
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 18, no. 5, pp. 677–708 (2014)
DOI: 10.7155/jgaa.00341

Column-Based Graph Layouts

Gregor Betz 1 Andreas Gemsa 1 Christof Mathies Ignaz Rutter 1

Dorothea Wagner 1

1Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Abstract

We consider orthogonal upward drawings of directed acyclic graphs
with nodes of uniform width but node-specific height. One way to draw
such graphs is to use a layering technique as provided by the Sugiyama
framework [34]. To overcome one of the drawbacks of the Sugiyama Frame-
work, namely, unnecessary edge crossings caused by an unfortunate layer
assignment of the nodes, Chimani et al. integrated their layer-free upward
crossing minimization algorithm [9] into the Sugiyama framework [10].
However, one drawback of the Sugiyama framework still remains. If the
heights of the nodes are non-uniform, the result of the approach can
be a non-compact layout. In contrast, we avoid both of these draw-
backs by integrating layer-free upward crossing minimization into the
topology-shape-metrics (TSM) framework introduced by Tamassia [35].
Our approach, in combination with an algorithm by Biedl and Kant [4] lets
us generate column-based layouts, i. e., layouts where the plane is divided
into uniform-width columns and every node is assigned to a column.

We study the complexity of the individual steps of the layout process
systematically and propose efficient algorithms with provable guarantees.
We show that our column-based approach allows to generate visually
appealing, compact layouts with few edge crossing and at most four
bends per edge. Furthermore, the resulting layouts exhibit a high degree of
symmetry and implicitly support edge bundling. We evaluate our approach
by applying it to several real-world examples.

Submitted:
August 2013

Reviewed:
November 2013

Revised:
January 2014

Reviewed:
April 2014

Revised:
August 2014

Accepted:
December 2014

Final:
December 2014

Published:
December 2014

Article type:
Regular paper

Communicated by:
S.-H. Hong

Preliminary results presented in this paper have appeared as “G. Betz, C. Doll, A. Gemsa, I.

Rutter, and D. Wagner, “Column-Based Graph Layouts”, Proceedings of the 20th International

Symposium on Graph Drawing (GD’12) , vol. 7704 of LNCS, pp. 236–247, Springer, 2013 [3].

E-mail addresses: gregor.betz@kit.edu (Gregor Betz) andreas.gemsa@kit.edu (Andreas Gemsa)

(Christof Mathies) ignaz.rutter@kit.edu (Ignaz Rutter) dorothea.wagner@kit.edu (Dorothea

Wagner)

http://dx.doi.org/10.7155/jgaa.00341
mailto:gregor.betz@kit.edu
mailto:andreas.gemsa@kit.edu
mailto:
mailto:ignaz.rutter@kit.edu
mailto:dorothea.wagner@kit.edu

678 Betz et al. Column-Based Graph Layouts

1 Introduction

One of the most well-known approaches for drawing directed acyclic graphs
(DAGs) is the Sugiyama framework [34]. It consists of three steps, each of
which can be solved individually: (i) layer assignment, (ii) determining relative
positions within each layer to reduce edge crossings and (iii) positioning the
vertices and edges. In the first step, the nodes are assigned to layers such that
the target of each edge is in a layer above its source. The second step reduces
the number of edge crossings by changing the order of the nodes within each
layer. Finally, coordinates are assigned to the nodes as well as to bend-points of
the edges.

The Sugiyama framework suffers mainly from two drawbacks. First, comput-
ing an unfortunate layering of the nodes in step (i) can enforce a large number
of crossings in step (ii) which would not be necessary if another layering was
chosen. Second, when applied for drawing graphs where the nodes are depicted
as two-dimensional shapes (e. g., rectangles), a single node with large height can
lead to non-compact layouts due to the way layers are defined; see Figure 1a
for an example. One approach that resolves the first problem is the layer-free
upward crossing minimization approach by Chimani et al. [9]. However, its
integration into the Sugiyama framework [10] still leaves the second problem
unresolved.

The motivation for the problems investigated in this paper stems from the
application Argunet [30] that is used to create, display, and edit so called
argument maps. Argument maps are used to visualize the structure of debates or
argumentational analyses [8], and usually depicted as directed graphs with nodes
of uniform width but node-specific height. Thus, we focus on orthogonal upward
drawings of DAGs whose nodes are represented as rectangular boxes of uniform
width. Graph drawing with given node sizes has been explored by Di Battista et
al. [11]; they consider planar graphs with a fixed embedding and arbitrary node
sizes. We deal with non-planar graphs without a given topology but with the
restriction that the nodes have uniform width. For minimizing the number of
crossings we use the algorithm by Chimani et al. [9] but, instead of integrating
it into the Sugiyama framework [10], we integrate it into topology-shape-metrics
framework (TSM) invented by Tamassia [35]. The TSM framework can be
seen as a three-phase-method for orthogonal graph drawing: (i) fixing a planar
embedding, (ii) computing an orthogonal description and (iii) compaction of the
layout and coordinate assignment.

The integration of layer-free upward crossing minimization into the TSM
framework lets us construct column-based graph layouts. In a column-based layout
the plane is divided into disjoint columns of uniform width that corresponds to
the uniform width of the boxes. The boxes and edges are then assigned to these
columns. Thereby, vertical edge segments always run within a column, whereas
horizontal edge segments may span several columns. Due to the columns the
final layouts have a clear look, which is exemplified in Figure 1b. The same
graph with a layer-based layout computed by the graph editor yEd is shown in
Figure 1a.

JGAA, 18(5) 677–708 (2014) 679

(a) A layer-based layout (com-
puted by yEd).

(b) A column-based layout
(our approach).

Figure 1: A layer-based layout and a column-based layout of the same graph.

However, our approach differs from the usual TSM-based approach in one
important detail. While we do compute a topology in the first step, we relax
it already in the second step and consider only the left-to-right order of each
node’s outgoing edges and disregard crossing dummy nodes. Because of the
relaxation of the topology, the final layout can have a higher number of crossings
than the topology computed in the first step. However, this allows us to better
optimize the vertical edge length in order to obtain more compact layouts. Thus,
by relaxing the topology, we increase the significance of minimizing the number
of bends and the total edge length as opposed to minimizing the number of edge
crossings. This is reasonable since it has been established that crossings where
edges cross at large angles (in this case right angle crossings) are only a minor
obstacle for humans to understand the relationship between nodes in graphs [26].

We consider the following drawing style for our graph layouts: The drawings
we generate are orthogonal drawings of DAGs whose nodes are represented
by boxes of uniform width and individually prescribed heights. We require
that edges leave their sources at the bottom and enter their targets at the top,
and we further require that each edge is a monotonic downward polyline. We
refer to such a drawing as an upward drawing. Note that upward drawings
usually require strict monotonicity. However, we lessen this restriction in this
paper to simple monotonicity, thus allowing also horizontal segments on the
edges. We refer to the points where the edges enter the boxes as ports. We also
include minimum spacing constraints that ensure that there is a minimum space
between two boxes, a box and an edge, and between ports and corners of boxes,
respectively. We denote the values of these spacing constraints by sbox

box, s
edge
box ,

and sport
corner, respectively. We allow to specify two different spacing constraints for

the case of two parallel edge segments: one for the distance between two edge
segments whose edges have a common source or target and one for the remaining
cases. We denote the former by sedge

edge and the latter by ŝedge
edge. By using these two

different minimum spacings we enable edge bundling. For an illustration of the

680 Betz et al. Column-Based Graph Layouts

sbox
box

(a) Spacing between
boxes.

sedge
box

(b) Spacing between
an edge and a box.

sport
corner

(c) Spacing between
the ports of a box and
its corners.

sedge
edgeŝedge

edge

(d) Spacing between
two edges.

Figure 2: Illustration of the five types of spacing constraints.

different types of minimum spacing constraints see Figure 2.

Besides the mentioned drawing style, our approach guarantees certain prop-
erties that are aimed at creating visually appealing drawings. When looking at
a single box of the layout, it is important that its predecessors can be found
quickly. In order to give them a unifying look, we want as many predecessors as
possible of each box to be vertically aligned at their bottom, which is similar
to the requirement for an approach for layered graph drawing by Brandes and
Köpf [7]. Additionally, we show how to assign nodes into columns such that,
for each node v, its assigned column is the median of the columns assigned
to the incoming edges of v as well as the median of its outgoing edges. We
call this property local symmetry. Local symmetry makes it easy to identify a
node’s predecessors and successors, and provides well-structured looking layouts.
Finally, we guarantee that each edge of the resulting layout will have at most
four bends.

While satisfying these properties, we optimize the following three criteria,
which are frequently employed as optimization goals in graph drawing [12]: (i)
minimize the number of edge crossings, (ii) minimize the number of bends and
(iii) minimize the total edge length.

A different approach to generate drawings of graphs that can be used to
produce hierarchical or layered layouts is constrained graph layout [25], which is
a general approach for drawing graphs. An input to constrained graph layout
consists of the graph, a set of constraints for the coordinates of the vertices,
and as third parameter suggested values for the variables corresponding to the
coordinates of the vertices [15]. Constraints on the coordinates of the vertices can
be used to model requirements similar to those we have for the drawings in this
paper (e. g., minimum spacing constraints, columns). There have been several
practical applications based on this general approach to layout different kind of
graphs, e. g., dynamic biological networks [31], or engineering diagrams [14].

We note that, although our motivation stems from generating layouts for
argument maps, our approach appears to be applicable to other kinds of diagrams
such as the UML class diagrams. UML class diagrams depict the internal
structure of a software system and are used extensively in software engineering [6].
A UML class diagrams has for each class a node, which is depicted as a box
with height that usually depends on the number variables and methods of the
class. Each class node may have an individual prescribed width, but it is not

JGAA, 18(5) 677–708 (2014) 681

unreasonable to set a uniform value for the width of all boxes (which we require
for our approach to work).

There have been several approaches to automatically layout UML diagrams
already. However, they are mainly an adaption of layering approaches [32, 18],
and thus may suffer from the same problems all such layered drawings may
suffer. However, Eiglsperger et al. [19] propose two algorithms, both based on
the TSM framework, to draw UML class diagrams with orthogonal edges. They
generate a mixed-upward planarization of the input graph. For their algorithm
they do not need to restrict the width of the boxes to some uniform value which
is necessary for our approach to work.

We note that our approach does not directly support the drawing of UML
class diagrams as there additional requirements compared to argument maps,
(e. g., labeling of edges, hyperedges). Including these requirements might be an
interesting problem for further research.

Contribution and Outline. Our main result is an algorithmic approach to
compute column-based graph layouts for directed acyclic graphs. This approach
is based on the topology-shape-metric framework and utilizes Chimani et al.’s
layer-free upward crossing minimization. Contrary to the standard approach of
the TSM framework, we do not fix the topology computed in the first step but
use it only as a basis for computing a column-assignment of the nodes in the
second step. In the last step we only use this column assignment and ignore the
topology from the first step. This lets us focus on optimizing other criteria than
the number of edge crossings.

Note that we use the “upward” terminology throughout this paper, because it
is established in the graph drawing community. Nevertheless, since this drawing
style originates from a particular application—which requires that all edges are
directed downwards—all figures in this work have downward directed edges.

The remainder of the paper is structured as follows. In the next section we
give a short introduction to the TSM framework and our approach. Sections 3–5
are structured along the TSM framework. In these sections we present our
complexity results and give a detailed description of the algorithmic approaches
we use in each step of the framework. In Section 6, we present a brief experimental
evaluation of our approach and, finally, in Section 7 we give a short conclusion.

2 Preliminaries

The TSM framework consists of the three basic steps topology, shape, and metrics.
In the first step an embedding of the input graph is computed with the goal of
minimizing the number of crossings in the final layout. For non-planar graphs,
crossings are replaced by dummy nodes of degree 4, which we refer to as crossing
dummies. The planarization together with its embedding is called topology.
Generally, the topology is fixed throughout the remaining steps of the algorithm.
In the second step, the shape of the final layout is optimized with respect to
the fixed topology. The shape is the assignment of bends to edges, the angles of

682 Betz et al. Column-Based Graph Layouts

these bends, and the angles between edges (for our case the last information is
irrelevant). Usually, the goal of this step is to minimize the number of bends.
Finally, in the step metrics, the edge lengths, the node dimensions, and the node
positions are determined.

Our approach to compute column-based graph layouts is based on the TSM
framework. This lets us split the problem of generating a graph layout into
smaller subproblems and either solve them optimally or apply heuristics if they
are NP-hard. In the topology step, we minimize the number of crossings while
enforcing that all edges are directed upwards. The result of this step is a so-called
upward planar representation, which prescribes the left-to-right order of the
edges incident to each node separately for in- and outgoing edges. During the
shape computation we build upon this upward planar representation in order to
compute a column assignment of the nodes and edges, i. e., we divide the plane
into disjoint columns of uniform width and assign each node and each edge to
a column. The column assignment induces four different properties—namely
local symmetry, orthogonal edges, at most four bends per edge, and the port
distribution. In the last step of the topology-shape-metrics-framework we only
rely on the column assignment computed in the second step to compute the
final coordinates of the boxes and edge bends. Our approach here differs to the
common usage of the topology-shape-metrics-framework in that we do not fix
the topology computed in the first step. We found out that during the shape
and metrics phase, minor changes to the topology can improve the aesthetics of
the final layout. This lets us assign higher significance to bend and total edge
length minimization than in usual applications of this framework.

The main result of this paper is stated in the following theorem.

Theorem 1 For a given connected directed acyclic graph G = (V,A) a locally-
symmetric, column-based layout with at most four bends per edge can be computed
in O(|A|3|V |) time and O(|A||V |2) space.

In the next sections we study the complexity of each step and describe our
algorithmic approaches in detail. Combining the main theorems of each section
proves Theorem 1.

3 Topology

In this section we deal with the first step of the TSM framework, which aims
to find a topology of the input graph with few crossings. Before we come to
the main part of the topology-step, we conduct a preliminary step in which the
input graph G = (V,A) (which is directed and acyclic) is transformed into an

s-t-graph Ĝ = (V̂ , Â). An s-t-graph is a directed graph having a single source
and a single sink. The transformation is done by adding a super source ŝ and
a super sink t̂ to G and connecting them with all of its original sources and
sinks, respectively. In the end, when converting the layout of Ĝ to G, we simply
omit ŝ and t̂ as well as all their incident edges. Note that for the algorithm by
Chimani et al. [9], which our approach is based on, it is sufficient to consider

JGAA, 18(5) 677–708 (2014) 683

s-T -graphs (which in contrast to s-t-graphs may have several sinks). The reason
why we consider s-t-graphs instead is due to the special requirement of layouting
argument maps that there are no nodes placed above sources and below sinks.
We refer to this as the free sources/sinks property. For other applications, this
requirement can be ignored, possibly resulting in more compact layouts.

While planarity of arbitrary graphs can be tested efficiently, testing upward
planarity is NP-complete for general graphs [24]. Therefore, upward crossing
minimization is NP-complete as well. However, for s-t-graphs, the test for
upward planarity can be done in polynomial time [1], and thus upward crossing
minimization might be efficiently solvable for s-t-graphs; we call this problem
problem st-Upward Crossing Minimization. Unfortunately, st-Upward
Crossing Minimization is NP-hard, as there is an easy reduction from Bi-
partite Crossing Number, which is only a minor modification of the original
NP-hardness proof by Garey and Johnson [22] that showed hardness of Bi-
partite Crossing Number. We note that Bipartite Crossing Number
is known under a variety of names. Eades et al. refer to it as Left Opti-
mal Drawing [17] and it is also often denoted by 2-Layer Straight-Line
Crossing Minimization [27, 29].

Theorem 2 ([22]) st-Upward Crossing Minimization is NP-hard.

3.1 Layer-free Upward Crossing Minimization

In this section we describe our algorithmic approach for finding a topology of our
modified input graph Ĝ. Note that Ĝ may be non-planar and, thus, we cannot
directly compute an upward planar embedding.

Since we know that st-Upward Crossing Minimization is NP-complete,
we cannot hope to find an efficient algorithm that solves st-Upward Crossing
Minimization, unless P = NP . We are nevertheless interested in finding some
reasonably good solution to the problem. For this we now describe an algorithm
for which, unfortunately, we cannot give any quality guarantee. We build on
an algorithmic approach called “layer-free upward crossing minimization” by
Chimani et al. [9]. They developed an upward crossing minimization method
that works without a prescribed layer assignment of the nodes. Their approach is
based upon two steps: (i) Find a large subgraph U = (V̂ , A′) of Ĝ = (V̂ , Â) that
is upward planar and feasible, i. e., the deleted edges can be inserted such that
the resulting drawing is an upward drawing. (ii) Insert the deleted edges one
by one. For each edge insertion first a crossing-minimal insertion is conducted.
However, a crossing-minimal insertion of an edge can prohibit the insertion of the
remaining edges in an upward planar way. In this case, the insertion is undone
and the edge is reinserted using a simple heuristic. Note that when inserting
edges, we do not count the crossings with edges incident to ŝ or t̂ since these
edges are only used for technical reasons.

After applying this algorithm we obtain an upward planar representation of
the input graph. An upward planar representation (U ,Γ) of a DAG G is an

684 Betz et al. Column-Based Graph Layouts

upward planar graph U = (VU , AU) together with an upward planar embedding Γ
of U . Crossings in the original graph have been replaced by crossing dummies.

The Algorithm. We omit details regarding the algorithm for computing a
feasible upward planar representation by Chimani et al. but give only a sketch of
the approach. For details we refer the reader to the work by Chimani et al. [9].

To obtain the upward planar representation, we first compute a feasible
upward planar subgraph U = (V̂ , A′) of Ĝ = (V̂ , Â) that contains all edges
incident to ŝ and t̂ and an upward planar embedding Γ of U such that ŝ and t̂
are on the outer face. This is required for the free sources/sink property of the
resulting layout. We start with U containing only the incident edges of ŝ and t̂.
The neighbors of ŝ, ŝ itself and t̂ are marked as visited. Afterwards, we start
directed depth-first searches at all neighbours of ŝ. We add the encountered
edges to U if the target has not been marked as visited yet.

Note that, by construction, the subgraph U must be an upward planar s-T -
graph. Combining this insight with the Feasibility Lemma [9, Lemma 3.6], leads

to the conclusion that U is a feasible upward planar subgraph of Ĝ.
After computing the intermediate feasible upward planar subgraph U , we

try to increase the number of edges U contains. To this end, we try to add the
edges of Â that are not in U one by one and check after each insertion whether
it remains a feasible upward planar subgraph. If this check fails, we undo the
insertion and postpone inserting the edge to the second phase. In the second
phase (of the approach), we compute the upward planar representation (U ,Γ)

of Ĝ. We begin by setting U = U . Then, we add the edges of Â that are in Ĝ
but have not yet been added to U . In this step also the crossing dummies are
inserted to U . As in [9] we reinsert the missing edges in a crossing-minimal way.
If reinserting an edge in a crossing-minimal way leads to an embedding which
prohibits inserting all remaining edges in an upward planar way, we remove the
edge and use a heuristic proposed by Chimani et al. to insert this edge. This
heuristic guarantees a valid upward planar embedding but may produce more
crossings.

The algorithm that computes a subgraph that is upward and feasible requires
O(|Â|2) time. The algorithm for crossing-minimal insertion of an edge ai requires

O(|V̂ |+ r) time, where r is the number of edges that have to be inserted after ai,

whereas the heuristic requires O(|V̂ |2 + r|V̂ |) time. The value of r is in O(|Â|2)

since per insertion step at most O(|Â|) edges (along with O(|Â|) dummy nodes)

can be inserted. We need to repeat the insertion step O(|Â|) times, hence

the worst-case running time is O(|Â|3 · |V̂ |). We summarize the results in the
following theorem.

Theorem 3 The above algorithm computes the upward planar representation
of an s-t-graph Ĝ = (V̂ , Â) in O(|Â|3 · |V̂ |) time.

Chimani et al. suggest to randomize the algorithm for the computation of the
feasible upward planar subgraph by changing the order in which the edges are

JGAA, 18(5) 677–708 (2014) 685

considered during the depth first searches, and the order in which the remaining
edges are reinserted. Among several runs the crossing-minimal upward planar
representation is chosen as the overall result. We will take up this idea in the
evaluation of our algorithm in Section 6.

4 Shape

In this section we explain the second step of the topology-shape-metrics frame-
work, i. e., how to compute the shape of a layout for a given upward planar
representation (U ,Γ) of Ĝ. In this context, shape describes the number of bends
on each edge and their bend directions.

The algorithm we present takes up the idea of Biedl and Kant on how to
draw a graph with few bends in linear time [4] and adapts it to orthogonal
upward drawings with at most four bends per edge. This approach leads to
column-based drawings. Since there are at most four bends per edge and ports
are at the bottom and the top of the source and target, respectively, an edge
can have at most three vertical segments. The column of the first (last) vertical
segment is already determined by the column assigned to the source (target,
respectively). The position of the middle vertical segment is determined by
assigning it to some column. A column assignment of a DAG G = (V,A) is a
mapping col : V ∪A→ Z that assigns each node v ∈ V and each edge e ∈ A a
column.

Note that a column assignment already induces the shape, i. e., the informa-
tion about edge bends and their directions. In the metrics step we will realize
the column assignment, i. e., we compute a layout that respects the column
assignment. Let L be a valid layout of a DAG G = (V,A), i. e., L satisfies the
local symmetry and four bends per edge constraints. By subdividing vertical
segments we may assume that every edge has exactly three vertical segments. A
layout L is a realization of a column assignment col , if we can divide the plane
into disjoint columns of uniform width and number the columns from left to
right such that each node v ∈ V is positioned within column col(v) and for each
edge e ∈ A the middle vertical segment is positioned within column col(e).

Our algorithm positions the nodes beginning from the topmost node to the
bottommost node. Hence, we require an order of the nodes for our algorithm
that ensures that, when placing a node, that all its predecessors have been placed
already. To do this we can simply compute a topological order for all vertices
beginning with ŝ, which can be done in linear time.

Now, the column assignment algorithm works as follows: The nodes of Ĝ are
treated according to the computed topological order given by ŝ = v0, . . . , vn+1 = t̂.
Thus, the algorithm that computes the column assignment starts with the super
source ŝ and assign it to column 0. Afterwards, we assign the outgoing edges
of ŝ according to the left-to-right order prescribed by (U ,Γ) such that they are
distributed evenly to the left and right of column 0 without introducing gaps.

The invariant of our algorithm is that, when processing vertex vi, all incoming
edges of vi are already assigned to columns. Then we assign vi to column m—the

686 Betz et al. Column-Based Graph Layouts

Algorithm 1: 4-Bend Column Assignment

Input : Graph Ĝ, upward planar representation (U ,Γ),

topological order v0, . . . , vn−1 of the nodes of Ĝ

Output : Column assignment for each node and each edge of Ĝ

1 col(v0) = 0
2 For i from 1 to n− 1 do
3 I ← column indices assigned to incoming edges of vi
4 m← median of I
5 col(vi)← m

6 shiftLeft(Ĝ,m, bout-degree(vi)/2c)
7 shiftRight(Ĝ,m, b(out-degree(vi)− 1)/2c)
8 j ← m− bout-degree(vi)/2c
9 For outgoing edge e of vi from left to right according to (U ,Γ) do

10 col(e)← j
11 j ← j + 1

column of the median incoming edge—and assign the outgoing edges of vi to
columns according to their left-to-right order induced by (U ,Γ). However, the
columns to the left and right of m are possibly already occupied by other edges.
Therefore, we shift all columns left (right) of m to the left (right) such that
there are out-degree(vi)− 1 empty columns to which the outgoing edges of vi
can be assigned, according to the left-to-right order prescribed by the upward
planar representation (U ,Γ). For a pseudo-code description of this algorithm
see Algorithm 1. We now prove that the column assignment computed by our
algorithm is realizable.

Theorem 4 The above algorithm computes a realizable column assignment for
a given DAG Ĝ = (V̂ , Â) in O(|Â|) time and space.

Proof: A layout of Ĝ can be constructed inductively during the execution of our
shape algorithm. Since the x-coordinates are fixed by the column assignment,
we only need to deal with the y-coordinates.

Initially, we set the y-coordinate of ŝ to 0 and draw the first vertical and
horizontal segments belonging to the outgoing edges of ŝ as high as possible.
When treating vi, we draw the middle vertical segments of all incoming edges of vi
such that they reach farther down than any other edge or box in the intermediate
layout. Then we append the second horizontal segments of these edges and
position the box vi. Afterwards, we draw the first vertical and horizontal segment
of the outgoing edges of vi as high as possible. Thus, no box can be intersected
by an edge, and hence, this approach always yields a valid layout.

Since we assign nodes and edges to columns, each edge can contain at most
two horizontal edge segments—one spanning from the source’s column to the
edge’s column and one spanning from the edge’s column to the target’s column.

JGAA, 18(5) 677–708 (2014) 687

Thus, there are at most four bends per edge. Furthermore, the shape algorithm
positions the nodes and edges such that incoming and outgoing edges of each
node vi are symmetrically distributed to the columns left and right of the column
assigned to vi. Thus, the layout satisfies the local symmetry property.

We now turn towards the running time analysis. The algorithm that computes
the topological order of the nodes in U runs in linear time. The time complexity
of the shape algorithm itself depends on the implementation of the two methods
shiftleft and shiftright that shift the already existing columns to the left
or to the right. These methods are called |VU | times in total. Biedl and Kant

suggest an approach that yields an overall running time of O(|V̂ |) [4]. They
represent the columns by a doubly linked list. Each box and edge has a pointer to
the column to which it is assigned. Since the position at which the new columns
are going to be inserted are known shiftleft and shiftright can then be
implemented to run in constant time. We also need to compute the median m
of the incoming edges for a node. This can be done in O(in-degree(vi)) time [5].
We sum up over all iterations:

n−1∑
i=0

in-degree(vi) = |Â|

Thus, the shape algorithm can be implemented as an O(|V̂ | + |Â|) = O(|Â|)-
algorithm.

Of course, we need O(|V̂ |+ |Â|) space in order to store the assigned columns.

Additionally, we need O(|Â|) space in order to store the doubly linked listed

that represents the columns. Thus, in total the shape algorithm needs O(|V̂ |+
|Â|+ |Â|) = O(|Â|) space. �

Note that if the upward planar representation (U ,Γ) contains no crossing
dummies, then the realization constructed in the proof of Theorem 4 is upward
planar as well.

Observation 1 The realizations of the column assignments of an upward planar
representation (U ,Γ) that contains no crossing dummies are upward planar
layouts.

As we already have mentioned, during the construction of the column assign-
ment, we only respect the left-to-right order of the outgoing edges at each node
of Ĝ which is prescribed by (U ,Γ). We do not consider the crossing dummies
in U . Thereby, we relax the topology that we computed in the first step. Because
of the relaxation of the topology, the final layout can have a higher number of
crossings than the topology. On the other hand, this lets us focus on producing
more compact layouts. Since we still maintain parts of the result of the first
step, which minimized the number of crossings, we expect only a small increase
in the number of crossings. Moreover, the crossings in our drawings are only
right-angle crossings, and thus do not hinder readability that much.

688 Betz et al. Column-Based Graph Layouts

5 Metrics

In the last phase of the approach, we compute the final coordinates of boxes and
edges while minimizing the total edge length. The topology that we originally
computed in the first step has no direct influence anymore. Instead, we only rely
on the column assignment computed by the shape algorithm.

The metrics step consists mainly of two substeps. First, we focus on minimiz-
ing the vertical edge length. Since we can show that this problem isNP-complete,
we suggest a simple heuristic in order to solve it. Afterwards, we minimize the
horizontal edge length. Note that all operations are performed with respect to
the columns so that the final result is a column-based layout.

5.1 Vertical Edge Length Minimization

We begin by showing that finding a realization of a column-assignment with
minimum total vertical edge length (or, equivalently, minimum total height) is
NP-complete. Afterwards we propose a simple greedy algorithm to reduce the
total vertical edge length.

5.1.1 Computational Complexity

We call the problem of finding a realization of a column assignment with minimum
total vertical edge length Vertical Edge Length Minimization. The formal
definition of the problem is as follows.

Instance: An s-t-graph Ĝ = (V̂ , Â), a column assignment for each node in V̂

and each edge in Â, a set of spacing constraints and an integer k ≥ 0.
Question: Is it possible to assign y-coordinates to the boxes and edge bends of
Ĝ such that the resulting layout is valid and the total vertical edge length is at
most k?

We prove NP-completeness of Vertical Edge Length Minimization by
reduction from 3-Partition, which is defined as follows [21].

Instance: A finite set A = {a1, . . . , a3m} of 3m elements, a bound B ∈ Z+ and a
“size” s(a) ∈ Z+ for each a ∈ A, such that each s(a) satisfies B/4 < s(a) < B/2
and such that the equation

∑
a∈A s(a) = mB holds.

Question: Can A be partitioned into m disjoint sets S1, S2, . . . , Sm such that
for 1 ≤ i ≤ m the equation

∑
a∈Si

s(a) = B holds? (Note that the above
constraints on the item sizes imply that every such Si must contain exactly three
elements from A.)

Garey and Johnson proved that this problem is NP-complete in the strong
sense. This means that 3-Partition remains NP-complete if the numeric values
encoded in the input data are polynomially bounded by the length of the input.

In the following, we describe how to transform a 3-Partition instance to
a Vertical Edge Length Minimization instance. This means we need to
describe how to construct an s-t-graph and a corresponding column assignment

JGAA, 18(5) 677–708 (2014) 689

of all vertices and edges of the s-t-graph in polynomial-time such that a solution
of Vertical Edge Length Minimization of this instance induces a solution
of 3-Partition.

The key idea behind our reduction is to use a single column that we divide
into m areas, which we call cells, and we want that the each of the m cells
corresponds to one of the m sets in a solution to a 3-Partition instance. The
elements in A are represented in our reduction by nodes in the same column as the
cells and whose heights is their “size” in the 3-Partition instance. Ultimately,
we want that in an optimal solution of Vertical Edge Length Minimization
(in our reduction) from a 3-Partition instance I there are exactly three nodes
in each cell whose heights add up to exactly B if and only if I is a Yes-instance.

H

c1 c2

ai

aj

a`

B

B cell

separating edges

Figure 3: Sketch of the
cells.

For ease of argumentation we set all minimum
spacing constraints to 0, but we note that the reduc-
tion itself does not strictly require that all minimum
spacing constraints are 0, and only minor modifica-
tions are necessary for the reduction still to work for
arbitrary spacing constraints. However, setting the
minimum spacings constraints to 0 has the unfor-
tunate side-effect that the drawings are not visually
appealing. For the figures in this section we assume
that all minimum spacing constraints are set to a
small positive value.

In our reduction all nodes are placed within
|A| + 3 adjacent columns, which we denote by
c1, . . . , c|A|+3. All cells will be inside column c2.
Unless stated otherwise, nodes in our graph have
the same height h, where h is a small but fixed
value.

We now discuss the construction of the cells. For
each cell we add two nodes with height B to our graph, one assigned to column c1
and one assigned to the rightmost column c|A|+3 (we need the columns between
c1 and c|A|+3 for additional nodes, which we describe later). For the i-th cell we
denote the node placed in column c1 by `i, and the node placed in column c|A|+3

by ri. Now, we divide column c2 by adding a directed edge (`i, ri+1) for every i,
0 ≤ i ≤ m + 1. We call these edges separating edges; for a sketch see Figures 3
and 4. Note that we require nodes `i and ri for i = 0, . . . ,m + 1 in order to
achieve that each of the m cells is bounded by a separating edge from above
and from below. Finally, we connect the nodes `0, . . . , `m+1 such that they form
a directed path from `0 to `m+1 and do the same for the nodes r0, . . . , rm+1.
Since the topmost and bottommost nodes of each path do not themselves span a
cell, we set their heights to h.

For each ai ∈ A we add a node vi, which we refer to as element node, with
height s(ai) to our graph. Since the cells are meant to correspond to the sets in
the 3-Partition instance, we must be able to position any of the element nodes
vi in any of the cells. On the other hand, we must be sure that placing a node
outside of the cells increases the total vertical edge length. To ensure this we

690 Betz et al. Column-Based Graph Layouts

c1 c2 c3 c|A|+3

B

a1

T

B

B

c4

. . .

top anchors

bottom anchors

. . .

`1

`2

`3

r1

r2

r3

. . .

. . .

. . .

`m rm

.

`m+1 b1 b2 rm+1

S

`0 t1 t2 r0

Figure 4: Sketch of the Hardness Proof.

make use of anchor nodes. For each element node vi we add two anchor nodes, a
top anchor ti and a bottom anchor bi, both assigned to column ci+2, along with
directed edges (ti, vi) and (vi, bi) to our graph. To ensure that the anchor nodes
themselves stay above/below the cells we add for each top anchor ti a directed
edge (ti, r1) and for each bottom anchor a directed edge (`m, bi).

Since the top (bottom) anchors stay above (below) the cells, moving the
element nodes upwards or downwards is cost neutral, because the sum of the
vertical edge lengths on the two edges incident to the anchors remains unchanged.
Further, note that there are no edges between the different element nodes, i. e.,
their vertical ordering is not constrained. Since a element node vi has height
s(ai), finding three nodes whose total height sums up to B means we can place
them in the same cell without increasing the total vertical edge length.

We are nearly finished with the construction of our graph, the only thing left
is to ensure that the graph we constructed is an s-t-graph. This can easily be
achieved as follows. Add two nodes S and T to the graph, assign them both to
column c1 and add directed edges from S to all top anchors, as well as `0 and r0,
and add directed edges from all bottom anchors, as well as `m+1 and rm+1 to T .

JGAA, 18(5) 677–708 (2014) 691

Further, to obtain a complete column assignment we assign each edge to the
column of its source. We have now finished the construction of the graph and
the column assignment. It remains to compute the total vertical edge length k
in an optimal solution to our Vertical Edge Length Minimization instance
if the corresponding 3-Partition is solvable. Since we have chosen all spacing
constraints to be 0, and each element ai contributes mB − s(ai) to the vertical
edge length, the minimum possible vertical edge length of the edges incident to
the element nodes is 3m2B −mB. All remaining edges may have vertical edge
length 0. We set k = 3m2B −mB.

Correctness. We now show, that the 3-Partition instance has a solution if
and only if the Vertical Edge Length Minimization instance is solvable.
Obviously, if the 3-Partition instance has a solution, then it can be trans-
formed to a solution of the Vertical Edge Length Minimization instance
by vertically ordering the element nodes. If the Vertical Edge Length
Minimization instance is solvable, we need to show that the 3-Partition
instance has a solution as well. If the solution of Vertical Edge Length
Minimization contains nodes that are not placed inside one of the cells, then this
increases the total vertical edge length since there is no possibility of decreasing
the total edge length elsewhere. Further, should there be more than three nodes
in one cell, then, the sum of the heights of those nodes must add up to more
than B (recall that B/4 < s(ai) < B/2). Since the minimum height of each
cell is B this increase in vertical edge length cannot be compensated elsewhere.
Hence, we can conclude that in an optimal solution to Vertical Edge Length
Minimization of a Yes-instance of 3-Partition there are exactly three nodes
in each cell. This directly induces a solution to the corresponding 3-Partition
instance.

Hence, we can conclude that Vertical Edge Length Minimization is
NP-hard. Since it is easy to see that Vertical Edge Length Minimization
is contained in NP , Vertical Edge Length Minimization is NP-complete.
We summarize this result in the following theorem.

Theorem 5 Vertical Edge Length Minimization is NP-complete.

In the following we suggest a three-step approach for coping with the problem
of vertical edge length minimization.

5.1.2 Greedy Algorithm

Since Vertical Edge Length Minimization is NP-complete, we propose
a greedy algorithm to minimize the vertical edge length. Recall that we want
each node to have as many predecessors as possible vertically aligned at their
bottom. We integrate this requirement into our vertical edge length minimization
approach. In the first step we determine a partition of the nodes into sets which
we call groups, each of which contains only nodes that can be aligned at their
bottom. Hence, we need to be careful which nodes belong to the same group. It

692 Betz et al. Column-Based Graph Layouts

is easy to see that there must not be a directed path between any two nodes
belonging to the same group. Further, it is necessary that the groups can be
topologically ordered, i. e., the graph that we obtain by contracting each group
to a single node must remain acyclic. In the second step, we compute a reverse
topological order of these groups and finally, in the third step, we position the
groups according to this order.

Grouping. We call a set of pairwise disjoint groups of nodes g1, . . . , gk feasible
if the graph that is obtained from Ĝ by contracting each group to a single node
is acyclic. A node s ∈ V̂ is an immediate predecessor of another node s′ ∈ V̂
if there is an edge (s, s′) ∈ Â, and there is no other directed path from s to s′

in Ĝ. We denote the set of immediate predecessors of a node s that have not
been assigned to a group by Pred(s).

The algorithm works in several iterations, each of which greedily computes
a feasible set groups. We describe the ith iteration. If all nodes have been
assigned to a group, the algorithm terminates. Otherwise, the algorithm creates
a group gi that contains an arbitrary node of Ĝ that has not yet been assigned
to a group. The algorithm then tries to increase the size of gi as much as
possible by determining nodes that are potential candidates for inclusion in gi.
Because we want the nodes in each group to be vertically aligned at their bottom,
potential candidates are nodes that share the same successor with a node already
contained in gi. More specifically, the algorithm determines for each node v
in g the set Succ of their successors. For each node s ∈ Succ the algorithm
determines the set of immediate predecessors Pred(s) that are not yet assigned
to a group, and whether adding Pred(s) to gi yields a feasible set of groups, i.e.,
whether g1, . . . , gi−1, gi ∪Pred(s) is feasible. If this is the case, then we replace
gi by gi ∪Pred(s); otherwise the algorithm continues with the next successor
s′ ∈ Succ. Note that adding new nodes to gi can require adding new nodes to
Succ. When no new nodes can be added to gi in this way, the ith iterations
finishes. For a pseudo-code description of this algorithm see Algorithm 2.

Lemma 1 The grouping algorithm can be implemented to run in O(|V̂ |2 · |Â|)
time and O(|V̂ |+ |Â|) space.

Proof: In each iteration i of the algorithm, the key operation is to determine
whether g1, . . . , gi−1, gi ∪ Pred(s) is a feasible set of groups. To check this, we

maintain the DAG that is obtained from Ĝ by contracting each group gi to a
single node Gi. Including Pred(s) into gi introduces a cycle in this graph if
and only if there is a path from a node in Pred(s) to Gi and a path from Gi to
a node in Pred(s). This can be easily checked with two breadth-first searches.

Note that the contracted graph has size O(|V̂ |+ |Â|), and hence the test can

be performed in time O(|V̂ |+ |Â|). When we include a set Pred(s) into gi, we
immediately contract the nodes in Pred(s) into Gi. Clearly such a contraction

is performed only once per node, and hence this takes total time O(|V̂ |+ |Â|)
over all iterations.

JGAA, 18(5) 677–708 (2014) 693

Algorithm 2: Grouping Algorithm

Input : Graph Ĝ = (V̂ , Â)

Output : Groups g1
.∪ g2

.∪ . . .
.∪ gk = V̂ of the nodes in Ĝ

1 For 1 ≤ i ≤ n do
2 gi = ∅
3 i← 1

4 while ∃n ∈ V̂ : n 6∈ gj for 1 ≤ j < i do
5 Insert v into gi
6 Succ← successors of v
7 while Succ 6= ∅ do
8 For s ∈ Succ with Pred(s) do
9 If g1, . . . , gi−1, gi ∪Pred(s) is feasible

10 gi = gi ∪Pred(s)

11 Succ← successors of nodes added to gi in this iteration that have
not been treated yet

12 i← i + 1

The running time of the algorithm is dominated by lines 4-11 by the two
nested loops and the feasibility check. The outer loop can be executed O(|V̂ |)
times since there are O(|V̂ |) groups. We can also bound the number of iterations

for the inner while loop by O(|V̂ |) if we can bound the number of elements

that are added to Succ by O(|V̂ |). We can guarantee this if we store during
each iteration for each node if it has already been added to Succ before. Then,
before adding a node to Succ (l. 10) we first check whether we have added
the node before already. If this is the case we do not add it to Succ again.
Finally, for the feasibility check we require two breadth-first searches that require
O(|V̂ |+ |Â|) time each. Since O(|V̂ |) ⊆ O(|Â|) the running time of our algorithm

is O(|V̂ |2 · |Â|). �

Computing the Order. After computing the grouping, we compute an order
of the groups in the second step. Since we draw the layout bottom-up in the third
step, when positioning a group gi, all successors of nodes in gi need to be already
positioned. To do this we contract each group and sort them topologically from
bottom to top. Recall that our algorithm ensures that when adding new nodes
to a group the group remains feasible, i. e., there is no directed path in the graph
from one node in the group to another in the same group. This directly implies
that we can always order the groups topologically.

Coordinate Assignment. In the last step of the greedy approach the actual
coordinate assignment takes place. We treat the groups according to the order
computed in the previous step. The y-coordinates of the ports and the bends of
an edge are computed in two parts. When the target of an edge is positioned, we

694 Betz et al. Column-Based Graph Layouts

compute the y-coordinates of the target port and the first two bends. The first
bend is in the target’s column, whereas the other one is in the column assigned
to the edge. The two last bends and the source port are computed, when its
source is positioned.

First, we compute the smallest possible y-coordinate ŷ for the lower boundary
of the nodes in gi by setting it to the maximum of the smallest possible y-
coordinate for each node vj ∈ gi. When computing this y-coordinate for a node
vj ∈ gi, we need to consider that we have not yet routed the second part of the
edges whose targets are in gi. For this, we need to compute the smallest possible
y-coordinate for the horizontal edge segment of the edges we still need to draw.
In particular, we need to find the smallest possible y-coordinate such that all
minimum spacing constraints are respected. This can be done straightforwardly.

After determining ŷ, we position the boxes in gi such that their lower boundary
is aligned at ŷ and draw the second part of the outgoing edges. We draw the
horizontal segments as high as possible. Afterwards, we draw the incoming edges
as low as possible. To this end, we process the nodes vj ∈ gi in an arbitrary
ordering and draw their incoming edges such that all spacing constraints hold.

The running time of this step is O(|V̂ | + |Â| · b), where b is the number
of columns used by the assignment. Note that since every column contains a
vertex it follows that b is in O(|V̂ |). Each node in V̂ is considered only once,
i. e., when it is positioned. The edges are treated twice. Once when the target
is positioned and its first part is drawn and a second time when its source is
positioned, i. e., the second part of the edge is drawn. Both times the smallest
possible y-coordinate needs to be determined, which requires as many operations
as the drawn horizontal segment spans columns. We simply bound this number
of columns by |V̂ |.

Theorem 6 The vertical edge length minimization heuristic can be implemented
to run in O(|V̂ |2 · |Â|) time and O(|V̂ |+ |Â|) space.

Proof: The computation of the groups in step one takes O(|V̂ |2 · |Â|) time,

afterwards the groups can be ordered in O(|V̂ | + |Â|) time. For the final y-

coordinate assignment we need O(|V̂ |+ |Â| · |V̂ |) time. Thus, the greedy approach

runs in O(|V̂ |2 · |Â|) time in total.

For the computation of the groupsO(|V̂ |+|Â|) space is required. Furthermore,

we need O(|V̂ |+ |Â|) space for storing the y-coordinates assigned to the boxes

and the edge ports and bends. Additionally, we store for each of the at most V̂
columns the highest object that is already drawn. Thus, in total our algorithm
requires O(|V̂ |+ |Â|) space. �

5.2 Horizontal Edge Length Minimization

There has been some research into improvement of orthogonal drawings which
is related to the approaches used in this section. Six et al. [33] discuss several
refinement steps for orthogonal drawings. They propose heuristics to remove U-
Turns (which we refer to as bows ; see Figure 5), superfluous bends, self-crossings,

JGAA, 18(5) 677–708 (2014) 695

Figure 5: An edge that is a bow (left) and the edge after bow reduction (right).

(a) (b) (c)

Figure 6: Visually unappealing parts of a drawing which can be resolved in a
post-processing step.

and several other unappealing structures. However, we encounter, due to the
way our algorithm works, only few of the problems described in this. The only
structure we remove are bows, by using a simple linear time algorithm. However,
there are other examples of structures that are not visually appealing and that
can easily be resolved but which we did not consider for the implementation; see
Figure 6 for some examples.

In the second step, we employ a heuristic approach to minimize the width of
the whole layout. Due to the shifting in each iteration of the shape algorithm, we
introduce new columns. Some of them are necessary while others will be partly
empty in the final layout and may be removed while maintaining a valid layout.
Thus, the final layout is possibly wider than actually necessary. In Figure 7a we
depict a layout that can be compacted by two columns. Our approach to width
compaction is column based, i. e., the resulting layout again consists of disjoint
columns.

Our approach is somewhat similar to the moving part of the 4M-algorithm
proposed to improve orthogonal drawings [20]. The authors define a moving line
which is directed through the drawing and is used to identify empty space in the
drawing which can be removed safely. However, the approach requires the node
heights to be a multiple of a certain base value and the nodes must be aligned
on a grid. Both does not apply to our drawings.

We perform width compaction along so-called compaction paths. A com-
paction path is a piecewise axis-parallel y-monotone path passing through a
layout from top to bottom. It may cut horizontal edge segments but neither
vertical edge segments nor nodes. Furthermore, its vertical segments need to run
within columns such that no vertical edge segment is allowed to run through the
same part of these columns.

In Figure 7 we illustrate how a compaction along a compaction path is
performed. First, we split the path into its vertical segments. Then we delete
the y-range of a column that contains a vertical path segment. Thus, in total we

696 Betz et al. Column-Based Graph Layouts

(a) A layout that can be compacted by two columns and two compaction
paths.

(b) How to perform compaction along the left compaction path.

Figure 7: Compaction paths and compaction along a compaction path.

(a) The set of compaction paths along which we
compact. Both compaction paths are valid.

(b) After the compaction the spacing con-
straint between the two edges can be
violated.

Figure 8: An invalid set of compaction paths.

gain one column of free space. We move everything that has been to the right
of the compaction path one column to the left and, thereby, fill the free space
again. Thus, in total the number of columns is decreased by one.

A seemingly obvious approach to compute a maximum set of compaction
paths would be by using a flow algorithm. Traditionally, flow algorithms have
been used in graph drawing to solve such compaction problems [23, 35]. However,
in our case there are examples of compaction paths where each path by itself is
valid, but compacting two such paths at the same time yields a layout where an
edge-edge spacing constraint is violated; see Figure 8. Although it is possible to
avoid this problem when using flow networks (e. g., by increasing the size of the
drawing), the flow network itself is very complicated (see [13] for a description)
and a simpler approach appears to be reasonable. We propose an approach that
iteratively removes columns instead of removing multiple columns at once. This
helps us to avoid the problem stated above.

In the following, we describe an approach that computes a cardinality-

JGAA, 18(5) 677–708 (2014) 697

maximal valid set of compaction paths using right-first search. We call a
set P of compaction paths valid if there is no pair of paths Pi, Pj for i 6= j
in P = {P1, . . . , Pk} that cross each other, or overlap. Since the paths do not
cross or overlap, we can order them from right to left as P1, . . . , Pk. We also
require that for i = 1, . . . , k − 1 there is no path P ′ distinct from P1, . . . , Pi+1

whose nodes lie to the right of, or on Pi+1 such that {P1, . . . , Pi, P
′} is a valid

set of compaction paths. For the first path P1 this means that no subpath of it
can be replaced by a path that is right of P1 such that the resulting path is a
valid compaction path. We call a valid set of compaction paths that has these
properties rightmost. In Figure 9 we depict a rightmost valid set of compaction
paths for the example of Figure 7a. Note that since all paths are directed
downwards, a right-first search yields paths that are as left as possible in the
drawing.

It remains to argue that by using right-first search we actually find a
cardinality-maximal valid set of compaction paths. In the following we show
that we can transform any valid set of compaction paths P = {P1, . . . , Pk} to a
rightmost set of compaction paths of the same cardinality. First, we remove all
crossings by swapping the suffixes of any two paths in the set that cross. Note
that by doing this we cannot introduce a new crossing. Since the resulting paths
P1, . . . , Pk do not cross, we can order them from right to left. We treat the
paths Pi in increasing order of their indices (from right to left) and try to move
each path rightwards. More specifically, for each treated path P` we a replace a
subpath (pi, . . . , pj) of it with a path (q1, . . . , ql) that is right of P` and does not
overlap or cross a path P`′ in the set P with `′ < `.

After these normalization steps, we obtain a rightmost valid set of compaction
paths. Note that we do not change the number of paths during the normalization.
Thus, there exists a unique maximum set of compaction paths that is rightmost,
which can be found by the right-first approach we present in the following
paragraph.

Figure 9: A rightmost valid set of compaction paths.

The Algorithm. In this paragraph we present the algorithm that performs the
width compaction. Before we run the algorithm, we remove the super source ŝ
and the super sink t̂. As already mentioned, this algorithm finds compaction

698 Betz et al. Column-Based Graph Layouts

paths by using a right-first search. Initially, we build up the compaction network
in which we search for compaction paths using the right-first search. After we
found a compaction path, we need to slightly modify the compaction network in
order to ensure that the computed set of compaction paths is valid.

First, we describe the initialization of the graph D, which we refer to as the
compaction network. The compaction network depends on empty regions in the
columns, i. e., we need to find the empty rectangles in each column. Therefore,
we create a list per column which contains the boxes and edge segments that are
contained in the corresponding column. Afterwards, we iterate over all boxes
and edges. We add the boxes to the list of the column to which they are assigned.
The edges are treated more fine-grained. All of the (at most three) vertical
segments are added to the list of the corresponding column. Furthermore, we
add the horizontal segments to all columns between the source’s column and the
edge’s column and the edge’s column and the target’s column, respectively. Thus,
in total we have O(|V̂ |+ |Â| · b) entries in the lists. Since Ĝ is connected and,

therefore, O(|V̂ |) ⊆ O(|Â|), we can simplify the number of entries to O(|Â| · b).
Each of these entries is associated with two y-coordinates that determine the
y-range that is occupied by the box or edge segment, respectively. We sort these
entries according to their y-coordinates in O(|Â| · b · log(|Â| · b)) time.

Afterwards, we detect the free rectangles in the columns, i. e., the gaps
between two entries in the list whose y-ranges do not touch. Furthermore, we
assume that on the top and on the bottom of each column is a large free rectangle.
For each free rectangle we add a node to D. For ease of notation we identify
each node of D with its corresponding free rectangle.

Since we have at most O(|Â| · b) entries that bound the free rectangles, there

can be at most O(|Â| · b) rectangles, i. e., at most O(|Â| · b) nodes in D.

We create the edges of D in two ways: For two rectangles in the same
column, we add an edge between them if they are only separated by a single
horizontal edge segment. Furthermore, we create edges between rectangles
in neighboring columns if their y-ranges overlap. Consider two overlapping
rectangles in neighboring columns as depicted in Figure 10b. If a compaction
path p runs through these rectangles as shown in Figure 10a, compacting along p
would move the right box under the left one. Then the distance between the
two edges needs to be at least sedge

edge or ŝedge
edge, respectively. Note that this distance

after the compaction equals to the overlap of the y-ranges of the two rectangles.
Therefore, we only add an edge from the right to the left rectangle, if the overlap
of the y-ranges of the two rectangles is at least the minimum spacing sedge

edge or
ŝedge
edge, respectively; see Figure 10a.

As the final step of the construction of D, we add two nodes to D which we
denote by s and t. We connect s to all rectangles on the top of the columns and
connect all rectangles on the bottom of the columns with t.

Obviously, D is a planar graph, i. e., it has at most O(|Â| · b) edges. Also,
the number of rectangle pairs we need to consider to find all edges is small. In
fact this number is in O(|Â| · b) since by construction edges are either completely
contained in a column or connect nodes in two neighboring columns. Since we

JGAA, 18(5) 677–708 (2014) 699

(a) Overlap of both boxes is smaller than sedgeedge.

(b) Overlap of both boxes is larger than sedgeedge.

Figure 10: Edges between overlapping boxes of neighboring columns.

(a) The compaction network D and a com-
paction path p.

(b) The modified network after the com-
paction along p.

Figure 11: The compaction network D and how it is modified.

have sorted the nodes of D already in a previous step, we find all edges of D
in O(|Â| · b) time with a simple sweep-line algorithm from top to bottom. In
Figure 11a we depict a clipping of a layout and the corresponding compaction
network D.

We use the compaction network D in order to find compaction paths using
a right-first depth-first search starting at s. Since we need to ensure that the
computed compaction path is y-monotone, we always keep track of the current y-
coordinate. We are only allowed to move to a horizontally neighboring rectangle
if this requires no upward movement of the compaction path. If the search
reaches t, we have found a compaction path.

After a compaction path has been found, we need to slightly modify the
compaction network. The part of the compaction network that is right of the
compaction path cannot be part of a further compaction path, because we use a
right-first search. Therefore, we do not need to consider this part. However, we
need to treat the part through which the compaction path cuts (see Figure 11):

700 Betz et al. Column-Based Graph Layouts

We split rectangles that contain (a part of) a vertical segment of the compaction
path such that there is one rectangle that is cut from top to bottom and one or
two rectangles that are not cut by the compaction path. Rectangles that are
crossed horizontally are split into two rectangles as well.

For all rectangles that are cut from top to bottom by a vertical path segment
we delete the corresponding nodes in D. Afterwards, we need to create edges
between the newly created rectangles on the left side of the compaction path
and their surrounding rectangles. In Figure 11b we illustrate the modification
of D after the compaction along a compaction path. After the modification of D
we continue the right-first search in order to find more compaction paths. The
set of compaction paths we compute is (i) rightmost, because we use a right-first
search and (ii) valid due to the construction of D and its modifications.

Theorem 7 The width compaction algorithm can be implemented to run in
O(|Â| · b2 · (log(|V̂ |) + b)) time and O(|Â| · b2) space.

Proof: We already argued that D has at most O(|Â| · b) nodes and it is planar.
However, the size of D can increase due to the modifications after the compaction
along a path. Recall that we are dealing with rightmost compaction paths. Thus,
each horizontal segment of a compaction path coincides with the upper or lower
boundary of a rectangle. Otherwise, we can replace a subpath of the compaction
path with a path that is right of it, i. e., the compaction path was not rightmost.
We now estimate the number of rectangles we need to create at most.

Note that a compaction path cannot split a rectangle at any point, but rather
it can only split it at a y-coordinate at which a compaction path leaves a column
and enters a new one. These y-coordinates are the y-coordinates of the upper
and lower boundaries of nodes in D. This insight allows us to find an upper
bound on the number of nodes the compaction network can have. As we have
argued, initially the number of nodes in D is in O(|Â| · b). To obtain a worst-case
upper bound for the number of new nodes, assume we split all rectangles at
the y-coordinates of the upper and lower boundary of a single node. This can
create at most two additional rectangles per column which means O(b) additional
rectangles in total. When we repeat this for all of the original nodes in D this
leads to a total of O(|Â| · b2) nodes in D. Note that we do not need to do this for
the newly created nodes, because the y-coordinate of either their upper or lower
boundary was already used to cut other nodes. Since D remains planar, the
number of edges is also in O(|Â| · b2). In order to analyze the time complexity of
the right-first depth-first search that operates on a changing graph, we assume
that it is directly executed on the final graph D. Thus, it runs in O(|Â| · b2)
time.

When all compaction paths are found, we need to compact along them.
Compacting along one path can easily be performed inO(|V̂ |+|Â|·b2) = O(|Â|·b2)

time. Thus, compacting along all paths needs O(|Â| · b3) time.

Summing up the running time of the initial construction ofD, the computation
of the compaction paths and the compaction itself, we getO(|Â|·b·(log(|Â|·b)+b2))

JGAA, 18(5) 677–708 (2014) 701

as total runtime. Since we deal with simple graphs, |Â| ≤ |V̂ |2 holds. Thus, we

can further simplify the time complexity to O(|Â| · b2 · (log(|V̂ |) + b)).

We need O(|V̂ |+ |Â|) space to store the column assignment, but this term is

dominated by the potential size of D which is in O(|Â| · b2). �

Note that in the case that the node sizes do not differ too much, and should
all of them be integer, the time complexity of the algorithm can be reduced to
O(|Â| · b3) by employing a linear-time sorting algorithm for this case.

We have now all results required to prove our main result which we stated in
Theorem 1, and which we repeat here for the reader’s convenience. The proof
follows by combining the main theorems of each section, namely, Theorems 3, 4, 6,
and 7. The running time is dominated by the first step of our approach (see
Theorem 3), and the space consumption is dominated by the last step (see
Theorem 7).

Theorem 1. For a given connected directed acyclic graph G = (V,A) a locally-
symmetric, column-based layout with at most four bends per edge can be computed
in O(|A|3|V |) time and O(|A||V |2) space.

6 Evaluation

The drawing style used here stems from a particular application for drawings
of so-called argument maps. Argument maps present the arguments given in a
debate or a book together with two binary relations among them, i. e., support
and attack. They originate from argumentation theory but are used in many
more fields like philosophy and politics. For detailed background information
about argument maps we refer the reader to [2, 30]. As we mentioned at the
beginning of Section 3, for layouts of argument maps, we have the additional
constraints of free sources and sinks. Recall that, by this, we denote the property
that above a source and below a sink no other box is positioned. We can enforce
this constraint by not removing the edges incident to ŝ and t̂ before the width
compaction. Then, these avoid that another box is shifted above a source or
below a sink. Further, argument maps may contain cycles (although they rarely
do). In a preprocessing step we remove cycles by reversing the direction of edges
in G such that it becomes cycle-free. Since computing a cardinality minimal set
of such edges is NP-complete [28], we use a well-known heuristic by Eades et
al. [16] to solve this problem.

In the last step, when we remove the nodes ŝ and t̂, we need to correct the
direction of those edges we have reversed in the preprocessing step.

As already mentioned in Section 3, we randomize the computation of the
topology. We do this at two points: (i) for the construction of the feasible
upward planar subgraph and (ii) we randomize the order in which the deleted
edges are reinserted. Each of these two steps is performed ten times, i. e., we
execute the computation of a feasible upward planar subgraph 100 times in total.
Over all runs we take the crossing-minimal upward planar representation as the
result.

702 Betz et al. Column-Based Graph Layouts

The basis of this evaluation is a set of 51 argument maps differing in size,
purpose of usage and experience of the creator (uploaded to http://www.graph-
archive.org). For a more detailed analysis of these input graphs we refer to [13].
First, we present statistics about measurable quality criteria, and then discuss
the aesthetic qualities of these layouts.

Implementation Details. We implemented our algorithms using C++ rely-
ing on the Open Graph Drawing Framework)1. For the topology step we used
the OGDF implementation of the layer-free upward crossing minimization algo-
rithm, as well as several data structures included in the OGDF framework (e. g.,
Graph, GraphAttributes, EdgeArray, NodeArray). As already mentioned we use
a heuristic [16] to compute a cardinality-minimal set of edges whose directions
we can reverse to obtain a cycle-free graph. We use the implementation of this
heuristic that has been integrated into the OGDF framework.

We compiled our C++ implementation with GCC 4.7.1, using optimization
level 3. All experiments were performed on a single core of an Intel Xeon E5-2670
processor that is clocked at 2.66 GHz. The machine is running Linux 3.4.28-2.20
and has 64 GiB of RAM.

Statistics. We start by analyzing the number of crossings in the final layout as
well as in the upward planar representation (U ,Γ). Although it is theoretically
possible that the final layout contains fewer crossings than (U ,Γ), for all instances
there are at least as many crossing in the final layout as in the upward planar
representation (U ,Γ). However, if (U ,Γ) is free of crossings, then the final layout
is planar as well (compare to Lemma 1).

We note that, in our experiments, on average there are 69% more crossings
in the final layouts than in the upward planar representations. Although this
number may seem high, this is only because most of our input drawings have
little or even no crossings. Then, even a slight increase in the number of crossings
yields a high relative increase of crossings.

Due to the shape algorithm there can be at most four bends per edge. Except
for three bend-free layouts, the average number of bends per edge is between 0.4
and 1.5. Only 13 of 51 layouts have edges with four bends. Taking the average
over all layouts, we have 1.06 bends per edge.

Finally, we turn towards the running time analysis. The maximum running
time for the 51 input instances is 10.25s for an instance having 134 nodes and
158 edges, whereas the average is 0.32s. The average running time is strongly
influenced by the few large instances. For instances with at most 30 nodes, the
running time is 0.02s on average while the maximum running time is 0.19s.

It is interesting to note the contribution of the three phases topology, shape
and metrics to the overall running time. Shape and metrics make only in-
significant contributions of less than 0.01% and 0.2%, respectively, whereas the
topology step needs 99.6% of the overall running time. Thus, the topology step
is the bottleneck.

1http://www.ogdf.net

http://www.ogdf.net

JGAA, 18(5) 677–708 (2014) 703

Figure 12: Instance D-2.5. Figure 13: Instance D-5.3.

We repeated our experiments with a decreased number of randomized runs
in the topology step from 100 to 9. The maximum and average running time
for the topology step decreased from 10.25s to 0.98s and from 0.32s to 0.03s,
respectively. This decrease to roughly 1/10 in running time is not surprising as
it simply reflects the fact that the topology step requires nearly 100% of the time
for computing the layouts. Nevertheless, this is a significant improvement in
running time while the average number of bends per edge increases only slightly
from 1.05 to 1.07, and the average number of crossings increases from 2.64 to
2.76 for our instances.

Case Studies. Here, we present three layouts that are created by the algo-
rithmic approach described in Section 2–5. Using these layouts as examples, we
discuss the benefits and the disadvantages of our algorithms. Figure 12 shows
a layout for which we have no suggestions for improvement. The layout is free
of crossings, the number of bends are close to the minimum, it is compact and
locally symmetric. Beside the hard facts, it is well structured and gives a good
impression of the internal structure. The other two layouts, while looking good
in general, have minor drawbacks, which we discuss in the following.

In Figure 13 on the left side there is a configuration that is similar to a bow,
which we treated in Section 5. However, this time, we have a bow containing
a box. We could expand our concept to paths in Ĝ that contain only nodes
whose in-degree and out-degree equals one. Such a scenario is not treated in
our algorithm. Since there can be many different special cases which might be
resolved easily, we propose to investigate and integrate additional algorithms for
optimizing orthogonal drawings into our approach.

In Figure 14 there is a set of boxes on the right side of the layout that is
positioned quite high. It seems as it might be possible to move these boxes
downwards. However, these boxes are aligned with boxes that are some columns
apart, i. e., they need to be positioned that high. One could reconsider the
drawing style, such that alignment of boxes is only required if the number of
columns between the boxes is small. Note that we can easily integrate such a
modification by adapting the computation of the groups in Section 5. Besides

704 Betz et al. Column-Based Graph Layouts

Figure 14: Instance D-2.7. Circle added to highlight the effect of different
edge-edge spacings.

this drawback, the example gives a good impression of the edge bundling enabled
by the minimum edge-edge spacings. The effect the two different edge-edge
spacing constraints have on the final layout can be seen inside the red circle.
The two edges that have the same target have a small distance between them
while the third horizontal edge-segment belonging to the third edge is placed at
a greater distance to the other horizontal edge-segment.

Overall, we conclude that the computed layouts are of high quality from an
aesthetic point of view as well as regarding the objective quality measures.

7 Conclusion

Our main result is an algorithmic approach to generate column-based graph
layouts for directed acyclic graphs. Our approach integrates the layer-free
upward crossing minimization technique by Chimani et al. [9] into the well-
known topology-shape-metrics framework. We showed that several of the arising
subproblems are NP-complete and devised efficient algorithms for all steps,
many with provable quality guarantees. In the first step we minimize the number
of crossings as well as the total source/sink distance using layer-free upward
crossing minimization. Afterwards, we use a modified graph drawing heuristic
by Biedl and Kant [4] such that there are at most four bends per edge. Thereby,
nodes and edges are assigned to columns. In the last step, we first minimize
the vertical edge length using a greedy approach and then the horizontal edge
length based on iteratively removing rightmost compaction paths. During the
edge length minimization we remain true to the columns such that the resulting
layouts are column based.

Unconventionally, we do not fix the topology computed in the first step
throughout the remaining phases. When computing the column assignment

JGAA, 18(5) 677–708 (2014) 705

in the second step, we relax some of the decisions we made before, and hence,
the focus of the algorithm is shifted away from minimizing the number of edge
crossings. We fix the edge crossings again when minimizing the vertical edge
length. In usual applications of the topology-shape-metrics framework crossing
minimization is the first aspect that is considered and all remaining optimization
criteria are treated afterwards and therefore must handle the choices made in
the first step. This is not the case for our approach, where we increase the
significance of bend and total edge length minimization.

The layouts we compute are of high quality. They have a clear, well-structured
look and are compact. Input instances that have a typical size for argument
maps can be layouted quickly. Thus, our algorithm is feasible for practical
purposes. In fact, the algorithm has, in the meantime, been integrated into the
tool argunet2, which is used for creating and manipulating argument maps, and
is now available as a plugin.

Although the generated layouts are of high quality, certain unappealing
features remain and as a next step it may be worthwhile to explore if it is
possible to adapt algorithms for optimizing orthogonal drawings layouts; e. g.,
the 4M algorithm [20]. Coming from the practical application another interesting
step is to investigate how to handle dynamic argument maps, i. e., generate
drawings of argument maps that change over time while maintaining the user’s
mental map.

Acknowledgments. Andreas Gemsa is financially supported by the Concept
for the Future of KIT within the framework of the German Excellence Initiative.

2http://www.argunet.org, argunet is open source and published under the GPL

http://www.argunet.org

706 Betz et al. Column-Based Graph Layouts

References

[1] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward
planarity testing of single-source digraphs. SIAM Journal on Computing,
27:132–169, 1998. doi:10.1137/S0097539794279626.

[2] G. Betz. Theorie dialektischer Strukturen. Klostermann, 2010.

[3] G. Betz, C. Doll, A. Gemsa, I. Rutter, and D. Wagner. Column-based graph
layouts. In Graph Drawing, volume 7704 of Lecture Notes in Compute Sci-
ence, pages 236–247. Springer, 2013. doi:10.1007/978-3-642-36763-2_
21.

[4] T. Biedl and G. Kant. A better heuristic for orthogonal graph draw-
ings. Computational Geometry, 9(3):159–180, 1998. doi:10.1016/

S0925-7721(97)00026-6.

[5] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7:448–461,
1973. doi:10.1016/S0022-0000(73)80033-9.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[7] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment.
In Graph Drawing, volume 2265 of Lecture Notes in Computer Science,
pages 31–44. Springer, 2002. doi:10.1007/3-540-45848-4_3.

[8] D. Cartwright and K. Atkinson. Using computational argumentation to
support e-participation. Intelligent Systems, IEEE, 24(5):42–52, 2009.
doi:10.1109/MIS.2009.104.

[9] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward
crossing minimization. Journal of Experimental Algorithmics, 15, 2010.
doi:10.1145/1671970.1671975.

[10] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Upward planariza-
tion layout. Journal of Graph Algorithms and Applications, 15(1):127–155,
2011. doi:10.7155/jgaa.00220.

[11] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and
quasi-upward drawings with vertices of prescribed size. In Graph Drawing,
volume 1731 of Lecture Notes in Computer Science, pages 297–310. Springer,
1999. doi:10.1007/3-540-46648-7_31.

[12] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. Computational Geometry,
4(5):235–282, 1994. doi:10.1016/0925-7721(94)00014-X.

http://dx.doi.org/10.1137/S0097539794279626
http://dx.doi.org/10.1007/978-3-642-36763-2_21
http://dx.doi.org/10.1007/978-3-642-36763-2_21
http://dx.doi.org/10.1016/S0925-7721(97)00026-6
http://dx.doi.org/10.1016/S0925-7721(97)00026-6
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/3-540-45848-4_3
http://dx.doi.org/10.1109/MIS.2009.104
http://dx.doi.org/10.1145/1671970.1671975
http://dx.doi.org/10.7155/jgaa.00220
http://dx.doi.org/10.1007/3-540-46648-7_31
http://dx.doi.org/10.1016/0925-7721(94)00014-X

JGAA, 18(5) 677–708 (2014) 707

[13] C. Doll. Automatic layout generation for argument maps. Master’s thesis,
Karlsruhe Institute of Technology, February 2012.

[14] T. Dwyer, K. Marriott, and M. Wybrow. Interactive, constraint-based layout
of engineering diagrams. Electronic Communications of the EASST, 13,
2008. URL: http://journal.ub.tu-berlin.de/eceasst/article/view/
168/163.

[15] P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium,
42:149–160, 1984.

[16] P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47:319–323, 1993.
doi:10.1016/0020-0190(93)90079-O.

[17] P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem.
In Proceedings of the 9th Australian Computer Science Conference, pages
327–334. Australian National University, 1986.

[18] H. Eichelberger. Aesthetics of class diagrams. In Visualizing Software
for Understanding and Analysis, 2002, pages 23–31, 2002. doi:10.1109/

VISSOF.2002.1019791.

[19] M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jünger,
S. Leipert, K. Klein, P. Mutzel, and M. Siebenhaller. Automatic lay-
out of UML class diagrams in orthogonal style. Information Visualization,
3(3):189–208, 2004. doi:10.1057/palgrave.ivs.9500078.

[20] U. Fößmeier, C. Heß, and M. Kaufmann. On improving orthogonal
drawings: The 4M-algorithm. In Graph Drawing, volume 1547 of Lec-
ture Notes in Computer Science, pages 125–137. Springer, 1998. doi:

10.1007/3-540-37623-2_10.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[22] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. Siam
Journal On Algebraic And Discrete Methods, 4(3):312–316, 1983. doi:

10.1137/0604033.

[23] A. Garg and R. Tamassia. A new minimum cost flow algorithm with
applications to graph drawing. In Graph Drawing, volume 1190 of Lecture
Notes in Computer Science, pages 201–216. Springer, 1997. doi:10.1007/
3-540-62495-3_49.

[24] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625,
2001. doi:10.1137/S0097539794277123.

http://journal.ub.tu-berlin.de/eceasst/article/view/168/163
http://journal.ub.tu-berlin.de/eceasst/article/view/168/163
http://dx.doi.org/10.1016/0020-0190(93)90079-O
http://dx.doi.org/10.1109/VISSOF.2002.1019791
http://dx.doi.org/10.1109/VISSOF.2002.1019791
http://dx.doi.org/10.1057/palgrave.ivs.9500078
http://dx.doi.org/10.1007/3-540-37623-2_10
http://dx.doi.org/10.1007/3-540-37623-2_10
http://dx.doi.org/10.1137/0604033
http://dx.doi.org/10.1137/0604033
http://dx.doi.org/10.1007/3-540-62495-3_49
http://dx.doi.org/10.1007/3-540-62495-3_49
http://dx.doi.org/10.1137/S0097539794277123

708 Betz et al. Column-Based Graph Layouts

[25] W. He and K. Marriott. Constrained graph layout. In Graph Drawing,
volume 1190 of Lecture Notes in Computer Science, pages 217–232. Springer,
1997. doi:10.1007/3-540-62495-3_50.

[26] W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In
Visualization Symposium, 2008. PacificVIS ’08. IEEE Pacific, pages 41–46,
2008. doi:10.1109/PACIFICVIS.2008.4475457.

[27] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Per-
formance of exact and heuristic algorithms. MPI Informatik, Bibliothek &
Dokumentation, 1996.

[28] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972. doi:10.1007/
978-1-4684-2001-2_9.

[29] R. Marti and M. Laguna. Heuristics and meta-heuristics for 2-layer straight
line crossing minimization. Discrete Applied Mathematics, 127(3):665–678,
2003. doi:10.1016/S0166-218X(02)00397-9.

[30] D. C. Schneider, C. Voigt, and G. Betz. Argunet—a software tool for
collaborative argumentation analysis and research. In 7th Workshop on
Computational Models of Natural Argument (CMNA VII), 2007.

[31] F. Schreiber, T. Dwyer, K. Marriott, and M. Wybrow. A generic algorithm
for layout of biological networks. BMC Bioinformatics, 10(1):375, 2009.
doi:10.1186/1471-2105-10-375.

[32] J. Seemann. Extending the sugiyama algorithm for drawing UML class
diagrams: Towards automatic layout of object-oriented software diagrams.
In Graph Drawing, volume 1353 of Lecture Notes in Computer Science,
pages 415–424. Springer, 1997. doi:10.1007/3-540-63938-1_86.

[33] J. M. Six, K. G. Kakoulis, and I. G. Tollis. Refinement of orthogonal graph
drawings. In Graph Drawing, volume 1547 of Lecture Notes in Computer
Science, pages 302–315. Springer, 1998. doi:10.1007/3-540-37623-2_23.

[34] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.

[35] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, 16:421–444, 1987. doi:10.1137/
0216030.

http://dx.doi.org/10.1007/3-540-62495-3_50
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475457
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1016/S0166-218X(02)00397-9
http://dx.doi.org/10.1186/1471-2105-10-375
http://dx.doi.org/10.1007/3-540-63938-1_86
http://dx.doi.org/10.1007/3-540-37623-2_23
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1137/0216030

	Introduction
	Preliminaries
	Topology
	Layer-free Upward Crossing Minimization

	Shape
	Metrics
	Vertical Edge Length Minimization
	Computational Complexity
	Greedy Algorithm

	Horizontal Edge Length Minimization

	Evaluation
	Conclusion

