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Planar Octilinear Drawings with One Bend Per Edge
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Abstract

In octilinear drawings of planar graphs, every edge is drawn as a sequence
of horizontal, vertical and diagonal (45◦) line segments. In this paper, we study
octilinear drawings of low edge complexity, i.e., with few bends per edge. A k-
planar graph is a planar graph in which each vertex has degree at most k. In
particular, we prove that every 4-planar graph admits a planar octilinear drawing
with at most one bend per edge on an integer grid of size O(n2) × O(n). For
5-planar graphs, we prove that one bend per edge still suffices in order to construct
planar octilinear drawings, but in super-polynomial area. However, for 6-planar
graphs we give a class of graphs whose planar octilinear drawings require at least
two bends per edge for some edges.
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Figure 1: Henry Beck Tube Map (first edition), 1933. Printed at Waterlow & Sons Ltd.,
London.

1 Motivation

Drawing edges as octilinear paths plays a central role in the design of metro-maps
(see e.g., [8, 17, 18]), which dates back to the 1930’s when Henry Beck, an engineer-
ing draftsman, designed the first schematic map of London Underground using mostly
horizontal, vertical and diagonal segments; see Fig.1. Laying out networks in such a
way is called octilinear graph drawing. More precisely, an octilinear drawing of a
(planar) graph G = (V,E) of maximum degree 8 is a (planar) drawing Γ(G) of G
in which each vertex occupies a point on the integer grid and each edge is drawn as
a sequence of horizontal, vertical and diagonal (45◦) line segments. For example, see
Fig. 4, 7 and 10a.

For drawings of (planar) graphs to be readable, special care is needed to keep the
number of bends small. However, the problem of determining whether a given embed-
ded 8-planar graph (that is, a planar graph of maximum degree 8 with given combina-
torial embedding) admits a bendless octilinear drawing is NP-hard [16]. This negative
result motivated us to study octilinear drawings of low edge complexity, that is, with
few bends per edge. Surprisingly enough, very few results relevant to this problem were
known, even if the octilinear model has been well-studied in the context of metro-map
visualization and map schematization (see e.g. [20]). As an immediate byproduct of a
result of Keszegh et al. [12], it turns out that every d-planar graph, with 3 ≤ d ≤ 8,
admits a planar octilinear drawing with at most two bends per edge; see Section 2. On
the other hand, every 3-planar graph on five or more vertices admits a planar octilinear
drawing in which all edges are bendless [6, 11].
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In this paper, we bridge the gap between the two aforementioned results. In partic-
ular, we prove that every 4-planar graph admits a planar octilinear drawing with at most
one bend per edge in cubic area (see Section 4). We further show that every 5-planar
graph also admits a planar octilinear drawing with at most one bend per edge, but our
construction may require super-polynomial area (see Section 5). Hence, we have made
no effort in proving a concrete bound. We complement our results by demonstrating an
infinite class of 6-planar graphs whose planar octilinear drawings require at least two
bends per edge on some edges (see Section 6).

2 Related Work
The research on the (planar) slope number of graphs focuses on minimizing the number
of used slopes (see e.g., [9, 12, 13, 14, 15]). Octilinear drawings can be seen as a
special case thereof, since only 4 slopes (horizontal, vertical and the two diagonals) are
used. In a related work, Keszegh et al. [12] showed that any d-planar graph admits a
planar drawing with one bend per edge, in which all edge-segments have at most 2d
different slopes. So, for d = 4 and for d = 5, we significantly reduce the number
of different slopes from 8 and 10, resp., to 4. They also proved that d-planar graphs,
with d ≥ 3, admit planar drawings with two bends per edge that require at most dd2e
different slopes. It is not difficult to transfer this technique to the octilinear model and
show that any d-planar graph, with 3 ≤ d ≤ 8, admits a planar octilinear drawing with
two bends per edge. However, for d = 3, Di Giacomo et al. [6] recently proved that
any 3-planar graph with n ≥ 5 vertices has a bendless planar drawing with at most 4
different slopes and angular resolution π/4 (see also [11]); their approach also yields
octilinear drawings.

Octilinear drawings can be considered as an extension of orthogonal drawings,
which allow only horizontal and vertical segments (i.e., graphs of maximum degree 4
admit such drawings). Tamassia [19] showed that one can efficiently minimize the total
number of bends in orthogonal drawings of embedded 4-planar graphs. However, min-
imizing the number of bends over all embeddings of a 4-planar graph is NP-hard [5].
Note that the core of Tamassia’s approach is a min-cost flow algorithm that first com-
putes the angles and the bends of the drawing, producing an orthogonal representation,
and then based on this representation computes the actual drawing by specifying the
exact coordinates for the vertices and the bends of the edges. It is known that Tamas-
sia’s algorithm can be employed to produce a bend-minimum octilinear representation
for any given embedded 8-planar graph. However, a bend-minimum octilinear rep-
resentation may not be realizable by a corresponding planar octilinear drawing [3].
Furthermore, the number of bends on a single edge might be very high, but can easily
be bounded by applying appropriate capacity constraints to the flow-network.

Biedl and Kant [1] showed that any 4-planar graph except the octahedron admits a
planar orthogonal drawing with at most two bends per edge on an O(n2) integer grid.
Hence, the octilinear drawing model allows us to reduce the number of bends per edge
at the cost of an increased area. On the other hand, not all 4-planar graphs admit or-
thogonal drawings with one bend per edge; however, testing whether a 4-planar graph
admits such a drawing can be done in polynomial time [2]. In the context of metro-map
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visualization, several approaches have been proposed to produce metro-maps using oc-
tilinear or nearly-octilinear polylines, such as force-driven algorithms [8], hill climb-
ing multi-criteria optimization techniques [18] and mixed-integer linear programs [17].
However, the problem of laying out a metro-map in an octilinear fashion is significantly
more difficult than the octilinear graph drawing problem, as several metro-lines may
connect the same pair of stations and the positions of the vertices have to reflect geo-
graphical coordinates of the stations.

3 Preliminaries
In our algorithms, we incrementally construct the drawings similar to the method of
Kant [10]. We first employ the canonical order to cope with triconnected graphs.
Then, we extend them to biconnected graphs using the SPQR-tree [4] and to simply-
connected graphs using the BC-tree. In this section we briefly recall them; however we
assume basic familiarity.

Definition 1 (Canonical order [10]) For a given triconnected plane graphG = (V,E)
let Π = (P0, . . . , Pm) be a partition of V into paths such that P0 = {v1, v2}, Pm =
{vn} and v2 → v1 → vn is a path on the outer face of G. For k = 0, . . . ,m let
Gk be the subgraph induced by

⋃k
i=0 Pi and assume it inherits its embedding from G.

Partition Π is a canonical order of G if for each k = 1, . . . ,m− 1 the following hold:
(i) Gk is biconnected, (ii) all neighbors of Pk in Gk−1 are on the outer face of Gk−1,
(iii) all vertices of Pk have at least one neighbor in Pj for some j > k, (iv) if |Pk| > 1,
then degGk

(v) = 2 ∀v ∈ Pk and Pk is called chain; otherwise Pk is called singleton.

Definition 2 (BC-tree) The BC-tree B of a connected graph G has a B-node for each
biconnected component of G and a C-node for each cutvertex of G. Each B-node is
connected with the C-nodes that are part of its biconnected component.

An SPQR-tree [4] provides information about the decomposition of a biconnected
graph into its triconnected components. It can be computed in linear time and space [7].
Every triconnected component is associated with a node µ in the SPQR-tree T . The
triconnected component itself is referred to as the skeleton of µ, denoted by Gskel

µ =

(V skel
µ , Eskel

µ ). We refer to the degree of a vertex v ∈ V skel
µ in Gskel

µ as degskel
µ (v). We say

that µ is an R-node, if Gskel
µ is a simple triconnected graph. A bundle of at least three

parallel edges classifies µ as a P-node, while a simple cycle of length at least three
classifies µ as an S-node. By construction R-nodes are the only nodes of the same type
that are allowed to be adjacent in T . The leaves of T are formed by the Q-nodes. Their
skeleton consists of two parallel edges; one of them corresponds to an edge of G and
is referred to as real edge. The skeleton edges that are not real are referred to as virtual
edges. A virtual edge e in Gskel

µ corresponds to a tree node µ′ that is adjacent to µ in
T , more precisely, to another virtual edge e′ in Gskel

µ′ . We assume that T is rooted at a
Q-node. Hence, every skeleton (except the one of the root) contains exactly one virtual
edge e = (s, t) that has a counterpart in the skeleton of the parent node. We call this
edge the reference edge of µ denoted by ref(µ). Its endpoints, s and t, are named the
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poles of µ denoted by Pµ = {s, t}. Every subtree rooted at a node µ of T induces a
subgraph of G called the pertinent graph of µ that we denote by Gpert

µ = (V pert
µ , Epert

µ ).
We abbreviate the degree of a node v in Gpert

µ with degpert
µ (v). The pertinent graph is

the subgraph of G for which the subtree describes the decomposition.
Now let G be a simple, biconnected k-planar graph, whose SPQR-tree T is given.

Additionally, we may assume that T is rooted at a Q-node that is adjacent to an S-
or R-node. Notice that at least one such node exists since the graph does not contain
any multi-edges, which would be the case if only a P-node existed. Biconnectivity and
maximum degree of k yield basic bounds for the graph degree of a node v ∈ V , i.e.,
2 ≤ deg(v) ≤ k. By construction the pertinent graph of a tree node µ is a (connected)
subgraph of G; thus 1 ≤ degpert

µ (v) ≤ deg(v). For the degrees in a skeleton graph
Gskel
µ , we obtain bounds based on the type of the corresponding node. Skeletons of

Q-nodes are cycles of length two, whereas S-nodes are by definition simple cycles of
length at least three; hence, degskel

µ (v) = 2. For P- and R-nodes the degree can be
bounded by 3 ≤ degskel

µ (v) ≤ k, since the skeleton of the former is at least a bundle
of three parallel virtual edges and the latter’s skeleton is triconnected by definition.
The upper bound is derived from the relation between skeleton and graph degrees: A
virtual edge e = (s, t) hides at least one incident edge of each node (not necessarily
an (s, t)-edge). This observation can be easily proven by induction on the tree. Hence,
2 ≤ degskel

µ (v) ≤ deg(v).
Next, we use this observation to derive bounds for the pertinent degree by distin-

guishing two cases depending on whether v is a pole or not. Recall that Gpert
µ is a

subgraph of G that is obtained by recursively replacing virtual edges by the skeletons
of the corresponding children. In the first case when v is an internal node in Gpert

µ , i.e.,
v /∈ Pµ, v is not incident to the reference edge in Gskel

µ . Thus, every edge of G hidden
by a virtual edge in Gskel

µ is in Gpert
µ . Hence, degskel

µ (v) ≤ degpert
µ (v) ≤ k. In the other

case, i.e., v ∈ Pµ, at least one edge that is hidden by the reference edge, is not part of
Gpert
µ , thus, degskel

µ (v)− 1 ≤ degpert
µ (v) ≤ k − 1. Notice that the lower bounds depend

on the skeleton degree, which in turn depends on the type of node, unlike the upper
bounds that hold for all tree nodes. The next lemma tightens these bounds based on the
type of the parent node.

Lemma 1 Let µ be a tree node that is not the root in the SPQR-tree T of a simple,
biconnected, k-planar graph G and let µ′ be its parent in T . For v ∈ Pµ, it holds that
degpert

µ (v) ≤ k − 2, if µ′ is a P- or an R-node and degpert
µ (v) ≤ k − 1 otherwise, i.e. µ′

is an S- or a Q-node.

Proof: Notice that every skeleton edge hides at least one edge. Therefore, every edge
incident to a vertex v may hide at most k+ 1− degskel

µ (v) edges. Since for the poles of
P- and R-nodes, degskel

µ (v) ≥ 3 holds and for S-nodes degskel
µ (v) = 2, the claim follows.

2

Lemma 2 Let T be the SPQR-tree of a planar biconnected graph G = (V,E) with
deg(v) ≥ 3 for every v ∈ V . There exists at least one Q-node in T that is adjacent to
a P- or an R-node.
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Proof: Assume to the contrary that all Q-nodes are adjacent to S-nodes only. We pick
such a Q-node and root T at it. Let µ be an S-node with poles Pµ = {s, t} such that
there is no other S-node in the subtree of µ. By definition of an S-node, µ has at least
two children. If all of them are Q-nodes, then there exists a v ∈ V skel

µ with s 6= v 6= t
and deg(v) = 2; a contradiction. Hence, there is at least one child µ′ that is a P- or an
R-node. However, since the leaves of T are Q-nodes and those are not allowed to be
children of P- and R-nodes by our assumption, there exists at least one other S-node in
the subtree of µ′ and therefore in the subtree of µ which contradicts our choice of µ. 2

4 Octilinear Drawings of 4-Planar Graphs
In this section, we focus on planar octilinear drawings of 4-planar graphs. We first con-
sider the case of triconnected 4-planar graphs and then we extend our approach first to
biconnected and then to simply-connected graphs. Central in our approach is the port
assignment; by the port of a vertex we refer to the side of the vertex an edge is con-
nected to. The different ports on a vertex are distinguished by the cardinal directions.

4.1 The Triconnected Case
Let G = (V,E) be a triconnected 4-planar graph and Π = {P0, . . . , Pm} be a canoni-
cal order of G. We momentarily neglect the edge (v1, v2) of the first partition P0 of Π
and we start by placing the second partition, say a chain P1 = {v3, . . . , v|P1|+2}, on a
horizontal line from left to right. Since by definition of Π, v3 and v|P1|+2 are adjacent
to the two vertices, v1 and v2, of the first partition P0, we place v1 to the left of v3 and
v2 to the right of v|P1|+2. So, they form a single chain where all edges are drawn using
horizontal line segments that are attached to the east and west port at their endpoints.
The case where P1 is a singleton is analogous. Having laid out the base of our draw-
ing, we now place in an incremental manner the remaining partitions. Assume that we
have already constructed a drawing for Gk−1 and we now have to place Pk, for some
k = 2, . . . ,m− 1.

In case where Pk = {vi, . . . , vj} is a chain of j − i + 1 vertices, we draw them
from left to right along a horizontal line one unit above Gk−1. Since vi and vj are the
only vertices that are adjacent to vertices in Gk−1, both only to one vertex, we place
the chain between those two as in Fig.2a. The port used at the endpoints of Pk in Gk−1
depends on the following rule: Let v′i (v′j , resp.) be the neighbor of vi (vj , resp.) in
Gk−1. If the edge (vi, v

′
i) ((vj , v′j), resp.) is the last to be attached to vertex v′i (v′j ,

resp.), i.e., there is no vertex v in Pl ∈ Π, l > k such that (v′i, v) ∈ E ((v′j , v) ∈ E,
resp.), then we use the northern port of v′i (v′j , resp.). Otherwise, we choose the north-
east port for (vi, v

′
i) and the north-west port for (vj , v

′
j).

In case of a singleton Pk = {vi}, we can apply the previous rule if the singleton is
of degree 3, as the third neighbor of vi must belong to a partition Πj for some j > k.
However, in case where vi is of degree 4 we may have to deal with an additional third
edge (vi, v) that connects vi with Gk−1. By the placement so far, we may assume that
v lies between the other two endpoints, thus, we place vi such that x(vi) = x(v). This
enables us to draw (vi, v) as a vertical line segment; see Fig.2b.
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v1 v2

vi vj
v′i v′j

(a)

vi

v1 v2

v

(b)

v2

vn

v3

v1

(c)

Figure 2: (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Placement of a
singleton Pk = {vi} with degree 4. (c) Final layout after repositioning v1 and v2 (the
shape of the dotted edges can be obtained by extending the stubs until they intersect).

The above procedure is able to handle all chains and singletons except the last
partition Pm, because vn may have four edges pointing downwards. One of these
edges is (vn, v1), by definition of Π. We exclude (vn, v1) and draw vn as an ordinary
singleton. Then, we shift v1 to the left and up as in Fig.2c. This enables us to draw
(v1, vn) as a combination of a horizontal and a vertical segment. For (v1, v2), we move
v2 one unit to the right and down. We free the west port of v2 by redrawing its incident
edges as in Fig.2c and attach (v1, v2) to it. Edge (v1, v2) will be drawn as a diagonal
segment with positive slope connected to v1 and a horizontal segment connected to v2,
which requires one bend. Let (v2, vi) be the other incomplete edge according to Fig.2c.
It will be drawn using a diagonal segment with positive slope connected to v2 and a
horizontal segment connected to vi, again requiring one bend.

So far, we have specified a valid port assignment and the y-coordinates of the ver-
tices. However, we have not fully specified their x-coordinates. Notice that by con-
struction every edge, except the ones drawn as vertical line segments, contains exactly
one horizontal segment. This enables us to stretch the drawing horizontally by em-
ploying appropriate cuts. A cut, for us, is a y-monotone continuous curve that crosses
only horizontal segments and divides the current drawing into a left and a right part;
see Fig.3a. It is not difficult to see that we can shift the right part of the drawing that
is defined by the cut further to the right while keeping the left part of the drawing on
place and the result remains a valid octilinear drawing.

To compute the x-coordinates, we proceed as follows. We first assign consecutive
x-coordinates to the first two partitions and from there on we may have to stretch the
drawing in two cases. The first one appears when we introduce a chain, say Pk, as
it may not fit into the gap defined by its two adjacent vertices in Gk−1 (see Fig.3a).
In this case, we horizontally stretch the drawing between its two adjacent vertices in
Gk−1 to ensure that their horizontal distance is at least |Pk|+1. The other case appears
when an edge that contains a diagonal segment is to be drawn. Such an edge requires
a horizontal distance between its endpoints that is at least the height it bridges. We
also have to prevent it from intersecting any horizontal-vertical combinations in the
face below it. We can cope with both cases by horizontally stretching the drawing by
a factor that is bounded by the current height of the drawing. Since the height of the
resulting drawing is bounded by |Π| = O(n), it follows that in the worst case its width
is O(n2). Based on the above, we are now ready to state the main theorem of this
subsection.
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Algorithm 1: 4-Planar Triconnected
Input : A 4-planar triconnected graph G = (V,E) and a canonical order

Π = {P0, . . . , Pm} of G, where P0 = {v1, v2} and Pm = {vn}
Output: An octilinear drawing Γ(G) of G

(x(v1), y(v1))← (0, 0);
Place P1 = {v3, . . . , v|P1|+2} at (n, 0), . . . , (n · |P1|, 0);
(x(v2), y(v2))← (n · (|P1|+ 1), 0);

for k ← 2 to m− 1 do

Let Pk = {vi, . . . , vj};
v′i← leftmost neighbor of Pk in Gk−1;
v′j ← rightmost neighbor of Pk in Gk−1;

//Ensure that Pk fits in between v′i and v′j
if (x(v′j)− x(v′i) < n · (|Pk|+ 1)) then

Stretch Γ(G) horizontally such that x(v′j)− x(v′i) = n · (|Pk|+ 1);

//Compute y-coordinates
for v ∈ Pk do y(v)← k − 1;

//Compute x-coordinates
if |Pk| = 1 and degGk

(vi) = 3 then //Deg-3 Singleton Case
v← neighbor of vi in Gk−1 s.t. v /∈ {v′i, v′j};
x(vi)← x(v);
Draw (v, vi) as vertical segment;

else //Chain & Deg-2 Singleton Cases
for t := 0 to j − i do

x(vi+t)← x(v′i) + n · (t+ 1);

Draw the interior edges of Pk as straight line segments;

//Route edges to v′i and v′j
if the north-east port at v′i is occupied or deg(v′i) = 3 then

Draw (v′i, vi) as horizontal-vertical combination;

else
Draw (v′i, vi) as horizontal-diagonal combination;

if the north-west port at v′j is occupied or deg(v′j) = 3 then
Draw (v′j , vj) as horizontal-vertical combination;

else
Draw (v′j , vj) as horizontal-diagonal combination;

Place Pm = {vn} and reposition v1 and v2 as in Fig.2c.
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v1 v2

vi vj

v′i v′j

v1 v2

vi vj
v′i v′j

(a) (b)

Figure 3: (a) Illustration of a cut, in case of a chain. (b) Nested separating triangles
each requiring one bend.

Theorem 1 Given a triconnected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge on an O(n2)×O(n) grid.

Proof: In order to keep the time complexity of our algorithm linear, we employ a
simple trick. We assume that any two adjacent points of the underlying integer grid
are by n units apart in the horizontal direction and by one unit in the vertical direction.
This a priori ensures that all edges that contain a diagonal segment will not be involved
in crossings and simultaneously does not affect the total area of the drawing, which
asymptotically remains cubic. On the other hand, the advantage of this approach is that
we can use the shifting method of Kant [10] to cope with the introduction of chains in
the drawing, that needs O(n) time in total by keeping relative coordinates that can be
efficiently updated and computing the absolute values only at the last step. 2

An outline for a simple reference implementation that employs the idea of keeping
the vertices at a horizontal distance of n is given in Algorithm 1. The result is a rather
simple algorithm which may result in wider drawings than necessary. With some more
effort and by shifting the vertices more carefully, one may considerably improve the
actual drawing area in practice, while keeping the running time linear. An example
produced by a more sophisticated implementation is given in Fig. 4.

Note that our algorithm produces drawings that have linear number of bends in total
(in particular, exactly 2|Π| = O(n) bends). In the following, we prove that this bound
is asymptotically tight.

Theorem 2 There exists an infinite class of 4-planar graphs which do not admit bend-
less octilinear drawings and if they are drawn with at most one bend per edge, then a
linear number of bends is required.

Proof: Based on the simple fact that in an orthogonal drawing a triangle requires at
least one bend, we describe an example that translates this idea to the octilinear model
(see Fig.3b). While a triangle can easily be drawn bendless with the additional ports
available, we will occupy those to enforce the creation of a bend as in the orthogonal
model. Our construction is heavily based on the so-called separating triangle, i.e., a
three-cycle whose removal disconnects the graph. Each vertex of such a triangle has
degree 4. Any triangle which is drawn bendless has a 45◦ angle inside. But since the
triangles are nested and have incident edges going inside of the triangles, this is impos-
sible. Note that the graph of our construction is triconnected. Hence, its embedding is
fixed up to the choice of the outer face. 2
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Figure 4: A sample drawing of a triconnected 4-planar graph produced by an imple-
mentation of our algorithm. Vertices are labeled according to their numbering in the
canonical ordering.

4.2 The Biconnected Case

Following standard practice, we employ a rooted SPQR-tree and assume for a tree node
that the pertinent graphs of its children are drawn in a pre-specified way. Consider a
node µ in T with poles Pµ = {s, t}. In the drawing of Gpert

µ , s should be located at
the upper-left and t at the lower-right corner of the drawing’s bounding box with a port
assignment as in Fig.5a. In general, we assume that the edges incident to s (t, resp.)
use the western (eastern, resp.) port at their other endpoint, except of the northern-most
(southern-most, resp.) edge which may use the north (south, resp.) port instead. In that
case we refer to s and t as fixed; see es, et in Fig.5a. More specifically, we maintain
the following invariants:

IP-1: The width (height) of the drawing of µ is quadratic (linear) in the size of Gpert
µ .

s is located at the upper-left and t at the lower-right corner of the drawing’s
bounding box.

IP-2: If degpert
µ (s) ≥ 2, s is fixed; t is fixed if degpert

µ (t) = 3 and µ’s parent is not the
root of T .

IP-3: The edges that are incident to s and t in Gpert
µ use the south, south-east and east

ports at s and the north, north-west and west port at t, resp. If s or t is not fixed,
incident edges are attached at their other endpoints via the west and east port,
respectively. If s or t is fixed, the northern-most edge at s and the southern-most
edge at t may use the north (south, resp.) port at its other endpoint.

Notice that the port assignment, i.e. IP-3, guarantees the ability to stretch the draw-
ing horizontally even in the case where both poles are fixed. Furthermore, IP-2 is
interchangeable in the following sense: If degpert

µ (s) = 2 and degpert
µ (t) = 1, then s

is fixed but t is not. But, if we relabel s and t such that t′ = s and s′ = t, then
degpert

µ (s′) = 1 and degpert
µ (t′) = 2.
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s

t

O(n)

O(n2)

es

et

(a)

t

s

t
(b)

µ2

s
µ1

t

(c)
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Figure 5: (a) Schematic view of the layout requirements. (b) Creating a nose at t.
(c) First P-node subcase without an (s, t)-edge but s might be fixed in a child µ1.
(d) Second P-node subcase with an (s, t)-edge where t might get fixed in a child µ2.

By IP-2, we can create a drawing where both s′ and t′ are not fixed and located in
the upper-left and lower-right corner of the drawing’s bounding box. Afterwards, we
mirror the resulting layout vertically and horizontally to obtain one where s and t are
in their respective corners and not fixed. Notice that in general the property of being
fixed is not symmetric, e.g., when degpert

µ (s) = 3 and degpert
µ (t) = 2 holds, s remains

fixed while t becomes fixed as well. For a non-fixed vertex, we introduce an operation
that is referred to as forming or creating a nose: We say that a pair of edges pointing
downwards to a common vertex w form a nose if one is using the north port of w while
the other one uses either the north-west or the north-east port of w; see Fig.5b, where t
has been moved downwards at the cost of a bend. As a result, the west port of t is free.

P-node case: Let µ be a P-node. By Lemma 1, for a child µ′ of µ, it holds that
degpert

µ′ (s) ≤ 2 and degpert
µ′ (t) ≤ 2. So, t can form a nose in µ′, while smight be fixed in

the case where degpert
µ′ (s) = 2. Notice that there exists at most one such child due to the

degree restriction. We distinguish two cases based on the existence of an (s, t)-edge.
In the first case, assume that there is no (s, t)-edge. We draw the children of µ from

top to bottom such that a possible child in which s is fixed, is drawn topmost (see µ1

in Fig.5c). In the second case, we draw the (s, t)-edge at the top and afterwards the
remaining children (see Fig.5d). Of course, this works only if s is not fixed in any of
the other children. Let µ′ be such a potential child where s is fixed, i.e., degpert

µ′ (s) =
2, and thus, the only child that remains to be drawn. Here, we use the property of
interchangeability to “unfix” s in µ′. As a result s can form a nose, whereas t may now
be fixed in µ′ when degpert

µ′ (t) = 2 holds, as in Fig.5d. However, then degpert
µ (t) = 3

follows. Notice that the presence of an (s, t)-edge implies that the parent of µ is not
the root of T , since this would induce a pair of parallel edges. Hence, by IP-2 we are
allowed to fix t in µ. Port assignment and area requirements comply in both cases with
our invariant properties.
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Figure 6: (a) S-node with children µ1, . . . , µ4; µ3 is a Q-node representing the edge
(v3, v4). Optional edges are drawn dotted. (b) Example for a chain vi, . . . , vj with vir-
tual edges representing µi, . . . , µj−1 in the R-node case. (c) Singleton vi with possibly
three incident virtual edges representing µ′i, µ

′
v, µ
′
j . (d) Placing vn and moving up s

which might be fixed in µsn.

S-node case: We place the drawings of the children, say µ1, . . . , µ`, of an S-node µ in a
“diagonal manner” such that their corners touch as in Fig.6a. In case of Q-nodes being
involved, we draw their edges as horizontal segments (see, e.g., edge (v3, v4) in Fig.6a
that corresponds to Q-node µ3). Observe that s and t inherit their port assignment
and pertinent degree from µ1 and µ`, respectively, i.e., degpert

µ (s) = degpert
µ1

(s) and
degpert

µ (t) = degpert
µ`

(t). So, we may assume that s is fixed in µ, if s is fixed in µ1.
Similarly, t is fixed in µ, if t is fixed in µ`. By IP-2, t is not allowed to be fixed in
the case where the parent of µ is the root of T . However, Lemma 2 states that we can
choose the root such that t is not fixed in that case, and thus, complies with IP-2. Since
we only concatenated the drawings of the children, IP-1 and IP-3 are satisfied.

R-node case: For the case where µ is an R-node with poles Pµ = {s, t}, we follow
the basic idea of the triconnected algorithm of the previous section and describe the
modifications necessary to handle the drawing of the children of µ. To do so, we
assume the worst case where no child of µ is a Q-node. Let µuv denote the child
that is represented by the virtual edge (u, v) ∈ Eskel

µ . Notice that due to Lemma 1,
degpert

µuv
(u) ≤ 2 and degpert

µuv
(v) ≤ 2 holds. Hence, with IP-2 we may assume that at

most one out of u and v is fixed in µuv . We choose the first partition in the canonical
ordering to be P0 = {s, t} and distinguish again between whether the partition to be
placed next is a chain or a singleton.

In case of a chain, say Pk = {vi, . . . , vj} with two neighbors v′i and v′j in Gk−1,
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we have to replace two types of edges with the drawings of the corresponding children:
the edges (vi, vi+1), . . . , (vj−1, vj) representing the children µi, . . . , µj−1 and (v′i, vi)
((vj , v′j) resp.) representing µ′i (µ′j resp.). We place the vertices of Pk on a horizontal
line high enough above Gk−1 such that every drawing may fit in-between it and Gk−1.
Then, we insert the drawings aligned below the horizontal line and choose for i ≤ l <
j, vl to be the fixed node in µl, whereas in µ′i (µ′j resp.), we set vi (vj resp.) to be
fixed. Hence, for i ≤ l < j, vl+1 may form a nose in µl pointing upwards while v′i
and v′j form each one downwards as depicted in Fig.6b. By stretching the drawing
horizontally, we increase its width, which allows us to further increase its height if
necessary.

For the case where Pk = {vi} and i 6= n is a singleton, we only outline the
difference which is a possible third edge (vi, v) to Gk−1 representing say µ′v . While
the other two involved children, say µ′i and µ′j , are handled as in the chain-case, µ′v
requires extra height now and we may place vi such that µ′v fits below µ′j as in Fig.6c.
Notice that degpert

µ′
v

(vi) = 1 holds and therefore by IP-2 both vi and v are not fixed in
µ′v . Hence, forming a nose at vi and v as in Fig.6c is feasible.

It remains to describe the special case where the last singleton Pk = {vn} is placed.
Since s, t ∈ P0, both have not been fixed yet. We proceed as in the triconnected algo-
rithm and move s = v1 above vn as depicted in Fig.6d, high enough to accommodate
the drawing of the child µsn represented by the edge (s, vn). Since we may require
vn to form a nose in µsn as in Fig.6d, we choose s to be fixed in µsn. However, we
are allowed by IP-2 to fix s since t remains unfixed. For the area constraints of IP-1,
we argue as follows: Although some diagonal segments may force us to stretch the
whole drawing by its height, the height of the drawing has been kept linear in the size
ofGpert

µ . Since we increase the width by the height a constant number of times per step,
the resulting width remains quadratic.

Root case: For the root of T we distinguish two cases: In the first case, there exists a
vertex v ∈ V with deg(v) ≤ 3. Then, we choose as root a Q-node µ that represents
one of its three incident edges and orient the poles {s, t} such that t = v. Hence, for
the child µ′ of µ follows degpert

µ′ (t) ≤ 2. In the other case, i.e., for every v ∈ V we have
deg(v) = 4, we choose a Q-node that is not adjacent to an S-node, whose existence is
guaranteed by Lemma 2. In both cases, we may form a nose with t pointing downwards
and draw the edge as in the triconnected algorithm.

Theorem 3 Given a biconnected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge on an O(n2)×O(n) grid.

Proof: The SPQR-tree T can be computed in O(n)-time and its size is linear to the
size of G [7]. The pertinent degrees of the poles at every node can be pre-computed by
a bottom-up traversal of T . Drawing a P-node requires constant time; S- and R-nodes
require time linear to the size of the skeleton. However, the sum over all skeleton edges
is linear, as every virtual edge corresponds to a tree node. 2

An example illustrating our approach is given in Fig.7.
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Figure 7: Example layout of a biconnected 4-planar graph. Vertices are labeled by their
indices. The corresponding SPQR-tree T has been rooted at a Q-node representing the
edge (v32, v2) with the only child being an S-node whose skeleton is the simple cycle
v32, v21, v2. It has two R-nodes as children, a smaller in the upper left (with poles
{v32, v21}) and a larger one (with poles {v21, v2}) occupying most of the drawing area.
The latter one contains two smaller S-nodes (with poles {v10, v12} and {v4, v26}) and a
P-node (with poles {v26, v25}) that has two children. One of them being an (s, t)-edge,
the other one an S-node.

4.3 The Simply-Connected Case
In the following, we turn our attention to the connected case. We start by computing
the BC-tree of G and root it at some arbitrary B-node. Every B-node, except the root,
contains a designated cut vertex that links it to the parent. A bridge for a biconnected
component consists only of a single edge. Similar to the biconnected case, we define
an invariant for the drawing of a subtree: The cut vertex that links the subtree to the
parent is located in the upper left corner of the drawing’s bounding box.

Any subgraph, sayGb, induced by a non-bridge biconnected component can be laid
out using the biconnected algorithm. However, to construct a drawing that satisfies our
invariant we have to consider two cases. First, the cut vertex, say vb, that linksGb to the
parent, has to be drawn in the upper-left corner of the subtrees drawing. Second, there
may be other cut vertices of G in Gb to which we have to attach their corresponding
subtrees. We describe in detail both cases below:

Parent cut vertex vb: We start by describing how to root the SPQR-tree Tb for Gb so
that vb is located in the upper-left corner. There are at least two Q-nodes having vb as a
pole (as Gb is biconnected) and the degree of vb in Gb is at most 3. In the biconnected
case, we distinguished for the root of the tree between whether there exists v ∈ V with
deg(v) ≤ 3 or not. Hence, we may choose for the root of Tb a Q-node having vb as a
pole and orient it such that vb = t, thus, satisfying deg(t) ≤ 3. Then, we flip the final
drawing of Gb such that t is in the upper left corner (see Fig.8a).
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Figure 8: (a) Rooting the SPQR-tree such that vb is in the upper-left corner. (b) All
possible situations at an S-node µ. For attaching b2 to v2, the layout had to be modified.
(c) Attaching a subtree via a bridge to a cut vertex vc in an R-node. The dashed edge
(vi, v

′) may only be present if vi = vn. (d) A cut vertex where all of its children are
attached via bridges.

Child cut vertex vc: Let vc be a cut vertex in Gb that is not the link to the parent. If vc
has degree 3 in Gb, then it may occur in the pertinent graph of every node. However, in
this case we only have to attach a subtree of the BC-tree that is connected via a bridge.
This poses no problem, as there are enough free ports available at vc and we can afford
a bend at the bridge. We only consider S- and R- nodes here since the poles of P-nodes
occur in the pertinent graphs of the first two. For R-nodes we assume that the south
east port at vc is free. So, we attach the drawing via the bridge by creating a bend as
in Fig.8c. In the diagonal drawing of an S-node, the north-east port is free. So, we can
proceed similarly; see Fig.8b.

If vc has degree 2 in Gb, it only occurs in the pertinent graph of an S-node; see
v3 in Fig.8b. However, we may no longer assume that the bridge is available. As a
result, we cannot afford a bend and have to deal with two incident edges instead of
one. We modify the drawing by exploiting the two real edges incident to vc in the
S-nodes layout to free the east and south east port; see v2 in Fig.8b. This enables us
to attach the subtrees drawing without modifying it. We finish this section by dealing
with the most simple case where there are only bridges attached to a cut vertex. The
idea is illustrated in Fig.8d and matches our layout specification.

Theorem 4 Given a connected 4-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge on an O(n2)×O(n) grid.

Proof: Decomposing a connected graph into its biconnected components takes linear
time. It remains to discuss the area requirement. Inserting a subtree with n vertices and
the given dimensions into the drawing of an R- or S-node clearly increases the width
of the drawing by at most O(n2) and the height by at most O(n). Hence, the total
drawing area is cubic, as desired. 2

5 Octilinear Drawings of 5-Planar Graphs
In this section, we focus on planar octilinear drawings of 5-planar graphs. As in Sec-
tion 4, we first consider the case of triconnected 5-planar graphs and then we extend
our approach first to biconnected and then to the simply-connected graphs.
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Figure 9: (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Placement of a
singleton Pk = {vi} of degree 5. (c) Final layout (the shape of the dotted edges can be
obtained by extending the stubs until they intersect).

5.1 The Triconnected Case

Let G = (V,E) be a triconnected 5-planar graph and Π = {P0, . . . , Pm} be a canon-
ical order of G. We place the first two partitions P0 and P1 of Π, similar to the case
of 4-planar graphs. Again, we assume that we have already constructed a drawing for
Gk−1 and now we have to place Pk, for some k = 2, . . . ,m−1. We further assume that
the x- and y-coordinates are computed simultaneously so that the drawing of Gk−1 is
planar and horizontally stretchable in the following sense: If e ∈ E(Gk−1) is an edge
incident to the outer face of Gk−1, then there is always a cut which crosses e and can
be utilized to horizontally stretch the drawing of Gk−1. This is guaranteed by our con-
struction which makes sure that in each step the edges incident to the outer face have a
horizontal segment. In other words, one can define a cut through every edge incident
to the outer face of Gk−1 (stretchability invariant).

If Pk = {vi, . . . , vj} is a chain, it is placed exactly as in the case of 4-planar
graphs, but with different port assignment. Recall that by v′i (v′j , resp.) we denote the
neighbor of vi (vj , resp.) in Gk−1. Among the available northern ports of vertex v′i
(v′j , resp.), edge (vi, v

′
i) ((vj , v′j), resp.) uses the eastern-most unoccupied port of v′i

(western-most unoccupied port of v′j , resp.); see Fig.9a. If Pk does not fit into the gap
between its two adjacent vertices v′i and v′j inGk−1, then we horizontally stretchGk−1
between v′i and v′j to ensure that the horizontal distance between v′i and v′j is at least
|Pk| + 1. This can always be accomplished due to the stretchability invariant, as both
v′i and v′j are on the outer face of Gk−1. Potential crossings introduced by edges of Pk
containing diagonal segments can be eliminated by employing similar cuts to the ones
presented in the case of 4-planar graphs. So, we may assume that Gk is plane. Also,
Gk complies with the stretchability invariant, as one can define a cut that crosses any
of the newly inserted edges of Pk and then follows one of the cuts of Gk−1 that crosses
an edge between v′i and v′j .

In case of a singleton Pk = {vi} of degree 3 or 4, our approach is very similar to
the one of the case of 4-planar graphs. Here, we mostly focus on the case where vi is
of degree 5. In this case, we have to deal with two additional edges (called nested) that
connect vi withGk−1, say (vi, v) and (vi, v

′); see Fig.9b. Such a pair of edges does not
always allow vertex vi to be placed along the next available horizontal grid line; vi’s
position is more or less prescribed, as each of v and v′ may have only one northern port
unoccupied. However, a careful case analysis on the type of ports (i.e., north-west,
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Figure 10: (a) A sample drawing of a triconnected 5-planar graph produced by an
implementation of our algorithm. (b) A recursive construction of an infinite class of
5-planar graphs requiring super-polynomial drawing area.

north or north-east) that are unoccupied at v and v′ in conjunction with the fact that
Gk−1 is horizontally stretchable shows that we can always find a feasible placement
for vi (usually far apart from Gk−1); see e.g. Fig.9b. Potential crossings due to the
remaining edges incident to vi are eliminated by employing similar cuts to the ones
presented in the case of 4-planar graphs. So, we may assume that Gk is planar. Similar
to the case of a chain, we prove that Gk complies with the stretchability invariant. In
this case special attention should be paid to avoid crossings with the nested edges of
vi, as a nested edge may contain no horizontal segment. Note that the case of the last
partition Pm = {vn} is treated in the same way, even if vn is potentially incident to
three nested edges; see Fig.9c.

To complete the description of our approach it remains to describe how edge (v1, v2)
is drawn. By construction both v1 and v2 are on a horizontal line. So, (v1, v2) can be
drawn using two diagonal segments that form a bend pointing downwards; see Fig.9c.
For a sample drawing produced by an implementation of our algorithm see Fig. 10a.

Theorem 5 Given a triconnected 5-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge.

Proof: In contrast to the corresponding proof for 4-planar graphs (see Theorem 1),
in the case of 5-planar graphs the x and y-coordinates are not independent. However,
since the y-coordinates of the vertices that have been placed already do not change
afterwards, we can still use the shifting method of Kant and keep the running time of
our algorithm linear. More specifically, in order to determine the y-coordinate of a
singleton vertex, we only use the x-distances between its neighbors that have already
been drawn. The x-distances can be computed in time proportional to the length of the
path connecting them on the outer face of the graph in the tree structure of Kant. Since
each such computation will not involve the same set of vertices more than once, the
total time needed is linear (with respect to the number of the graph’s vertices). Note
that the aforementioned procedure is not necessary for chains, as they do not impose
restriction on the drawing’s height. 2



674 Bekos et al. Planar Octilinear Drawings with One Bend Per Edge

Recall that when placing a singleton Pk = {vi} that has four edges to Gk−1, the
height of Gk is determined by the horizontal distance of its neighbors along the outer
face of Gk−1, which is bounded by the actual width of the drawing of Gk−1. On the
other hand, when placing a chain Pk the amount of horizontal stretching required in
order to avoid potential crossings is delimited by the height of the drawing of Gk−1.
Unfortunately, this connection implies that for some input triconnected 5-planar graphs
our drawing algorithm may result in drawings of super-polynomial area, as the follow-
ing theorem states.

Theorem 6 There exist infinitely many triconnected 5-planar graphs for which our
drawing algorithm produces drawings of super-polynomial area.

Proof: Fig.10b illustrates a recursive construction of an infinite class of 5-planar tri-
connected graphs with this property. The base of the construction is a “long chain”
connecting v1 and v2 (refer to the bold drawn edges of Fig.10b). Each next member,
say Gn+O(1), of this class is constructed by adding a constant number of vertices (col-
ored black in Fig.10b) to its immediate predecessor member, say Gn, of this class, as
illustrated in Fig.10b. If Wn and Hn is the width and the height of Gn, respectively,
then it is not difficult to show that Wn+O(1) > 2Wn and Hn+O(1) > 2Hn, which
implies that the required area is asymptotically exponential. 2

5.2 The Biconnected Case
For the 4-planar case we defined invariants in order to keep the area of the resulting
drawings polynomial. Since we drop this requirement now we can define a (simpler)
new invariant for the biconnected 5-planar case. When considering a node µ in T and
its poles Pµ = {s, t}, then in the drawing of Gpert

µ , s and t are horizontally aligned at
the bottom of the drawing’s bounding box as in Fig.11a. If an (s, t)-edge is present, it
can be drawn at the bottom. An (s, t)-edge only occurs in the pertinent graph of a P-
node (and Q-node). Again, we use the term fixed for a pole-node that is not allowed to
form a nose. We maintain the following properties through the recursive construction
process: In S- and R- nodes, s and t are not fixed. In P- and Q-nodes, only one of them
is fixed, say s. But similar to the 4-planar biconnected case, we may swap their roles.

P-node case: Let µ be a P-node. It is not difficult to see that µ has at most 4 children;
one of them might be a Q-node, i.e., an (s, t)-edge, which can be drawn at the bottom as
a horizontal segment. Since P-nodes are not adjacent to each other in T , the remaining

s t

µ

(a)
s t

µ3

µ2

µ1

(b)
s tv1 v2

µ1 µ2 µ4

v3

µ3

(c)

Figure 11: (a) Layout specification; s and t are located at the bottom. (b) P-node with
an (s, t)-edge from a Q-node µ1. s and t form a nose in µ2, µ3. (c) S-node example
with four children µ1, . . . , µ4.
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children are S- or R-nodes. By our invariant we may form noses enabling us to stack
them as in Fig.11b, as s and t are not fixed in them.

S-node case: Let µ be an S-node with children µ1, . . . , µl. Instead of the diagonal
layout used earlier, we now align the drawings horizontally; see Fig.11c. In the S-
node case, the poles inherit their pertinent degree from the children and the same holds
for the property of being fixed. However, by our new invariant this is forbidden, as it
clearly states that s and t are not fixed. It is easy to see that when µ1 is a P-node, s is
fixed by the invariant in µ1. In this case, we swap the roles of the poles in µ1 such that
s is not fixed. However, the other pole of µ1, say v1, is fixed now. Since the skeleton
of an S-node is a cycle of length at least three, v1 6= t holds. As a result, both s and t
are not fixed in the resulting drawing.

R-node case: To compute a layout of an R-node, we employ the triconnected algorithm
(with s = v1 and t = v2). So, let µ be an R-node and µe a child of µ that corresponds
to the virtual edge e = (u, v) in Gskel

µ . Then, degpert
µe

(u) ≤ 3 and degpert
µe

(v) ≤ 3 holds.
When inserting the drawing ofGpert

µe
, we require at most three consecutive ports at u and

v for the additional edges. As the triconnected algorithm assigns ports in a consecutive
manner based on the relative position of the endpoints, we modify the port assignment
so that an edge may have more than one port assigned. To do so, we assign each edge
e = (u, v) inGskel

µ a pair (degpert
µe

(u), degpert
µe

(v)) ∈ {1, 2, 3}2 that reflects the number of
ports required by this edge at its endpoints. Then, we extend the triconnected algorithm
such that when a port of u is assigned to an edge e = (u, v), degpert

µe
(u) − 1 additional

consecutive ports in clockwise or counterclockwise order are reserved. The direction
depends on the different types of edges that we will discuss next.

The simplest type of edges are the ones among consecutive vertices vi, vi+1 of
a chain. Recall that P0 = {v1, v2} is a special case and the edge (v1, v2) is drawn
differently. Also, the edges from P0 to P1 are drawn as horizontal segments; see Fig.9c.
For each such edge we reserve the additional ports at vi in counter-clockwise order and
at vi+1 in clockwise order; see Fig.12a. So, we can later plug the drawings of the
children into the layout as in Fig.12b without forming noses. The second type of edges
are the ones that connect Pk = {vi, . . . , vj} to v′i and v′j in Gk−1. No matter if Pk is a
singleton or a chain, we proceed by reserving the ports as in the previous case, i.e., at
vi clockwise, (vj counter-clockwise, resp.) and at v′i counter-clockwise (v′j clockwise);
see Fig.12c. In case where (vi, v

′
i) or (vj , v

′
j) is a virtual edge, we choose the poles

such that vi (vj resp.) is fixed in µ(vi,v′i)
(µ(vj ,v′j)

resp.). Thus, we can create a nose
with v′i (v′j resp.). Having exactly the ports required at both endpoints, we insert the
drawing by replacing the bend with a nose as in Fig.12d. The remaining edges from Pk
to Gk−1 in case of a singleton Pk = {vi} can be handled similarly; see Fig.12. Notice
that during the replacement of the edges, the fixed vertex is always the upper one. The
only exception are the horizontally drawn edges of a chain. There, it does not matter
which one is fixed, as none of the poles has to form a nose.

Root case: We root T at an arbitrarily chosen Q-node representing a real edge (s, t).
By our invariant we may construct a drawing with s and t at the bottom of the drawing’s
bounding box, hence, we draw the edge (s, t) below the bounding box with a ninety
degree bend using the south east port at s and south west port at t.
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Figure 12: (a) Virtual edge e = (vi, vi+1) connecting two consecutive vertices of a
chain. At both endpoints the drawing of µe requires two ports. (b) Replacing e in (a)
with the corresponding drawing of the child µe. (c) Example of an edge e = (vj , v

′
j)

that requires three ports at vj and two at v′j . (d) Inserting the drawing of µe into (c)
with vj being fixed and v′j forming a nose. (e) Reserving ports for the nested edges. A
single port for a real edge is reserved and then two ports for the virtual edge e = (vi, v).
(f) Final layout after inserting the drawing of µe.

Theorem 7 Given a biconnected 5-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge.

Proof: We have shown that the ability to rotate and scale suffices to extend the result
from 4-planar to 5-planar at the expense of the area. Similar to the 4-planar case,
computing T takes linear time. Hence, the overall running time is governed by the
triconnected algorithm. 2

5.3 The Simply-Connected Case
In the following, we only outline the differences in comparison with the corresponding
4-planar case. As an invariant, the drawing of every subtree should conform to the
layout depicted in Fig.13a. For a single biconnected component b, let vc refer to the cut
vertex linking it to the parent. As root for the SPQR-tree Tb of Gb, we again choose a
Q-node µr whose real edge is incident to vc; see Fig.13b. Hence, the layout generated
by the biconnected approach matches this scheme.

It remains to show that we can attach the children. Since we are able to scale and
rotate, we keep things simple and look for suitable spots to attach them. Notice that in
the drawings of S-nodes and chains in R-nodes all southern ports are free. Hence, we
may rotate the drawings of the subtrees and attach the at most three (two for a chain)
edges to vc there (refer to Fig.13c for an example of a chain). The only exception are the
singletons. Assume that vi is an ordinary singleton that has one nested edge attached.
Hence, it has degree 4, leaving us with a single bridge to attach the component; Fig.13d.
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Figure 13: (a) Layout scheme for a BC-subtree rooted at vc. (b) Rooting Tb at a Q-node
µr. (c) Attaching a subtree at a chain and in (d) at a singleton inside an R-node.

However, this does not hold in case vi = vn. Consider the case where vn has a nested
edge and we have to attach a subtree that requires two ports. As a result vn has degree
3 in Gb and, thus, all northern ports are free.

Theorem 8 Given a connected 5-planar graph G, we can compute in O(n) time an
octilinear drawing of G with at most one bend per edge.

Proof: We described how to attach any subtree to cut vertices inside a biconnected
component. Furthermore, the component itself complies with the layout scheme. In
addition, this scheme enables us to compose such drawings at a cut vertex using rota-
tions. The running time follows from the fact that the decomposition of a connected
graph into its biconnected components takes linear time. 2

6 A Note on Octilinear Drawings of 6-Planar Graphs
In this section, we present an infinite class of 6-planar graphs that do not admit planar
octilinear drawings with at most one bend per edge.

Theorem 9 There exists an infinite class of 6-planar graphs which do not admit planar
octilinear drawings with at most one bend per edge.

Proof: Our proof is heavily based on the following simple observation: If the outer face
F(Γ(G)) of a given planar octilinear drawing Γ(G) consists of exactly three vertices,
say v, v′ and v′′, that have the so-called outerdegree-property, i.e., deg(v) = deg(v′) =
6 and 5 ≤ deg(v′′) ≤ 6, then it is not feasible to draw all edges delimiting F(Γ(G))
with at most one bend per edge; one of them has to be drawn with (at least) two bends
in Γ(G). Next, we construct a specific maximal 6-planar graph, in which each face has
at most one vertex of degree 5 and at least two vertices of degree 6; see Fig.14a. This
specific graph does not admit a planar octilinear drawing with at most one bend, as its
outer face is always bounded by three vertices that have the outerdegree-property.

To obtain an infinite class, say C, of 6-planar graphs with this property, we give the
following iterative construction. The first member of C is the graph of Fig.14a. For
i = 1, 2, . . . , the i-th member of C is constructed by first subdividing all edges of the
(i − 1)-th member of C. This yields a new planar graph, in which every face consists
of three vertices of degree 5 or 6 and three vertices of degree 2. We connect the three
vertices of degree 2 of each face of the implied graph such that they form a K3; see
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(a) (b)

Figure 14: (a) A maximal 6-planar graph in which each face has at most one vertex
of degree 5 (black-colored vertices) and at least two vertices of degree 6 (gray-colored
vertices). From Euler’s formula for maximal planar graphs, it follows that any graph
with this property must have at least 12 vertices of degree 5. Hence, this is a smallest
graph with this property. (b) Illustration of the recursive construction.

Fig.14b. Observe that in this way all new vertices are of degree 6. This implies that the
result is a 6-planar fully-triangulated graph which contains the same number of degree
5 vertices as the graph of Fig.14a and has the outerdegree-property. 2

7 Conclusions
Motivated by their significance in map schematization, we presented algorithms for
creating planar octilinear drawings with at most one bend per edge for 4- and 5-planar
graphs. We improved the known bounds on the required number of slopes for 4- and
5-planar drawings from 8 and 10 ([12]) to 4. Our work raises several open problems:

• Is it possible to construct planar octilinear drawings of 4-planar (5-planar, resp.)
graphs with at most one bend per edge in o(n3) (polynomial, resp.) area?

• Does any triangle-free 6-planar graph admit a planar octilinear drawing with at
most one bend per edge?

• What is the complexity to determine whether a 6-planar graph admits a planar
octilinear drawing with at most one bend per edge?

• What is the number of necessary slopes for bendless drawings of 4-planar graphs?

• Is it possible to extend our methods to non-planar graphs?

Acknowledgement: The authors would like to thank Findan Eisenhut who imple-
mented the algorithms for the triconnected 4- and 5-planar graphs and reduced the
running time of the 5-planar triconnected algorithm from O(n2) to O(n).
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