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Abstract

We propose a new self-stabilizing 1-maximal matching algorithm which
is silent and works for any anonymous networks without a cycle of length
of a multiple of 3 under a central unfair daemon. The 1-maximal matching
is a 2

3
-approximation to the maximum matching, and expected to get

more matching pairs than a maximal matching, which only guarantees a
1
2
-approximation.

The time complexity of the proposed algorithm is O(e) moves, which
is O(n) moves if we restrict the topology to trees or rings whose length is
not a multiple of 3, where n and e be the numbers of nodes and edges in a
graph, respectively. The best existing result for 1-maximal matching for
anonymous networks is an algorithm of Goddard et al. [8] which works
for anonymous trees and anonymous rings whose length is not a multiple
of 3 under a central daemon, and the time complexity is O(n4) moves.
Therefore, the result in this paper is a significant improvement from the
best existing results.
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Figure 1: A maximal matching and a 1-maximal matching. The matching in
(a) is maximal but not 1-maximal. The matching in (b) is 1-maximal.

1 Introduction

Self-Stabilization [5] can tolerate several inconsistencies of computer networks
caused by transient faults, erroneous initialization, or dynamic topology change.
It can recover from any inconsistent system configuration and stabilize to con-
sistent system configuration without restarting program execution.

Maximal or maximum matching is a well-studied fundamental problem for
distributed networks. A matching is a set of pairs of adjacent nodes in a network
such that any node belongs to at most one pair. A matching is maximal if no
proper superset of it is a matching as well, and it is maximum if its cardinality
is the largest among all matchings. A matching can be used in distributed
applications where pairs of nodes are required. For example, when each server
gives some service to one client, pairs of a server and a client can be constructed
by a matching. Another application is communication scheduling in wireless
networks. Since a matching represents pairs of a sender and a receiver that can
communicate at the same time, many communication scheduling algorithms
utilize a matching.

This paper proposes an efficient anonymous self-stabilizing algorithm for
1-maximal matching. A matching M is 1-maximal if, for any e ∈ M , any
matching cannot be produced by removing e from M and adding two edges
to M − {e} (See Fig. 1). A 1-maximal matching is a 2

3 -approximation to the
maximum matching1, and expected to find more matching pairs than a maximal
matching, which only guarantees a 1

2 -approximation to the maximum matching.

Related Works Self-stabilizing algorithms for the maximum and maximal
matching problems have been well studied [9]. Table 1 summarizes the results,
where n and e denote the numbers of nodes and edges, respectively.

For maximum, maximal, and 1-maimal matching problems, some algorithm
have been proposed for various assumptions. One important assumption is that
the network is anonymous or not. In anonymous networks an algorithm can-
not use global IDs of nodes, while it can use them in non-anonymous networks.
Another important assumption is a daemon [6], which decides an execution of
an algorithm. Most algorithms assume a central daemon or a distributed dae-
mon. A central daemon chooses one node to move at the same time, while a
distributed daemon can choose one or more nodes at the same time. Note that,
if each node changes its state depending on only itself and its neighboring nodes,

1We say matching M is an α-approximation to the maximum matching if |M | ≥ α|Mmax|
holds where Mmax is a maximum matching.
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each execution under a distributed daemon is equivalent to an execution under
a central daemon unless neighboring nodes are chosen at the same time. There-
fore, most algorithms (including our proposed algorithm) for a central daemon
still work under a distributed daemon with such a restriction. Some algorithms
assume a read/write daemon, which is a generalized one of a distributed dae-
mon. The read/write daemon can execute read and write operations of each
node separately.

The time complexity is measured in moves or rounds. A move is the execu-
tion of one action by one node, while a round is a minimal sub-sequence of an
execution in which every node has at least one chance to execute some action.
That is, when a node can execute an action at the beginning of a round, it takes
at least one action or becomes ineligible to execute it by actions of neighboring
nodes during the round.

Blair and Manne [2] showed that a maximum matching can be solved with
O(n2) moves for non-anonymous tree networks under a read/write daemon.
They proposed a bottom-up algorithm to construct a rooted tree, and showed
that the maximum matching algorithm by Blair et al. [1] can be combined with
the proposed bottom-up algorithm without increasing the time complexity. For
anonymous tree networks, Karaata et al. [12] proposed a maximum matching
algorithm with O(n4) moves under a central daemon. For anonymous bipartite
networks, Chattopadhyay et al. [3] proposed a maximum matching algorithm
with O(n2) rounds under a central daemon on the assumption that each node
knows its bipartition, that is, which bipartite group the node belongs to.

Hsu and Huang [11] proposed a maximal matching algorithm for anonymous
networks with arbitrary topology under a central daemon. They showed the time
complexity of O(n3) moves, and, it has been revealed that the time complexity
of their algorithm is O(n2) moves by Tel [17] and Kimoto et al. [13] and O(e)
moves by Hedetniemi et al. [10].

Fredrik Manne et al. [14] also proposed a maximal matching algorithm. It
works for non-anonymous networks with arbitrary topology under a distributed
daemon. They showed the time complexity of O(e) moves. The time complexity
is the same as one of Hsu and Huang, however, they are different in network’s

Table 1: Self-stabilizing matching algorithms.
Reference Matching Topology Anonymity Daemon Complexity

[2] maximum tree no read/write O(n2) moves
[12] maximum tree yes central O(n4) moves
[3] maximum bipartite* yes central O(n2) rounds
[11] maximal arbitrary yes central O(e) moves
[14] maximal arbitrary no distributed O(e) moves
[8] 1-maximal tree, ring** yes central O(n4) moves
[15] 1-maximal arbitrary no distributed O(2n ·∆n) moves

this paper 1-maximal arbitrary** yes central O(e) moves
* Each node knows its bipartition.
** A network does not contain a cycle of length of a multiple of 3.
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anonymity and type of scheduler.

Self-stabilizing maximal matching algorithms with additional properties were
also proposed in literature. Devismes et al. [4] proposed a communication-
efficient maximal matching algorithm for colored networks with arbitrary topol-
ogy under a distributed daemon. Note that colored networks mean every node
has a color such that neighboring nodes have different colors. The time complex-
ity is O(∆ ·n) rounds, where ∆ is the maximum degree of nodes. The important
property of this algorithm is communication efficiency after stabilization. In this
algorithm a fraction of the nodes communicates with exactly one neighboring
node after stabilization while in most algorithms every node communicates with
every neighboring node. Dubois et al. [7] proposed a Byzantine-tolerant maxi-
mal matching algorithm for anonymous networks with arbitrary topology under
a central daemon. This algorithm guarantees that, even if Byzantine-faulty
nodes continue to change their states arbitrarily, correct nodes sufficiently dis-
tant from Byzantine-faulty nodes construct a maximal matching in finite moves.

Goddard et al. [8] proposed a 1-maximal matching with O(n4) moves for
anonymous trees and rings whose length is not a multiple of 3 under a central
daemon. They also showed that there is no self-stabilizing 1-maximal matching
algorithm for anonymous rings with length of a multiple of 3. Note that, since a
maximum matching is also 1-maximal, it is impossible to construct a maximum
matching for such rings. This is the reason why the algorithm for anonymous
bipartite networks, which include rings with length of a multiple of 3, requires
each node to know additional information such as its bipartition. Manne et
al. [15] proposed a 1-maximal matching algorithm for non-anonymous networks
with any topology under a distributed unfair daemon. Their algorithm stabilizes
in O(n2) rounds and O(2n ·∆ · n) moves.

Our contribution In this paper, we propose a new self-stabilizing 1-maximal
matching algorithm. The proposed algorithm is silent and works for any anony-
mous networks without a cycle of length of a multiple of 3 under a central unfair
daemon. We show that the time complexity of the proposed algorithm is O(e)
moves.

The algorithm of Goddard et al. [8] works for anonymous trees and anony-
mous rings whose length is not a multiple of 3 under a central daemon, and the
time complexity is O(n4) moves. Our proposed algorithm has time complexity
of O(n) moves if the topology is restricted to trees or rings whose length is not
a multiple of 3. That is, we significantly improve the existing best 1-maximal
matching algorithm for anonymous networks.

The remaining of the paper is organized as follows. In Section 2, we de-
fine distributed systems and the 1-maximal matching problem. A 1-maximal
matching algorithm is proposed in Section 3, and proofs for its correctness and
performance are given in Section 4. Finally Section 6 concludes this paper.
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2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V,E) where a node in V
represents a process and an edge in E represents the interconnection between
the processes. A node is a state machine which changes its state by actions.
Each node has a set of actions, and a collection of actions of nodes is called a
distributed algorithm.

In this paper, we consider state-reading model as a communication model
where each node can directly read the state of its neighboring nodes. An action
of a node is expressed 〈label〉 :: 〈guard〉 7→ 〈statement〉. A guard is a Boolean
function of all the states of the node and its neighboring nodes, and a statement
updates its local state. We say a node is privileged if it has an action with a
true guard. Only privileged node can move by selecting one action with a true
guard and executing its statement.

Moves of nodes are scheduled by a daemon. Among several daemons con-
sidered for distributed systems, we consider an unfair central daemon in this
paper. A central daemon chooses one privileged node at one time, and the se-
lected node atomically moves. A daemon is unfair in a sense that it can choose
any node among privileged nodes.

A problem P is specified by its legitimate configurations where configuration
is a collection of states of all the nodes. We say a distributed algorithm A is
self-stabilizing if A satisfies the following properties. 1) convergence: The
system eventually reaches to a legitimate configuration from any initial state,
and 2) closure: The system once reaches to a legitimate configuration, all the
succeeding moves keep the system configuration legitimate. A self-stabilizing
algorithm is silent if, from any arbitrary initial configuration, the system reaches
a terminal configuration where no node can move. A self-stabilizing algorithm
is anonymous if it does not use global IDs of nodes. We only assume that nodes
have pointers and a node can recognize whether its neighboring node points to
itself, some other nodes, or no node2.

A matching in an undirected graph G = (V,E) is a subset M of E such that
each node in V is incident to at most one edge in M . We say a matching is
maximal if no proper superset of M is a matching as well. A maximal match-
ing M is 1-maximal if, for any e ∈ M , any matching cannot be produced by
removing e from M and adding two edges to M−{e}. A maximal matching is a
1
2−approximation to the maximum matching. On the other hand, a 1-maximal
matching is a 2

3−approximation. In this paper, we propose a silent and anony-
mous self-stabilizing algorithm for the 1-maximal matching problem for graphs
without a cycle of length of a multiple of 3.

2This assumption is identical to previous works for anonymous networks. One way to
implement this assumption is to execute an edge-coloring algorithm [16], that is, to assign a
color to each edge so that no two edges with the same color share a node. In this case, since
O(∆) colors are sufficient, each pointer can be implemented by O(log ∆) bits. Although an
edge-coloring algorithm incurs some extra steps, we ignore them in the complexity analysis
as in previous works.
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3 Algorithm MM1

First, we will show an overview of a proposed self-stabilizing 1-maximal match-
ing algorithm MM1. Each node i uses stages to construct 1-maximal matching.
There are seven stages; S1a, S1b, S2a, S2b, S3, S4, and S5. Stages S1a and
S1b mean that the node is not matching with any node. A stage S2a means
the node is matching with a neighboring node, and, S2b, S3, S4, and S5 mean
the node is trying to increase matches. A node i has three variables; leveli,
m-ptri, i-ptri, and its stage is determined by values of these three variables.
We describe how to use the variables in our algorithm.

S1a, S1b, S2a We say a node is free if the node is in S1a or S1b. A node in
S1a does not invite any nodes, while a node in S1b invites its neighboring node.
Fig.2 shows how free nodes make a match. Consider two nodes i and j where
their levels are 1 and neither of them point to any node (Fig.2(a)). When the
free node i finds the free neighboring node j, i invites j by i-ptri in Fig.2(b)
(i is in S1b). Then the invited node j updates its level to 2 and points to i by
m-ptrj to accept the invitation in Fig.2(c) (j is in S2a). Finally i points to j
by m-ptri to make a match in Fig.2(d) (i is in S2a). A node in S2a is at level
2 and does not invite any nodes. If two adjacent nodes i and j point to each
other by m-ptr, we consider they are matching, that is (i, j) ∈ M . There are
corresponding four actions as follows. The pseudo code of MM1 is shown in
Fig.4 and Fig.5.

• invite1: A free node i invites a free neighboring node x by pointing
to x with i-ptr. The guard of invite1 includes conditions S1a(i) and
no invalid1 neighbor(i). They are related to reset actions and explained
later.

• match1: If a free node i is invited by some neighboring free node x, i
points to x with m-ptr.

• match2: In the case where a free node i is invited by some neighboring
free node x and i is also inviting a neighboring node k, if k’s level is 1 or
3, i points to x with m-ptr. The constraint on k’s level will be explained
later.

• match3: If a free node i is inviting a neighboring node k and k is pointing
to i with m-ptr, i points to k with m-ptr to make a match with k.

S2b, S3, S4, S5 Matching nodes try to increase the number of matches if
they have free neighboring nodes. Fig.3 shows how to increase matches, where
matches are increased by breaking a match between i and j, and creating new
matches between i and k, and j and l. In Fig.3(a), nodes i and j invite their
free neighbors k and l if they do not invite i and j, respectively (i and j are
in S2b). When both i and j notice that the other node invite free neighboring
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Figure 2: Making a match between free nodes

nodes, they change their level to 3 (i and j are in S3 ). That indicates they
are ready to be approved as in Fig.3(b). Then k and l point to the inviting
nodes by i-ptr to approve their invitations (k and l are in S1b). Nodes i and
j change their level to 4 if the neighbors approve the invitations (i and j are
in S4 ) as in Fig.3(c), and change their level to 5 when they notice that both
invitations are approved (i and j are in S5 ). This indicates that they are ready
to break a match as in Fig.3(d). Then they create new matches with the free
nodes, where k and l first move to S2a (Fig.3(e)) and then i and j move to S2a
(Fig.3(f)), respectively. A node in S1a or S1b can make a match with the other
node while an inviting node is in S3. However, once the inviting node moves
to S4, it cannot change its i-ptr while the inviting node is in S4. There are
corresponding 7 actions as follows.

• invite2: If a matching node i has a free neighboring node x, i invites x
to increase matches by migrating to x.

• proceed1: If a matching node i is inviting some neighboring node and its
matching partner j is also inviting its neighboring node, i becomes level
3 to indicate that i’s invitation is ready to be approved.

• approve1: If a free node i is invited by some non-free (matching) node x
and x is at level 3, i approves the invitation from x by pointing x with
i-ptr.

• proceed2: If a matching node i is inviting a free neighboring node k and
k has approved the invitation from i, i becomes level 4.

• proceed3: If a matching node i is at level 4 and its matching partner j is
level 4 or 5, i becomes level 5 to indicate that it is ready to break a match
between i and j.

• migrate1: If a free node i is invited by some non-free node k and k is at
level 5, i points to k with m-ptr.
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Figure 3: Increasing matches

• migrate2: If a matching node i is pointed by a neighboring node k with
m-ptr and its matching node j is at level 5 or has already migrated, i
migrates to k by pointing to k with m-ptr to make a new match.

Reset Each node always checks its validity, and resets to S1a if it finds its
invalidity. We consider two kinds of validities, one node validity and two nodes
validity. The one node validity of a node means that the combination of its three
variables represents some stage. For example, if a level is 1 and m-ptr points
to some neighbor, the state is one node invalid. The two nodes validity means
that a relation between states of two adjacent nodes is consistent. For example,
if a node i is in S2a, a node pointed by m-ptr should point to i by m-ptr at
level 2, 3, or 4, or by i-ptr at level 1 or 5. The full definition of the validity
function is shown in Fig.4. A node does not move while some neighboring node
is one node invalid. There are corresponding two actions as follows.

• reset1: If a node i finds it does not satisfy one node validity, i resets itself
that means i moves to a stage S1a.

• reset2: If a node i finds it does not satisfy two node validity, i resets
itself.

Cancel A node cancels an invitation or progress to increase matches, if it
detects that the invitation cannot be accepted or it cannot increase matches.
When canceling, a node goes back to S1a if it is at level 1, and to S2a if it is at
level 2 or higher. There are corresponding 4 actions as follows.

• cancel1: A node i in a stage S1b is inviting a free node to make a match
between free nodes or inviting (approving) a non-free node that is also
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inviting i to migrate to i. If the invited free node k has made a match
with another node and become level 2, i cancels its invitation and goes
back to S1a . If the invited non-free node k has canceled the migration to
i, k is at level 2 and has a matching partner, or at level 3 or higher but
not inviting i any longer. In this case, i also cancels its invitation.

• cancel2: A node i in a stage S2b is inviting some free node k to migrate
it. If k has become level 2 or higher, it means that k is matching with
another node. In this case, i cancels its invitation and goes back to S2a.

• cancel3: A node i becomes level 3 if it notices that both i and its matching
partner are inviting some free nodes to migrate to them. If its matching
partner has canceled the invitation and gone back to S2a, i also cancels
the invitation and goes back to S2a.

• cancel4: A node i becomes level 4 after level 3. Similarly to cancel3, if its
matching partner has canceled the invitation, i also cancels the invitation
and goes back to S2a.

The algorithm MM1 uses some statement macros and a guard function. The
variables, validity functions, statement macros and a guard function are shown
in Fig.4, and a code of MM1 is shown in Fig.5. In the algorithm, each node i
uses N(i) to represent a set of its neighbors. That is a set of local IDs for each
node and the algorithm does not use any global IDs. We only assume that each
node can determine whether its neighboring node points to itself, some other
node, or no node by pointers i-ptr and m-ptr.

4 Correctness

First, we show that 1-maximal matching is constructed once the network reaches
to a terminal configuration where the topology is required to exclude any cycle
of length of a multiple of 3.

Lemma 1 There are no nodes at level 5 in any terminal configuration of MM1.

Proof: By contradiction. Assume that a node i is in S5 in a terminal configu-
ration. In this case, i-ptri = k holds for some k, and levelk = 1∧ i-ptrk = i
or levelk = 2 ∧ m-ptrk = i holds since i is in S5. If it is levelk = 1, k can
execute migrate1. If it is levelk = 2, i can execute migrate2. A contradiction.

�

Lemma 2 A node that points to its neighboring node by m-ptr is also pointed
by the neighbor’s m-ptr in any terminal configuration of MM1.

Proof: By contradiction. There is no node at level 5 in any terminal configu-
ration and all nodes are valid. Assume that there are adjacent nodes i and j
such that m-ptri = j ∧ m-ptrj 6= i. A node i is in S2a since validity S2b(i),
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Variables
leveli ∈ {1, 2, 3, 4, 5}
m-ptri ∈ N(i) ∪ {⊥}
i-ptri ∈ N(i) ∪ {⊥}

Valid Predicates
S1b valid(i,k): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri = k
S2a valid(i,j): leveli = 2 ∧ m-ptri = j ∧ i-ptri =⊥
S2b valid(i,j,k): leveli = 2 ∧ m-ptri = j ∧ i-ptri = k ∧ j 6= k
S3 valid(i,j,k): leveli = 3 ∧ m-ptri = j ∧ i-ptri = k ∧ j 6= k
S4 valid(i,j,k): leveli = 4 ∧ m-ptri = j ∧ i-ptri = k ∧ j 6= k
S5 valid(i,j,k): leveli = 5 ∧ m-ptri = j ∧ i-ptri = k ∧ j 6= k

One Node Validity
S1a valid1(i): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri =⊥
S1b valid1(i): ∃k ∈ N(i) S1b valid(i,k)
S2a valid1(i): ∃j ∈ N(i) S2a valid(i,j)
S2b valid1(i): ∃j, k ∈ N(i) S2b valid(i,j,k)
S3 valid1(i): ∃j, k ∈ N(i) S3 valid(i,j,k)
S4 valid1(i): ∃j, k ∈ N(i) S4 valid(i,j,k)
S5 valid1(i): ∃j, k ∈ N(i) S5 valid(i,j,k)
valid1(i): S1a valid1(i) ∨ S1b valid1(i) ∨ S2a valid1(i) ∨ S2b valid1(i) ∨
S3 valid1(i) ∨ S4 valid1(i) ∨ S5 valid1(i)
invalid1(i): ¬ valid1(i)

Valid Functions (One Node Validity and Two Node Validity)
S1a(i): S1a valid1(i)
S1b(i): S1b valid1(i)
S2a(i): ∃j ∈ N(i)(S2a valid(i,j) ∧ ((levelj = 2 ∧ m-ptrj = i) ∨ (levelj =

3 ∧ m-ptrj = i) ∨ (levelj = 4 ∧ m-ptrj = i) ∨ (levelj = 1 ∧ i-ptrj =

i) ∨ (levelj = 5 ∧ i-ptrj = i)))

S2b(i): ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧ (levelj = 2 ∨ levelj = 3 ∨ levelj =
4) ∧ m-ptrj = i)

S3(i): ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧ (levelj = 2 ∨ levelj = 3 ∨ levelj =
4) ∧ m-ptrj = i)

S4(i): ∃j, k ∈ N(i)(S4 valid(i,j,k) ∧ levelj ≥ 2 ∧ m-ptrj = i ∧ levelk =

1 ∧ i-ptrk = i)
S5(i): ∃j, k ∈ N(i)(S5 valid(i,j,k) ∧ (levelk = 1 ∧ i-ptrk = i) ∨ ((levelk =
2 ∧ m-ptrk = i)))
valid(i): S1a(i) ∨ S1b(i) ∨ S2a(i) ∨ S2b(i) ∨ S3(i) ∨ S4(i) ∨ S5(i)
invalid(i): ¬ valid(i)

Statement Macros
make match: i-ptri =⊥, m-ptri = k, leveli = 2
reset state: i-ptri =⊥, m-ptri =⊥, leveli = 1
abort exchange: i-ptri =⊥, leveli = 2

Guard Function
no invalid1 neighbor(i): ∀x ∈ N(i) valid1(x)

Figure 4: Variables, validity functions, statement macros and guard function
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Reset
reset1 :: invalid1(i) 7→ reset state
reset2 :: invalid(i) ∧ no invalid1 neighbor(i) 7→ reset state

S1a
match1 :: S1a(i) ∧ no invalid1 neighbor(i) ∧ ∃x ∈ N(i)(i-ptrx = i ∧ levelx =
1) 7→ i-ptri =⊥, m-ptri = x, leveli = 2
approve1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)(i-ptrx = i∧levelx =
3) 7→ i-ptri = x
invite1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)levelx = 1 7→ i-ptri = x

S1b
match2 :: S1b(i) ∧ no invalid1 neighbor(i) ∧ ∃x ∈ N(i)(i-ptrx = i ∧ levelx =
1) ∧ ∃k ∈ N(i)(S1b valid(i,k) ∧ (levelk = 1 ∨ levelk = 3)) 7→ i-ptri =⊥
, m-ptri = x, leveli = 2
match3 :: S1b(i)∧no invalid1 neighbor(i)∧∃k ∈ N(i)(S1b valid(i,k)∧m-ptrk =
i ∧ levelk = 2) 7→ make match
migrate1 :: S1b(i) ∧ no invalid1 neighbor(i) ∧ ∃k ∈ N(i)(S1b valid(i,k) ∧
i-ptrk = i ∧ levelk = 5) 7→ make match
cancel1 :: S1b(i) ∧ no invalid1 neighbor(i) ∧ ∃k ∈ N(i)(S1b valid(i,k) ∧
((levelk = 2 ∧ m-ptrk 6= i) ∨ (levelk = 3 ∧ i-ptrk 6= i) ∨ (levelk =
4 ∧ i-ptrk 6= i) ∨ (levelk = 5 ∧ i-ptrk 6= i))) 7→ i-ptri =⊥

S2a
invite2 :: S2a(i)∧ no invalid1 neighbor(i)∧ ∃x ∈ N(i)(levelx = 1∧ i-ptrx 6=
i) ∧ ∃j ∈ N(i)(S2a valid(i,j) ∧ m-ptrj = i) 7→ i-ptri = x

S2b
cancel2 :: S2b(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
levelk ≥ 2) 7→ abort exchange
proceed1 :: S2b(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
i-ptrj 6=⊥) 7→ leveli = 3

S3
cancel3 :: S3(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧
((levelj = 2 ∧ i-ptrj =⊥) ∨ levelk ≥ 2)) 7→ abort exchange

proceed2 :: S3(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S3 valid(i,j,k) ∧
i-ptrk = i ∧ levelk = 1) 7→ leveli = 4

S4
cancel4 :: S4(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S4 valid(i,j,k) ∧
levelj = 2 ∧ i-ptrj =⊥) 7→ abort exchange

proceed3 :: S4(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S4 valid(i,j,k) ∧
(levelj = 4 ∨ levelj = 5)) 7→ leveli = 5

S5
migrate2 :: S5(i) ∧ no invalid1 neighbor(i) ∧ ∃j, k ∈ N(i)(S5 valid(i,j,k) ∧
levelk = 2∧m-ptrk = i∧i-ptrk =⊥ ∧(levelj = 5∨m-ptrj 6= i)) 7→ i-ptri =⊥
, m-ptri = k, leveli = 2

Figure 5: Algorithm MM1
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S3 (i) or S4 (i) do not hold. A node j is at level 1 and i-ptrj = i from S2a(i).
Since i is in S2a and j is levelj = 1 ∧ i-ptrj = i, j can execute match3. A
contradiction. �

Lemma 3 There are no two nodes i and j such that leveli = 1, levelj = 3
or 4, i-ptri = j and i-ptrj = i in any termination configuration of MM1 for
any graphs without a cycle of length of a multiple of 3.

Proof: By contradiction. There is no node at level 5 in any terminal configura-
tion and all nodes are valid. Assume that there are adjacent nodes i and j such
that leveli = 1, levelj = 3 or 4, i-ptri = j, and i-ptrj = i. If levelj = 3,
j can execute proceed2 since j is in S3.

Consider the case of levelj = 4. There is a node k ∈ N(j) such that
levelk = 2 or 3 or 4, m-ptrj = k, i-ptrk 6=⊥. Node k can execute proceed1 if
levelk = 2 and j can execute proceed3 if levelk = 4. Hence levelk is limited
to 3. Therefore, there is a node l ∈ N(k) such that i-ptrk = l and levell = 1.
Node l satisfies i-ptrl 6= k because it is in a terminal configuration. Therefore,
there is a node m ∈ N(l) such that i-ptrl = m and levelm = 4. Repeating
the above observation, we can show there is an infinite sequence of nodes at
levels 1, 4, 3, 1, 4, 3, · · · . However, there is no such a sequence since there is no
cycle of length of a multiple of 3. A contradiction. �

Theorem 1 A maximal matching is constructed in any terminal configuration
of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof: By contradiction. There is no node at level 5 in any terminal config-
uration and all nodes are valid. Assume that a matching is not maximal in
some terminal configuration. There are adjacent nodes i and j at level 1 by the
assumption and Lemma 2.

If a node i or j is in S1a, it can execute invite1. Therefore, both nodes are
in S1b (Observation 1). Let k be a node pointed by i-ptri. The level of k is
not 5 by Lemma 1.

In case of levelk = 1, k is in S1b by Observation 1. Let x be a node pointed
by i-ptrk. A node k can execute match2 to make a match with i if levelx 6= 4.
Therefore, levelx = 4 and this implies i-ptrx 6= k by Lemma 3, and k can
execute cancel1. In case of levelk = 2, k can execute invite2 if k is in S2a.
Node i can execute cancel1 if k is in S2b since m-ptrk 6= i by Lemma 2. If
levelk = 3 or 4, i can execute cancel1 since i-ptrk 6= i by Lemma 3. A
contradiction. �

Theorem 2 A 1-maximal matching is constructed in any terminal configura-
tion of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof: By contradiction. Assume that a matching is not 1-maximal in some
terminal configuration. Since it is terminal, a maximal matching is constructed
by Theorem 1. Therefore, there are matching nodes i and j and both have
neighbors at level 1 from Lemma 2.
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Both i and j are at level 2 or higher since they are matching. They are not
in S2a since they have level 1 neighbors and can execute invite2 if they are in
S2a, or not at level 5 by Lemma 1. Since i and j are in S2b, S3 or S4, both
nodes point to some neighbor by i-ptr, and the neighbors are at level 1. That
is because, i or j can execute cancel2 in S2b, cancel3 in S3 and reset2 in S4
if it points to a node at level 2 or higher.

Nodes i and j are not in S2b since i-ptri 6= ⊥ and i-ptrj 6= ⊥, and
therefore, they can execute proceed1 if they are in S2b.

Consider the case where i or j is in S3. Assume i is in S3 w.l.o.g., and let
k be a level 1 node that i points to by i-ptr. A node k can execute approve1

if i-ptrk = ⊥, and node i can execute proceed2 if i-ptrk = i. Therefore,
i-ptrk = x for some x 6= i. Since there is no adjacent level 1 node by Theorem
1, there is no level 5 node by Lemma 1, and m-ptrs point to each other between
two matching nodes by Lemma 2, x is at level 2, 3, or 4, and m-ptrx 6= k. A
node x is not at level 2 since k can execute cancel1 if x is at level 2. In case
where x is at level 3 or 4, i-ptrx 6= k by Lemma 3, and therefore, k can also
execute cancel1. Therefore, both i and j are not in S3.

That is, both i and j are in S4, however, both can execute proceed3 in this
case. A contradiction. �

Now we show that MM1 always brings the network to a terminal configu-
ration and evaluate the time complexity. In this part, the topology does not
need to be restricted. That is, MM1 always brings the network to a terminal
configuration with O(e) moves even if the network include a cycle of length of
a multiple of 3.

Lemma 4 If a node i at level 1 is valid, that is S1a(i) or S1b(i) holds, i is valid
while it is at level 1 in MM1.

Proof: Validity functions S1a(i) and S1b(i) check only the variables of a node
i. That is the validity of a node at level 1 is independent of its neighbors’ states.
Any move for S1a or S1b keeps the state of node valid, a valid node at level 1
is valid while it is at level 1. �

Lemma 5 Once a node executes one of match1, match2, match3, migrate1

and migrate2, the node never executes reset1 or reset2 in MM1.

Proof: By contradiction. Assume some nodes execute resets (reset1 or reset2)
after executing match1, match2, match3, migrate1 or migrate2. Let i be a node
that executes such a move r of a reset first. Let m be the last move of among
match1, match2, match3, migrate1 and migrate2 before the reset. Since no
move except reset1 and reset2 brings invalid states and i already executed
m, when i executes r, i is two node invalid. Therefore, i detects some invalidity
between i and some neighbor.

Let k be a node such that i-ptri = k when i executes r. If k causes the reset
r, i is at level 4 or 5 at that time. When i moves to S4 by proceed2, i confirms
that k’s validity, levelk = 1 and i-ptrk = i. Node k never resets while it is
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at level 1 by Lemma 4 and the validity between i and k is preserved. Node k
may move to S2a by migrate1 but never resets before r by the assumption, and
therefore, the validity between i and k is also preserved.

Therefore, i executes r by detecting invalidity between i and j such that
m-ptri = j. Since m is the last chance to set m-ptr for i, i sets m-ptri = j by
m. When i executes m, j is in S1b, S2a, or S5.

In case of S1b, when i executes m, i confirms j’s validity and i-ptrj = i.
Node j is valid while it is at level 1 by Lemma 4. Node i moves to S2b after j
sets m-ptrj = i and moves to S2a by match2 or match3. Therefore, while j is
at level 1, i-ptrj = i always holds and therefore i cannot reset. After j moves
to level 2 by match2 or match3, j does not reset before r from the assumption.
Therefore, the validity between i and j is preserved until r.

In case of S5, that is i migrates to j, when i executes m, i confirms i-ptrj =
i. Since the validity of a node in S5 only depends on its state and a state of a
node pointing to by i-ptr, j is valid if the validity between i and j is preserved.
Since i does not reset between m and r, the validity is preserved while j is in
S5. After j moves to level 2 by migrate2, j does not reset before r from the
assumption. Therefore, the validity between i and j is preserved until r.

In case of S2a, i confirms the validity between i and j and m-ptrj = i when
i executes m. Since j is in S2a, i-ptrj does not point to any node. Therefore,
even if j points to some node by i-ptr after m, the validity between j and
the pointed node is preserved like between i and k. Therefore j is valid if the
validity between i and j is preserved while m-ptrj = i and levelj ≤ 4 (When
j moves to S5, it does not take care of i). Since i does not reset between m and
r, the validity is preserved. �

We say a move is a progress move if it is by match1, match2, match3, or
migrate1. A level of node changes from 1 to 2 by a progress move.

Lemma 6 Each node resets at most once in MM1.

Proof: Once a node executes reset1 or reset2, it moves to S1a. The node
never resets while it is at level 1 from Lemma 4. The node executes a progress
move to move to level 2, and never resets after that by Lemma 5. �

Lemma 7 Each node executes a progress move at most once in MM1.

Proof: A progress move changes levels of a node from 1 to 2, and a node
never resets if it executes a progress move by Lemma 5. That is the node never
goes back to level 1. Therefore, once a node executes a progress move it never
executes a progress move again. �

Lemma 8 In MM1, cancel1, cancel2, cancel3 and cancel4 are executed
O(e) times.

Proof: In MM1, a node i executes a cancel (cancel1, cancel2, cancel3 or
cancel4) when it is initially possible, some neighboring node executed a cancel,
or some neighboring node executed a progress move.
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Figure 6: Transitions of stages

Consider that some node j executes a progress move that changes a stage
of j to S2a. Nodes that point to j by i-ptr will execute a cancel as follows. If
such a node k is in S1b, k will execute cancel1, and if such a node k is in S2b
or S3, k will execute cancel2 or cancel3.

If some node executes cancel2 or cancel3, it causes more cancels. If there is
an adjacent node x trying to increase matches, it will also cancel by cancel3 or
cancel4. That cancel may further cause one more cancel. If x already invited
some node y to migrate to x, y will execute cancel1.

Now we classify cancels with direct cancels and indirect cancels. The direct
cancel is a cancel caused by some progress move or its initial state. The indirect
cancel is a cancel caused by a cancel of its neighbor.

From the above observation, any cancel causes at most two indirect cancels.
Let degj be the degree of j. There are at most degj nodes that execute a cancel
due to the progress move of j. From Lemma 7, j executes a progress move at
most once, and therefore there are at most Σi∈V degi = e direct cancels caused
by progress moves. Moreover, there are at most n direct cancels caused by
initial states. Therefore, the total number of moves by cancels are O(e). �

Lemma 9 In MM1, migrate2 is executed O(n) times.

Proof: Let m1 and m2 be two consecutive moves by migrate2 of a node i.
The node i moves to S2a by m1 and then invites some neighboring node j
at level 1 to migrate to i. Then, node j executes migrate1 that points to i
by m-ptr. That is, there is a move by migrate1 that points to i between two
consecutive moves by migrate2 of node i. Therefore, the total number of moves
by migrate2 ≤ the total number of moves by migrate1 +n. From Lemma 7,
it is bounded by O(n). �

Lemma 10 MM1 is silent and takes O(e) moves to reach a terminal configu-
ration.

Proof: Fig. 6 shows stage transition in MM1. In MM1, each node moves to
a higher stage from the current stage in the order of S1a, S1b, S2a, S2b, S3,
S4 and S5 except reset1, reset2, cancel1, cancel2, cancel3, cancel4 and
migrate2. Therefore, if a node does not execute these actions, the number of
moves is at most 6.
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Let Ri, Ci and Mi be the numbers of moves of a node i by reset (reset1 or
reset2), cancel (cancel1, cancel2, cancel3 or cancel4), and migrate2. Let
MOVi denote the total number of moves of a node i. From the observation, it
is bounded as follows.

MOVi ≤ 7(Ri + Ci + Mi + 1)

From Lemmas 6, 8 and 9, we have

Σi∈V Ri = O(n),Σi∈V Ci = O(e), and Σi∈V Mi = O(n).

Therefore, the total number of moves in MM1 can be derived as follows.

Σi∈V MOVi ≤ 7(Σi∈V Ri + Σi∈V Ci + Σi∈V Mi + Σi∈V 1) = O(e)

Since each node always takes a finite number of moves, MM1 always reaches
a terminal configuration and this also implies MM1 is silent. �

Now the final theorem is derived from Theorem 2 and Lemma 10 .

Theorem 3 MM1 is silent and takes O(e) moves to construct 1-maximal match-
ing for any graphs without a cycle of length of a multiple of 3.

Proof: Lemma 10 denotes that the system eventually reaches to a terminal
configuration. In addition, Theorem 2 denotes a 1-maximal matching is con-
structed in any terminal configuration for any graphs without a cycle of length
of a multiple of 3. Hence, MM1 constructs a 1-maximal matching in O(e) moves
for any graphs without a cycle of length of a multiple of 3. �

The space complexity of MM1 depends on the implementation of point-
ers. When each pointer is implemented with a O(log ∆)-bit memory, the space
complexity per node is O(log ∆) because each node requires one 3-bit variable
(level) and two pointers (m-ptr and i-ptr).

5 Observation

It is shown that there is no self-stabilizing 1-maximal matching algorithm for
anonymous ring networks whose length of a multiple of 3 [8]. Therefore, both
our algorithm and the algorithm of Goddard et al. [8] exclude the topology
including a cycle of length of a multiple of 3. In this Section, we observe what
happen in MM1 and the algorithm of Goddard et al. [8] if the network includes
a cycle of length of a multiple of 3.

We mentioned that proposed algorithm MM1 is silent for any network in
Lemma 10. That is, MM1 always brings the network to a terminal configuration
even if it includes a cycle of length of a multiple of 3.

However, we could not always obtain 1-maximal matching unfortunately.
Fig.7 shows an example terminal configuration that could not construct either
1-maximal or maximal matching. In this example, bold lines between nodes
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Figure 8: An example of an infinitely long execution in the algorithm of Goddard
et al.

represent edges of a matching. In this configuration, nodes p and q are waiting
for nodes b and c to proceed to S5 or cancel to increase matches, respectively.
Nodes b and c are waiting for node a and d to proceed to S4 or cancel to increase
matches, respectively. Nodes a and d are waiting for nodes p and q to approve
their invitations or for b and c to cancel to increase matches, respectively. In
addition, a node r is waiting for a node p to accept its invitation. Therefore, no
node can move, that is, the network is in a terminal configuration.
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On the other hand, the algorithm of Goddard et al. [8] is not silent for some
networks. That is, nodes can move infinitely often in some situation and could
not reach to any terminal configuration if the network has a cycle of a multiple
of 3.

In the algorithm of Goddard et al., each node i has one pointer and variable
xi ∈ {0, 1, 2, 3}. The pointer is used as m-ptr and the variable x is used as
level in MM1. Therefore, nodes can easily change partners and easily try and
cancel to increase matches. In their algorithm, if two nodes point to each other
and difference of values of x is within 1, they are recognized to be matching.
Matching nodes can increase matches when both nodes have free neighbors. In
this case, the two nodes synchronously increase values of x, and once both x
values reach to 3, they can migrate to their free neighbors.

Fig. 8 shows an example of an infinitely long execution. It starts from an
initial configuration showed in Fig. 8 (a). In the configuration, nodes a and b,
c and d are matching, respectively, and nodes p and q are free. Therefore, four
nodes a, b, c and d try to increase matches. Matching nodes increment a value
of x to 1 if they have free neighbors as in Fig. 8 (b). Then, these node can
further increment a value of x to 2 if both two matching nodes have incremented
values of x to at least 1 as in Fig. 8 (c). They can further increment a value of
x to 3 if their free neighbors point to them. In Fig. 8 (d), only nodes a and d
have incremented values of x to 3, while b and c could not increment the values
since nodes p and q do not point to them. In this situation, nodes b and c cancel
to increase matches and reset values of x to 0 as in Fig. 8 (e). Then nodes a
and d subsequently cancel to increase matches and then nodes q and p further
follow them. Finally, the configuration goes back to a configuration in Fig. 8
(a), and the above scenario can be infinitely repeated.

The observation implies that the algorithm of Goddard et al. [8] is not silent.
This observation gives us a question that which algorithm is preferred for the
network that includes a cycle with length of a multiple of 3. There is a tradeoff
as follows. Our proposed algorithm MM1 preserves a property of silence, and
therefore, it can save communication after the network is stabilized. While,
the algorithm Goddard et al. [7] can move infinitely often in some situation.
Therefore, it cannot save communication but it might be valuable information
for an upper layer algorithm to know that the stabilization has not succeeded
yet.

6 Conclusion

We proposed a 1-maximal matching algorithm MM1 that is silent and works for
any anonymous networks without a cycle of length of a multiple of 3 under a
central unfair daemon.

The time complexity of MM1 is O(e) moves. Therefore, it is O(n) moves
for trees or rings whose length is not a multiple of 3. We had a significant
improvement from Goddard et al. [8] that is the existing best anonymous 1-
maximal matching algorithm but works for only trees or rings whose length is
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not a multiple of 3 and the step complexity is O(n4).
We also observed what happen for networks with a cycle of length of a

multiple of 3. In the proposed MM1, though it cannot always reach to 1-
maximal matching, we found it is still silent for general networks. On the other
hand, we showed that the algorithm of Goddard et al. [8] is not silent if the
network includes a cycle of length of a multiple of 3.

The proposed MM1 could not always achieve maximum matching but it is
superior to existing maximum matching algorithms [2, 3, 12] with respect to
the step complexity. Regarding topology, though it is proved that there is no
anonymous self-stabilizing 1-maximal matching algorithm for cycles with length
of a multiple of 3 [8], if we give up the anonymity, there exists a 1-maximal
matching algorithm for general network [15]. However, it has an exponential
step complexity. That is there remains a big gap between networks without a
cycle of length of a multiple of 3 and general networks.

The future work includes to propose a self-stabilizing 1-maximal matching
algorithm for anonymous networks that works under a distributed daemon.
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