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Abstract

We study a boundary labeling problem, where multiple points may
connect to the same label. In this new many-to-one model, a horizontal
backbone reaches out of each label into the feature-enclosing rectangle.
Feature points that need to be connected to this label are linked via ver-
tical line segments to the backbone. We present dynamic programming
algorithms for minimizing the total number of label occurrences and for
minimizing the total leader length of crossing-free backbone labelings.
When crossings are allowed, we aim at obtaining solutions with the min-
imum number of crossings. This can be achieved efficiently in the case of
fixed label order; however, in the case of flexible label order we show that
minimizing the number of leader crossings is NP-hard.
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1 Introduction

The process of annotating images by placing labels in the image that contain
short texts or icons describing specific features of interest is referred to as label-
ing. Typically, a label should not occlude features of the image and it should
not overlap with other labels. In map labeling (or internal labeling) the goal is
usually to place relatively small labels (often consisting of a single word/name)
directly on the map so that they are located in the immediate vicinity of the
features they describe. In addition to research in cartography and geographic
information science (GIS), map labeling has been studied in computer science
for more than two decades [7]. A survey on map labeling algorithms and an
extensive bibliography are given by Neyer [17] and Wolff and Strijk [19], respec-
tively.

However, internal labeling is not feasible anymore when large labels are em-
ployed, a typical situation that arises in technical drawings and medical atlases.
Instead, graphic designers often resort to external labels that are placed along
the image boundary and connect points and labels by crossing-free arcs referred
to as leaders. The point, where a leader attaches to its label is called a label port.
Boundary labeling (or external labeling) was formally introduced as an algorith-
mic optimization problem by Bekos et al. [4]. It stimulated a lot of follow-up
work, discussed, for example, in Kaufmann’s 2009 survey [11]. Initially, most
work concentrated on the case that each label is associated with a single feature
point (or site). However, the case where each label is associated with more than
one site (the topic of this paper) is also common in applications, even though
algorithmic solutions are rare. For instance, when showing shops or restaurants
in a city unknown to a user, the user will probably be more interested in knowing
the type of store (or the cuisine of a restaurant) than in its name. By placing
just one label for a group of sites of the same type, and connecting all these sites
to the label, it is made very clear to the user that these sites are of the same
type. An example of a map-based infographics linking point triples to the same
label is given in Figure 1a. Similarly, but in more static applications, associat-
ing several points to the same label is useful when showing similar components
(e.g., types of screws) in assembly instructions for furniture or technical devices.
Another well-known example are anatomical drawings that show different types
of muscles or bones within the human body. Figure 1b gives an example of the
human neck labeled using several many-to-one leaders. In all these cases, we
can conceptually think of groups of sites sharing the same label as having the
same color. Then, we need to connect these identically colored sites via leaders
to a label of the same color.

Different boundary labeling approaches can be distinguished by the leader
shapes that are used. Polygonal leaders may consist of a single straight-line seg-
ment (denoted as type-s leaders) or a polygonal path with multiple segments.
In the latter case, the leader shape may be described by a word over the al-
phabet {o, p, d}, where o, p, or d, respectively, denote a segment orthogonal,
parallel, or diagonal to the side of the rectangle where the label is placed. Each
describing word, for example, opo or do, encodes the leader shape read from the



JGAA, 19(3) 779–816 (2015) 781

(a) (b)

Figure 1: Examples of many-to-one labeling. (a) Infographics relating popu-
lar bands on Spotify to German cities with most listeners using many-to-one
labeling. Image courtesy of Jörg Block (www.joergblock.de). (b) Anatomi-
cal drawing of the human neck with several many-to-one leaders. Image source:
Waschke, Paulsen, Sobotta Atlas der Anatomie des Menschen, 23rd edition 2010
c©Elsevier GmbH, Urban & Fischer, München.

feature point towards the label. Further, one can distinguish boundary labeling
algorithms by the different sides of the image rectangle, where labels are placed
and by the objective, for example, minimization of the total leader length or the
number of bends. Finally, additional restrictions on the labels may be relevant,
such as uniform or non-uniform label sizes or different label port positions.

Related Work. Bekos et al. [4] presented efficient labeling algorithms in the
one-, two-, and four-sided model using type-s, type-po and type-opo leaders.
They were mainly interested in minimizing the total leader length, but also
presented an algorithm for minimizing the number of bends in one-sided opo-
labeling. Benkert et al. [5] studied algorithms for one- and two-sided po- and do-
labeling with arbitrary leader-dependent cost functions (including total leader
length and number of bends). Nöllenburg et al. [18] presented an O(n log n)-time
algorithm for one-sided minimum-length po-labeling using labels that can slide
along the boundary. Huang et al. [10], too, considered the problem of computing
boundary labelings with sliding label positions. They gave several polynomial-
time algorithms for computing one- and two-sided type-opo and type-po bound-
ary labelings with minimum leader length or minimum total number of bends.
Kindermann et al. [12] studied po-labelings, where the labels are placed on two

www.joergblock.de
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adjacent sides of the image rectangle. In the same paper the authors also extend
the algorithm such that it can handle three and four-sided labelings. Bekos et
al. [2] presented efficient algorithms for uniform labels and NP-hardness results
for non-uniform labels using combinations of more general octilinear leaders of
types do, od, and pd and labels on one, two, and four rectangle sides. Bekos
et al. [3] gave algorithms for label size maximization in a one-sided model with
two or three parallel columns of labels on a vertical rectangle side and type-opo
leaders. Gemsa et al. [8] presented several algorithms for one-sided labeling of
wide panorama images using type-o leaders and variable-width labels in multi-
ple parallel rows above the image. Recently, Barth et al. [1] conducted a user
study on the readability of different leader types, which, based on the evaluation
of task accuracy and response time, recommends to use po- or do-leaders.

Many-to-one boundary labeling was formally introduced by Lin et al. [15]. In
their initial definition of many-to-one labeling each label had one port for each
connecting site, that is, each point uses an individual leader (see Figure 2a).
This inevitably lead to (i) tall labels, (ii) a wide track-routing area between the
labels and the enclosing rectangle (since leaders are not allowed to overlap), and
(iii) leader crossings in the track routing area. Lin et al. [15] examined one and
two-sided boundary labeling using type-opo leaders; see Figure 2a. They showed
that several crossing minimization problems are NP-complete and, subsequently,
developed approximation and heuristic algorithms. In a variant of this model,
referred to as boundary labeling with hyperleaders, Lin [14] resolved the multiple
port issue by joining together all leaders attached to a common label with a
vertical line segment in the track-routing area; see Figure 2b. At the cost of label
duplications, leader crossings could be eliminated; see Figure 2d. Bruckdorfer
et al. [6] recently studied a related set visualization problem for colored points
using so-called buses, where a bus is a horizontal line segment to which points
of the same color (label) are connected by vertical line segments and all line
segments must be crossing-free. The main difference to many-to-one boundary
labeling is that the buses do not extend to the bounding box of the input point
set and thus cannot be used to attach an actual label.

Our Contribution. We study many-to-one boundary labeling with backbone
leaders (for short, backbone labeling). In this new model, a horizontal backbone
reaches out of each label into the site-enclosing rectangle. Sites connected to a
label are linked via vertical line segments to the label’s backbone (see Figure 3a).
The backbone model does not need a track routing area and thus overcomes
several disadvantages of previous many-to-one labeling models, in particular
the issues (ii) and (iii) mentioned above. As Figure 3 shows, backbone labelings
also require much less “ink” in the image than the previous methods and thus are
expected to be less disturbing for the viewer. Note that crossing-free labelings
may make it necessary to use multiple labels for the same color, as we did in
Figures 3c and 3d. We note that backbone labeling can be seen as a variation
of Lin’s opo-hyperleaders. Lin [14] posed it as an open problem to study po-
hyperleaders (which is his terminology for backbones), in particular to minimize
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R

track routing area

(a) Individual leaders [15].

R

track routing area

(b) Hyperleaders [14].

R

(c) Crossing-free individual leaders.

R

(d) Crossing-free hyperleaders.

Figure 2: Different types of many-to-one opo boundary labelings.

R

(a) One-sided backbones.

R

(b) Two-sided backbones.

R

(c) Crossing-free one-sided backbones.

R

(d) Crossing-free two-sided backbones.

Figure 3: Different types of many-to-one labelings with backbone leaders.
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Table 1: Overview of our results. Runtimes of our algorithms are shown, where
n is the number of input points, C is the color set, and α is either the number K
of globally allowed labels or the product

∏
c∈C kc of the individual label bounds

in the color vector ~k = (k1, . . . , k|C|), depending on the problem setting.

problem two-sided backbones one-sided backbones

minimize constraints result Thm result Thm

backbones O(n) 1 O
(
n4|C|2

)
2

backbones minimum gap ∆ — O
(
n7|C|2

)
3

length O(n2) 5 O
(
n4|C|2

)
6

length bounded # backbones O
(
n2α

)
4+5 O

(
n4|C|2α2

)
7

length minimum gap ∆ — O
(
n7|C|2α2

)
8

crossings fixed order O(n|C|) 9 O(n|C|) 10
crossings flex. order, fixed pos. O(n+ |C|3) 11 —
crossings flex. order — NP-complete 12

the number of duplicate labels in a crossing-free labeling.
We study three problem variants for backbone labeling, label number mini-

mization (Section 3), total leader length minimization (Section 4), and crossing
minimization (Section 5). The first two variants require crossing-free leaders.
We consider both one-sided backbones (see Figure 3a) and two-sided backbones
(see Figure 3b). One-sided backbones extend horizontally from the label to the
furthest point connected to the backbone, whereas two-sided backbones span
the whole width of the rectangle (thus one could use duplicate labels on both
sides). Furthermore, our algorithms vary depending on whether the order of the
labels is fixed or flexible and whether more than one label per color class can
be used.

For crossing-free backbone labeling we derive efficient algorithms based on
dynamic programming to minimize label number and total leader length (Sec-
tion 3 and 4), which solves the open problem of Lin [14]. The main idea is that
backbones can be used to split an instance into two independent subinstances.
For two-sided leaders faster algorithms are possible since each backbone gener-
ates two independent instances; for one-sided backbones the algorithms require
more effort since a backbone does not split the whole point set and thus the
outermost point connected to each backbone must be considered. For the case
where crossings are allowed, we present an efficient algorithm for crossing min-
imization with fixed label order and show NP-completeness for flexible label
order (Section 5). Table 1 summarizes our results.

2 Problem Definition

In backbone labeling, we are given a set P of n points in an axis-aligned rectan-
gle R. There is a set C of colors (or categories) for the points, and each point
p ∈ P is assigned a color c(p) from the set C. Our goal is to place colored labels
on the boundary of R and to assign each point p ∈ P to a label l(p) of color c(p).
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All points assigned to the same label will be connected to the label through
a single backbone leader. A backbone leader consists of a horizontal backbone
attached to the left or right side of the enclosing rectangle R and vertical line
segments that connect the points to the backbone.

Only a single backbone leader can be attached to a label. Hence, we can
use the terms label and backbone interchangeably. Since the backbones are
horizontal, we consider labels to be fully described by the y-coordinate of their
backbone. Note that, at first sight, this may imply that labels are of infinitely
small height. However, by imposing a minimum separation distance between
backbones, we can also accommodate labels of fixed height.

Let L be a set of colored labels and consider label l ∈ L. By c(l), y(l), and
P (l) we denote the color of label l, the y-coordinate of the backbone of label l
on the boundary of R and the set of points that are connected/associated to
label l, respectively.

A backbone (boundary) labeling for a set of colored points P in a rectangle R
is a set L of colored labels together with a mapping of each point p ∈ P to some
c(p)-colored label in L. The drawing can be easily produced since the backbone
leader for label l is fully specified by y(l) and P (l). A backbone labeling is called
legal if and only if (i) each point is connected to a label of the same color, and
(ii) there are no backbone leader overlaps (though crossings are allowed in some
cases).

Several restrictions on the number of labels of a specific color may be im-
posed: The number of labels may be unlimited, effectively allowing us to as-
sign each point to a distinct label. Alternatively, the number of labels may be
bounded by K ≥ |C|. If K = |C|, all points of the same color have to be assigned
to a single label. We may also restrict the maximum number of allowed labels
for each color in C separately by specifying a color vector ~k = (k1, . . . , k|C|).
A legal backbone labeling that satisfies all of the imposed restrictions on the
number of labels is called feasible. Our goal in this paper is to find feasible
backbone labelings that optimize different quality criteria.

A backbone labeling without leader crossings is called crossing-free. An
interesting variation of backbone labeling concerns the size of the backbone. A
one-sided backbone attached to a label at, say, the right side of R extends up to
the leftmost point that is assigned to it. A two-sided backbone spans the whole
width of R; see Figure 3 for examples of both types of backbones. Note that, in
the case of crossing-free labelings, two-sided backbones may result in labelings
with a larger number of labels and increased total leader length.

From now on we denote the points of P as {p1, p2, . . . , pn} and we assume
that no two points share the same x- or y-coordinate. For simplicity, we consider
the points to be sorted in decreasing order of y-coordinates, with p1 being the
topmost point in all of our relevant drawings.
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pi

pj

pk

pi+1

Figure 4: Point pi cannot be labeled. Figure 5: Labeling a 2-colored
instance with one backbone per
color.

3 Minimizing the Total Number of Labels

In this section we study the problem of finding a crossing-free many-to-one
boundary labeling that minimizes the total number of labels. We can, therefore,
set K = n so that there is effectively no upper bound on the number of labels.

3.1 Two-sided Backbones

We first investigate the case of two-sided backbones. As, in this setting, a back-
bone cuts the whole instance into two parts, it is clear that the points enclosed
by two consecutive backbones can only have the colors of these backbones. Sim-
ilarly, we can make an important observation on the structure of crossing-free
labelings between two consecutive points.

Lemma 1 Let pi and pi+1 be two points that are vertically consecutive. Let pj
(with j < i) be the first point above pi with c(pj) 6= c(pi), and let pj′ (with j′ >
i+ 1) be the first point below pi+1 with c(pj′) 6= c(pi+1) if such points exist. In
any crossing-free backbone labeling pi and pi+1 are vertically separated by at most
two backbones. Furthermore, any separating backbone has color c(pi), c(pi+1),
c(pj), or c(pj′).

Proof: Suppose that there are three separating backbones. Then the middle one
could not be connected to any point. Now, suppose that a separating backbone
is connected to a point pk above pi and has color c(pk) /∈ {c(pj), c(pi)}. Then
k < j < i. The backbone for pj has to be above pk. Hence, point pi is lying
between two backbones of other colors; see Figure 4. Its own backbone cannot
be placed there without crossing a vertical segment connecting pk or pj to their
corresponding backbones. Symmetrically, we see that a backbone separating pi
and pi+1 that is connected to a point below pi+1 can only have color c(pi+1) or
c(pj′). �

Clearly, if all points have the same color, one label always suffices. Even
in an instance with two colors, one label per color is enough: We place the
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backbone of one color above all points, and the backbone of the second color
below all points; see Figure 5. However, if a third color is involved, then many
labels may be required.

We denote the number of labels of an optimal crossing-free solution of P
by NL(P ). In the general case of the problem, P may contain several consecutive
points of the same color. We proceed by constructing a simplified instance
C(P ) based on the instance P ; in C(P ), there are no two consecutive points of
the same color. To do so, we identify each maximal set of identically-colored
consecutive points of P and represent it by the topmost point of the set; all
other points of the set are removed from the simplified instance. Note that in
order to achieve this, a simple top-to-bottom sweep is enough. Let C(P ) =
{p′1, p′2, . . . , p′k} be the clustered point set, which we just constructed. For the
sake of simplicity, we assume that f : P → C(P ) is a function that maps each
point of P to its representative point in the simplified instance C(P ).

Lemma 2 The number of labels needed in an optimal crossing-free labeling of P
with two-sided backbones is equal to the number of labels needed in an optimal
crossing-free solution of C(P ), that is, NL(P ) = NL(C(P )).

Proof: Since C(P ) ⊆ P , it trivially follows that NL(C(P )) ≤ NL(P ). So, in
order to complete the proof it remains to show that NL(P ) ≤ NL(C(P )). Let
S(C(P )) be an optimal solution of C(P ) with NL(C(P )) labels. If we manage to
construct a solution of P that has exactly the same number of labels as S(C(P )),
then obviously NL(P ) ≤ NL(C(P )).

Let p′i with 1 ≤ i ≤ k, be an arbitrary point in C(P ) and let f−1(p′i) =
{pj , pj+1, . . . , pj+m} be the maximal set of consecutive, identically-colored points
of P that have p′i as their representative in C(P ). Let H(p′i) be the horizontal
strip that is defined by the two horizontal lines through pj and pj+m, respec-
tively. Any two consecutive strips H(p′i) and H(p′i+1) are separated by an empty
strip of positive height, which contains no point of P . We argue that we can
modify S(C(P )) by shifting all backbones into these empty strips such that no
strip H(p′i) for any p′i ∈ C(P ) contains a backbone and the labeling remains
legal and crossing-free. Let H(p′i) be a horizontal strip that contains a back-
bone. By Lemma 1 there can be at most two such backbones. Since C(P )
does not contain any point between p′i and p′i+1, shifting these backbones (and
keeping their relative order) into the empty strip between pj+m and p′i+1 can-
not create any backbone crossings. If we perform this step for all strips H(p′)
with p′ ∈ C(P ) the resulting solution S′(C(P )) is again an optimal solution for
C(P ) and no cluster of consecutive equally colored points in P is separated by a
backbone of S′(C(P )). Now observe that each point p ∈ P can be attached by
a crossing-free vertical line segment to the backbone of f(p) in S′(C(P )). This
yields a crossing-free legal solution for P and thus NL(P ) ≤ NL(C(P )). �

With the help of the previous lemmas, we are ready to present a linear-time
algorithm for minimizing the number of two-sided backbones.
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Theorem 1 Let P = {p1, p2, . . . , pn} be an input point set consisting of n points
sorted from top to bottom. Then, a crossing-free labeling of P with the minimum
number of two-sided backbones can be computed in O(n) time.

Proof: In order to simplify the proof, we assume that no two consecutive points
have the same color, with the help of Lemma 2. If this is not already the case,
we can first replace P by the simplified instance C(P ). After finding a solution
for the simplified instance, we can transform this solution into a solution for P
as we did in the proof of Lemma 2. Note that both transformations can be done
in O(n) time.

We will use dynamic programming on simplified instances. For i = 1, 2, . . . , n,
cbak, cfree ∈ C ∪{∅}, and cur ∈ {true, false}, let nl [i, cur, cbak, cfree] be the op-
timal number of backbones above or at pi in the case where:
• The lowest backbone has color cbak.
• If cur = true, the lowest backbone coincides with pi; hence, it is c(pi)-

colored and cbak = c(pi). Otherwise, if cur = false, the lowest backbone
is above pi. Note that in the latter case pi might be unlabeled (for instance
if the color of the lowest backbone is not c(pi), that is, cbak 6= c(pi)). We
use the notation cbak = ∅ for the case that no backbone is placed above
or at point pi.

• In general, we allow unlabeled points between the lowest backbone and
point pi (or, above pi, if no backbone exists above or at pi). However, we
know that between two consecutive backbones any point must have the
color of one of the two backbones. Therefore, we only allow one additional
color cfree for unlabeled points between the lowest backbone and pi, that
is, any such unlabeled point has color cbak or color cfree. Obviously, in the
case where cur = true (that is, the lowest backbone coincides with pi)
such an unlabeled point does not exist. So, in general, if no unlabeled
point above pi exists, we use the notation cfree = ∅.

Obviously, nl [1, true, c(p1), ∅] = 1 for the case that a backbone is placed
through p1 and nl [1, false, ∅, c(p1)] = 0 for the case that the lowest backbone
is below p1. Now assume that we have computed all entries of table nl that
correspond to different labelings induced by the point pi. In order to compute
the corresponding table entries for the next point pi+1, we distinguish two cases:

1. The lowest backbone coincides with pi+1: In this case, the lowest backbone
should be c(pi+1)-colored, cur = true, and obviously there is no unlabeled
point between the backbone through pi+1 and the point pi+1, that is,
cfree = ∅. Hence, we need to compute entry nl [i+ 1, true, c(pi+1), ∅]. To
do so, we distinguish the following subcases with respect to the color of
the lowest backbone b above or at point pi.

1.1 b is above or at point pi and c(pi)-colored. If b is at point pi (see
Figure 6a), then trivially there is no unlabeled point below it. Hence,
a feasible solution can be derived from nl [i, true, c(pi), ∅] by adding a
new backbone, namely the one incident to pi+1.
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pi

pi+1

(a)

pi

pi+1

(b)

pi

pi+1

(c)

pi

pi+1

(d)

Figure 6: Different configurations that arise in case 1.1. Bold backbone segments
are newly added in this step.

If b is above point pi, then we distinguish two subcases.

(a) If there is no unlabeled point below b (see Figure 6b), or each
unlabeled point has color c(pi), then a feasible solution can, again,
be derived from nl [i, false, c(pi), ∅] by adding a new backbone,
namely the one incident to pi+1.

(b) On the other hand, if there are unlabeled points of color 6= c(pi)
below b, then we need to distinguish two subcases based on the
color of these points.

(b.1) If the unlabeled points are colored c(pi+1) (see Figure 6c),
then a single additional backbone incident to pi+1 suffices.
The corresponding solution can be derived using the entry
nl [i, false, c(pi), c(pi+1)].

(b.2) However, in the case where unlabeled points are c-colored
and c /∈ {c(pi), c(pi+1)} (see Figure 6d), two backbones are
required and the corresponding feasible solution is derived
from nl [i, false, c(pi), c] with c /∈ {c(pi), c(pi+1)}. Note
that the case where all unlabeled points below b are of color
c(pi) cannot occur, since we have assumed that consecutive
points are not of the same color.

1.2 b is above pi and c(pi+1)-colored. Again, we distinguish two subcases.

(a) If there is no unlabeled point below b (see Figure 7a), then a feasi-
ble solution can be derived from nl [i, false, c(pi+1), ∅] by adding
two new backbones, that is, the one incident to pi and the one
incident to pi+1.

(b) If there are unlabeled points below b (see Figure 7b), then they
may only have colors c(pi+1) and c(pi). (Otherwise, a point of
different color cannot connect to any backbone.) Again two back-
bones are required, that is, the one incident to pi and the one
incident to pi+1. The corresponding solution is derived from
nl [i, false, c(pi+1), c(pi)].

1.3 b is above pi and c-colored, where c 6= c(pi) and c 6= c(pi+1). In this
case, either there is no unlabeled point below b (see Figure 7c) or all
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pi

pi+1

(a)

pi

pi+1

(b)

pi+1

pi

(c)

pi+1

pi

(d)

Figure 7: Different configurations that arise in cases 1.2 and 1.3.

such points have color c or c(pi) (see Figure 7d). In both cases, two
backbones have to be placed: one incident to pi and one incident to
pi+1. In the former case, the corresponding feasible solution is derived
from nl [i, false, c, ∅] with c /∈ {c(pi), c(pi+1)}, while in the latter it is
derived from nl [i, false, c, c(pi)] with, c /∈ {c(pi), c(pi+1)}.

From the above cases, it follows:

nl [i+ 1, true, c(pi+1), ∅] = min





nl [i, true, c(pi), ∅] + 1

nl [i, false, c(pi), ∅] + 1

nl [i, false, c(pi), c(pi+1)] + 1

nl [i, false, c(pi), c] + 2, c /∈ {c(pi), c(pi+1)}
nl [i, false, c(pi+1), ∅] + 2

nl [i, false, c(pi+1), c(pi)] + 2

nl [i, false, c, ∅] + 2, c /∈ {c(pi), c(pi+1)}
nl [i, false, c, c(pi)] + 2, c /∈ {c(pi), c(pi+1)}

2. The lowest backbone is above pi+1: Again, we distinguish subcases with
respect to the color of the lowest backbone b above or at point pi:

2.1 b is above or at point pi and c(pi)-colored. If b is at point pi (see
Figure 8a) or b is above point pi and either there is no unlabeled
point below b (see Figure 8b) or all unlabeled points below b have
color c(pi+1) or c(pi) (see Figure 8c), then no additional backbone is
required. Then, the corresponding feasible solutions are as follows:

nl [i+ 1, false, c(pi), ∅] = min{nl [i, true, c(pi), ∅],
nl [i, false, c(pi), ∅]}

nl [i+ 1, false, c(pi), c(pi+1)] = nl [i, false, c(pi), c(pi+1)]

However, in the case where there is an unlabeled point below b which
is c-colored with c /∈ {c(pi), c(pi+1)}, a new backbone is required (see
Figure 8d). Hence, the corresponding feasible solution can be derived
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pi

pi+1

(a)

pi

pi+1

(b)

pi

pi+1

(c)

pi

pi+1

(d)

Figure 8: Different configurations that arise in case 2.1.

as

nl [i+ 1, false, c, ∅] = nl [i, false, c(pi), c]+1 for c /∈ {c(pi), c(pi+1)}.

2.2 b is above pi and c(pi+1)-colored. In this case, either there is no unla-
beled point below b (see Figure 9a) or all such unlabeled points have
color c(pi+1) or c(pi) (see Figure 9b). In both cases no backbone is
required. Hence, the corresponding feasible solutions can be derived
as follows:

nl [i+ 1, false, c(pi+1), c(pi)] = nl [i, false, c(pi+1), ∅]

nl [i+ 1, false, c(pi+1), c(pi)] = nl [i, false, c(pi+1), c(pi)]

2.3 b is above pi and c-colored, where c 6= c(pi) and c 6= c(pi+1). In this
case, if there is no unlabeled point below b (see Figure 9c) or all such
points have color c or c(pi) (see Figure 9d), then one backbone is
required for pi. The corresponding feasible solution can be derived as
follows:

nl [i+ 1,false, c(pi), ∅]
= min{nl [i, false, c, ∅] + 1,nl [i, false, c, c(pi)]}+ 1

with c /∈ {c(pi), c(pi+1)}

Finally, we consider the case that a forth color is involved, say c′ /∈
{c(pi), c(pi+1), c}. In this case, either the c′-colored points are labeled
and pi remains unlabeled (see Figure 9e), or the c′-colored points
remain unlabeled and pi is labeled (see Figure 9f). Note that a feasible
solution to the latter case only exists if the unlabeled points of colors c
and c′ are vertically separated. However, this is not a problem: In both
cases, the additional backbone is placed above point pi, a contradiction
to the choice of backbone b as the lowest backbone above pi. Hence,
we do not have to take these cases into account.

Having computed table nl , the number of labels of the optimal solution of
P equals the minimum entry of the form nl [n, false, ·, ∅]. Since the algorithm
maintains an n×2×|C|×|C| table and each entry is computed in constant time,
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pi
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pi
pi+1
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Figure 9: Different configurations that arise in cases 2.2 and 2.3.

the time complexity of our algorithm is O(n|C|2). However, it can be reduced to
O(n). In all computations for the cases that we distinguished, there was at most
one color c with c 6= c(pi) and c 6= c(pi+1) involved. By Lemma 1, we know that
there are only two possibilities for color c: It could be the first or the second
color different from c(pi) that appears above pi. Hence, for any point pi+1, only
a constant number of colors have to be considered for computing all relevant
entries nl [i+ 1, ·, ·, ·]. By a simple sweep from top to bottom over the points, in
which we keep track of the last four different colors of points, we can determine
all relevant combinations of entries in linear time. Afterwards, each entry of the
table can be computed in constant time. A solution with the minimum number
of labels can be found by backtracking in the dynamic program. �

3.2 One-sided Backbones

We now consider minimizing the total number of labels for one-sided backbones.
First, note that we can always slightly shift the backbones in a given solution
so that backbones are placed only in gaps between points. We number the gaps
from 0 to n where gap 0 is above point p1, gap n is below point pn, and gap i
is between point pi and point pi+1 for 1 ≤ i < n.

Suppose that a point p` lies between a backbone of color c in gap g and a
backbone of color c′ in gap g′ with 0 ≤ g < ` ≤ g′ ≤ n such that both backbones
horizontally extend to at least the x-coordinate of p`; see Figure 10. Suppose
that all points except the ones in the rectangle R(g, g′, `), spanned by the gaps
g and g′ and limited by p` to the left and by the boundary to the right, are
already labeled. An optimum solution for connecting the points in R(g, g′, `)
cannot reuse any backbone except for the two backbones in gaps g and g′; hence,
such a partial solution is independent of the rest of the solution.

We use this observation for minimizing the number of backbones by a dy-
namic program. For 0 ≤ g ≤ g′ ≤ n, ` ∈ {g + 1, . . . , g′} ∪ {∅}, and two colors c
and c′ let T [g, c, g′, c′, `] be the minimum number of additional labels that are
needed for labeling all points in the rectangle R(g, g′, `) under the assumption
that there is a backbone of color c in gap g, a backbone of color c′ in gap g′,
between these two backbones there is no backbone placed yet, and both back-
bones extend to the left of p` as in Figure 10. Note that for ` = ∅ the rectangle
is empty and T [g, c, g′, c′, ∅] = 0. Furthermore, also the case g′ = g can occur;
in this case, as there is no point inside a gap, the relevant entry of table T is
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g

g′

p`

R(g, g′, `)

Figure 10: A partial instance in the rectangle R(g, g′, `) bounded by the two
backbones in gaps g and g′ and the leftmost point p`.

T [g, c, g, c′, ∅] = 0.
We distinguish cases based on the connection of point p`. First, if c(p`) = c

or c(p`) = c′, it is always optimal to connect p` to the top or bottom backbone,
respectively, as all remaining points will be to the right of the new vertical
segment. Hence, in this case,

T [g, c, g′, c′, `] = T [g, c, g′, c′, left(g, g′, `)],

where left(g, g′, `) is the index of the leftmost point in the interior of R(g, g′, `)
or left(g, g′, `) = ∅ if no such point exists.

Otherwise, suppose that c(p`) /∈ {c, c′}. For connecting p`, we need to place
a new backbone of color c(p`); this is possible in any gap g̃ with g ≤ g̃ ≤ g′. Note
that reusing gap g or g′ is allowed. The backbone splits the instance into two
parts, one between gaps g and g̃ and one between gaps g̃ and g′; see Figure 11.
Hence, we obtain the recursion

T [g, c, g′, c′, `] = min
g≤g̃≤g′

(
T [g, c, g̃, c(p`), left(g, g̃, `)]

+T [g̃, c(p`), g
′, c′, left(g̃, g′, `)]

)
+ 1.

Finally, let c̄ /∈ C be a dummy color, and let p¯̀ ∈ P be the leftmost point.
Then the value T [0, c̄, n, c̄, ¯̀] obtained using dummy backbones above and below
all points yields the minimum number of labels needed for labeling all points.
We can compute each of the (n+1)×|C|× (n+1)×|C|× (n+1) entries of table
T in O(n) time. Note that all left(·, ·, ·)-values can easily be precomputed in
O(n3) total time by first sorting the points from left to right and then, for each
pair of gaps g and g′ with g < g′, sweeping once over the points {pg+1, . . . , pg′}
in this direction. Summing up, we get the following result.
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g

g′

p`

g̃
left(g, g̃, `)

left(g̃, g′, `)

Figure 11: The partial instance in the rectangle R(g, g′, `) is split by a new
backbone for p` into two partial instances in rectangles R(g, g̃, left(g, g̃, `))
and R(g̃, g′, left(g̃, g′, `)).

Theorem 2 Given a set P of n colored points and a color set C, we can com-
pute a feasible labeling of P with the minimum number of one-sided backbones
in O(n4|C|2) time.

Minimum Distances. Our algorithm might place many labels inside a gap,
which can result in a solution with very small distances between backbones. In
practice, we may want to ensure a minimum distance of ∆ between backbones,
and between a backbone and a point not connected to this backbone. To this
end, in any gap, we insert as many candidate positions for backbones as possible
for the chosen ∆ and the height of that gap (but no more than n). Now, instead
of using gaps in table T , we use these candidate positions; a position must never
be used twice. The number of entries of the table increases by a factor of O(n2),
since we now have O(n2) instead of n+1 candidate positions for each of the gaps
g and g′ (but not for `); hence, the table now has O(n5|C|2) entries. We need
O(n2) time for computing an entry because there are O(n2) possible choices for
the gap g̃. Therefore, the total running time increases to O(n7|C|2).

Theorem 3 Given a set P of n colored points, a color set C and a minimum
distance ∆ > 0, we can compute a feasible labeling of P with the minimum
number of one-sided backbones of minimum pairwise distance ∆ in O(n7|C|2)
time.

4 Length Minimization

In the previous section, we have presented algorithms for finding backbone la-
belings with the minimum number of labels. However, even two labelings with
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the same number of labels can look quite different. For making the leaders easy
to follow, it is important that they have small length. Hence, the objective is
that the total length of leader segments is minimum. In order to avoid that the
number of labels is very large in solutions with this new objective, we allow to
specify an upper bound for the number of labels as part of the input.

In this section we minimize the total length of all leaders in a crossing-free
solution, either including or excluding the horizontal lengths of the backbones.
We distinguish between a global bound K on the number of labels or a vector
~k of individual bounds per color.

4.1 Two-sided Backbones

First, we consider labelings with two-sided backbones. We use a parameter λ to
weight the number of backbones and the vertical leader length in the objective
function. The parameter λ allows a fine-grained control over the problem; in
particular, setting λ = 0 minimizes the lengths of the vertical segments, setting
λ to the width of the rectangle R minimizes the total leader length and setting
λ to n times the height of R minimizes the number of leaders.

Single Color. As a first simple case, we assume that all points have the same
color. In this case, we have to choose a set S of at most K y-coordinates
where we draw the backbones and connect each point to its nearest backbone;
this does, of course, not lead to crossings. Hence, we must solve the following
problem: Given n points with y-coordinates y(p1) > · · · > y(pn), find a set S of
at most K y-coordinates that minimizes

λ · |S|+
n∑

i=1

min
y∈S
|y − pi|. (1)

We can optimize the value in Equation (1) by choosing S ⊆ {y(p1), . . . , y(pn)},
that is, by selecting only backbones that pass through input points: For a
backbone position y ∈ S \{y(p1), . . . , y(pn)} let {pi, . . . , pj} be the set of points
that we would connect to the backbone through y. Let y(pi) > · · · > y(pi′) >
y > y(pi′+1) > · · · > y(pj). If i′ − i+ 1 ≥ j − i′, that is, if the majority of sites
connected to the backbone at position y lie above the backbone, replace y by
y(pi′). Otherwise replace y by y(pi′+1). Then the objective value in Equation (1)
cannot get worse. Hence, the problem can be solved in O(Kn) time if the points
are sorted according to their y-coordinates using the algorithm of Hassin and
Tamir [9]. Note that the problem corresponds to the 1-dimensional K-median
problem if λ = 0.

Multiple Colors. If the n points have different colors, we can no longer
assume that all backbones go through one of the given n points since we have
to avoid crossings. However, by Lemma 1, it suffices to add between any pair of
vertically consecutive points two additional candidates for backbone positions,



796 Bekos et al. Many-To-One Boundary Labeling with Backbones

p−1
p+1

p−2
p+2

p−3
p+3

p−4
p+4

p−5
p+5

y1

y15

p2

p4

p3

p5

p1

Figure 12: Candidates for five points. Red points are circles, blue points are
crosses, and the green point is a square. Candidates through a point have the
same color as the point. Candidate p±i has the same color as the first point with
a different color as pi that is met when walking from p±i over pi. Candidates
p+

1 , p+
2 , and p−5 will not be used and have no color.

plus one additional candidate above all points and one below all points. Hence,
we have a set of 3n candidate lines at y-coordinates

p−1 > y(p1) > p+
1 > p−2 > y(p2) > p+

2 > · · · > p−n > y(pn) > p+
n , (2)

where for each i the values p−i and p+
i are as close to y(pi) as the label heights

allow. Clearly, a backbone through pi can only be connected to points with
color c(pi). If we use a backbone through p−i (or p+

i , respectively), it will have
the same color as the first point below pi (or above pi, respectively) that has
a different color than pi; compare Lemma 1. For example, in Figure 12, p−1 is
colored blue since p3 is the first point below p1 that has a different color than red,
namely blue. Hence, the colors of all candidates are fixed or the candidate will
never be used as a backbone. For an easier notation, we denote the y-coordinate
of the ith point in Equation (2) by yi and its color by c(yi).

We minimize the total leader length by dynamic programming. For each
i = 1, . . . , 3n, and for each vector ~k′ = (k′1, . . . , k

′
|C|) with k′1 ≤ k1, . . . , k

′
|C| ≤

k|C|, let L[i,~k′] denote the minimum length of a feasible backbone labeling of
p1, . . . , pb i+1

3 c using k′c two-sided backbones of color c for c = 1, . . . , |C| such that

the bottommost backbone is at position yi, if such a labeling exists. Otherwise
L[i,~k′] =∞. In the following, we describe, how to compute the values L[i,~k′].

Assume that we want to place a new backbone at position yi and that the
previous backbone was at position yj with j < i. Then, we have to connect
each point px with (j+ 2)/3 ≤ x ≤ i/3 to one of the backbones through yi or yj
as these points are enclosed between the two backbones. Let link(j, i) denote
the minimum total length of the vertical segments linking these points to their
respective backbone. We set link(j, i) =∞ if there is a point px between yi and
yj with c(px) /∈ {c(yi), c(yj)} because px cannot be connected to the surrounding
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backbones. Otherwise, we have

link(j, i) =





∑

j+2
3 ≤x≤ i

3

min
(
yj − y(px), y(px)− yi

)
if c(yi) = c(yj)

∑

j+2
3
≤x≤ i

3
c(px)=c(yj)

(yj − y(px)) +
∑

j+2
3
≤x≤ i

3
c(px)=c(yi)

(y(px)− yi) if c(yi) 6= c(yj)

(3)
The base cases are L[i,~0] =∞,

L[i, (0, . . . , 0, k′c(yi)
= 1, 0, . . . , 0)] = λ+

∑

0<x≤i/3

(yi − px)

if all points above yi have color c(yi) and L[i, (0, . . . , 0, k′c(yi)
= 1, 0, . . . , 0)] =∞

otherwise.
For computing an entry L[i, (k′1, . . . , k

′
|C|)] we test all candidate positions

yj > yi for the previous backbone; to the length of the corresponding solution
we have to add the connection cost link(j, i) as well as λ for the new backbone
at position yi. Hence, we get the following recursion:

L[i, (k′1, . . . , k
′
|C|)] = λ+ min

j<i

(
L[j, (k′1, . . . , k

′
c(yi)
− 1, . . . , k′|C|)] + link(j, i)

)

(4)
Note that we need to interpret any entry of table L for which a color bound

is negative as ∞.
In order to see that each entry of table L can be computed in O(n) time,

we have to show, that, for a fixed index i, all values link(j, i) with j < i can
be computed in O(n) time. Let c′ be the first color of a point above yi that
is different from c(yi). For a fixed i, starting from j = i − 1, we scan the
candidates twice in decreasing order of their indices until we find the first point
that is neither colored c′ nor c(yi).

For color c ∈ {c(yi), c′}, we traverse the points above yi from bottom to top.
For any point px′ that we see, we store two values: the number nc(x

′) of points
of color c that we have seen so far and the sum of distances of these c-colored
points to yi, that is,

lc(x
′) =

∑

x′≤x≤ i
3 ,c(px)=c

(y(px)− yi).

Note that we can easily compute lc(x
′−1) in constant time from lc(x

′): If px′−1

is not c-colored, then lc(x
′−1) = lc(x

′); if c(px′−1) = c, then we have to connect
the point px′−1 to yi and, hence, lc(x

′ − 1) = lc(x
′) + (y(px′−1)− yi).

With these values we can compute any value link(j, i) as follows. First,
suppose that c(yi) 6= c(yj) as in the second case of Equation (3). Let px′ be the
point immediately below yj . Then

∑

j+2
3
≤x≤ i

3
c(px)=c(yi)

(y(px)− yi) = lc(yi)(x
′).
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Furthermore, we can also compute the length needed for connecting the points of
color c(yj) to the backbone at position yj since we know their number nc(yj)(px′)
and yj − y = (yj − yi)− (y − yi) for yj ≥ y ≥ yi:

∑

j+2
3
≤x≤ i

3
c(px)=c(yj)

(yj − y(px)) =
∑

x′≤x≤ i
3

c(px)=c(yj)

(
(yj − yi)− (y(px)− yi)

)

= nc(yj)(x
′) · (yj − yi)− lc(yj)(x

′)

Hence, we can compute all values link(j, i) with c(yj) 6= c(yi) in O(n) total
time for fixed i.

Now, assume that c(yi) = c(yj) and let again be px′ the point immediately
below yj . If nc′(x

′) > 0 there is a point of color c′ 6= c(yi) between the two
backbones; as this point cannot be connected, link(j, i) = ∞. If no such point
exists, every point connects to the closer backbone, either yj or yi. Hence, the
points are split into two subsets, where px′′ is the topmost point that connects
down to yi and all points px′ , . . . , px′′−1 connect to yj . Similar to the previous
computation, we get that

link(j, i) =
∑

x′≤x≤ i
3

min
(
yj − y(px), y(px)− yi

)

=
∑

x′≤x<x′′

(yj − y(px)) +
∑

x′′≤x≤ i
3

(y(px)− yi)

=
(
nc(yi)(x

′)− nc(yi)(x
′′)
)
· (yj − yi)

−
(
lc(yi)(x

′)− lc(yi)(x
′′)
)

+ lc(yi)(x
′′).

This can be computed in constant time. Note that by simply sweeping once
over the backbone positions yj and the points from yi to the top in parallel, we
can easily find the right x′′ for each yj in O(n) total time.

We have now seen that we can compute all values link(·, i) in O(n) total time.
As a consequence, we know that we can compute any entry of table L in O(n)
time. For computing all entries of the table, we need, hence, O

(
n2
∏

c∈C kc
)

time.
Let S be the set of candidates yi such that all points below yi have the same

color as yi. Any solution with yi as the lowest backbone is a candidate for the
optimum solution; we do, however, have to consider the cost of connecting the
points below yi to the backbone through yi. Note that y3n−1 = y(pn) and y3n

are always included in the set S. Summing up, we can compute the minimum
total length of a backbone labeling of p1, . . . , pn with at most kc labels per color
1 ≤ c ≤ |C| as

min
yi∈S,k′1≤k1,...,k′|C|≤k|C|

(
L[i, (k′1, . . . , k

′
|C|)] +

∑

i+2
3 ≤x≤n

(yi − px)

)
.

Hence, we get the following theorem.
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Theorem 4 A minimum length backbone labeling with two-sided backbones for
n points with |C| colors can be computed in O

(
n2 ·

∏
c∈C kc

)
time if a color

vector ~k bounds the allowed number of labels for each color.

If we globally bound the total number of labels by K, we can use a similar
dynamic program; in the table L, we replace the color vector ~k with the global
bound K, that is, we recursively compute values

L[i, k] = λ+ min
j<i

(L[j, k − 1] + link(j, i)) (5)

with 1 ≤ i ≤ 3n and k ≤ K. The only difference in the dynamic program is,
hence, that we always use the global bound instead of the specific bounds for
colors.

Similarly, we can use dynamic programming to compute length-minimal la-
belings without bounding the number of labels. Here, we recursively compute
values

L[i] = λ+ min
j<i

(L[j] + link(j, i)) (6)

for 1 ≤ i ≤ 3n. We get the following result.

Theorem 5 A minimum length backbone labeling with two-sided backbones for
n points with |C| colors can be computed in O(n2K) time if up to K labels in
total are allowed and in O(n2) time if the number of labels is not restricted.

Note that our dynamic program can also be used for deciding whether a
feasible crossing-free solution subject to the bounds on the numbers of labels
exists. If no feasible solution exists, the reported minimum length will be ∞.

4.2 One-sided Backbones

We now turn to leader length minimization for labeling with one-sided back-
bones. Here, the length of a backbone segment may differ heavily; hence, we
do not use a parameter λ as we did for two-sided backbones in Section 4.1, but
we always count both horizontal and vertical lengths. Recall that we solved the
minimization of the number of backbones with the help of a dynamic program
based on rectangular subinstances bounded by two backbones and the leftmost
point; see Section 3.2. We modify this dynamic program for minimizing the
total leader length.

As a first obvious change, we store in the dynamic programming table T the
additional length of segments and backbones needed for labeling the points of
the subinstance. However, we have to adjust more details. By the case of a single
point connected to a backbone, we see that we have to allow backbones passing
through input points of the same color for length minimization. Additionally,
for computing the vertical length needed for connecting to a backbone placed
in a gap, we need to know its actual y-coordinate.

Suppose that there is a set B of backbones that all lie in the same gap
between points pi and pi+1. Let b? be the longest of these backbones; see
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b?

pi

pi+1

Figure 13: The longest backbone b? splits the backbones between pi and pi+1.

Figure 13. The backbone b? vertically splits the set B; any backbone b′ ∈ B
above b? can only connect to points above itself and any backbone b′′ ∈ B
below b? can only connect to points below itself. By moving b′ to the top and
b′′ to the bottom as far as possible the total leader length decreases. Hence, in
any optimum solution, the backbones above b? will be arbitrarily close to y(pi)
and the backbones below b? will be arbitrarily close to y(pi+1). Furthermore,
depending on the numbers of points connected to b? from above and from below,
by moving b? either to the top or to the bottom we will find a solution that is
not worse, and in which any backbone of B is arbitrarily close to pi or to pi+1.

If, for now, we allow backbones to be infinitely close to points or other
backbones, we can use backbone positions p−i and p+

i that lie infinitely close
above and below pi, respectively, and share its y-coordinate. Each of these
positions may be used for an arbitrary number of backbones. We will see how
to maintain a minimum separation between backbones later.

Now, in the case distinction, we have to be a bit more careful. When the
leftmost point p` in the subinstance bounded by backbones of color c to the top
and of color c′ to the bottom, respectively, has color c or c′, we can no longer
always connect p` to the existing backbones. Although such a connection is
always possible, opening a new backbone may save some leader length in this
step or in later steps. Hence, we have to additionally test all positions for placing
a new backbone in the same way as we do in the case that p` has a different
color. Note that this does not increase the runtime.

With the new positions as well as the input points as possible label positions
and the updated case analysis, we can then find a solution with minimum total
leader length in O(n4|C|2) time, if the number of labels is not bounded, by
adding the length of the newly placed segments in any calculation.

Theorem 6 Given a set P of n colored points, and a color set C, we can
compute a feasible labeling of P with one-sided backbones that minimizes the
total leader length in O

(
n4|C|2

)
time.
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Bounded Numbers of Labels. If we want to integrate an upper bound K
on the total number of labels, or a color vector ~k of individual bounds for the
colors, into the dynamic program—as we did for two-sided backbones—, we
need an additional dimension for the remaining number of backbones that we
can use in the subinstance (or a dimension for each color c ∈ C for the remaining
number of backbones of that color); that is, we now use table entries of the form

T [i, c, i′, c′, `,K ′] (or T [i, c, i′, c′, `,~k′]) where
• yi is the position of the upper backbone and yi′ is the position of the lower

backbone, with i < i′.
• the upper backbone has color c and the lower backbone has color c′.
• p` with (i+ 2)/3 ≤ ` ≤ i′/3 is the leftmost point of the subinstance; if the

subinstance is empty, we use the notation ` = ∅.
• K ′ is the maximum number of labels that we allow for the subinstance.

If we bound the number of labels for the colors individually, we use a
vector ~k′ of bounds instead.

Additionally, when splitting the instance into two parts, we have to consider
not only the position of the splitting backbone of color c(p`), but also the differ-
ent combinations of distributing the allowed numbers of backbones among the
subinstances. For a global bound K, we need, hence, O(nK) time for computing

an entry of the table. If we have a color vector ~k of individual bounds, we need
O
(
n
∏

c∈C kc
)

time. Together with the additional dimension(s) of the table, we

can minimize the total leader length in O
(
n4|C|2K2

)
time if we have a global

bound K, and in O
(
n4|C|2

(∏
c∈C kc

)2)
time if we have a color vector ~k. Note

that we can easily detect cases where we have to add a backbone of color c(p`)
but the current bound kc(p`) = 0 (or K = 0) in the subinstance. In such a case,
we report +∞ as the total leader length, indicating that no feasible solution
with the given bounds exists.

Theorem 7 Given a set P of n colored points, a color set C, and a label
bound K (or a vector ~k of bounds per color), we can compute a feasible la-
beling of P with one-sided backbones that minimizes the total leader length in

O
(
n4|C|2K2

)
time (or in O

(
n4|C|2

(∏
c∈C kc

)2)
time).

Minimum Distances. So far, we allowed backbones to be infinitely close
to unconnected points and to other backbones, which will, in practice, lead to
undesirable overlaps. One would rather enforce a small distance between two
backbones or a backbone and a point, even if this increases the total leader
length a bit. Let ∆ > 0 be the minimum allowed distance, which depends, for
example, on the font size used for the labels. In an optimum solution, there
will be two sequences of backbones on the top and on the bottom of a gap
between pi and pi+1, such that inside a sequence consecutive backbones have
distance ∆; see Figure 14a. We get all possible backbone positions inside the
gap by taking all y-coordinates inside whose y-distance to either pi or pi+1 is
an integer multiple of ∆; see Figure 14b. Note that n positions of each type
suffice in a gap; if the gap is too small, there are fewer such positions. The two
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Figure 14: Situation between two consecutive points for one-sided backbones.

sequences can overlap. In this case, we have to check that we do not combine
two positions with a distance smaller than ∆ in the dynamic program.

Together with the input points, we get a set of O(n2) candidate positions for
backbones, each of which can be used at most once. This increases the number
of entries of table T by a factor of O(n2), and the running time of computing
a single entry by a factor of O(n). The resulting running time of our dynamic
program is O

(
n7|C|2

)
if we do not bound the number of labels, O

(
n7|C|2K2

)
if

we have a global bound K on the number of labels, and O
(
n7|C|2

(∏
c∈C kc

)2)

if we have a color vector ~k of individual bounds per color.

Theorem 8 Given a set P of n colored points, a color set C, a label bound K
(or a vector ~k of bounds per color), and a minimum distance ∆ > 0, we can
compute a feasible labeling of P with one-sided backbones of minimum pairwise
distance ∆ that minimizes the total leader length in O

(
n7|C|2K2

)
time (or in

O
(
n7|C|2

(∏
c∈C kc

)2)
time).

Note that, as in the case of two-sided backbones, also for one-sided backbones
we can use the dynamic program for deciding whether a feasible solution for the
given bounds on the numbers of labels exists: If no such solution exists, the
reported total leader length will be ∞.

5 Crossing Minimization

In this section we allow crossings between backbone leaders, which generally
allows us to use fewer labels. More precisely, if crossings are allowed, it is triv-
ially possible to label all points using just one label per color. Such a solution
may, however, lead to many crossings between backbones and vertical leader
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segments. Therefore, we are interested in minimizing the number of such cross-
ings. We concentrate on the case that K = |C|, that is, only one label per color
is allowed. We will first consider the case that the relative order of labels for the
colors from top to bottom is prescribed. For this case we will present efficient al-
gorithms for minimizing the number of crossings. Then, we will see that without
this restriction the problem is NP-hard, at least for one-sided backbones.

5.1 Fixed y-Order of Labels

We first assume that the color set C is ordered and we require that for each
pair of colors i < j the label of color i is above the label of color j. We will
develop a fast algorithm for crossing minimization with two-sided backbones.
Then, we will show how this algorithm can be modified for the case of one-sided
backbones.

5.1.1 Two-sided Backbones

Since the order of the labels is fixed, the order in which the backbones appear
from top-to-bottom is also fixed. This implies that the i-th backbone in the
given y-ordering from top to bottom is connected to the points of color i.

Observe that it is always possible to slightly shift the backbones of a solution
without increasing the number of crossings such that no backbone contains a
point. Thus, the backbones can be assumed to be positioned in the gaps between
vertically adjacent points; we number the gaps from 0 to n as in Section 3.2.

Suppose that we fix the position of the i-th backbone to gap g. For 1 ≤
i ≤ |C| and 0 ≤ g ≤ n, let cross(i, g) be the number of crossings of the vertical
segments of the non-i-colored points when the color-i backbone is placed at
gap g. Note that this number depends only on the y-ordering of the backbones,
which is fixed, and not on their actual positions. So, we can precompute the
table cross, using dynamic programming, as follows.

All table entries of the form cross(·, 0) can clearly be computed in O(n|C|)
total time because, for color i, cross(i, 0) is equal to number of points having
some color j < i. Then, cross(i, g) = cross(i, g− 1) + 1, if the point pg between
gaps g−1 and g has color j with j > i. In the case where pg has color j with j < i,
cross(i, g) = cross(i, g−1)−1. If pg has color i, then cross(i, g) = cross(i, g−1).
From the above, it follows that the computation of the table cross takes O(n|C|)
time.

Now, we use another dynamic program for computing the minimum num-
ber of crossings. Let T [i, g] denote the minimum number of crossings on the
backbones 1, . . . , i in any solution subject to the condition that the backbones
are placed in the given ordering and backbone i is positioned in gap g. Clearly,
T [0, g] = 0 for g = 0, . . . , n. For computing an entry T [i, g] with i > 0, we test
all positions for the previous backbone i − 1 in a gap g′ above (and including)
gap g. In addition to the number of crossings from the entry T [i − 1, g′], we
also have to take the number cross(i, g) of crossings of the new backbone into
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account. Hence, we have

T [i, g] = cross(i, g) + min
g′≤g

T [i− 1, g′].

Having precomputed the table cross and assuming that for each entry T [i, g],
we also store the smallest entry T [i, g′] with g′ ≤ g, each entry of table T can be
computed in constant time. Hence, table T can be filled in time O(n|C|). Then,
the minimum crossing number is min0≤g≤n T [|C|, g]. A corresponding solution
can be found by backtracking in the dynamic program.

Theorem 9 Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given color order, two-
sided backbones, and minimum number of crossings can be computed in O(n|C|)
time.

5.1.2 One-sided Backbones

We can easily modify the approach used for two-sided backbones for minimizing
the number of crossings for one-sided backbones, if the y-order of labels is fixed,
as the following theorem shows.

Theorem 10 Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given order, one-sided
backbones, and minimum number of crossings can be computed in O(n|C|) time.

Proof: We develop a dynamic program very similar to the one presented for
two-sided backbones. The only part that we have to change is that the com-
putation of the number of crossings when fixing a backbone at a certain po-
sition should take into consideration that the backbones are of finite length.
Recall that the dynamic program could precompute these crossings, by main-
taining an n × |C| table cross, in which each entry cross(i, g) corresponds to
the number of crossings of the non-i-colored points when the color-i-backbone
is placed at gap g, for 1 ≤ i ≤ |C| and 0 ≤ g ≤ n. For one-sided back-
bones, cross(i, g) = cross(i, g − 1) + 1, if the point between gaps g − 1 and g
is right of the leftmost i-colored point and has color j with j > i. In the case,
where the point pg between gaps g − 1 and g is right of the leftmost i-colored
point and has color j with j < i, cross(i, g) = cross(i, g − 1) − 1. Otherwise,
cross(i, g) = cross(i, g − 1). Again, all table entries of the form cross(·, 0) can
clearly be computed in O(n) time. The remainder of the dynamic program
works as before. �

5.2 Flexible y-Order of Labels

We now no longer assume that the order of labels is prescribed, that is, we
need to minimize the number of crossings over all label orders. While there
is an efficient algorithm for a restricted variant of the problem with two-sided
backbones, the problem is NP-complete for one-sided backbones.
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5.2.1 Two-sided Backbones

We give an efficient algorithm for the case that there are K = |C| fixed la-
bel positions y1, . . . , yK on the right boundary of R, for instance, uniformly
distributed.

Theorem 11 Given a set P of n colored points, a color set C, and a set of |C|
fixed label positions, we can compute a feasible backbone labeling with two-sided
backbones that minimizes the number of crossings in O(n+ |C|3) time.

Proof: First observe that if the backbone of color k with 1 ≤ k ≤ |C| is placed
at position yi with 1 ≤ i ≤ |C|, then the number of crossings created by the
vertical segments leading to this backbone is fixed, since all label positions will
be occupied by a two-sided backbone. Let nk be the number of points of color
k. The crossing number cr(k, i) can be determined in O(nk + |C|) time. In fact,
by a sweep from top to bottom, we can even determine all crossing numbers
cr(k, ·) for backbone k with 1 ≤ k ≤ |C| in O(nk + |C|) time. Now, we construct
an instance of a weighted bipartite matching problem, where for each position
yi with 1 ≤ k ≤ |C| and each backbone k with 1 ≤ k ≤ |C|, we establish an edge

{k, i} of weight cr(k, i). In total, this takes O(n+ |C|2) time. A minimum-cost

weighted bipartite perfect matching can be computed in O(|C|3) time using the
Hungarian method [13] and this yields a backbone labeling with the minimum
number of crossings. �

Note that the previous approach does not work for one-sided backbones. In
contrast to two-sided backbones a crossing of a vertical segment for some color
with a backbone depends on the horizontal length and, hence, on the color of
this backbone. Therefore, it is not possible to simply calculate a number cr(k, i)
of crossings for the placement of backbone k on position yi.

5.2.2 One-sided Backbones

Next, we consider the variant with one-sided backbones and prove that it is NP-
hard to minimize the number of crossings. Here, we do not restrict ourselves
to candidate positions for backbones. For simplicity, we allow points that share
the same x- or y-coordinates. This can be remedied by a slight perturbation.
Our arguments do not make use of this special situation and, hence, carry over
to the perturbed constructions. We first introduce a number of gadgets that
are required for our proof and explain their properties, before describing the
hardness reduction.

The first gadget is the range restrictor gadget. Its construction consists of a
middle backbone, whose position will be restricted to a given vertical range R,
and an upper and a lower guard gadget that ensure that positioning the middle
backbone outside range R creates many crossings; see Figure 15. We assume
that the middle backbone is connected to at least one point further to the left
such that it extends beyond all points of the guard gadgets. Additionally, the
middle backbone is connected to two range points whose y-coordinates are the
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Figure 15: The range restrictor gadget.

upper and lower boundary of the range R. Their x-coordinates are such that
they are on the right of the points of the guard gadgets. A guard consists of
a backbone that connects to a set of M points, where M > 1 is an arbitrary
number. The M points of a guard lie left of the range points. The upper
guard points are horizontally aligned and lie slightly below the upper bound of
range R. The lower guard points are horizontally aligned and are placed such
that they are slightly above the lower bound of range R. We place M upper
and M lower guards such that the guards form pairs for which the guard points
overlap horizontally. The upper (respectively lower) guard gadget is formed by
the set of upper (respectively lower) guards. We call M the size of the guard
gadgets. The next lemma shows the important properties of the range restrictor
gadget.

Lemma 3 The backbones of the range restrictor gadget can be positioned such
that there are no crossings. If the middle backbone is positioned outside the
range R, there are at least M − 1 crossings.

Proof: The first statement is illustrated by the drawing in Figure 15. Suppose
for a contradiction to the second statement that the middle backbone is posi-
tioned outside range R and that there are fewer than M − 1 crossings. Assume,
without loss of generality, that the middle backbone is embedded below range R;
the other case is symmetric.

First, observe that all backbones of guards must be positioned above the mid-
dle backbone, as a guard backbone below the middle backbone would create M
crossings, namely between the middle backbone and the segments connecting
the points of the guard to its backbone. Hence the middle backbone is the low-
est. Now observe that any guard that is positioned below the upper range point
crosses the segment that connects this range point to the middle backbone. To
avoid having M − 1 crossings, it follows that at least M + 1 guards (both upper
and lower) must be positioned above range R. Hence, there is at least one pair
consisting of an upper and a lower guard that are both positioned above the
range R. This, however, independent of their ordering, creates at least M − 1
crossings; see Figure 16, where the two alternatives for the lower guard are
drawn in black and bold gray, respectively. This contradicts our assumption. �
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Figure 16: Crossings caused by a pair of
an upper and a lower guard that are posi-
tioned on the same side outside range R.
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Figure 17: The blocker gadget.

Let B be an axis-aligned rectangular box and let R be a small interval that
is contained in the range of y-coordinates spanned by B. A blocker gadget of
width m consists of a backbone that connects to 2m points, half of which are
positioned on the top and on the bottom side of B, respectively. Moreover, a
range restrictor gadget is used to restrict the backbone of the blocker to the
range R. Figure 17 shows an example. Note that, due to the range restrictor,
this drawing is essentially fixed. We say that a backbone crosses the blocker
gadget if its backbone crosses the box B. It is easy to see that any backbone
that crosses a blocker gadget creates m crossings, where m is the width of the
blocker.

We are now ready to show that the crossing minimization problem with
flexible y-order of the labels is NP-complete.

Theorem 12 Given a set P of input points in k = |C| different colors and an
integer Y it is NP-complete to decide whether a backbone labeling with one label
per color and at most Y leader crossings exists.

Proof: The proof of NP-hardness is by reduction from the NP-complete Fixed
Linear Crossing Number problem [16], which is defined as follows. Given a
graph G = (V,E), a bijective function f : V → {1, . . . , |V |}, and an integer Z,
one has to decide whether there is a drawing of G with the vertices placed on
a horizontal line (the spine) in the order specified by f and the edges drawn as
semi-circles above or below the spine so that there are at most Z edge cross-
ings. Masuda et al. [16] showed that the problem is NP-complete even if G is a
matching.

Let G be a matching. Then the number of vertices is even and we can assume
that the vertices V = {v1, . . . , v2n} are indexed in the order specified by f , that
is, f(vi) = i for 1 ≤ i ≤ 2n. Furthermore, we direct every edge {vi, vj} with
i < j from vi to vj . Let {u1, . . . , un} be the ordered source vertices and let
{w1, . . . , wn} be the ordered sink vertices. Figure 18 shows an example graph G
drawn on a spine in the specified order.

In our reduction we will create an edge gadget for every edge of G. The
gadget consists of five blocker gadgets and one side selector gadget. Each of the
six sub-gadgets uses its own color and thus defines one middle backbone. The
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edge gadgets are ordered from left to right according to the sequence of source
vertices (u1, . . . , un). Figure 19 shows a sketch of the instance IG created for
the matching G with four edges shown in Figure 18.

The edge gadgets are placed symmetrically with respect to the x-axis. We
create 2n + 1 special rows below the x-axis and 2n + 1 special rows above,
indexed by −(2n+1),−2n, . . . , 0, . . . , 2n, 2n+1. The gadget for an edge (vi, vj)
uses five blocker gadgets (denoted as central, upper, lower, upper gap, and lower
gap blockers) in two different columns to create two small gaps in rows j and
−j, see the hatched blocks in the same color in Figure 19. The upper and lower
blockers extend vertically to rows 2n+1 and −2n−1, respectively. The gaps are
intended to create two alternatives for routing the backbone of the side selector.
Every backbone that starts left of the two gap blockers is forced to cross at
least one of these five blocker gadgets as long as it is vertically placed between
rows 2n+ 1 and −2n− 1. The blockers have width m = 8n2. Their backbones
are fixed to lie between rows 0 and −1 for the central blocker, between rows 2n
and 2n + 1 (respectively −2n and −2n − 1) for the upper (respectively lower)
blocker, and between rows j and j + 1 (respectively −j and −j − 1) for the
upper (respectively lower) gap blocker; recall that this can easily be done by
placing the range restrictor gadget of the blocker at the respective position.

The side selector consists of two horizontally spaced selector points s
(i)
1 and

s
(i)
2 in rows i and −i located between the left and right blocker columns. They

have the same color and thus define one joint backbone, the selector backbone,
which is supposed to pass through one of the two gaps in an optimal solution.
The n edge gadgets are placed from left to right in the order of their source
vertices; see Figure 19.

The backbone of every selector gadget is vertically restricted to the range
between rows 2n+ 1 and −2n− 1 in any optimal solution by augmenting each
selector gadget with a range restrictor gadget. This means that we add two
more points for each selector to the right of all edge gadgets, one in row 2n+ 1
and the other in row −2n − 1. They are connected to the selector backbone.
In combination with a corresponding upper and lower guard gadget of size

M = Ω(n4) between the two selector points s
(i)
1 and s

(i)
2 this achieves the range

restriction according to Lemma 3.
This completes the backbone labeling instance. We will now show two im-

portant properties of optimal solutions for the constructed instance. We first
show that the selector backbones do indeed pass through one of their two gaps.

Claim 1 In a crossing-minimal labeling the backbone of the selector gadget for
every edge (vi, vj) passes through one of its two gaps in rows j or −j.

Proof: There are basically three different options for placing a selector back-
bone: (a) outside its range restriction, that is, above row 2n + 1 or below row
−2n− 1, (b) between rows 2n+ 1 and −2n− 1, but not in one of the two gaps,
and (c) in rows j or −j, that is, inside one of the gaps. In case (a) we get at
least M = Ω(n4) crossings by Lemma 3. So we may assume that case (a) never
occurs for any selector gadget; we will see that in this case there are only O(n4)
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Figure 18: An instance of Fixed Linear Crossing Number with four edges.
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Figure 19: Sketch of the reduction of the graph of Figure 18 to a backbone
labeling instance. Hatched rectangles represent blockers, thick segments repre-
sent side selectors, and filled shapes represent guard gadgets or range restrictor
gadgets.
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crossing in total for the selector gadgets. In cases (b) and (c) we note that the
backbone will cross one blocker for each edge whose source vertex is right of vi in
the order (u1, . . . , un). Let k be the number of these edges. Additionally, in case
(b), the backbone crosses one of its own blockers. In cases (b) and (c) the two
vertical segments of the range restrictor of edge (vi, vj) cross every selector and
blocker backbone regardless of the position of its own backbone, which yields
6n− 1 crossings. Thus, case (b) causes at least (k + 1) ·m+ 6n− 1 crossings.

For giving an upper bound on the number of crossings in case (c) we note
that the backbone can cross at most three vertical segments of any other selector
gadget: the two segments connected to its selector points and one segment
connected to a point in either row 2n+ 1 or row −2n− 1, which is part of the

range restrictor gadget. The two vertical segments connected to points s
(i)
1 and

s
(i)
2 together will cross the backbone of each central blocker at most once, the

backbones of each pair of upper/lower gap blockers at most twice, and each
selector backbone at most twice. Backbones of upper and lower blockers are
never crossed in case (c). So in case (c) the segments of the selector gadget
cross at most km + 8n − 1 segments, which is less than the lower bound of
(k + 1)m + 6n − 1 in case (b). We conclude that each backbone indeed passes
through one of the gaps in an optimal solution. Any violation of this rule would
create at least m additional crossings, which is more than what an arbitrary
assignment of selector backbones to gaps yields. �

Next, we show how the number of crossings in the backbone labeling in-
stance relates to the number of crossings in the instance of the Fixed Linear
Crossing Number problem. There is a large number of unavoidable cross-
ings regardless of the backbone positions of the selector gadgets. By Property 1
and the fact that violating any range restriction immediately causes M = Ω(n2)
crossings, we can assume that every backbone adheres to the rules, that is, stays
within its range as defined by the range restriction gadgets or passes through
one of its two gaps, in the case of selector backbones.

Claim 2 An optimal solution of the backbone labeling instance IG created for a
matching G with n edges has X+2Z crossings, where X is a constant depending
on G and Z is the minimum number of crossings of G in the Fixed Linear
Crossing Number instance.

Proof: Aside from guard backbones, which never have crossings, there are two
types of backbones in our construction, blocker and selector backbones. We
argue separately for all four possible types of crossings and distinguish fixed
crossings that must occur and variable crossings that depend on the placement
of the selector backbones. The types of crossings are

(i) crossings between blocker backbones and vertical blocker segments,

(ii) crossings between blocker backbones and vertical selector segments,

(iii) crossings between selector backbones and vertical blocker segments, and
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(iv) crossings between selector backbones and vertical selector segments.

We will analyze the numbers of crossings for these types individually.

Case i: By construction each blocker backbone must intersect exactly one blocker
gadget of width m for each edge gadget to its right. Thus we obtain

X1 = 5m

n−1∑

i=1

i = 5m · n
2 − n

2

fixed crossings in total from Case i.

Case ii: Each blocker backbone crosses, for each edge, exactly one vertical
selector segment that is part of the range restrictor gadget on the right-
hand side of our construction. Each central blocker backbone additionally
crosses for each edge gadget to its right one vertical segment incident to
one of the selector points, regardless of the selector position. The two gap
blocker backbones for gaps in rows j and −j together cause two additional
crossings for each edge gadget to its right whose target vertex vk satisfies
k > j. To see this we need to distinguish two cases. Let e = (vi, vk)
be the edge of an edge gadget with k > j. If i < j, then both vertical
selector segments either cross the lower gap blocker backbone or they both
cross the upper gap blocker backbone (see edges (v1, v4) and (v2, v5) in
Figure 19). If i > j, then one of the two vertical selector segments crosses
both gap blocker backbones, and the other one crosses none (see edges
(v1, v4) and (v6, v7) in Figure 19). The backbones of the upper and lower
blockers do not cross any other vertical selector segment.

Let κ = |{{(vi, vj), (vk, vl)} ∈ E2 | i < k and j < l}| = O(n2) be the
number of pairs of edges causing crossings with gap blocker backbones.
Then we obtain

X2 = 5n2 +
n2 − n

2
+ 2κ

fixed crossings from Case ii.

Case iii: Each selector backbone that passes through one of its gaps crosses
exactly one blocker gadget for each edge gadget to its right. Thus, we
obtain

X3 = m

n−1∑

i=1

i = m · n
2 − n

2

fixed crossings in Case iii.

Case iv: Let e = (vi, vj) and f = (vk, vl) be two edges in G, and let i < k.
Then there are three sub-cases: (a) e and f are sequential, that is, i <
j < k < l, (b) e and f are nested, that is, i < k < l < j, or (c) e and
f are interlaced, that is, i < k < j < l. For every pair of sequential
edges there is exactly one crossing, regardless of the gap assignments (see
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edges (v1, v4) and (v6, v7) in Figure 19). For every pair of nested edges
there is no crossing, regardless of the gap assignments (see edges (v3, v8)
and (v6, v7) in Figure 19). Finally, for every pair of interlaced edges there
are no crossings if the respective side selector backbones are assigned to
opposite sides of the x-axis or two crossings if they are assigned to the
same side. Therefore, pairs of interlaced edges do not contribute to the
number of fixed crossings. Let τ =

∣∣{{(vi, vj), (vk, vl)} ∈ E2 | i < j < k <

l
}∣∣ = O(n2) be the number of pairs of sequential edges. Then we obtain

X4 = τ

fixed crossings from Case iv.

From the discussion of the four cases we can immediately see that all cross-
ings are fixed, except for those related to pairs of interlaced edges (see, for
example, edges (v1, v4) and (v3, v8) or (v2, v5) in Figure 19). These are exactly
the edge pairs that create crossings in the Fixed Linear Crossing Number
problem if assigned to the same side of the spine. As discussed in Case iv the
selector gadgets of two interlaced edges create two extra crossings if and only if
they are assigned to gaps on the same side of the x-axis. If we create a bijection
that maps a selector backbone placed in the upper gap to an edge drawn above
the spine, and a selector backbone in the lower gap to an edge drawn below the
spine, we see that an edge crossing on the same side of the spine in a drawing
of G corresponds to two extra crossings in a labeling of IG and vice versa. So,
if Z is the minimum number of crossings in a spine drawing of G, then 2Z
is the minimum number of variable crossings in a labeling of IG. By setting
X = X1 +X2 +X3 +X4 this proves Claim 2. �

From Claim 2 it follows immediately that crossing minimization with one-
sided backbones is NP-hard since the size of the instance IG is polynomial in n
(more precisely, we need only O(n5) points for IG).

Furthermore, we can guess an order of the backbones and then, using the
algorithm of Theorem 10, compute the minimum crossing number for this order.
This shows that crossing minimization is contained in NP. Hence, the problem
is NP-complete. �

6 Conclusion

We have introduced the new model of many-to-one boundary labeling with
backbones; this model generalizes the po-leader model of classical one-to-one
boundary labeling. For our two crossing-free settings, one-sided and two-sided
backbones, we have seen that minimizing the total number of labels as well
as minimizing the total length of leaders can be achieved in polynomial time
by dynamic programming. On the other hand, only very restricted versions of
crossing minimization can be solved efficiently. In general, crossing minimization
with a bounded number of labels per color is NP-hard for one-sided backbones.
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Open Problems. In the setting of crossing minimization, we have just seen
hardness for one-sided backbones. In our hardness proof it was essential that
backbones do not extend infinitely to the left; hence, the hardness proof we
gave cannot simply be modified for showing hardness for two-sided backbones.
It is, therefore, an open problem whether the simpler structure of many-to-one
labelings with two-sided backbones (and no predefined backbone slots) allows
for efficiently minimizing the number of crossings or whether the problem is also
NP-hard.

The other optimization criteria, that is, minimizing the total number of
labels or the total leader length can be solved optimally. We did, however, only
consider the case where just one side of the focus region is used for placing the
labels. For two-sided backbones, using both the left and the right boundary
does not make a difference. However, we get much more flexibility in the case of
one-sided backbones. An open question is, hence, whether the 2-sided problem
variant is still solvable in polynomial time.

In the setting with limited numbers of labels, either in total or per color,
it is possible that no feasible labeling for all sites exists; our algorithms were
able to detect such situations, reporting a cost of +∞ for labeling all sites.
However, one may still want to find a labeling for a subset of the sites subject
to the bound on the number of labels. This gives rise to the new objective of
finding a feasible labeling for a maximum number of sites. Both for one-sided
and two-sided backbones it should be possible to integrate this new objective
into the respective dynamic programs presented for leader length minimization
in Section 4. To this end, entries of the tables must represent the maximum
weight of sites that can be labeled in subinstances and minimization must be
changed to maximization. Some further modifications will be necessary, but
should not be very difficult to realize.

In a slight generalization of labeling by one-sided backbones, one could allow
labels to be placed on either side of the enclosing rectangle, left or right. This
increased freedom can allow labelings with smaller leader length and can even
allow a feasible labeling where no one-sided labeling with all labels on the same
side exists. Note that in this generalized one-sided version, even a mixed model
with both one-sided and two-sided backbones can make sense: Since a two-sided
backbone allows us to attach two labels, one on either side, the distance between
a point and its label may be decreased, which can improve the readability.
Hence, a possible optimization could aim at maximizing the number of points
that are connected to two-sided backbones. Apart from crossing minimization,
we expect that also these generalized models can be solved optimally—with
increased time complexity, however—by using more complex dynamic programs.
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