′ = t). Denote by T ′ the subgraph of T
composed of those vertices, edges, and faces that are inside or on the boundary
of cycle (b, x = x1, x2, . . . , t

′) ∪ (b, y = y1, y2, . . . , t
′). No internal vertex of T ′ is

a source in T ′, as otherwise it would be a source in T as well. Further, every
vertex of P (x) has an edge directed to it (in fact the edge of path (b, x)∪P (x)),
hence it is not a source in T ′. Analogously, no vertex of P (y) is a source in T ′.
Moreover, by assumption b is not a source in T ′, given that either edge (u, b) or
edge (z, b) belongs to T ′. It follows that T ′ has no source, hence it must contain
a directed cycle. Thus, T also contains a directed cycle, a contradiction. It
follows that T is bimodal. By Theorem 3, T is upward planar. �

2.2 Upward Planarity of Mixed Plane Graphs

An orientation ~G of an undirected graph G or of a mixed graph G is an assign-
ment of directions to the undirected edges of G. With a slight abuse of notation
we denote by ~G both the orientation of G and the resulting directed graph.
An orientation of a (plane) graph G is upward planar if the resulting directed
(plane) graph is upward planar. Testing the upward planarity of a mixed graph
G is equivalent to testing whether G admits an upward planar orientation. The
orientation of an edge in a mixed graph G is prescribed if the edge is directed
in G.

A mixed plane graph is upward planar if and only if each of its connected
components is upward planar. Thus, without loss of generality, we only con-
sider connected mixed plane graphs. In the following, we show that a stronger
condition can in fact be assumed for each considered plane graph G, namely
that G is 2-connected. Before proving such a claim, we present the following
auxiliary lemma.

Lemma 1 Let G be a mixed plane graph, let f be any face of G, and let (v, x)
and (v, y) be two edges that appear consecutively along the border of f . Let G∗

be the graph obtained from G by inserting a vertex w and undirected edges (w, x)
and (w, y) inside f in such a way that cycle (v, x, w, y) delimits a face of G∗.
We have that G is upward planar if and only if G∗ is.

Proof: One implication is trivial, namely G is a subgraph of G∗, hence if G∗

is upward planar, then G is upward planar as well. Assume that G is upward
planar. We prove that G∗ is upward planar.

Let ~G be an arbitrary upward planar orientation of G. We define an orienta-
tion ~G∗ of G∗ as follows. Every edge of G∗ that is also an edge of G is oriented
as in ~G; further, edge (x,w) is directed from x in ~G∗ if and only if edge (x, v) is

directed from x in ~G; also, edge (y, w) is directed from y in ~G∗ if and only if edge

(y, v) is directed from y in ~G. Consider an arbitrary upward planar drawing Γ

of G with orientation ~G. We are going to construct an upward planar drawing
Γ∗ of G∗ with orientation ~G∗ so that Γ∗ coincides with Γ when restricted to G.
For this sake, draw edges (x,w) and (y, w) inside f in Γ as y-monotone curves
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Figure 1: Cases that might arise when inserting vertex w and its incident edges
(x,w) and (y, w) inside f in Γ. The gray region is part of f . (a) v is neither
a source nor a sink. (b) v is a sink and there exist points in Γ that have y-
coordinates larger than the one of v, that are arbitrarily close to v, and that
belong to f . (c) v is a sink and there exists no point in Γ that has y-coordinate
larger than the one of v, that is arbitrarily close to v, and that belongs to f .

arbitrarily close to edges (x, v) and (y, v), respectively. Observe that this is
always possible given that (x,w) and (x, v) are both directed from x or both
directed to x, and given that (y, w) and (y, v) are both directed from y or both
directed to y. See Fig. 1. The resulting drawing Γ∗ of G∗ is upward because Γ
is upward and because edges (x,w) and (y, w) are represented by y-monotone
curves; further, Γ∗ is planar because Γ is planar and because edges (x,w) and
(y, w) do not cross any edge of G, given that they are drawn inside f . It follows

that ~G∗ is an upward planar orientation of G∗, and hence that G∗ is upward
planar. This concludes the proof of the lemma. �

We are now ready to prove the following.

Lemma 2 Every n-vertex mixed plane graph G can be augmented with new
edges and vertices to a 2-connected mixed plane graph G′ with O(n) vertices
such that G is upward planar if and only if G′ is. If G is outerplane, then G′

is also outerplane. Moreover, G′ can be constructed from G in O(n) time.

Proof: Let G be an n-vertex mixed plane graph and let f be any face of
G. Let Cf be the (possibly non-simple) cycle delimiting f and let c be any
vertex of Cf . If c is a cutvertex of G that is incident to at least two blocks
of G containing edges incident to f , then define k(c, f,G) to be the number of
blocks of G incident to c and containing edges incident to f ; otherwise, define
k(c, f,G) = 0. Observe that, if G is outerplane, then k(u, g,G) = 0 for every
internal face g of G and every vertex u incident to g.

Consider an arbitrary face f of G and an arbitrary cutvertex c of G such that
k(c, f,G) > 0. Refer to Fig. 2. Denote by B1, B2, . . . , Bk(c,f,G) the blocks of G
incident to c and containing edges incident to f in clockwise order. For each
block Bi that is not a single edge, let Ci be the simple cycle in Bi whose edges
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Figure 2: Mixed plane graph G before (a) and after (b) inserting vertex w and
edges (v1, w) and (u2, w) inside f .

are all incident to f ; orient Ci clockwise and let ui and vi be the vertices that
follow and precede c in Ci, respectively. For each block Bi that is a single edge,
let ui = vi be the vertex of Bi adjacent to c. Insert a vertex w and undirected
edges (w, v1) and (w, u2) in G, in such a way that vertex w and edges (w, v1)
and (w, u2) lie inside f . Denote by G∗ the resulting mixed plane graph. Also,
denote by Cf ′ the cycle obtained from Cf by replacing path Pc = (v1, c, u2)
with path Pw = (v1, w, u2). Denote by f ′ the face of G∗ delimited by Cf ′ and
denote by f ′′ the face of G∗ delimited by path Pw and Pc.

We have that the following statements hold:

(i) G∗ has one vertex more than G;

(ii) k(c, f ′, G∗) < k(c, f,G), k(u, f ′′, G∗) = 0 for every vertex u incident to
f ′′, and k(u, g,G∗) = k(u, g,G) for every face g of G different from f and
for every vertex u incident to g;

(iii) G∗ is upward planar if and only if G is;

(iv) Cf ′ contains all the vertices of Cf plus w; and

(v) G∗ can be constructed from G in constant time.

Before proving the statements, we prove that they imply the lemma. While
G has a face f and a vertex c incident to f such that k(c, f,G) > 0, insert a
vertex w and undirected edges (w, v1) and (w, u2) inside f . Denote by G′ the
graph obtained at the end of this process. For every face g of G′ and every vertex
u incident to g it holds k(u, g,G′) = 0 (by repeated applications of statement
(ii)), that is G′ is 2-connected. Moreover, G′ is upward planar if and only if G
is (by repeated applications of statement (iii)). Also, G′ has m ∈ O(n) vertices
(by repeated applications of statement (i)). Further, if G is outerplane, then
G′ is outerplane (by repeated applications of statement (iv)). Finally, G′ can
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be constructed in O(n) time. Namely, G has O(n) cutvertices, which can be
detected at once in O(n) time; further, each augmentation decreases the number
of cutvertices by statement (ii) and takes constant time by statement (v).

We now prove statements (i)-(v). Statements (i) and (v) easily follow from
the construction of G∗. Statement (ii) is a consequence of the following observa-
tions: k(c, f ′, G∗) is either equal to k(c, f,G)− 1 or to k(c, f,G)− 2, depending
on whether c is a cutvertex of G∗ incident to at least two 2-connected compo-
nents of G∗ containing edges incident to f ′ or not; further, k(u, f ′′, G∗) = 0,
given that f ′′ is delimited by simple cycle (v1, c, u2, w); moreover, every face
g of G different from f is delimited by the same cycle in G and in G∗, thus
k(u, g,G∗) = k(u, g,G) holds for every vertex u incident to g. Statement (iv) is
proved as follows: Cf ′ contains w, by definition, and it contains all the vertices
of Cf . In particular, it contains c given that c occurs at least twice in Cf and
given that Cf ′ has exactly one fewer occurrence of c than Cf . Finally, statement
(iii) directly follows from Lemma 1. �

3 Upward Planarity Testing for Mixed Outer-
plane Graphs

This section is devoted to the proof of the following theorem.

Theorem 5 The upward planarity of an n-vertex mixed outerplane graph can
be tested in O(n3) time.

Let G be any n-vertex mixed outerplane graph. By Lemma 2, an O(n)-
vertex 2-connected mixed outerplane graph G∗ can be constructed in O(n) time
such that G is upward planar if and only if G∗ is.

We introduce some notation and terminology. Let u and v be distinct vertices
of G∗. We denote by G∗ + (u, v) the graph obtained from G∗ by adding edge
(u, v) if it is not already in G∗, and by G∗ − u the graph obtained from G∗ by

deleting u and its incident edges. Consider an orientation ~G∗ of G∗. A vertex is
sinky (sourcey) in ~G∗ if it is a sink-switch but not a sink (if it is a source-switch
but not a source, resp.). A vertex that is neither a sink, a source, sinky, nor
sourcey is ordinary ; that is, v is ordinary if the two external edges incident to
v are one directed to v and one directed from v in ~G∗. We say the status of a
vertex of G∗ in ~G∗ is sink, source, sinky, sourcey, or ordinary. See Fig. 3.

First note that G∗ is upward planar if and only if there is an upward outer-
plane triangulation T of G∗, that is, if and only if G∗ can be augmented to a
mixed outerplane triangulation, and the undirected edges of such a triangulation
can be oriented in such a way that the resulting directed outerplane triangula-
tion T is upward planar. The approach of our algorithm is to determine if there
is such a T using recursion. The algorithm can be easily modified to produce T
if it exists.

We observe that a directed outerplane triangulation T is acyclic if and only
if every 3-cycle in T is acyclic. One direction is trivial. Conversely, suppose
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Figure 3: A directed outerplane triangulation T . Vertices 1 and 6 are sources in
T , vertices 2 and 4 are sinks in T , vertices 5, 7, and 8 are ordinary in T , vertex
3 is sourcey in T , and vertex 9 is sinky in T .

that T contains a directed cycle. Let C be a shortest directed cycle of T . If C is
a 3-cycle, then we are done. Otherwise, an edge (x, y) /∈ C exists in T between
two vertices x and y both in C. Thus, C + (x, y) contains two shorter cycles,
one of which is a directed cycle, contradicting the choice of C. Hence, to ensure
the acyclicity of a directed outerplane triangulation, it suffices to ensure that
its internal faces are acyclic.

A potential edge of G∗ is a pair of distinct vertices x and y in G∗ such that
G∗+(x, y) is outerplane, which is equivalent to saying that x and y are incident
to a common internal face of G∗ (notice that an edge of G∗ is a potential edge
of G∗). Fix some external edge r of G∗, called the root edge. Let e = {x, y}
be an internal potential edge of G∗. See Fig. 4. Then {x, y} separates G∗,
that is, G∗ contains two subgraphs G∗1 and G∗2 such that G∗ = G∗1 ∪ G∗2 and
V (G∗1∩G∗2) = {x, y}. (Thus, there is no edge between G∗1−x−y and G∗2−x−y.)
Without loss of generality, r ∈ E(G∗1). Let G∗e := G∗2 + (x, y). Observe that G∗e
is a 2-connected mixed outerplane graph with e incident to the outer face. Also,
let e = {x, y} 6= r be an external potential edge of G∗. Then, we define G∗e to
be the 2-vertex graph containing the single edge (x, y). Further, let G∗r := G∗.
For each (internal or external) potential edge e = {x, y} of G∗ and for each
orientation −→xy of e, let G∗−→xy be G∗e with e oriented −→xy. Define a partial order ≺
on the potential edges of G∗ as follows. For distinct potential edges e and f of
G∗, say e ≺ f if both end-vertices of f are in G∗e. Loosely speaking, e ≺ f if
G∗ + e+ f is outerplane and e is “between” r and f .

A potential arc of G∗ is a potential edge that is assigned an orientation
preserving its orientation in G∗. So if e is an undirected edge of G∗ or a potential
edge not in G∗, then there are two potential arcs associated with e, while if e
is a directed edge of G∗, then there is one potential arc associated with e. If a
potential arc −→xy is part of a triangulation T of G∗, then x is a source, sourcey,
or ordinary, and y is a sink, sinky, or ordinary in G∗−→xy. We define the status

of −→xy in G∗−→xy as an ordered pair S of S(x) ∈ {source, sourcey, ordinary} and
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Figure 4: (a) A mixed plane graph G∗ with a root edge r and an internal
potential edge e = {x, y} of G∗. Edge e is dashed since it does not belong to
G∗. (b) Graph G∗1. (c) Graph G∗e := G∗2 + (x, y).

S(y) ∈ {sink, sinky, ordinary}.
We now define a function UP(−→xy, S), that takes as an input a potential arc−→xy and a status S of −→xy, and has value “true” if and only if there is an upward

outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y); notice that, if
−→xy is external and does not correspond to r, then T−→xy is a single edge.

First, the values of UP(−→xy, S) can be computed in total O(n) time for all
the external potential arcs −→xy of G∗ not corresponding to r and for all statuses
of −→xy. Indeed, UP(−→xy, S) is true if and only if S(x) = source and S(y) = sink.

We show below that, for each potential arc −→xy in G∗ that is internal or
that is external and corresponds to r, and for each status S of −→xy, the value of
UP(−→xy, S) can be computed in O(n) time from values associated to potential
arcs corresponding to potential edges e with {x, y} ≺ e. Since there are at
most n(n + 1) potential arcs and nine statuses for each potential arc, all the
values of UP(−→xy, S) can be computed in O(n3) time by dynamic programming
in reverse order to a linear extension of ≺. Then, there is an upward outerplane
triangulation of G∗ if and only if UP(−→xy, S) is true for some orientation −→xy of r
and some status S of −→xy.

Let −→xy be a potential arc that is internal to G∗ or that corresponds to r.
Let S be a status of −→xy. Suppose that UP(−→xy, S) is true. Then, there is an
upward outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y). Such

a triangulation contains a vertex z ∈ V (G∗xy) − x − y such that (x, y, z) is
an internal face of T−→xy. Since T−→xy has edge (x, y) oriented from x to y, then
edges (x, z) and (y, z) cannot be simultaneously directed to x and directed from
y, respectively, as otherwise T−→xy would contain a directed cycle, which is not
possible by Theorem 2. Hence, edges (x, z) and (y, z) in T−→xy are either directed
from x and directed to y, or directed from x and directed from y, or directed to
x and directed to y, respectively.

Now, for each status S of −→xy and for a particular vertex z ∈ V (G∗xy)−x− y,
we characterize the conditions for which an upward outerplane triangulation
T−→xy exists that respects S(x) and S(y) and that contains edges (x, z) and (y, z)
oriented according to each of the three orientations described above.
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Lemma 3 There is an upward outerplane triangulation T−→xy that respects S(x)
and S(y), that contains edge (x, z) directed from x, and that contains edge (z, y)
directed to y, if and only if −→xz and −→zy are potential arcs of G∗ and there are
statuses S1 of −→xz and S2 of −→zy such that the following conditions hold:

(a) S1(x) = S(x) ∈ {source, sourcey, ordinary},

(b) S2(y) = S(y) ∈ {sink, sinky, ordinary},

(c) S1(z) ∈ {sink, ordinary},

(d) S2(z) ∈ {source, ordinary},

(e) S1(z) = sink or S2(z) = source, and

(f) both UP(−→xz, S1) and UP(−→zy, S2) are true.

z

x

y

T−→xz

T−→zy

z

x

y

T−→xz

T−→zy

z

x

y

T−→xz

T−→zy

(a) (b) (c)

Figure 5: Illustration for the proof of Lemma 3. The gray filled regions represent
T−→xz and T−→zy if S(x) = S1(x) = source and S(y) = S2(y) = sink; the gray
filled regions plus the regions striped in two directions represent T−→xz and T−→zy if
S(x) = S1(x) = ordinary and S(y) = S2(y) = ordinary; the gray filled regions
plus the regions striped in two directions plus the regions striped in one direction
represent T−→xz and T−→zy if S(x) = S1(x) = sourcey and S(y) = S2(y) = sinky. (a)
S1(z) = sink and S2(z) = source. (b) S1(z) = sink and S2(z) = ordinary. (c)
S1(z) = ordinary and S2(z) = source.

Proof: Refer to Fig. 5.
(=⇒) Let T−→xy be an upward outerplane triangulation of G∗−→xy that respects

S(x) and S(y), that contains edge (x, z) directed from x, and that contains
edge (z, y) directed to y. Then, −→xz and −→zy are potential arcs of G∗. Further,
T−→xy determines upward outerplane triangulations T−→xz and T−→zy respectively of
G∗−→xz and G∗−→zy (where T−→xz and T−→zy are single edges if −→xz and −→zy are external,
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respectively), as well as statuses S1 and S2 of −→xz and −→zy, respectively, such that
(f) both UP(−→xz, S1) and UP(−→zy, S2) are true. Since −→xy and −→xz are consecutive
arcs directed from x, we have (a) S1(x) = S(x) ∈ {source, sourcey, ordinary}.
Similarly, (b) S2(y) = S(y) ∈ {sink, sinky, ordinary}. Since −→xz is directed to
z, we have S1(z) ∈ {sink, ordinary, sinky}. However, if S1(z) = sinky, then
z is not bimodal in T−→xy. Thus (c) S1(z) ∈ {sink, ordinary}. Similarly, (d)
S2(z) ∈ {source, ordinary}. Finally, if z is ordinary in both T−→xz and T−→zy, then
z is not bimodal in T−→xy. Thus (e) S1(z) = sink or S2(z) = source.

(⇐=) Let T−→xz be an upward outerplane triangulation of G∗−→xz respecting S1

(T−→xz is a single edge if −→xz is external). Let T−→zy be an upward outerplane tri-
angulation of G∗−→zy respecting S2 (T−→zy is a single edge if −→zy is external). Such

triangulations exist because UP(−→xz, S1) and UP(−→zy, S2) are true. Let T−→xy be
the triangulation of G∗−→xy determined from T−→xz and T−→zy by adding the arc −→xy.

Since T−→xz, T−→zy, and (x, y, z) are acyclic, T−→xy is acyclic. Since x is bimodal in
T−→xz, it is bimodal in T−→xy. Similarly, y is bimodal in T−→xy. As described above,
the conditions on S1(z) and S2(z) imply that z is bimodal in T−→xy. Every other
vertex is bimodal in T−→xy because it is bimodal in T−→xz or in T−→zy. Hence, T−→xy is
bimodal.

Let s1, t1 and w1 be the number of sources, sinks, and source-switches in
T−→xz, respectively. Let s2, t2 and w2 be the number of sources, sinks, and source-
switches in T−→zy, respectively. By Theorem 2, si + ti = wi + 1 for i ∈ {1, 2}.
Let s, t and w be the number of sources, sinks, and source-switches in T−→xy,
respectively.

If z is a sink in T−→xz and ordinary in T−→zy, then s = s1 + s2, t = t1 + t2 − 1
(for z), and w = w1 + w2. If z is a source in T−→zy and ordinary in T−→xz, then
s = s1 + s2 − 1 (for z), t = t1 + t2, and w = w1 + w2. If z is a sink in T−→xz and
a source in T−→zy, then s = s1 + s2 − 1 (for z) and t = t1 + t2 − 1 (for z) and
w = w1 + w2 − 1 (for z). In all three cases, it follows that s+ t = w + 1.

By Theorem 2, T−→xy is upward planar. By construction, T−→xy respects S(x)
and S(y) and contains edge (x, z) directed from x and edge (z, y) directed to y.

�

Lemma 4 There is an upward outerplane triangulation T−→xy that respects S(x)
and S(y) and that contains edges (x, z) and (y, z) directed to z if and only if −→xz
and −→yz are potential arcs of G∗ and there are statuses S1 of −→xz and S2 of −→yz
such that the following conditions hold:

(a) S1(x) = S(x) ∈ {source, sourcey, ordinary},

(b) S(y) ∈ {sinky, ordinary},

(c) S2(y) ∈ {source, ordinary},

(d) S(y) = ordinary if and only if S2(y) = source,

(e) S(y) = sinky if and only if S2(y) = ordinary,

(f) S1(z) ∈ {sink, sinky, ordinary},
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(g) S2(z) ∈ {sink, sinky, ordinary},
(h) S1(z) ∈ {sink, ordinary} or S2(z) = sink,

(i) S2(z) ∈ {sink, ordinary} or S1(z) = sink, and

(j) both UP(−→xz, S1) and UP(−→yz, S2) are true.
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T−→yz z
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T−→yz

(a) (b) (c)

z

x

y

T−→xz

T−→yz
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x

y
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T−→yz z
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y

T−→xz

T−→yz

(d) (e) (f)

Figure 6: Illustration for the proof of Lemma 4. The gray filled regions represent
T−→xz and T−→yz if S(x) = S1(x) = source and S2(y) = source (and S(y) = ordinary);
the gray filled regions plus the regions striped in two directions represent T−→xz and
T−→yz if S(x) = S1(x) = ordinary and S2(y) = ordinary (and S(y) = sinky); the
gray filled region plus the region striped in two directions plus the region striped
in one direction represents T−→xz if S(x) = S1(x) = sourcey. (a) S1(z) = sink and
S2(z) = sink. (b) S1(z) = ordinary and S2(z) = sink. (c) S1(z) = sinky and
S2(z) = sink. (d) S1(z) = sink and S2(z) = ordinary. (e) S1(z) = ordinary and
S2(z) = ordinary. (f) S1(z) = sink and S2(z) = sinky.

Proof: Refer to Fig. 6.
(=⇒) Let T−→xy be an upward outerplane triangulation of G∗−→xy that respects

S(x) and S(y), and that contains edge (x, z) and (y, z) directed to z. Then
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−→xz and −→yz are potential arcs of G∗. T−→xy determines upward outerplane tri-
angulations T−→xz and T−→yz respectively of G∗−→xz and G∗−→yz (where T−→xz and T−→yz are

single edges if −→xz and −→yz are external, respectively), as well as statuses S1 and
S2 of −→xz and −→yz, respectively, such that (j) both UP(−→xz, S1) and UP(−→yz, S2)
are true. Since −→xy and −→xz are consecutive arcs directed from x, we have
(a) S1(x) = S(x) ∈ {source, sourcey, ordinary}. Since −→xy and −→yz are inci-
dent to y, we have (b) S(y) ∈ {sinky, ordinary}. Since −→yz in T−→yz, we have
S2(y) ∈ {source, sourcey, ordinary}. Moreover, if y is sourcey in T−→yz, then y
is not bimodal in T−→xy. Thus (c) S2(y) ∈ {source, ordinary}. Observe that (d)
S(y) = ordinary if and only if S2(y) = source (otherwise y is not bimodal in
T−→xy). Similarly, (e) S(y) = sinky if and only if S2(y) = ordinary. Since −→xz
in T−→xz, we have (f) S1(z) ∈ {sink, ordinary, sinky}. Analogously, we have (g)
S2(z) ∈ {sink, ordinary, sinky}. Moreover, (h) if z is sinky in T−→xz, then z is a
sink in T−→yz, as otherwise z is not bimodal in T−→xy. Analogously, (i) if z is sinky
in T−→yz, then z is a sink in T−→xz.

(⇐=) Let T−→xz be an upward outerplane triangulation of G∗−→xz respecting S1

(T−→xz is a single edge if −→xz is external). Let T−→yz be an upward outerplane tri-
angulation of G∗−→yz respecting S2 (T−→yz is a single edge if −→yz is external). Such

triangulations exist because UP(−→xz, S1) and UP(−→yz, S2) are true. Let T−→xy be
the triangulation of G∗−→xy determined from T−→xz and T−→yz by adding the arc −→xy.

Since T−→xz, T−→yz, and (x, y, z) are acyclic, T−→xy is acyclic.

Since x is bimodal in T−→xz, it is bimodal in T−→xy. Since y is not sourcey in T−→yz,
it is bimodal in T−→xy. If z is not bimodal in T−→xy, then z is sinky in T−→xz and is not
a sink in T−→yz (or vice versa, switching the role of T−→xz and T−→yz). However, this is
not possible by conditions (h) and (i), hence z is bimodal in T−→xy. Every other
vertex is bimodal in T−→xy because it is bimodal in T−→xz or in T−→yz. Hence, T−→xy is
bimodal.

Let s1, t1 and w1 be the number of sources, sinks, and source-switches in
T−→xz, respectively. Let s2, t2 and w2 be the number of sources, sinks, and source-
switches in T−→yz, respectively. By Theorem 2, si + ti = wi + 1 for i ∈ {1, 2}.
Let s, t and w be the number of sources, sinks, and source-switches in T−→xy,
respectively.

We distinguish the following cases: y is a source or is ordinary in T−→yz. And
z is a sink in T−→xz or T−→yz, or z is in ordinary in both T−→xz and T−→yz.

If y is a source in T−→yz and z is a sink in T−→xz or T−→yz (possibly both), then
s = s1 + s2 − 1 (for y) and t = t1 + t2 − 1 (for z) and w = w1 + w2 − 1 (for
y). (Here, if z is a sink in both T−→xz and T−→yz, then z is a sink in T−→xy, but still
t = t1 + t2 − 1.) If y is a source in T−→yz and z is ordinary in both T−→xz and T−→yz,
then s = s1 + s2 − 1 (for y) and t = t1 + t2 and w = w1 +w2 − 1 + 1 (for y and
z). If y is ordinary in T−→yz and z is a sink in T−→xz or in T−→yz, then s = s1 + s2 and
t = t1 + t2− 1 (for z) and w = w1 +w2. If y is ordinary in T−→yz and z is ordinary
in T−→xz and T−→yz, then s = s1 + s2 and t = t1 + t2 and w = w1 + w2 + 1 (for z).
In all cases, it follows that s+ t = w + 1.

By Theorem 2, T−→xy is upward planar. By construction, T−→xy respects S(x)
and S(y) and contains edge (x, z) and (y, z) directed to z. �
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Lemma 5 There is an upward outerplane triangulation T−→xy that respects S(x)
and S(y) and that contains edges (z, x) and (z, y) directed from z if and only if−→zx and −→zy are potential arcs of G∗ and there are statuses S1 of −→zx and S2 of −→zy
such that the following conditions hold:

(a) S2(y) = S(y) ∈ {sink, sinky, ordinary},

(b) S(x) ∈ {sourcey, ordinary},

(c) S1(x) ∈ {sink, ordinary},

(d) S(x) = ordinary if and only if S1(x) = sink,

(e) S(x) = sourcey if and only if S1(x) = ordinary,

(f) S1(z) ∈ {source, sourcey, ordinary},

(g) S2(z) ∈ {source, sourcey, ordinary},

(h) S1(z) ∈ {source, ordinary} or S2(z) = source,

(i) S2(z) ∈ {source, ordinary} or S1(z)=source, and

(j) both UP(−→zx, S1) and UP(−→zy, S2) are true.

Proof: The proof is symmetric to the proof of Lemma 4. �

For each status S of −→xy and for a particular vertex z ∈ V (G∗xy)−x−y, it can
be checked in O(1) time whether an upward outerplane triangulation T−→xy exists
that respects S(x) and S(y) and that contains edges (x, z) and (y, z) by checking
whether the conditions in at least one of Lemmata 3-5 are satisfied. Further,
UP(−→xy, S) is true if and only if there exists a vertex z ∈ V (G∗xy) − x − y such
that an upward outerplane triangulation T−→xy exists that respects S(x) and S(y)
and that contains edges (x, z) and (y, z). Thus, we can determine UP(−→xy, S) in
O(n) time since there are less than n possible choices for z.

This completes the proof of Theorem 5. The time complexity analysis can
be strengthened as follows. Suppose that every internal face of G∗ has at most t
vertices. Then each vertex v is incident to less than t · degG∗(v) potential edges
and the total number of potential arcs is less than 2

∑
v t ·degG∗(v) ≤ 8tn. Since

each potential arc has nine statuses, and since there are less than t choices for z,
the time complexity isO(t2n). In particular, ifG∗ is an outerplane triangulation,
then the time complexity is O(n).

4 From Mixed Plane Graphs To Mixed Plane
Triangulations

This section is devoted to the proof of the following theorem.
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Figure 7: Augmentation of a face f with nf = 10 vertices.

Theorem 6 Let G be an n-vertex mixed plane graph. There exists an O(n2)-
vertex mixed plane triangulation G′ such that G is upward planar if and only if
G′ is. Moreover, G′ can be constructed from G in O(n2) time.

Proof: By Lemma 2, an O(n)-vertex 2-connected mixed plane graph G∗ can
be constructed in O(n) time such that G is upward planar if and only if G∗ is.

We show how to construct a graph G′ satisfying the statement of the theo-
rem. In order to construct G′, we augment G∗ in several steps. At each step,
vertices and edges are inserted inside a face f of G∗ delimited by a cycle Cf

with nf ≥ 4 vertices. The new edges and vertices subdivide f into one face
with nf − 1 vertices and 2nf − 1 faces with three vertices each. The repetition
of such an augmentation yields the desired graph G′.

We now describe how to augment G∗. Consider an arbitrary face f of G∗

delimited by a cycle Cf with nf ≥ 4 vertices. Let (u1, u2, . . . , unf
) be the

clockwise order of the vertices along Cf starting at an arbitrary vertex. Insert
a cycle C ′f inside f with nf − 1 vertices v1, v2, . . . , vnf−1 in this clockwise order
along C ′f . For 1 ≤ i ≤ nf − 1, insert edges (vi, ui) and (vi, ui+1) inside Cf

and outside C ′f ; also, insert edge (v1, unf
) inside cycle (unf

, u1, v1, vnf−1). All
the edges inserted in f are undirected. See Fig. 7. Denote by G′f the graph
consisting of cycle Cf together with the vertices and edges inserted in f . Observe
that the face of G′f delimited by C ′f has nf −1 vertices, while all the other faces
into which f is split by the insertion of C ′f and of its incident edges have three
vertices.

We now show that G∗ before the augmentation is upward planar if and only
if G∗ after the augmentation is upward planar. One implication is trivial, given
that G∗ before the augmentation is a subgraph of G∗ after the augmentation.
For the other implication, it suffices to prove that, for an arbitrary upward
planar orientation ~Cf of Cf , there exists an upward planar orientation ~G′f of

G′f that coincides with ~Cf when restricted to Cf .

Consider an upward planar drawing Γf of Cf with orientation ~Cf (see
Fig. 8(a)). We describe how to place vertices and edges inside f to obtain

an upward planar drawing Γ′f of ~G′f .

Pach and Tóth [14] proved that every planar drawing of a graph G in which
all the edges are y-monotone can be triangulated by the insertion of y-monotone
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edges inside the faces of G (the result in [14] states that the addition of a vertex
might be needed to triangulate the outer face of G, which however is not the
case if the outer face is bounded by a simple cycle, as in our case). In every
triangulation of a cycle Cf with nf ≥ 4 vertices, at least two vertices have
degree two. Hence there is an index j, 1 < j ≤ nf , such that uj−1 and uj+1 can
be connected by a y-monotone curve inside f .
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Figure 8: (a) An upward planar drawing Γf of Cf with orientation ~Cf , and
a y-monotone triangulation (dashed). Vertices u4 and u10 have degree two, so
we can take j = 4. (b) We place the points v1, . . . , v3 in small neighborhoods of
u1, . . . , u3; and the points v4, . . . , v9 in small neighborhoods of u5, . . . , u10; and
then draw the cycle (v1, . . . , v9) with y-monotone edges. (c) The edges between
the cycles (u1, . . . , u10) and (v1, . . . , v9) can be realized with y-monotone curves.

Let δ > 0 be such that the δ-neighborhood δ(ui) of every vertex ui, i =
1, . . . , nf , is disjoint from all nonincident edges in the drawing Γf , and the
projections of these δ-neighborhoods into the y-axis are pairwise disjoint. We
call the subset of δ(ui) whose points have y-coordinates smaller (larger) the one
of ui, the δ−-neighborhood, δ−(ui), of ui (resp. the δ+-neighborhood, δ+(ui), of
ui). We further define δf (ui) as follows:

δf (ui) =



δ−(ui) if ui is a source in ~Cf and δ−(ui) ⊂ f .

δ+(ui) ∩ f if ui is a source in ~Cf and δ−(ui) ∩ f = ∅.
δ+(ui) if ui is a sink in ~Cf and δ+(ui) ⊂ f .

δ−(ui) ∩ f if ui is a sink in ~Cf and δ+(ui) ∩ f = ∅.
δ−(ui) ∩ f if ui is ordinary in ~Cf .

We augment the drawing Γf with the new vertices and edges as follows:

• First, for 1 ≤ i < j, we place vertex vi in δf (ui) and we connect vi to ui
by a y-monotone curve. Further, for j ≤ i < nf , we place vertex vi in
δf (ui+1) and we connect vi to ui+1 by a y-monotone curve. See Fig. 8(b).

• Second, we realize the cycle (v1, . . . , vnf−1) with y-monotone edges as
follows. For 0 < i < j − 1, the edge (vi, vi+1) closely follows (ui, ui+1)
inside f . The edge (vj−1, vj) closely follows a y-monotone curve between
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uj−1 and uj+1, which is an edge of the triangulation of Cf mentioned
above. For j < i < nf , the edge (vi−1, vi) closely follows (ui, ui+1) inside
f . Edge (vnf−1, v1) closely follows (unf

, u1). See Fig. 8(b).

• Third, we realize all remaining edges between the cycles (u1, . . . , unf
) and

(v1, . . . , vnf−1). For 0 < i < j − 1, the edge (vi, ui+1) threads between
(ui, ui+1) and (vi, vi+1). The edge (vj−1, uj) closely follows edge (uj−1, uj)
of Cf . The edge (uj , vj) closely follows edge (uj , uj+1) of Cf . For j < i <
nf , the edge (ui, vi) threads between (ui, ui+1) and (vi−1, vi). Finally, the
edge (unf

, v1) threads between (unf
, u1) and (vnf−1, v1). See Fig. 8(c).

The number of vertices of the mixed plane triangulation G′ resulting from
the augmentation is O(n2). Namely, the number of vertices inserted inside a
face f of G∗ with nf vertices is (nf − 1) + (nf − 2) + · · ·+ 3, hence the number
of vertices of G′ is

∑
f (nf (nf − 1)/2 − 3) = O(n2), given that

∑
f nf ∈ O(n)

(where the sums are over all the faces of G∗). Finally, the augmentation of G∗

to G′ can be easily performed in a time that is linear in the size of G′, hence
quadratic in the size of the input graph. �

Corollary 1 The problem of testing the upward planarity of mixed plane graphs
is polynomial-time solvable (NP-hard) if and only if it is polynomial-time solv-
able (respectively, NP-hard) for mixed plane triangulations.

5 Upward Planarity Testing of Mixed Plane Tri-
angulations

In this section we show how to test in linear time the upward planarity of two
classes of mixed plane triangulations.

A plane 3-tree is a plane triangulation that can be constructed as follows.
Denote by Habc a plane 3-tree whose outer face is delimited by a cycle (a, b, c),
with vertices a, b, and c in this clockwise order along the cycle. A cycle (a, b, c)
is the only plane 3-tree Habc with three vertices. Every plane 3-tree Habc with
n > 3 vertices can be constructed from three plane 3-trees Habd, Hbcd, and Hcad

by identifying the vertices incident to their outer faces with the same label. See
Fig. 9(a).

Theorem 7 The upward planarity of an n-vertex mixed plane 3-tree can be
tested in O(n) time.

Consider a mixed plane 3-tree Huvw with n vertices. We define a function
UP(xy,Habc) as follows. For each graph Habc in the construction of Huvw and
for every distinct x, y ∈ {a, b, c} we have that UP(xy,Habc) is true if and only
if there exists an upward planar orientation of Habc in which cycle (a, b, c) has
x as a source and y as a sink.

Observe that Huvw is upward planar if and only if UP(xy,Huvw) is true for
some x, y ∈ {u, v, w} with x 6= y. The necessity comes from the fact that, in
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Figure 9: (a) Construction of a plane 3-tree Habc with n > 3 vertices. (b)-(c)
Distinct orientations of edge (z, d) in two upward planar orientations of Habc.

every upward planar orientation of Huvw, the cycle delimiting the outer face of
Huvw has exactly one source x and one sink y, by Theorem 4. The sufficiency
is trivial.

We show how to compute the value of UP(xy,Habc), for each graph Habc

recursively.
If |Habc| = 3, then let x, y, z ∈ {a, b, c} with x 6= y, x 6= z, and y 6= z.

Then, UP(xy,Habc) is true if and only if edges (x, y), (x, z), and (z, y) are
not prescribed to be directed from y, directed from z, and directed from y,
respectively. Hence, if |Habc| = 3 the value of UP(xy,Habc) can be computed in
O(1) time.

Second, if |Habc| > 3, denote by Habd, Hbcd, and Hcad the three graphs that
compose H. We have the following:

Lemma 6 For any distinct x, y, z ∈ {a, b, c}, UP(xy,Habc) is true if and only
if:

(1) UP(xy,Hxyd), UP(xd,Hzxd), and UP(zy,Hyzd) are all true; or

(2) UP(xy,Hxyd), UP(xz,Hzxd), and UP(dy,Hyzd) are all true.

Proof: For the necessity, assume that Habc has an upward planar orientation
~Habc. Then, by Theorem 4, cycle (a, b, c) contains exactly one source-switch and
one sink-switch for the outer face in this orientation. Denote the source-switch
and the sink-switch for the outer face by x and y, respectively. Again by The-
orem 4, we have that x and y are a source and a sink for ~Habc. Hence, edges
(x, d) and (d, y) are directed from x and directed to y in ~Habc, respectively. On
the other hand, edge (z, d) might be directed from or to z. Refer to Figs. 9(b)
and 9(c), respectively. In the first case, Hxyd, Hyzd, Hzxd admit upward pla-
nar orientations with x and y, with z and y, and with x and d as a source
and sink, respectively, namely ~Habc restricted to Hxyd, Hyzd, Hzxd provides us

with such orientations. Hence, UP(−→xy,Hxyd), UP(−→zy,Hyzd), and UP(
−→
xd,Hzxd)

are all true. In the second case, Hxyd, Hyzd, and Hzxd admit upward planar
orientations with x and y, with d and y, and with x and z as a source and
sink, respectively, namely ~Habc restricted to Hxyd, Hyzd, and Hzxd provides
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such orientations. Hence, UP(−→xy,Hxyd), UP(
−→
dy,Hyzd), and UP(−→xz,Hzxd) are

all true.
For the sufficiency, consider the case in which UP(−→xy,Hxyd), UP(

−→
xd,Hzxd),

and UP(−→zy,Hyzd) are all true, the other case being analogous. Then, there exist

upward planar orientations ~Hxyd, ~Hzxd, and ~Hyzd of Hxyd, Hzxd, and Hyzd in

which the outer face of ~Hxyd has x and y as a source and sink, in which the

outer face of ~Hzxd has x and d as a source and sink, and in which the outer
face of ~Hyzd has z and y as a source and sink, respectively. Orientations ~Hxyd,
~Hzxd, and ~Hyzd coincide on the common edges, hence altogether they yield an

orientation ~Hxyz of Hxyz. We confirm that ~Hxyz is upward planar (and hence

that UP(−→xy,Hxyz) is true) using Theorem 4. Namely, ~Hxyz has a single source
and a single sink, namely x and y respectively, that are incident to the outer
face of ~Hxyz. Also, suppose for a contradiction that ~Hxyz has a directed cycle
C. Assume without loss of generality that C is minimal, i.e., no directed cycle
C ′ exists whose vertices are a subset of the vertices of C. Since ~Hxyd, ~Hzxd, and
~Hyzd are acyclic and since the orientation of the subgraph of Hxyz induced by x,

y, z, and d is acyclic in ~Hxyz, it follows that C passes through an internal vertex
of one of Hxyd, Hzxd, and Hyzd, say Hxyd. Then C contains a path internal
to Hxyd and connecting two vertices out of x, y, and d, say x and d. However,
either such a path is directed from d to x, thus contradicting the acyclicity of
~Hxyd, or it is directed from x to d, hence it can be replaced by edge (x, d), thus
contradicting the minimality of C. �

For each graph Habc in the construction of Huvw and for any distinct x, y ∈
{a, b, c}, the conditions in Lemma 6 can be computed in O(1) time by dynamic
programming. Thus, the running time of the algorithm is O(n). This concludes
the proof of Theorem 7.

We now deal with mixed plane triangulations with no cycle of undirected
edges.

Theorem 8 The upward planarity of an n-vertex mixed plane triangulation in
which the undirected edges induce a forest can be tested in O(n) time.

Proof: Let G be an n-vertex mixed plane triangulation. Let F be the set
of undirected edges of G. We assume that F contains no external edge of G.
Indeed, F contains at most two external edges: We can guess the orientation of
all the external edges in F , and for each of the four possibilities, independently,
test the upward planarity for the mixed graph G in which only the internal
edges of F are undirected.

We prove the statement by induction, primarily on the size of F and secon-
darily on the number of vertices of G.

If |F | = 0, then G is a directed plane triangulation and its upward planarity
can be tested in linear time by checking whether G satisfies the conditions in
Theorem 4.

If |F | > 0, consider a leaf v in the forest whose edge set is F and let (v, w) ∈ F
be the undirected edge incident to v. By the assumptions, (v, w) is an internal
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Figure 10: Deciding the orientation of edge (v, w) if edges (x1, v) and (x2, v)
are directed to v. (a) v has an edge directed from it. (b) v has no edge directed
from it and it is the sink of G. (c) v has no edge directed from it and it is not
the sink of G.

edge of G. Let (v, w, x1) and (v, w, x2) be the internal faces of G incident to
edge (v, w).

Suppose that both edges (x1, v) and (x2, v) are directed to v. We show that
the orientation of edge (v, w) can be decided without loss of generality. If v has
an edge directed from it, then by the bimodality condition in Theorem 3, edge
(v, w) is directed to v in every upward planar orientation of G (see Fig. 10(a)).
Suppose that v has no edge directed from it. If v is the sink of G (recall that the
edges incident to the outer face of G are directed), then edge (v, w) is directed
to v in every upward planar orientation of G, by the single sink condition in
Theorem 3 (see Fig. 10(b)). Otherwise, edge (v, w) is directed from v in every
upward planar orientation of G, again by the single sink condition in Theorem 3
(see Fig. 10(c)).

Analogously, if both (x1, v) and (x2, v) are directed from v, the orientation
of edge (v, w) can be decided without loss of generality.

Assume, without loss of generality, that (x1, v) and (x2, v) are directed to v
and directed from v, respectively. We distinguish between two cases.

Case 1: (x1, x2) is an edge of G. By the acyclicity condition in Theorem 3,
edge (x1, x2) is directed from x1 in every upward planar orientation of G.

If deg(v) = 3 (Fig. 11(a)), then remove v and its incident edges from G,
obtaining a mixed plane triangulation G′ with one fewer undirected edge than
G. Observe that the cycle delimiting the outer face of G′ coincides with the
cycle delimiting the outer face of G, hence such a cycle contains no undirected
edge. Test recursively whether G′ admits an upward planar orientation. If not,
then G does not admit any upward planar orientation as well. If G′ admits
an upward planar orientation ~G′, then construct an upward drawing Γ′ of ~G′;
insert v in Γ′ inside cycle (w, x1, x2), so that y(v) > y(x1), y(v) < y(x2), and
y(v) 6= y(w). Draw y-monotone curves connecting v with each of w, x1, and x2.

The resulting drawing Γ of G provides us with an orientation ~G of G, which
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Figure 11: The induction step in the proof of Theorem 8. (a) (x1, x2) is an edge
and deg(v) = 3. (b) (x1, x2) is an edge and deg(v) > 3. (c) (x1, x2) is not an
edge.

is upward planar, given that it coincides with ~G′ when restricted to G′, given
that edges (x1, v) and (x2, v) are drawn as y-monotone curves according to their
orientations, and given that edge (v, w) is drawn as a y-monotone curve.

If deg(v) > 3 (Fig. 11(b)), then (v, x1, x2) is a separating 3-cycle in G;
namely, such a cycle contains w and any other neighbor of v different from w,
x1, and x2 (such a neighbor exists because deg(v) > 3) on different sides, given
that (v, w, x1) and (v, w, x2) are internal faces of G. Denote by V ′ and V ′′

the non-empty sets of vertices in the interior and in the exterior of (v, x1, x2),
respectively; also, denote by G′ the subgraph of G induced by V ′∪{v, x1, x2} and
by G′′ the subgraph of G induced by V ′′ ∪ {v, x1, x2}. Observe that the cycle
delimiting the outer face of G′′ coincides with the cycle delimiting the outer
face of G, hence such a cycle contains no undirected edge; further, the cycle
delimiting the outer face of G′ consists of edges (x1, v), (x2, v), and (x1, x2),
which are all directed by assumption. Moreover, both G′ and G′′ have fewer
vertices than G, given that (v, x1, x2) is a separating 3-cycle in G. Then, we test
recursively the upward planarity for G′ and for G′′. If one of the tests fails, then
G admits no upward planar orientation. Otherwise, upward planar orientations
~G′ of G′ and ~G′′ of G′′ together provide an upward planar orientation ~G of G,
given that each edge of (v, x1, x2) has the same orientation in ~G′ and in ~G′′.

Case 2: (x1, x2) is not an edge of G (Fig. 11(c)). Remove (v, w) from G and
insert a directed edge (x1, x2) directed from x1 inside face (x1, v, x2, w). This
results in a graph G′ with one fewer undirected edge than G. Observe that
the cycle delimiting the outer face of G′ coincides with the cycle delimiting the
outer face of G, hence such a cycle contains no undirected edge. We show that
G is upward planar if and only if G′ is.

Suppose that G admits an upward planar orientation ~G. Let Γ be an upward
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planar drawing of ~G. Remove edge (v, w) from G in Γ. Draw edge (x1, x2) inside
cycle Cf = (x1, v, x2, w), thus ensuring the planarity of the resulting drawing
Γ′ of G′, following closely the drawing of path (x1, v, x2), thus ensuring the
upwardness of Γ′.

Suppose that G′ admits an upward planar orientation ~G′. Let Γ′ be an
upward planar drawing of ~G′. Remove (x1, x2) from Γ′. Since ~G′ is acyclic, Cf

has three possible orientations in ~G′. In Orientation 1, w is its source and x2
its sink; in Orientation 2, x1 is its source and w its sink; finally, in Orientation
3, x1 is its source and x2 its sink. If Cf is oriented in ~G′ as in Orientation
1 (as in Orientation 2), then draw edge (v, w) inside Cf in Γ′, thus ensuring
the planarity of the resulting drawing Γ of G, following closely the drawing of
path (w, x1, v) (resp., of path (v, x2, w)), thus ensuring the upwardness of Γ.

If Cf is oriented in ~G′ as in Orientation 3, slightly perturb the position of the
vertices in Γ′ so that y(v) 6= y(w). Draw edge (v, w) in Γ′ as follows. Suppose
that y(v) < y(w), the other case being analogous. Draw a line segment inside
Cf starting at v and slightly increasing in the y-direction, until reaching path
(x1, w, x2). Then, follow such a path to reach w. This results in an upward
drawing of edge (v, w) inside Cf , hence in an upward planar drawing of G.

Finally, the running time of the described algorithm is clearly O(n). �

6 Conclusions

We considered the problem of testing the upward planarity of mixed plane
graphs.

We proved that upward planarity can be tested in cubic time for mixed
outerplane graphs. It would be interesting to investigate whether our techniques
can be strengthened to deal with larger classes of mixed plane graphs, e.g. series-
parallel plane graphs. Also, since upward planarity can be tested in polynomial
time for directed outerplanar graphs [15], it might be tested in polynomial time
for mixed outerplanar graphs without a prescribed plane embedding as well.

We proved that the upward planarity testing problem for mixed plane graphs
is polynomial-time solvable (NP-hard) if and only if it is polynomial-time solv-
able (respectively, NP-hard) for mixed plane triangulations (and showed two
classes of mixed plane triangulations for which the problem can be solved effi-
ciently). Further, we proved that a directed plane triangulation is upward planar
if and only if it is acyclic and it has a single source and a single sink incident
to the outer face. The combination of these results proves that the problem of
testing the upward planarity of general mixed plane graphs is polynomial-time
solvable (NP-hard) if and only if the problem of deciding whether a mixed plane
triangulation admits an acyclic orientation with a single source and single sink
incident to the outer face is polynomial-time solvable (respectively, NP-hard).

This might indicate that a polynomial-time algorithm for testing the upward
planarity of mixed plane triangulations should be pursued. On the other hand,
we remark that Patrignani [16] proved that testing the existence of an acyclic
and bimodal orientation for a general mixed plane graph is NP-hard.
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