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3Institute of Theoretical Informatics, Karlsruhe Institute of Technology

Abstract

Graph and cartographic visualization have the common objective to
provide intuitive understanding of some underlying data. We consider a
problem that combines aspects of both by studying the problem of fitting
planar graphs on planar maps. After providing an NP-hardness result
for the general decision problem, we identify sufficient conditions so that
a fit is possible on a map with rectangular regions. We generalize our
techniques to non-convex rectilinear polygons, where we also address the
problem of efficient distribution of the vertices inside the map regions.
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1 Introduction

Visualizing geographic maps may require showing relational information be-
tween entities within and between the map regions. We study the problem of
fitting such relational data on a given map. In particular, we consider the prob-
lem of fitting planar graphs on planar maps, subject to natural requirements,
such as avoiding edge crossings and ensuring that edges between points in the
same region remain in that region.

Fitting planar graphs on planar maps is related to cluster planarity [3, 4, 14].
In a cluster-planar drawing, (also called c-planar drawing in the literature), a
plane graph (i.e., a planar graph with a fixed planar embedding) along with a
clustering (i.e., a partition of the vertices) is given. The goal is to find disjoint
regions in the plane for the clusters for a valid plane realization of the given
graph. The realization is valid if all the vertices in each given cluster and the
edges between them are drawn in their corresponding region, and the drawing
is planar.

In our setting (fitting graphs on maps), we are given both the graph and
the regions embedded in the plane, and must draw the clusters in their corre-
sponding regions (rather than compute suitable regions). The regions form a
proper partition of the plane (except for a single connected unbounded outer
region), such that the adjacency between two clusters (i.e., edges between ver-
tices from the two clusters) is represented by a common border between their
corresponding regions. We want to find a drawing of the graph such that the
vertices in each cluster are placed in its corresponding region and there are no
edge-crossings. or edge-region crossings (i.e., edges crossing a region in the map,
including the outer region, more than once).

1.1 Related Work

The concept of clustering involves grouping a set of objects so that objects in
the same group are more similar to each other than to those in other groups.
In graph theory, this notion is captured by a clustered graph. Clustering of
graphs is used in information visualization [20], VLSI design [17], knowledge
representation [21], and many other areas.

For the analysis and visualization of clustered graphs in these application
areas, it is desirable to draw a clustered graph in such a way that a visual
separation of its clusters is evident. This is usually obtained by a drawing of
the graph where the vertices and edges of each cluster can be surrounded by
a simple closed curve defining disjoint regions in the plane. Feng et al. thus
defined c-planarity as planarity for plane clustered graphs [15], where the draw-
ing is planar (i.e., there is no edge-crossings) and the drawing for each cluster
remains in its corresponding region (.i.e., there is no edge-region crossings); also
see Section 2 for related definitions. For clustered graphs in which every clus-
ter induces a connected subgraph, c-planarity can be tested in quadratic time.
Without the connectivity condition, the complexity of testing c-planarity is still
an open problem. Algorithms for creating regions in the plane in which to draw
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c-planar graphs have also been studied. Eades et al. [12] presented an algorithm
for constructing c-planar straight-line drawings of c-planar clustered graphs in
which each cluster is drawn as a convex region, while Angelini et al. [1] show
that every such c-planar clustered graph has a c-planar straight-line drawing
where each cluster is drawn inside an axis-aligned rectangle.

Many visualizations take advantage of our familiarity with maps by produc-
ing map-like representations that show relations among abstract concepts. For
example, treemaps [27], squarified treemaps [6] and news maps represent hierar-
chical information by means of space-filling tilings, allocating area in proportion
to some metric. Concept maps [10] are diagrams showing relationships among
concepts. Somewhat similar are cognitive maps and mind-maps that represent
words or ideas linked to and arranged around a central keyword. GMap [20]
uses the geographic map metaphor to visualize relational data by combining
graph layout and graph clustering, together with the creation and coloring of
regions/countries.

Also related is work on contact graphs, where vertices are represented by
simple interior-disjoint polygons and adjacencies are represented by a shared
boundary between the corresponding polygons. For example, every maximally
planar graph has a contact representation with convex polygons with at most
six sides, and six sides are also necessary [11]. Of particular interest are rectilin-
ear duals, where the vertices are represented by simple (axis-aligned) rectilinear
polygons. It is known that 8 sides are sometimes necessary and always suffi-
cient [18, 25, 29]. If the rectilinear polygons are restricted to rectangles, the
class of planar graphs that allows such rectangular duals is completely charac-
terized [24, 28] and can be obtained via bipolar orientation of the graph [16];
see Buchsbaum et al. [7] and Felsner [13] for excellent surveys.

1.2 Our Contributions

We first consider the question of testing whether a given planar clustered graph
fits on a given planar map and show that the decision problem is NP-hard, even
in the case where the map is made of only rectangular regions and each region
contains only one vertex. Then we provide sufficient conditions that ensure such
a fit on a rectangular map. Finally, we generalize the fitting techniques to rec-
tilinear maps with rectangles, L-shaped and T-shaped polygons. In particular,
we describe an efficient algorithm for distributing vertices appropriately in the
case of maps with L-shaped polygons.

The rest of the paper is organized as follows. Section 2 contains some def-
initions and terminology that we used throughout the paper. In Section 3 we
show that the problem of straight-line planar fitting of a planar graph on a map
is NP-hard even when all the regions in the map are rectangles. We give two
sufficient conditions for fitting in this case in Section 4. In Section 5 we address
the problem of fitting on a more general case of rectilinear maps consisting of
rectangles, L-shaped and T-shaped polygons. Section 6 concludes the paper.
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2 Preliminaries

In this section we introduce definitions used throughout the paper and then
describe the properties of clustered graphs considered in the paper.

Let G = (V,E) be a planar graph, with vertex set V partitioned into disjoint
sets V = {V1, . . . , Vk}. We call the pair C = (G,V) a planar clustered graph.
We consider the following partition of the edges of G that corresponds to the
given partition of vertices V = {V1, . . . , Vk}. Let Ei, for each i, 1 ≤ i ≤ k be
the set of edges in E between two vertices of Vi and let Einter be the set of
all the remaining edges in E. Note that E = E1 ∪ E2 ∪ . . . ∪ Ek ∪ Einter. We
call Gi = (Vi, Ei), 1 ≤ i ≤ k, a cluster of G, the edges of Ei, 1 ≤ i ≤ k, the
intra-cluster edges and the edges of Einter the inter-cluster edges.

The cluster-graph of a clustered graph C = (G,V) is the graph GC = (V, E),
where the edge (Vi, Vj) ∈ E , 1 ≤ i, j ≤ k, i 6= j if there exists an edge (u,w)
in G so that u ∈ Vi and w ∈ Vj . A clustered graph C = (G,V) is said to be
connected (resp. biconnected) if each of Gi, 1 ≤ i ≤ k, is a connected (resp.
biconnected) graph.

A drawing of a planar clustered graph C = (G,V) is a planar straight-line
drawing of G where each cluster Gi is represented by a simply-connected closed
region Ri such that Ri contains only the vertices of Gi and the drawing of each
edge e in Ei is completely contained in Ri. An edge e and a region R (i.e.,
either a region for a cluster or the single connected unbounded outside region)
have an edge-region crossing if the drawing of e crosses the boundary of R more
than once. A drawing of a planar clustered graph C is c-planar if there is no
edge crossing or edge-region crossing. If C has a c-planar drawing then we say
that it is c-planar.

A polygonal map M is a set of interior-disjoint polygons in a plane. A dual
graph GM of M is a graph that contains one vertex for each polygon of M . Two
vertices of GM are connected by an edge if the corresponding polygons have a
non-trivial common boundary. Given a planar graph GM , a polygonal map
M is called a contact map of GM if GM represents the dual graph of M . Let
C = (G,V) be a planar clustered graph. A polygonal map M which represents a
contact map of the cluster-graph GC is said to be compatible with C. Notice that
this definition yields a correspondence between the clusters of C and polygons
of M . In this paper we are interested in determining whether each cluster Gi

of C can be drawn with straight-line edges inside its corresponding polygon in
M , so that there is no edge crossing and no edge-region crossing. In case such
a drawing exists we say that planar clustered graph C has a straight-line planar
fitting, or just planar fitting on map M .

It is natural to consider all planar graphs, regardless of the clustering they
come with. We preview the construction of a straight-line planar fitting and
isolate the problem we are interested in. Recall that, by the definition of a
planar fitting, each cluster has to be drawn inside a polygon, and there should
be no edge crossings and no edge-region crossings. This implies that a clustered
graph that has a planar fitting is also c-planar, so we consider only c-planar
graphs. Unfortunately, the characterization of c-planar graphs is still an open
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problem. Thus we restrict ourselves to clustered graphs for which we know
that c-planarity can be efficiently tested. We use the results of Feng et al. [15]
who provide a polynomial-time algorithm to test whether a connected clustered
graph is c-planar. Thus, in the rest of the paper we consider only connected
c-planar graphs.

3 Fitting on a Rectangular Map

In this section we consider the problem of deciding whether a connected c-planar
graph G has a straight-line planar fitting on a given compatible rectangular map
M . We first show that such a fitting does not always exist. To construct the
counterexample we use a wheel map, which contains a center rectangle and four
congruent “thin rectangles” that surround the center rectangle; see Fig. 1(a)–
(b).

(a) (b) (c)

Figure 1: Wheel maps cw (a) and ccw (b), and their dual graph (c), which is
also a trivial clustered graph on these maps (each vertex constitutes a cluster).

Intuitively, the notion of a thin rectangle will be clear in the following con-
structions from the way it is used, but to be more precise, we formally define
it. A thin rectangle is one whose larger side is at least 4 times its smaller side,
i.e., it has aspect ratio at least 4. A thin rectangle is horizontal if its smaller
side is its height; otherwise it is vertical. We assume all four thin rectangles
in a wheel map have the same size (same length of larger sides, same length of
smaller sides).

Let {V1, . . ., Vk} be the set of clusters of G and let (vi, vj) be an edge of G
such that vi ∈ Vi, vj ∈ Vj , 1 ≤ i, j ≤ k. Then there exists a common boundary
between the polygons representing Vi and Vj in M . Call the common boundary
the door for the edge (vi, vj). Consider a wheel map W and its dual G which
has a simple clustering: each vertex constitutes a cluster; see Fig. 1(c). For
the rest of the section we often assume that a wheel map is associated with
this clustered graph. With this consideration in mind, each thin rectangle of W
contains a door for each of its two incident thin rectangles. We define the entry
door to be the one which contains a complete side of the rectangle itself, and
the exit door to be the one that contains a complete side of an incident thin
rectangle. We call a wheel map a clockwise (cw) wheel when going from the
entry door to the exit door in each rectangle requires a clockwise walk through
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the wheel; see Fig. 1(a). A counterclockwise (ccw) wheel is defined analogously;
see Fig. 1(b).

We now define the notion of “proximity region” for the entry and exit doors
inside each thin rectangle of a wheel map. Given that the thin rectangles of a
wheel map are of the same size, using basic geometry we can define inside each
thin rectangle a triangular region of maximum area where these two conditions
hold: (i) the triangular region inside each thin rectangle contains the entry door
of this rectangle; and (ii) for each point inside the triangle of one of the four thin
rectangles, there exist three other points, one inside the triangle of each other
rectangle, such that each pair in adjacent rectangles can be joined by a line
segment within the rectangles. We call these triangular regions the proximity
regions of the corresponding entry doors; see Fig. 2(a). For each exit door we
can analogously define a quadrangular proximity region; see Fig. 2(b). Next we
state a simple observation that follows from these definitions:

(c)(b)(a)

Figure 2: (a)–(b) Proximity regions for the doors in a wheel map, (c) a clustered
graph and a map with no fit (the visibility regions of the bridge are highlighted).

Observation 3.1 Let W be a wheel map and let G be its dual graph. In a
straight-line planar fitting of G the vertices in the thin rectangles either all lie
inside the proximity region of the entry doors, or they all lie in the proximity
region of the exit doors. There exists a straight-line planar fitting in each case.

Proof: The sufficiency follows from the definition of proximity regions. The
necessity follows from the fact that the proximity regions for the entry and the
exit doors inside each thin rectangle are disjoint since the aspect ratio of the
thin rectangles is ≥ 4. �

The next lemma shows that fitting a planar clustered graph on a compatible
map is not always possible.

Lemma 1 There exist a planar clustered graph C = (G,V) and a compatible
rectangular map M , so that there is no straight-line planar fitting of C on M .

Proof: Consider a rectangular map M made of two wheel maps (of the same
size) joined together by a thin horizontal rectangle, called a bridge; see Fig. 2(c).
We choose the height of the bridge to be at most the length of the smaller sides
in the thin rectangles of the wheels and we attach the bridge in the middle of
the neighboring two vertical rectangles. Call these two vertical rectangles R1
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and R2, respectively and call the bridge B. A point p of B is visible from a
point q in Ri, i = 1, 2 if the visibility line between p and q passes through the
door between B and Ri. For i = 1, 2, the visibility region of B for Ri is the set
of all points in B that are visible from at least one point in the proximity region
of either the entry or the exit door of Ri. We choose the length of the bridge
to be long enough, such that the two visibility regions for the two rectangles do
not overlap.

Let G be the dual of M : two 5-vertex wheels connected by a path of length
two. Assume a clustering of G where each vertex constitutes a separate cluster.
Then G has no straight-line planar fitting on M . If G had a straight-line planar
fitting Γ on M , by Observation 3.1, all the vertices inside the thin rectangles of
both the wheels must be placed in the proximity regions of the doors in Γ. But
then, there is no feasible position for the vertex that represents the bridge since
the two visibility regions of the bridge do not overlap. �

3.1 Fitting is NP-Hard

We show that deciding if a given plane clustered graph has a planar fitting
inside a given map is NP-hard, even for rectangular maps, with a reduction from
Planar-3-SAT which is known to be NP-complete [26]. Planar-3-SAT is defined
analogously to 3-SAT with the additional restriction that the variable-clause
bipartite graph GF for a given formula F is planar. There is an edge (xi, Aj) in
GF if and only if xi or xi appears in Aj . Knuth and Raghunathan [23] showed
that one can always find a crossing-free drawing of the graph GF for a Planar-
3-SAT instance, where the variables and clauses are represented by rectangles,
with all the variable-rectangles on a horizontal line, and with vertical edge
segments representing the edges connecting the variables to the clauses. The
problem remains NP-complete when such a drawing is given.

Theorem 1 Let C = (G,V) be a planar clustered graph with a rectangular map
M , compatible with C. Deciding if C admits a straight-line planar fitting on M
is NP-hard.

Proof: We reduce an instance of Planar-3-SAT to an instance (C,M) of our
problem. Let F := A1 ∧ . . .∧Am be an instance of a Planar-3-SAT, where each
literal in each clause Ai is a variable (possibly negated) from U = {x1, . . . , xn}.
Let ΓF be the given planar rectilinear drawing for this instance, as defined
in [23]. From ΓF we first construct the rectangular map M , then take G as the
dual of M , where each vertex constitutes a separate cluster. We represent each
literal by a wheel map (of the same size) in M : a positive (negative) literal is a
cw (ccw) wheel. From the two possible vertex configurations inside each wheel
we take the one in which the corresponding literal assumes a true value when the
vertices inside the thin rectangles of the wheel lie in the proximity region of the
exit doors and the literal assumes a false value when they lie in the proximity
region of the entry doors. Unlike in ΓF , we use a distinct wheel for each literal
in each clause. For each variable x, we draw the wheels for all the (positive
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and negative) literals for x appearing in different clauses in a left-to-right order,
according to the ordering of the edges incident to the corresponding vertices in
ΓF . To maintain consistency, we ensure that a true (false) value for a literal
x implies a true (false) value for every other instance of x and a false (true)
value for each instance of x. This is done by means of thin rectangular bridges
between two consecutive literals; see Fig. 3. The size of the bridges is chosen
equal to the thin rectangles in the wheels.

x x

x

xx

x

x x

(a) (b) (c) (d)

Figure 3: Representation of variables.

For each clause A = (x ∨ y ∨ z) of F , with the corresponding vertex lying
above the variables in ΓF , we draw vertical rectangles lAx , lAy and lAz from the
topmost rectangles Tx, Ty, Tz of the wheels for x, y and z, respectively, attached
at the end that is not shared by other thin rectangles. (The case when the vertex
lies below the variables in ΓF is analogous.) We place lAx , lAy , lAz so that they
are completely visible from all the points in the proximity of the exit doors of
Tx, Ty, Tz, respectively. We choose the length of the rectangles lAx , lAy , lAz so
that not all points inside them are visible from any point of the proximity region
of the entry doors of Tx, Ty, Tz, respectively; see Fig. 5.

l

l
A

l
A

A

h

A

A

h

yx z

x

y

x

z

y

Figure 4: Clause representation.

We then draw a rectangle R for the clause and attach these three thin rectan-
gles lAx , lAy and lAz to R. For z we attach the vertical rectangle lAz to the bottom

of R, while for each of x and y, we attach horizontal rectangles hA
x , hA

y to R that

also touch the vertical rectangles lAx and lAy coming from x or y, respectively. A

point p in rectangle hA
x (hA

y ) is reachable from a point q inside Tx (Ty) if there

exists a point r inside lAx or lAy such that the two lines pr and rq pass through
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the doors between the corresponding rectangles. The reachable region of hA
x

(hA
y ) is the set of all points that are reachable from a point inside the proximity

region of the entry door of Tx (Ty). Similarly a point p inside lAz is reachable
from a point q inside rectangle Tz of the wheel for z if the line pq passes through
the door between the two rectangles. The reachable region of lAz is the set of
all points reachable from a point inside the proximity region of the entry door
of Tz. Choose the lengths for the horizontal rectangles hA

x , hA
y and the vertical

rectangles lAx , lAy , lAz so that the reachable regions inside them do not coincide
with the entire inside of these rectangles. For this purpose it is sufficient that
the sizes of these rectangles are comparable to the sizes of the rectangles inside
the wheels. Thus the sizes of all the wheels and other rectangles are polynomial
in the size of the Planar-3-SAT instance.

Next we attach the thin rectangles hA
x , hA

y , lAz to R in such a way that the

areas visible from the reachable regions of hA
x , hA

y , lAz do not have a common
intersection, while every pair of them does have a common intersection; see
Fig 4. We now observe that the size of R does not have to be too big to ensure
this. Specifically, we attach lAz to the left half of the bottom line of R and
choose the height of R small enough so that the visible area from its reachable
region is only in the left half of R. We also adjust the vertical distance between
the horizontal rectangles hA

x and hA
y and adjust the width of R so that the

areas visible from the reachable regions of hA
x and hA

y do not intersect in the
left half of R but they do intersect in the right half. This can be achieved if
for example we take the vertical distance between hA

x and hA
y to be a constant

multiple of their height, while we take the width of R to be a constant multiple
of the length of hA

x , hA
y . Finally we fill all the unused regions in the map with

additional rectangles to get the final map M . Since the sizes of all the rectangles
are constant multiples of each other and the total size is polynomial in the size
of the Planar-3-SAT instance, the coordinates for the map can be chosen to be
polynomial in the size of the Planar-3-SAT instance.
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Figure 5: Planar 3-SAT instance and corresponding map fitting instance.

Lemma 2 F is satisfiable if and only if G has a straight-line planar fitting on
M .

Proof: Assume first that there exists a straight-line planar fitting Γ of G on
M . We show that F is satisfiable, i.e., there is a truth assignment for all the
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variables of F such that for each clause A = (x, y, z) of F , at least one of x, y and
z is true. Let Wx be the wheel for x. If the vertices in the thin rectangles of Wx

are placed inside the proximity regions of the entry doors, then by construction
of M , the vertex in the horizontal rectangle hA

x is placed inside the reachable
region. Thus this vertex can see only the highlighted visible area in Fig. 4
inside the rectangle R for A. However if the vertices in the thin rectangles of
Wx are placed in the proximity regions of the exit doors, then the vertex in the
horizontal rectangle hA

x can be placed outside the reachable region so that it
can see the entire interior of R. This is true for each of the three literals. Since
the visible areas of the three literals have no common intersection, the vertices
in the wheel for at least one of x, y and z must be placed in the proximity
region of the exit door. We make each such literal true. This assignment has
no conflict, because of the way the wheels for a particular variable are attached
to each other. Furthermore, this assignment satisfies F .

Conversely if F is satisfiable, for each clause A = (x, y, z) of F , at least one
of x, y, z is true. Without loss of generality, assume that x is true. Place the
vertices in the wheel of x in the proximity regions of the exit doors. Then the
vertex in the hA

x can be placed outside the reachable region and it can see the
entire interior of R. Place the vertex for R in the intersection of the areas visible
from reachable regions of hA

y and lAz . This ensures that we can place the vertices
in the wheel for y and z in the proximity regions of either the entry doors or the
exit doors and we are still able to place the vertices in rectangles hA

y , lAy , lAz so
that all the straight-line edges create no area-region crossings. This yields the
desired straight-line planar fitting of G on M . �

The proof of Lemma 2 completes the NP-hardness proof. Fig. 5 illustrates
a 3-SAT formula, its Planar-3-SAT realization with the conditions of [23], and
the corresponding instance for the map fitting problem (rectangles filling up the
holes are not shown). �

Note that Bern and Gilbert [5] and recently Kerber [22] obtained NP-
completeness results using similar techniques. In particular, Bern and Gilbert [5]
consider the problem of drawing the dual on top of the drawing of a plane graph
G, such that each dual vertex lies in the corresponding face of G, while each
dual edge is drawn as a straight-line segment that crosses only its corresponding
primal edge. They show that this problem is NP-complete and the techniques
used are similar to ours, as this problem can be thought of as a special case of
fitting a clustered graph on a map, where each cluster consists of a single vertex.
However, we consider the more restricted class of rectangular maps instead of
the generic drawing of a planar graph, and hence the NP-completeness of our
problem is not implied by [5]. Kerber [22] considers the problem of embedding
the dual on top of a primal partition of the d-dimensional cube into axis-aligned
simplices and proved that this problem is NP-complete. In 2D, this problem is
also a special case of our problem, with the exception that in Kerber’s setting
edge-region crossings are allowed. Thus the result in [22] also does not imply
our results.
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4 Sufficient Conditions for Fitting

We showed in the previous section (Lemma 1) that not every c-planar connected
graph admits a planar straight-line fitting on a compatible map even if each
cluster is a single vertex. The counterexample relies on two facts: (1) there exists
a vertex in some cluster (the bridge) that is connected to vertices in two different
clusters (the wheels); (2) its cluster-graph contains two cycles. By considering
graphs that do not have at least one of the above characteristics we show a
planar straight-line fitting is always possible. In this sense the following two
lemmas present tight sufficient conditions for graphs to admit planar straight-
line fittings.

Lemma 3 Let C = (G,V) be a biconnected c-planar graph. Let M be a rectan-
gular map compatible with C. If for each vertex v of G, all the vertices adjacent
to v through an inter-cluster edge lie in the same cluster, C has a straight-line
planar fitting on M .

Proof: Let Γ be a c-planar drawing of C. Let G1, G2, . . . , Gk be the clusters of
C and let V = {V1, V2, . . . , Vk} be the corresponding vertex partition. For each
rectangle Ri, 1 ≤ i ≤ k, of M representing the cluster Gi, denote by Oi the
ellipse inscribed in Ri. We first place the vertices on the outer boundary of Gi

in Γ on Oi as follows. Consider two adjacent rectangles Ri and Rj in M . Let
vi1 , . . . , vir ∈ Vi and vj1 , . . . , vjs ∈ Vj be the vertices of Vi and Vj , incident to the
inter-cluster edges between these two clusters, taken in the order they appear
on the outer boundary of Gi and Gj , respectively. Define pi, p

′
i and pj , p

′
j to be

points of Oi and Oj , respectively, such that the straight-line segments pipj and

p′ip
′
j cross the common border of Ri and Rj , without crossing each other. Place

the vertices vi1 , . . . , vir of Vi and vj1 , . . . , vjs of Vj on Oi and Oj , between points
pi, p

′
i and pj , p

′
j , respectively, so that all the inter-cluster edges between these

vertices cross the common border of Ri and Rj . Repeat the above procedure for
each pair of adjacent rectangles in M . Since each vertex thus placed is adjacent
to a unique cluster, its position is uniquely defined. Then for each cluster Gi,
1 ≤ i ≤ k, we have placed some vertices on the outer boundary of Gi in Γ on
the ellipse Oi. Distribute the remaining vertices of the boundary of Gi on Oi,
so that the order of the vertices is the same as in the boundary of Gi. Since the
resulting drawing of the outer boundary of Gi is convex and Gi is biconnected,
apply the algorithm for drawing a graph with a prescribed convex outer face [9]
to complete the drawing of each cluster. �

Lemma 4 Let C = (G,V) be a biconnected c-planar graph. Let M be a rectan-
gular map compatible with C. If each connected component of cluster-graph GC

contains at most one cycle, then C has a straight-line planar fitting on M .

Proof: Assume that each connected component of GC contains at most one
cycle. Let v1, . . . , vk be the vertices of GC that represent clusters G1, . . . , Gk

respectively. To complete the proof we go through the following steps:
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(1) We show that GC has a planar fitting on M .

(2) We blow up the drawing of GC , so that the edges of GC are represented by
strips of width ε > 0, without creating edge-region crossings; see Fig. 6(a).
For each vertex vi of GC , we draw a small circle circ(Gi) centered at the
intersection of the strip-edges that are adjacent to vi.

(3) We draw the boundary of Gi on the circle circ(Gi), i = 1, . . . , k, so that
the inter-cluster edges, when drawn with straight-line segments, intersect
neither the boundaries of the clusters, nor each other; see Fig. 6(b).

(4) Since the boundary of each Gi is a convex polygon and Gi is biconnected,
we can apply the algorithm for drawing a graph with a prescribed convex
outer face [9] to complete the drawing of the clusters; see Fig. 6(c).

vi
circ(Gi)

+

(a) (b) (c)

Figure 6: (a) Drawing of GC , each edge is represented by a strip of width ε > 0.
(b) Placing the boundary vertices of the clusters on the corresponding circles.
(c) Step 4 of the proof of Lemma 4.

While steps (2) and (4) are straight-forward, steps (1) and (3) need to be
proved. We provide a detailed proof for these two steps below.

Step (1). We show that GC = (VC , EC) has a straight-line planar fitting on
M . Consider first the case when GC is a tree and let v1 ∈ VC be the root
of GC . We prove that even if the position of v1 is fixed in its corresponding
rectangle R1, we can place the remaining vertices of GC in their corresponding
rectangles so that the resulting straight-line drawing is a planar fitting of GC on
M . Let v2, . . . , vf be the children of v1 and let R2, . . . , Rf be the corresponding
rectangles of M . Place v2, . . . , vf inside R2, . . . , Rf , respectively so that the
straight-line edges (v1, vi), 2 ≤ i ≤ f cross the common boundary of R1 and Ri.
Continue with the children of v2, . . . , vf , recursively.

Assume now that each connected component of GC = (VC , EC) contains
at most one cycle. We show how to draw a single connected component of
GC . Let v0, . . . , vm ∈ VC induce the unique cycle of GC and let R0, . . . , Rm

be the rectangles that correspond to them, so that Ri and R(i+1) mod (m+1),
0 ≤ i ≤ m, are adjacent. Place vi, 0 ≤ i ≤ m inside Ri such that for any point
p ∈ R(i+1) mod (m+1), segment pvi crosses the common boundary of Ri and
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R(i+1) mod (m+1). Since this was the only cycle of GC , the removal of the edges
of this cycle results in several trees. Root the trees at the vertices v0, . . . , vm,
to which they are adjacent and apply the procedure described in the first part
of the proof. This completes the construction of planar fitting of GC on M .

Step (3). Since graph G is c-planar there exists a drawing Γ(G) of G, where
all the vertices of Gi that are adjacent to the vertices of clusters G1, . . . , Gi−1,
Gi+1, . . . , Gk appear on the outer face of Gi [14]. Let ui

1 be a vertex of Gi

that lies on Gi’s boundary; see Fig. 7(a). Let vi1, . . . , v
i
pi

be all the neighbors

ui
1

Gi

. . .

vi1
vi2

vipi

vipi+1

vipi+2

vipi+ai

ui
2

ui
3

ui
ki

. . .

vi1
vi2

vipi

vipi+1

vipi+2

vipi+ai

arc(ui
1)

vi

arc(ui
2)

arc(ui
3)

arc(ui
4)

(a) (b)

Figure 7: Illustration for the proof of Lemma 3.

of vi that represent the clusters to which vertex ui
1 is adjacent. Assume that

vi1, . . . , v
i
pi

are given in the clockwise order they appear around vi in Γ(GC). We

denote by arc(ui
1) a circular arc of circ(Gi) that is included between the straight-

line segments vi, vi1 and vi, vipi
, as one travels from vi1 to vipi

in the clockwise
direction; see Fig. 7(b). Since Γ(GC) is a straight-line planar drawing, we have
the following observation.

Observation 4.1 Let vi be a vertex of GC and Gi be a cluster of G that cor-
responds to vi. Let ui

1,. . . ,ui
ki

be the vertices of the boundary of Gi traversed

in the clockwise direction. The circular arcs arc(ui
1), . . . , arc(ui

ki
) appear clock-

wise around the circ(Gi) in this specific order and are internally disjoint; see
Fig. 7(a)-(b).

Let now Gi and Gj be two clusters of G. Assume that they are connected by

multiple inter-cluster edges. Let ui
fi
, . . . , ui

li
(resp. uj

fj
, . . . , uj

lj
) be the vertices

of the boundary Gi (resp. Gj) in the clockwise direction that are involved in
the inter-cluster edges between Gi and Gj ; see Fig. 8(a).

The edges (ui
fi
, uj

lj
), (ui

li
, uj

fj
) are called the bounding inter-cluster edges. In

order to accomplish a drawing of G we first construct a drawing of its skeleton.
The skeleton S(G) of G is a graph that is constructed as following: (1) consider
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uj
fj

uj
lj

Gj

ui
fi

ui
li

Gi

G1 G2

G3

G1 G2

G3

(a) (b) (c)

Figure 8: (a) The bounding edges between clusters Gi and Gj are drawn with
fat blue ink. (b) A clustered graph G with clusters identified by gray. (c) The
skeleton S(G) of graph G depicted in figure (b).

the graph containing the boundary of each cluster Gi and all the bounding inter-
cluster edges, (2) in the resulting graph contract all the vertices of the boundaries
of the clusters which have degree two; see Fig. 8(b)–(c). We assume that S(G) is
an embedded graph, with the embedding which preserves the embedding of G.
Consider a planar drawing Γ(S(G)) so that the vertices of each cluster Gi∩S(G)
are drawn on the circle circ(Gi) in the order they appear on the boundary of Gi.
Such a drawing exists, since G is c-planar. But for an arbitrary placement of the
vertices, it is not true that the edges of S(G) can be drawn straight-line without
creating crossings. Next we show how to place the vertices of S(G)∩Gi on the
circle circ(Gi) so that the edges of S(G) do not cross each other, when drawn
straight-line. For each v of S(G) ∩Gi, we place v in the middle of circular arc
arc(v). We next show that this results in no crossings between the inter-cluster
edges. Let u ∈ Ga, v ∈ Gb, w ∈ Gc and s ∈ Gd, so that (u, v) and (w, s) are
two inter-cluster edges; see Fig. 9(a). Next we consider several cases based on
whether the clusters Ga, Gb, Gc and Gd are distinct or not.

Case 1: The clusters Ga, Gb, Gc, Gd are pairwise distinct. A crossing between
the edges (u, v) and (w, s) is impossible, since each of the Ga, Gb, Gc, Gd

lie in a distinct rectangle of map M and an inter-cluster edge is drawn in
the union of the two rectangles associated with the two clusters it bridges.

Case 2: Two of the non adjacent clusters Ga, Gb, Gc, Gd coincide. Assume that
Ga = Gc. Recall that w is placed on the middle of circular segment arc(w)
and u in the middle of circular segment arc(u). By Observation 4.1, the
circular segments arc(u) and arc(v) are internally disjoint; see Fig. 9(b).
Therefore the edges (u, v) and (w, s) do not cross each other.

Case 3: Ga = Gc and Gb = Gd. Let va and vb be the vertices of GC that
correspond to Ga and Gb, respectively. First, note that (u, v) and (w, s)
are bounding edges of G and form a cycle u,w, s, v in Γ(S(G)). Without
loss of generality assume that we traverse this cycle in this specific order;
see Fig. 9(c). Then u appears before w and s before v on the boundary of
Ga and Gb, respectively. By Observation 4.1, the circular segment arc(u)
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arc(s)
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Figure 9: (a) Two edges of G, with the end vertices belonging to distinct clusters
Ga, Gb, Gc, Gd. (b) Case 2 of the proof, Ga = Gc. (c-d) Case 3 of the proof,
Ga = Gc and Gb = Gd.

appears before arc(w) in the clockwise order around circ(Ga). Since both
u and w are adjacent to Gb, arc(u) and arc(w) meet at a point lying on
the line through va and vb; see Fig. 9(d). Similarly, arc(s) appears before
arc(v) in the clockwise order around circ(Gb) and meet at the line through
va and vb. Thus, edges (u, v) and (w, s) are separated by the horizontal
line through va, vb and hence do not cross.

We have constructed a planar straight-line drawing of S(G). We complete
the proof by explaining how to draw the remaining vertices of the boundaries
of the clusters of G and the inter-cluster edges of G. For each cluster Gi,
i = 1, . . . , k, connect the vertices of Gi ∩ S(G) that have already been placed
with straight-lines in the order they appear on the boundary of Gi. They form
a convex polygon. Place the remaining vertices of the boundary of Gi on the
respective sides of this convex polygon. Draw the remaining inter-cluster edges
straight-line. It is easy to see that they do not create crossings, since they lie
in the convex polygons created by the bounding edges of G. �

Putting together the results in this section we obtain the following theorem:

Theorem 2 Let C = (G,V) be a biconnected c-planar graph. Let M be a
rectangular map compatible with C. If (a) for each vertex v of G, all the vertices
adjacent to v through an inter-cluster edge lie on the same cluster, or (b) each
connected component of cluster-graph GC contains at most one cycle, then C
has a straight-line planar fitting on M . Moreover, there exist a c-planar graph
C and a compatible map M which do not fulfill condition (a) and (b) and do
not admit a planar straight-line fitting.

5 Fitting Graphs on Rectilinear Maps

In this section we give a description of our results for more general rectilinear
maps.



428 Alam et al. Fitting Planar Graphs on Planar Maps

It is known that only a restricted class of planar graphs can be realized by
rectangular maps. For general planar graphs, 8-sided polygons (T-shapes) are
necessary and sufficient for contact maps [18] (some T-shapes degenerate to L-
shapes or rectangles). In this section, we assume that the input is a rectilinear
map, with rectangles, L- and T-shaped polygons, together with a c-planar graph
G with a cluster-graph GC . The first condition that we require for our input
graph G is that each vertex of G is incident to at most one inter-cluster edge.
From Lemma 3 this condition is sufficient for rectangular maps. Now, we extend
this to L-shaped and T-shaped polygons (maps). We impose several conditions
under which we prove the existence of a fitting. Because of the presence of
concave corners, we impose our second condition: none of the clusters contains
a boundary chord, i.e., a non-boundary edge between two boundary vertices.

The idea is to apply the algorithm for drawing a graph with a prescribed
convex outer face [9]. We partition the polygons into convex pieces. Since the
polygons form a contact map, for each common boundary of adjacent polygons
there is at least one edge between the corresponding clusters. Our last condition
restricts this further: between any two adjacent clusters there exist at least two
independent inter-cluster edges. We call a graph in which every pair of adjacent
clusters has this property doubly-interconnected.

We now have the following theorem.

Theorem 3 Let G be a doubly-interconnected and biconnected c-planar graph
such that the inter-cluster edges of G form a matching and there is no boundary
chord in any cluster. Then there exists a straight-line planar fitting of G on any
compatible map M with rectangular, L-shaped, or T-shaped polygons.

Proof: We prove this theorem by constructing a straight-line planar fitting of
G on M . We now show how we place the vertices of each cluster inside the
corresponding polygon. First we place the vertices on the outer boundary of
each cluster.

Note that the common boundary of two adjacent polygons contains at most
two concave corners, one in each polygon. Since G is doubly-interconnected,
there are at least two independent inter-cluster edges corresponding to this
common boundary. We place the vertices incident to these inter-cluster edges
next to the common boundary and in particular on both sides of these concave
corners; see, for example, the placement of the vertices in the two concave
corners on the common boundary between A and B in Fig. 10. This ensures
that the cycle spanned by the boundary vertices of the cluster can be placed
completely within the corresponding polygon with at most two concave corners
along the cycle. Note that the placement of the boundary vertices around
each polygon (other than those placed at the concave corners) is quite arbitrary
provided that their placement follow the circular order along the outer-boundary
of the cluster for that polygon. Let Gi be a particular cluster of G and let Pi

be its corresponding polygon. If Pi is a rectangle, then we have already placed
some vertices on the outerface of Gi, we distribute the remaining vertices on the
outerface so that the outer face is in convex position and then we can directly
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apply the algorithm for drawing a graph with a prescribed convex outer face [9]
to complete the drawing of Gi.

We thus assume that Pi is either an L-shaped or a T -shaped polygon. If Pi

is an L-shaped polygon, then we have already placed a vertex, say a, next to the
concave corner of Pi. We choose a second boundary vertex, say b, to be placed
at the convex corner of Pi opposite to its only concave corner. Since G is doubly-
interconnected and since the polygons form a contact map, the vertex b exists
in all such L-shaped polygons. A straight-line segment between a and b defines
two convex regions inside the polygon. We now compute an (a  b)-path and
place the vertices on this path on the straight-line segment between a and b; see
Fig 10(a). Thus this path should not have shortcuts, where a shortcut of a path
P is an edge between vertices nonadjacent in P . Furthermore this path should
not contain any other boundary vertex, already placed elsewhere. We now show
how we compute an (a  b)-path with the above properties. Assume that Gi

contains at least one internal vertex, otherwise Gi can be trivially drawn by
drawing its boundary. Since Gi has no boundary chord, we can triangulate its
interior so that the resulting graph has no boundary chord as well. Therefore
assume that Gi is internally triangulated without any boundary chord and hence
is 3-connected [2]. Then there exists some a b-path that does not contain
any boundary vertex. In particular by Menger’s theorem, there are at least
three vertex disjoint a b-paths in Gi. The path which is topologically the
middle of these three does not contain any vertex on the boundary. Take the
shortest such a b-path Pab not containing any boundary vertex. Then Pab

has no shortcut edge. This path placed on the straight-line cut between a and b
divides the L-shaped polygon P into two convex regions. We can distribute the
remaining vertices on the boundary so that they are in convex position inside
the two convex pieces. Hence we are able to apply the algorithm in [9] directly
to complete the drawing of Gi.

D

E

C

B

A

b

a

D

E

C

B

A

a

c

b

(a) (b)

Figure 10: Illustrating how vertices on the boundary of an L-shaped and a
T -shaped polygon are placed. The cluster for the L-shaped polygon is parti-
tioned by an (a b)-path into two convex polygons with the path as common
boundaries. Similarly the cluster for the T -shaped polygon is partitioned by an
(a  c)-path and a (b  c)-path into three convex polygons with the paths as
common boundaries.
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Finally assume that Pi is a T -shape polygon. Let a and b be the vertices
placed next to the two concave corners of Pi. We choose a third boundary vertex
c lying on the segment of Pi opposite to a and b; see Fig. 10(b). We choose c
so that the straight-line segments between a, c and b, c are completely within
Pi. Again since G is doubly-interconnected, for every pair of adjacent vertices
we have at least two independent edges that connect the two clusters. Since the
polygons form a contact map, this condition implies that the vertex c exists in
all the T-shaped polygons that make a contact with its edge opposite to its two
concave corners. We now compute an (a  c)-path and a (b  c)-path such
that neither contains a boundary vertex and neither has a shortcut and place
the vertices on these two paths on the two straight-line cuts between a, c and
b, c, respectively. We again assume that Gi is internally triangulated and hence
internally 3-connected. Then by Menger’s theorem, there exist some a c-
path and some b c-path that do not contain any boundary vertex. Take the
shortest such a c-path Pac and shortest such b c-path Pbc. Then Pac and
Pbc contain no boundary vertex and they have no shortcut edge. If these two
paths are internally vertex disjoint, then we place the vertices on them on the
two straight-line cuts between a, c and b, c. These two cuts define three convex
regions in Pi and we can apply the algorithm in [9] directly to complete the
drawing of Gi as before. In case the two paths Pac and Pbc are not internally
vertex disjoint we may assume that they have a common subpath towards c, say
a (c d)-path; since they are shortest paths. We then draw the (a d)-path,
(b  d)-path and (c  d)-path on three segments with a common endpoint at
d, such that each pair of these segments are less than 180 degree apart from
each other. This again forms three convex polygons and we can again apply the
algorithm in [9] directly to complete the drawing of Gi. �

Note that there is another approach different than that in the proof of The-
orem 3 to draw a cluster Gi inside its corresponding L-shaped or T -shaped
polygon Pi. After we place the boundary vertices of Gi participating in a inter-
cluster edge near some concave corner, we can distribute the remaining bound-
ary vertices of Gi on segments parallel to the edges of Pi. Then the resulting
polygon representing the boundary of Gi is a star-shape with a non-empty ker-
nel. Assuming again that Gi is internally triangulated and hence internally
3-connected, we can then complete its drawing inside this polygon due to [19]].
However we use the approach described in Theorem 3 since in this approach we
have a better vertex distribution since we do not need to place all the internal
vertices in the kernel of the non-convex polygon.

However any algorithm that distributes vertices inside non-convex regions
while preserving cluster-planarity must distribute the vertices among the convex
components of the regions. It is only natural to try to make such a distribu-
tion balanced. In the following we consider a map containing only rectangles
and L-shaped polygons and we aim to find a balanced distribution of vertices
and faces inside the polygons of a map. We define a measure called “imbalance”
which captures the difference between the geometric partition of the non-convex
regions into convex regions (e.g., region area) and the partition of the clusters
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into subclusters (e.g., subcluster size) corresponding to the convex regions. First
we consider the distribution inside one L-shaped polygon partitioned into two
pieces by a straight-line cut; then we use this result to simultaneously minimize
the maximum imbalance in all L-shaped polygons in the map. We prove that
the global imbalance minimization problem can be solved optimally, using dy-
namic programming and min-max paths. These techniques are interesting by
themselves.

5.1 Shortest Path Separators

Here we consider the balanced distribution for a particular L-shaped polygon
(the local problem). Given an L-shaped polygon with a straight-line cut par-
titioning it into parts of area A1 and A2, and the corresponding cluster C, we
first compute an extended graph G by placing a dummy vertex in each face
and adding edges from this dummy vertex to all the vertices in the face. Let
P be a shortest path in the extended graph G and denote by L(P ) and R(P )
the subgraphs of G induced by the vertices in the two parts of G created by
P , not including the vertices on P . Then the sizes of L(P ) and R(P ) give the
summations of the numbers of vertices and faces in the two parts of the original
graph partitioned by P . We want to find a shortest path P between two given
boundary vertices s and t of G that contains no other boundary vertex and
minimizes the imbalance |A1/A2 − |L(P )|/|R(P )||.
Lemma 5 The values of |L(P )| for all shortest paths P between fixed boundary
vertices s and t of the extended plane graph G can be enumerated in O(n2) time.

Proof: We prove this lemma constructively. We first remove all the boundary
vertices from G except s and t. We then start by computing the shortest paths
from s to t by a standard method like Dijkstra’s algorithm, that can slightly
be extended to compute all shortest paths between s and t. The output of this
algorithm is a subgraph Gs of G consisting of vertices and edges that lie on at
least one of the paths. The shortest paths on this graph imply an orientation
for the edges of Gs, where each path between s and t is oriented towards t; see
Fig. 11(a). Since Gs consists of directed shortest paths from s to t, Gs is a
directed acyclic graph (In fact it is an st-digraph with s as the unique source
and t as the unique sink). Furthermore, any directed path in Gs is a shortest
path between its two end-points since it is a subpath of a shortest path. We
consider an embedding of G where Gs is drawn upward, i.e. each edge of Gs

is drawn upward. In such an embedding for a vertex v of Gs, we can define a
leftmost shortest path from v to t in Gs, denoted by left(v), where each edge
(u,w) of the path is the leftmost outgoing edge incident to u. We now give a
dynamic programming algorithm that finds and enumerates, for each vertex v
of Gs, the value of |L(P )| for possible paths P formed by any shortest path
from s to v, followed by the path left(v), where one of these subpaths might be
empty if v is one of s or t. We call each such path a feasible path for v. We keep
these values for a vertex v in a list denoted by values(v). Fig. 11(a) shows a
feasible path P for a vertex v and the highlighted region defines L(P ).
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Figure 11: (a) The directed acyclic graph Gs, (b)–(c) illustration for the algo-
rithm for finding a suitable shortest path separator.

We consider the vertices of Gs in a topological order. Initially, we set val-
ues(s) to be a singleton set, consisting of the value of |L(left(s))|. Consider
now the case when we address a vertex w of Gs, other than s. We construct
values(w) by starting with an empty set and for each incoming edge (v, w) of
w, inserting an integer corresponding to each integer in values(v). For each
incoming edge (v, w) of w, we compute these entries to values(w) in one of the
following two cases.
Case 1: w is on left(v). In this case each feasible path for v is also a feasible
path for w. Furthermore each feasible path for w passing through v is also a
feasible path for v; see Fig. 11(b). For each integer x ∈ values(v), we thus
insert x to values(w).
Case 2: w is not on left(v). In this case, the edge (v, w) is to the right of
left(v). We find a feasible path for w from a feasible path for v, followed by the
edge (v, w), followed by the path left(w). Moreover, each feasible path for w
passing through v can be found in this way; see Fig. 11(c). Let y be the number
of vertices between the paths left(v) and (v, w).left(w), including those on
left(v), but not on left(w). Here (v, w).left(w) denote the path consisting of
the edge (v, w) followed by the path left(w). For each integer x ∈ values(v), we
thus insert x+y to values(w). This completes the description of the procedure
to compute values(v).

Statement 1 For each vertex w of Gs, values(w) enumerates the values of
|L(P )| for all feasible paths P for w.

Proof: The claim is true for s since the only feasible path for s is left(s) and
|L(left(s))| ∈ values(s). For a vertex w other than s, each feasible path for w
is formed by a path from s to v, followed by the edge (v, w), followed by left(w)
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for a vertex v with an outgoing edge to w. All such paths are addressed in the
dynamic programming algorithm that computes values(w) for each vertex w of
Gs. �

Since each shortest path in G is a directed path in Gs and by definition, is a
feasible path for t, values(t) enumerates the values of |L(P )| for each shortest
path P in G. For each integer x ∈ values(v) for a vertex v of Gs, we can
store a pointer to the predecessor of v for the corresponding feasible path for
v. Using these pointers we can easily reconstruct the shortest path P for which
a particular value of |L(P )| is achieved. The algorithm can be implemented
to run in O(n2) time as follows. The entries in values(v) for a vertex v are
integers between 1 and n, so it is sufficient to maintain a table of size n× n. In
the first step, we perform Dijkstra’s algorithm in time O(n log n). Computation
of |L(left(s))| can be done in O(n) time with a suitable data structure storing
the embedding of G. Afterwards for each vertex v we need to insert at most n
numbers in values(v). Furthermore for each vertex v, the leftmost path left(v)
from v to t can be computed in O(n) time. Finally for each vertex v and for
each incoming edge (w, v), the computation of the number of vertices between
the two paths left(v) and (v, w).left(w), takes O(n) time in total for a vertex
v with the given embedding. The total running time is thus O(n2). �

5.2 Vertex Distribution in Maps with L-Shaped Polygons

Here we address the global problem: finding shortest-path cuts in all the clusters
simultaneously, so that we minimize the maximum imbalance over all clusters.
Note that it is not sufficient to select pairs of end vertices s and t of the cuts
separately for each polygon to minimize the imbalance in each of them since the
choice of end-vertices in one polygon may influence the choice of end-vertices
in others. However we show next that this influence is limited. Let Pi be an
L-shaped polygon that contains a cluster Gi. Recall from the previous sections
that we identify two corners of Pi: the only concave corner and the convex
corner opposite to the concave corner. For the remaining part of the section
we will call these two corners left-corner and right-corner of Pi, where the left
corner has smaller x-coordinate than the right corner. Then we find a shortest
path cut in Gi between two end-vertices s and t and place this shortest path
along the straight-line between the two corners of Pi. Again for convenience
we call the two end-vertices left and right end-vertices where the left (resp.
right) end-vertex is placed near the left (resp. right) corner of Pi. The shared
boundary between a particular polygon Q and its adjacent polygons in a map
induces a set of intervals as we circularly walk across the boundary of Q. Since
the dual of M preserves the embedding of the input graph, these intervals on
the boundary of Q naturally define a set of intervals on the outer vertices of the
cluster corresponding to Q. Each inter-cluster edge incident to an outer vertex
of the cluster must pass through the corresponding interval of the boundary of
Q avoiding edge-region crossings. We now have the following lemma.
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Lemma 6 Let L and L′ be two adjacent L-shaped polygons in the map and let
C and C ′ be the two corresponding clusters. Then the choice of the right end-
vertex of a cut in C and the choice of the left end-vertex of a cut in C ′ depend
on each other if and only if the right-corner of L and the left-corner of L′ are
internal points of the same interval in the boundary of L and L′.

Proof: Suppose s and t denote the two end-vertices of a cut of C such that
s lies near the left-corner of L and t lies near the right-corner of L. Similarly
define s′ and t′ for L′. Assume without loss of generality that the concave corner
of L is its right-corner. Then the only polygon that can influence the choice
of t is the one that shares an interval of the boundary with L containing the
concave corner (right-corner) of L. Thus in order for s′ to influence the choice
of t, it is necessary that L′ shares an interval of its boundary that contains the
right-corner of L. Now, depending on whether the concave corner of L′ is its
left-corner or right-corner, the choice of s’ can be influenced by the choice of t
in one of the following two ways.

(a) The concave corner of L′ is its right-corner and the left-corner of L′ coincides
with the right-corner of L. In this case, the left-corner of L′ and the right-
corner of L is a common point, which is an internal point of the common
boundary of L and L′; see Fig. 12(a).

(b) The concave corner of L′ is its left-corner and the common boundary be-
tween L and L′ contains this point. Thus the right-corner of L and the
left-corner of L′ are internal points of this common boundary in this case
too; see Fig. 12(b).

L
L′

s

t

s′ t′

L

L′

s

t

t′

s′

Figure 12: The two cases for the dependency between the choice of end-points
of a cut

Thus in both cases, for the choice of t in C and the choice of s in C ′ depends
on each other only if the right-corner of L and the left-corner of L′ are internal
points of the same interval in the boundary of L and L′. We will now show
that if this is indeed the case, the choices of the two end-points of the cuts in C
and C ′ are in fact dependent. We again assume that the concave corner of L is
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its right-corner. In case it is the left-corner of L, we can show the dependency
between the choices in a similar way.
Case 1: The concave corner of L′ is its right-corner. In this case, the
choices of t and s′ must be such that either t and s′ are adjacent or if there is
no such edge, one can insert (t, s′) without introducing any crossings.
Case 2: The concave corner of L′ is its left-corner. In this case, the
choice of t and s′ must be such that s′ lies to the right of all the neighbors of t
in C ′ and t lies to the left of all the neighbors of s′ in C. �

Lemma 6 gives a necessary and sufficient condition for two L-shaped poly-
gons to influence the choice of the end-points of the cuts of each other. This
dependency can be expressed in the directed dependency graph D = (P,EP ),
where P is the set of all L-shaped polygons and for L,L′ ∈ P , there is a directed
edge from L to L′ in EP when the choice of the right end-point of a cut in L
influences the choice of the left end-point of a cut in L′. We can represent each
edge (L,L′) of graph D by drawing a directed line from the right-corner of L
to the left-corner of L′, with all edges pointing to the right; hence D is acyclic.
Since the choice of left-corner and right-corner of a polygon may affect the choice
in at most one polygon each, the maximum degree of a vertex in D is two and
each component of D is either a single vertex or a path. Here for a given pair s
and t in a cluster, we define w(s, t) = |A1/A2−|L(P )|/|R(P )|| to be the smallest
imbalance imposed by shortest paths from s to t. The following theorem shows
that we can minimize the maximum imbalance over all the clusters.

Theorem 4 Let G be a connected c-planar graph, GC be the cluster-graph of
G and let M be a rectilinear map of GC with six-sided polygons such that M
represents the contact map of GC . Then one can split the regions of M in O(n4)
time into convex shapes and distribute the vertices and faces of the clusters
within the regions, such that the maximum imbalance imposed by a shortest
path is minimized.

Proof: We use the dependency graph to find cuts in all the clusters simultane-
ously such that the maximum smallest imbalance for the clusters is minimized.
For this purpose, we refine this dependency graph D to capture all possible cuts.
Before that we need to define the notion of compatible pairs of vertices in two
adjacent clusters. Informally, compatible pairs of vertices are those that influ-
ence dependency on two clusters. More formally, let C and C ′ be two clusters
with some inter-cluster edge between them such that the choice of one end-point
of the cut in C depends on the choice of one end-point of a cut in C ′ and vice
versa. Let L and L′ be the two L-shaped polygons corresponding to C and C ′

respectively. Without loss of generality, assume that the concave corner of L
is its right-corner. Then the compatible pairs between C and C ′ are defined in
two cases.
Case 1: The concave corner of L′ is its right-corner. In this case, the
compatible pairs of vertices between C and C ′ are all pairs (t, s′) such that t is
a vertex in C, s′ is a vertex in C ′ and either t and s′ are adjacent or if there is
no such edge, one can insert (t, s′) without introducing any crossings.
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Case 2: The concave corner of L′ is its left-corner. In this case, the
compatible pairs between C and C ′ are all pairs (t, s′) where t is a vertex in C,
s′ a vertex in C ′, s′ lies to the right of all neighbors of t in C ′ and t lies to the
left of all neighbors of s′ in C.

We refine the dependency graph as follows. We consider each component of
D independently and find an optimum path for that component. We start with
the case, where the component is a single vertex corresponding to polygon L.
In that case, L is partitioned into two convex pieces and we have to choose the
best pair (s, t). We create an artificial source S and sink T , and add an edge
from S to each possible candidate s, and an edge from each possible candidate
t to T . Then we insert edges (s, t) for the different pairs s and t with weights
w(s, t), where w(s, t) denotes the smallest imbalance imposed by shortest paths
from s to t (defined in the previous section). A min-max path computation
looking for the path with the smallest maximal weight on it gives the best cut
for this single component.

In the case where the component consists of a path of length one or more,
the direction of edges of the path gives an order of the vertices (representing
L-shaped polygons) on this path. Specifically, there is exactly one vertex L0 in
the path with no incoming edge and exactly one vertex Lf with no outgoing
edge. Once again we create an artificial source S and sink T , and add an edge
from S to each possible candidate s of the cluster for L0, and analogously from
each possible candidate t of the cluster for Lf to T . For each edge (L,L′) of the
path, we also insert an edge between each compatible pair (t, s′) where t is a
vertex in L and s′ is a vertex in L′. Set the weight of each such edge (t, s′) to be
zero. Finally for each vertex L on the path, let C be the corresponding cluster.
We insert edges (s, t) with weight w(s, t) between all possible candidates for s
and t found in a similar way as described in the previous section. The min-max
path computation from S to T once again delivers the desired result, namely
the path with the minimal largest weight on an edge.

The min-max path can be computed in O(n) time using the algorithm in [8].
Thus, determining the imbalance for each pair s, t in each cluster dominates the
running time. Since there are at most O(n2) possible s, t pairs and computing
w(s, t) for each takes O(n2) time, the total running time is O(n4). �

6 Conclusion and Future Work

We showed that fitting planar graphs on planar maps is NP-hard, even when
the map consists of only rectangles and each region contains a single vertex. We
then presented two sufficient conditions for the construction of planar straight-
line fitting on rectangular maps, for c-planar graphs with biconnected clusters.
These conditions are tight, in the sense that violating them makes it possible to
construct counterexamples. Finally we gave a rather restricted set of sufficient
conditions for fitting planar graphs on maps with non-convex regions, where we
also gave an algorithm for finding a fitting with a “balanced distribution” of the
vertices.
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For fitting planar graphs on maps with non-convex rectilinear regions, we
considered only polygons with at most 8 corners, in particular, T-shaped and L-
shaped polygons along with the rectangles. The reason is that any planar graph
can be represented as contact maps consisting of these three types of polygons.
We therefore did not consider Z-shaped polygons (although it also contains 8
corners) or polygons with even higher number of corners on them. However
it is worth-mentioning that an approach similar to the one in Theorem 3 can
compute a fitting of doubly-interconnected and biconnected c-planar graphs on
maps containing Z-shaped polygons as well.

One interesting variant of the problem is when we allow bends on the inter-
cluster edges. A fitting of any c-planar graph with at most 2 bends per inter-
cluster edges can be computed as a simple corollary of Lemma 3. Indeed we
can subdivide each inter-cluster edge twice and include the two degree-2 vertices
obtained from these subdivision in the two incident clusters. Then these degree-
2 vertices provide the bend points in the drawing. However one can also find
a fitting with at most 1-bend per inter-cluster edges in the following simple
approach: allocate a small circle circi in the center of each rectangle Ri to
place the boundary vertices for each cluster Gi. We then draw the inter-cluster
edges by placing the single bend on the door between the two corresponding
rectangles and finally complete the drawing of each cluster Gi inside the circle
circi by applying the algorithm for drawing a graph with a prescribed convex
outer face [9].

The work in this paper raises several open problems; a few are summarized
below:

(i) Our proof for the NP-hardness of fitting involves the use of skinny rectan-
gles; it is natural to ask whether the problem becomes easier if all regions
are “fat”.

(ii) An interesting variant of the problem of fitting on rectangular maps is
when only the map topology is given but one can change the size and the
aspect ratio of the rectangular regions so that a fitting is possible.

(iii) Our sufficient conditions for fitting on a rectangular map addresses only
c-planar 2-connected graphs. For fitting on more general rectilinear maps,
our sufficient conditions are even more restricted. It would be worthwhile
to investigate whether these conditions can be relaxed.

(iv) Another interesting question is whether an exact bound on vertex res-
olution for fitting on maps with non-convex rectilinear polygons can be
guaranteed.
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