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Abstract

In this note we show how techniques developed for untangling planar
graphs by Bose et al. [Discrete & Computational Geometry 42(4): 570-
585 (2009)] and Goaoc et al. [Discrete & Computational Geometry 42(4):
542-569 (2009)] imply new results about some recent graph drawing mod-
els. These include column planarity, universal point subsets, and partial
simultaneous geometric embeddings (with or without mappings). Some
of these results answer open problems posed in previous papers.
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1 Introduction

A geometric graph is a graph whose vertex set is a set of distinct points in the
plane and each pair of adjacent vertices {v, w} is connected by a line segment
vw that intersects only the two vertices. A geometric graph is planar if its
underlying combinatorial graph is planar. It is plane if no two edges cross other
than in a common endpoint. A straight-line crossing-free drawing of a planar
graph is a representation of that graph by a plane geometric graph.

Given a geometric planar graph, possibly with many crossings, to untangle
it, means to move some of its vertices to new locations (that is, change their
coordinates) such that the resulting geometric graph is plane. The goal is to
do so by moving as few vertices as possible, or in other words, by keeping the
locations of as many vertices as possible unchanged (that is, fixed). A series of
papers have studied untangling of planar graphs or subclasses of planar graphs
[9, 12, 15, 26, 28, 30, 32]. The best known (lower) bound for general planar
graphs is due to Bose et al. [9] who proved that every n-vertex geometric planar
graph can be untangled while keeping the locations of at least Ω(n1/4) vertices
fixed. On the other hand, Cano et al. [12] showed that for all large enough n,
there exists an n-vertex geometric planar graph that cannot be untangled while
keeping the locations of more than ω(n0.4948) vertices fixed.

The purpose of this note is to highlight how the techniques developed by
Bose et al. [9] and Goaoc et al. [26] can be used to establish new results on
several recently studied graph drawing problems. Before presenting the new
results we state the two key lemmas that are at the basis of all the results. The
statements of these two lemmas are new, but their proofs are contained in and
directly inferred by the work described in [9] and [26].

Let G be a plane triangulation (that is, an embedded simple planar graph
each of whose faces is bounded by a 3-cycle). Canonical orderings of plane
triangulations were introduced by de Fraysseix et al. [18]. They proved that G
has a vertex ordering σ = (v1 := x, v2 := y, v3, . . . , vn := z), called a canonical
ordering, with the following properties. Define Gi to be the embedded subgraph
of G induced by {v1, v2, . . . , vi}. Let Ci be the subgraph of G induced by the
edges on the boundary of the outer face of Gi. Then
• x, y and z are the vertices on the outer face of G.
• For each i ∈ {3, 4, . . . , n}, Ci is a cycle containing xy.
• For each i ∈ {3, 4, . . . , n}, Gi is biconnected and all the interior faces of
Gi are bounded by 3-cycles.

• For each i ∈ {3, 4, . . . , n}, vi is a vertex of Ci with at least two neighbours
in Ci−1, and these neighbours are consecutive on Ci−1.

For example, the ordering in Figure 1(a) is a canonical ordering of the depicted
plane triangulation.

The following structure was defined first in Bose et al. [9]. Refer to Figure 1(b).
Using the above notation, a frame F of G is the oriented subgraph of G with
vertex set V (F) := V (G), where:
• Edges xy, xv1 and v1y are in E(F) where xy is oriented from x to y, xv1

is oriented from x to v1 and v1y is oriented from v1 to y.
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• For each i ∈ {4, 5 . . . , n} in the canonical ordering σ of G, edges pvi and
vip
′ are in E(F), where p and p′ are the first and the last neighbour,

respectively, of vi along the path in Ci−1 from x to y not containing edge
xy. Edge pvi is oriented from p to vi, and edge vip

′ is oriented from vi to
p′.

By definition, F is a directed acyclic graph with one source x and one sink
y. F defines a partial order <F on V (F), where v <F w whenever there is a
directed path from v to w in F .
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Figure 1: (a) Canonical ordering of a plane triangulation G (b) Frame F of G.

Subsequently, it has been observed that a frame of G can also be obtained
by taking the union of any two trees in Schnyder 3-tree-decompositions where
the orientation of the edges in one of the two trees is reversed. See, for example,
page 13 in Di Giacomo et al. [20] for this alternative formulation.

Recall that a chain (antichain) in a partial order is a subset of its elements
that are pairwise comparable (incomparable). Given a partial order (V,≤) on
a set of vertices V of some graph, we will often refer to a chain V ′ ⊆ V (or
antichain) and by that mean a subset of vertices of V that form a chain (an-
tichain) in the given partial order (V,≤). We also say that a chain V ′ contains
a chain V ′′ if V ′ and V ′′ are both chains in (V,≤) and V ′′ ⊆ V ′.

Consider an n-vertex planar graph G and a set P of k ≤ n points in the
plane together with a bijective mapping from a set Vk of k vertices in G to P .
Let D be a straight-line crossing-free drawing of G. We say that D respects the
given mapping if each vertex of Vk is represented in D by its image point as
determined by the given mapping.

The following two lemmas are implicit in the work of Bose et al. [9] and
Goaoc et al. [26]. Parts (b), (c) and consequently (d), in Lemma 1, are due to
Goaoc et al. [26]. Note that, unlike here, the results of Goaoc et al. [26] are not
expressed in terms of a chain in the frame of G but in terms of an equivalent
structure: a simple path L in a plane triangulation, connecting two vertices x
and y on the outer face x, y, z with the property that all chords of L lie on one
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side of L and z lies on the other.

Consider a graph G, a set S ⊆ V (G) and a set P of |S| points in the plane
together with a bijective mapping from S to P . For a vertex v ∈ S mapped to
a point p ∈ P , let x(v) denote the x-coordinate of p.

Lemma 1 [9, 26] Let G be an n-vertex plane triangulation with a partial order
<F associated with a frame F of G. Let C ⊆ V be a chain in <F . Let H be the
graph induced in G by a maximal chain that contains C in <F . The embedding
of H is implied by the embedding of G. Then:

(a) H is a 2-connected outerplane graph, i.e. a 2-connected embedded outer-
planar graph all of whose vertices lie on the cycle bounding the infinite
face.

(b) Let I ⊆ V (H) such that if v, w ∈ I and vw ∈ E(H) then vw lies on the
outer face of H and is not edge xy. Let P be any set of |I| points in
the plane where no two points of P have the same x-coordinate. Given a
bijective mapping from I to P such that, for every two vertices v, w ∈ I,
v <F w if and only if x(v) < x(w), there exists a straight-line crossing-free
drawing of G that respects the given mapping.

(c) There exists such a set I with at least (V (H) + 1)/2 vertices.
(d) There exists such a set I with at least |C|/3 vertices of C.

While the lower bound in part (c) is stronger than the lower bound in part
(d), part (d) ensures that a fraction of vertices of C are used. That will be critical
for some applications (see Theorem 2 in Section 2 and Theorem 6 in Section 4.2).
Part (d) follows from (b) as follows. Consider the graph H ′ induced in H by
the vertices of C. By part (a), H ′ is outerplanar. Thus its vertices can be
coloured with three colours such that adjacent vertices in H ′ receive distinct
colours. Thus there exists an independent set I in H ′ that contains at least
|C|/3 vertices of C. The conditions imposed on the vertex set I in part (b) are
immediate since I is an independent set in H ′ and H.

Note that, in an interesting recent development, Di Giacomo et al. [21]
proved that every n-vertex plane triangulation has a frame where some chain
has size at least n1/3. Thus by part (a), |V (H)| ≥ n1/3 in that frame and conse-
quently, every n-vertex plane triangulation has a 2-connected outerplane graph
of size at least n1/3 as an embedded induced subgraph.

The following is the second key lemma.

Lemma 2 [9] Let G be an n-vertex plane triangulation with a partial order
<F associated with a frame F of G and the total order <σ associated with the
corresponding canonical ordering. Let A ⊆ V be an antichain in <F . Let P
be any set of |A| points in the plane where no two points of P have the same
x-coordinate. Given a bijective mapping from A to P such that, for every two
vertices v, w ∈ A, v <σ w if and only if x(v) < x(w), then there exists a straight-
line crossing-free drawing of G that respects the given mapping.
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2 Column Planarity

Given a planar graph G, a set R ⊂ V (G) is column planar in G if the vertices
of R can be assigned x-coordinates such that given any arbitrary assignment of
y-coordinates to R, there exists a straight-line crossing free drawing of G that
respects the implied mapping of vertices of R to the plane. Notions similar
to column planarity were studied by Estrella-Balderrama et al. [24] and Di
Giacomo et al. [19].

The column planar sets were first defined by Evans et al. [25]. A slightly
stronger notion1 was used earlier (although not named) in [9] (see Lemma 1 and
Lemma 6 in [9]) where such sets were studied and used to prove Lemma 2 in
the previous section. In particular, define a set R ⊂ V (G) as strongly column
planar if the following holds: there exists a total order µ on R such that

(a) given any set P of |R| points in the plane where no two points have the
same x-coordinate; and,

(b) given a bijective mapping from R to P such that, for every two vertices
v, w ∈ R, v <µ w if and only if x(v) < x(w),

then there exists a straight-line crossing-free drawing of G that respects the
given mapping. Being strongly column planar implies being column planar but
not the converse. We use this slightly stronger notion as it is needed in the later
sections.

It is implicit in the work of Bose et al. [9] (see the proof of Lemma 2 in [9])
that every tree has a strongly column planar set of size at least n/2. For column
planar sets, this result is improved to 14n/17 by Evans et al. [25]. Having a
bound greater than n/2 is critical for an application of column planarity to
partial simultaneous geometric embedding with mapping [25]. Barba et al. [6]
proved that every n-vertex outerplanar graph has a column planar set of size
at least n/2. Ravsky and Verbitsky [32] introduce a notion of free collinear sets
in planar graphs. Lemma 1 in [9] (see also Lemma 8 in [16] for more readily
applicable version) and the definition of free collinear sets imply that a set of
vertices in a planar graph is strongly column planar if and only if it is a free
collinear set. Thus the results of Ravsky and Verbitsky [32] on free collinear sets
imply that every n-vertex outerplanar graph has a strongly column planar set
of size at least n/2 and that every n-vertex partial 2-tree has a strongly column
planar set of size at least n/30. This was further generalized and strengthened
by Da Lozzo et al. [16] who proved that n-vertex planar partial 3-trees have
strongly column planar sets of size at least n/8. This is in contrast to the fact
that, for infinitely many values n, there is an n-vertex planar graph whose largest
strongly column planar set has size o(n), as proved by Ravsky and Verbitsky
[32].

Evans et al. [25] pose as an open problem the question of developing any
bound for column planar sets in general planar graphs. We provide here the
first non-trivial (that is, better than constant) lower bound for this problem.

1with the roles of x and y coordinates reversed
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Theorem 1 Every n-vertex planar graph G has a (strongly) column planar set
of size at least

√
n/2.

Proof: If |V (G)| ≤ 2, the result is trivially true. Thus without loss of generality
we may assume that G is a triangulated plane graph. Let F be a frame of G,
let <F be its associated partial order, and let σ be the associated canonical
ordering. Consider a chain in <F of maximum size. (Hence, the chain starts
with x and ends with y). Let H be the subgraph of G induced by that chain, as
defined in Lemma 1. Let I ⊆ V (H) be as defined in Lemma 1 (b). Consider any
set P of |I| points in the plane where no two points have the same x-coordinate
and consider a bijective mapping from I to P such that, for every two vertices
v, w ∈ I, it holds that v <F w if and only if x(v) < x(w). By Lemma 1 (b), there
exists a straight-line crossing-free drawing of G that respects the given mapping
and thus I, as ordered by <F , is a strongly column planar set. By Lemma 1 (c),
|I| ≥ |V (H)|/2. Thus if the size of the maximum chain in <F is at least

√
2n,

and thus |V (H)| ≥
√

2n, we are done. Otherwise, by Dilworth’s theorem [22],
<F has a partition into at most

√
2n antichains. By the pigeon-hole principle,

there is an antichain in that partition with at least n/
√

2n =
√
n/2 vertices.

Let A ⊆ V (G) be the maximum antichain in <F . Consider any set P of |A|
points in the plane where no two points have the same x-coordinate and consider
a bijective mapping from A to P such that, for every two vertices v, w ∈ A, it
holds that v <σ w if and only if x(v) < x(w). By Lemma 2, there exists a
straight-line crossing-free drawing of G that respects the given mapping and
thus A, as ordered by <σ, is a strongly column planar set. This completes the
proof since |A| ≥

√
n/2. �

We conclude this section by proving a slightly stronger statement (with a
slightly weaker bound when S = V ) than Theorem 1. This stronger statement
relies on part (d) of Lemma 1, and is a critical strengthening for some applica-
tions, such as partial simultaneous geometric embeddings with mappings (see
Theorem 6 in Section 4.2).

Theorem 2 Given any planar graph G and any subset S ⊆ V , there exists
R ⊆ S such that R is a strongly column planar set of G and |R| ≥

√
|S|/3.

Proof: If |V (G)| ≤ 2, the result is trivially true. Thus we may assume that G
is a triangulated plane graph. Let F be a frame of G, let <F be its associated
partial order, and let σ be the associated canonical ordering. Assume first
that <F has a chain C such that C ⊆ S and |C| ≥

√
3|S|. Let H be the

subgraph of G induced by a maximal chain that contains C in <F , as defined
in Lemma 1. Let I ⊆ S be as defined in Lemma 1, (b) and (d). Consider any
set P of |I| points in the plane where no two points have the same x-coordinate
and consider a bijective mapping from I to P such that, for every two vertices
v, w ∈ I, it holds that v <F w if and only if x(v) < x(w). By Lemma 1 (b),
there exists a straight-line crossing-free drawing of G that respects the given
mapping and thus I, as ordered by <F , is a strongly column planar set. By
Lemma 1 (d), I ⊆ C and |I| ≥ |C|/3|. Thus if <F has a chain C such that
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C ⊆ S and |C| ≥
√

3|S|, we are done. Otherwise, by Dilworth’s theorem [22],

<F , when restricted to S, has a partition into at most
√

3|S| antichains. By
the pigeon-hole principle, there is an antichain A ⊆ S in that partition that has
at least |S|/

√
3|S| =

√
|S|/3 elements. Consider any set P of |A| points in the

plane where no two points have the same x-coordinate and consider a bijective
mapping from A to P , such that for every two vertices v, w ∈ A, v <σ w if
and only if x(v) < x(w). By Lemma 2, there exists a straight-line crossing-free
drawing of G that respects the given mapping and thus A, as ordered by <σ, is
a strongly column planar set. This completes the proof since |A| ≥

√
|S|/3 and

A ⊆ S. �

3 Universal Point Subsets

A set of points P is universal for a set of planar graphs if every graph from
the set has a straight-line crossing-free drawing where each of its vertices maps
to a distinct point in P . It is known that, for all large enough n, no universal
pointset of size n exists for all n-vertex planar graphs – as first proved by de
Fraysseix et al. [18]. The authors also proved that the O(n)×O(n) integer grid
is universal for all n-vertex planar graphs and thus a universal pointsets of size
O(n2) exists. Currently the best known lower bound on the size of a smallest
universal pointset for n-vertex planar graphs is 1.235n− o(n) [29] and the best
known upper bound is n2/4−O(n) [5]. Closing the gap between Ω(n) and O(n2)
is a major, and likely difficult, graph drawing problem, open since 1988 [17, 18].

This motivated the following notion introduced by Angelini et al. [2]. A
set P of k ≤ n points in the plane is a universal point subset for all n-vertex
planar graphs if the following holds: every n-vertex planar graph G has a subset
S ⊆ V (G) of k vertices and a bijective mapping from S to P such that there
exists a straight-line crossing-free drawing of G that respects that mapping.

Angelini et al. [2] proved that for every n there exists a set of points of
size at least

√
n that is a universal point subset for all n-vertex planar graphs.

Di Giacomo et al. [20] continued this study and showed that for every n, every
set P of at most (

√
log2 n− 1)/4 points in the plane is a universal point subset

for all n-vertex planar graphs. They also showed that every one-sided convex
point set P of at most n1/3 points in the plane is a universal point subset for
all n-vertex planar graphs. The following theorem improves all these results.

Theorem 3 Every set P of at most
√
n/2 points in the plane is a universal

point subset for all n-vertex planar graphs.

The proof of this lemma can be derived directly from Lemma 1 and Lemma 2,
similarly to the proof of Theorem 1, but we will instead prove it using Theorem 1.

Proof: Rotate P to obtain a new pointset P ′ where no two points of P ′ have the
same x-coordinate. By Theorem 1, every n-vertex planar graph has a strongly
column planar set R of size |P |. Thus, by the definition of strongly column
planar sets, there exists a total order µ on R such that given a bijective mapping
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from R to P ′ where for every two vertices v, w ∈ R, v <µ w if and only if
x(v) < x(w), there exists a straight-line crossing-free drawing of G that respects
the given mapping. Such a mapping clearly exists since no two points of P ′ have
the same x-coordinate. Rotating P ′ back to the original pointset completes the
proof. �

It is not known if, for all n, there exist a universal point subset of size
n1/2+ε for some ε > 0. Better, in particular linear, bounds are known for some
subclasses of planar graphs. For example, every pointset of size n in general
position is universal for all n-vertex outerplanar graphs [8, 14, 27]. Da Lozzo et
al. [16] proved recently, that every set of at most n/8 points in the plane is a
universal point subset for all n-vertex planar partial 3-trees.

4 (Partial) Simultaneous Geometric Embeddings

Simultaneous Geometric Embeddings were introduced by Braß et al. [11]. Ini-
tially there were two main variants of this problem, one in which the mapping
between the vertices of the two graphs is given and another in which the map-
ping is not given. Since then there has been a plethora of work on the subject
for various variants of the problem – see, for example a survey by Bläsius et
al. [7].

4.1 Without mapping

Whether the following statement, on simultaneous geometric embeddings, is
true is an open question asked by Braß et al. [11] in 2003 (Problem 12 in [10]
asks the same question): For all n and for any two n-vertex planar graphs there
exists a pointset P of size n such that each of the two graphs has a straight-
line crossing-free drawing with its vertices mapped to distinct points of P . The
statement is known not to be true when “two” is replaced by 7393 and n = 35
[13].

This motivates a study of (partial) geometric simultaneous embeddings –
various versions of which have been proposed and studied in the literature [7].
We start with the following version.

Two graphs G1 and G2, where |V (G1)| ≥ |V (G2)| are said to have a geo-
metric simultaneous embedding with no mapping if there exists a pointset P of
size |V (G1)| such that each of the two graphs has a straight-line crossing-free
drawing where all of its vertices are mapped to distinct points in P . Angelini et
al. [3] write: “What is the largest k ≤ n such that every n-vertex planar graph
and every k-vertex planar graph admit a geometric simultaneous embedding
with no mapping? Surprisingly, we are not aware of any super-constant lower
bound for the value of k.”

The following theorem answers their question.
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Theorem 4 For every n and every k ≤
√
n/2, every n-vertex planar graph and

every k-vertex planar graph admit a geometric simultaneous embedding with no
mapping.

Proof: Let G1 and G2 be the two given planar graphs with |V (G1)| = n and
|V (G2)| = k. By Fáry’s theorem, G2 has a straight-line crossing-free drawing
on some set, P2, of k points. By Theorem 3, G1 has a straight-line crossing-free
drawing where |P2| vertices of G1 are mapped to distinct points in P2. Consider
now the set of points, P , defined by the vertices in the drawing of G1. This set
is our desired pointset as it is a set of n points such that each of G1 and G2 has
a straight-line crossing-free drawing where all of its vertices are mapped to the
points in P . �

Here is another variant of the (partial) geometric simultaneous embedding
problem. For k ≤ n, two n-vertex planar graphs G1 and G2 are said to have
a k-partial simultaneous geometric embedding with no mapping (k-PSGENM)
if there exists a set P of at least k points in the plane such that each of the
two graphs has a straight-line crossing-free drawing where |P | of its vertices
are mapped to distinct points of P . Thus the (still) open question by Braß et
al. [11] asks if every pair of n-vertex planar graphs has an n-PSGENM. Recall
that Angelini et al. [2] proved that for every n there exists a set of points of size
at least

√
n that is a universal point subset for all n-vertex planar graphs. This

implies that, for all n, any two n-vertex planar graphs have an
√
n-PSGENM.

Note however that this does not imply Theorem 4. Namely, if one starts with a
straight-line crossing-free drawing of the smaller graph G2 (say on

√
n vertices),

there is no guarantee with this result that the bigger, n-vertex graph, G1 can
be drawn while using all the points generated by the drawing of G2.

4.2 With Mapping

The notion of k-partial simultaneous geometric embedding with mapping (k-
PSGE) is the same as k-PSGENM except that a bijective mapping between
V (G1) and V (G2) is given and the two drawings have a further restriction that
if v ∈ V (G1) is mapped to a point in P then the vertex w in V (G2) that v
maps to, has to be mapped to the same point in P . In other words, two n-
vertex planar graphs G1 and G2 on the same vertex set, V , are said to have
a k-partial simultaneous geometric embedding with mapping (k-PSGE) if there
exists a straight-line crossing free drawing D1 of G1 and D2 of G2 such that
there exists a subset V ′ ⊆ V with |V ′| ≥ k and each vertex v ∈ V ′ is represented
by the same point in D1 and D2.

It is known that, for every large enough n, there are pairs of n-vertex planar
graphs that do not have an n-partial simultaneous geometric embedding with
mapping, that is, an n-PSGE [11]. In fact the same is true for simpler families
of planar graphs, for example for a tree and a path [4], for a planar graph and
a matching [4] and for three paths [11].

k-PSGE was introduced by Evans et al. [25] who proved (using their column
planarity result) that any two n-vertex trees have an 11n/17-PSGE. Barba et
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al. [6] proved that any two n-vertex outerplanar graphs have an n/4-PGSE.
Evans et al. [25] also observed that the main untangling result by Bose et al. [9]
implies that every pair of n-vertex planar graphs has an Ω(n1/4)-PSGE. Namely,
start with a straight-line crossing-free drawing of G1. Since the vertex sets of
G1 and G2 are the same, the drawing of G1 (or rather the drawing of its vertex
set) defines a straight-line drawing of G2. Untangling G2 such that Ω(n1/4) of
its vertices remain fixed (which is possible by [9]) gives the result.

Theorem 5 [6] Every pair of n-vertex planar graphs has an Ω(n1/4)-partial
simultaneous geometric embedding with mapping, that is, it has an Ω(n1/4)-
PGSE.

However, the above untangling argument fails if we try to apply it one more
time. Namely, consider the following generalization of the k-PGSE problem.
Given any set {G1, . . . , Gp} of p ≥ 2 n-vertex planar graphs on the same vertex
set, V , we say that G1, . . . , Gp have a k-partial simultaneous geometric embed-
ding with mapping (k-PSGE) if there exists a straight-line crossing-free drawing
Di of each Gi, i ∈ {1, . . . , p} such that there exists a subset V ′ ⊆ V with
|V ′| ≥ k and each vertex v ∈ V ′ is represented by the same point in all drawings
Di, i ∈ {1, . . . , p}.

If we try to mimic the earlier untangling argument that proves Theorem 5,
it fails for p = 3 already since we cannot guarantee that when G3 is untangled
the set of its vertices that stays fixed has a non-empty intersection with the set
that remained fixed when untangling G2. It is here that part (d) of Lemma 1
is needed, or rather the stronger result on column planarity from Theorem 2.

Theorem 6 Any set of p ≥ 2 n-vertex planar graphs has an Ω(n1/4
(p−1)

)-partial

simultaneous geometric embedding with mapping, that is, it has an Ω(n1/4
(p−1)

)-
PGSE.

Proof: Let {G1, . . . , Gp} be the given set of p n-vertex planar graphs. The
proof is by induction on p. The base case, p = 2, is true by Theorem 5. Let

p ≥ 3 and assume by induction that the set {G1, . . . , Gp−1} has an Ω(n1/4
(p−2)

)-
PGSE. Let V ′ ⊆ V be the set from the definition of k-PSGE and let P ′ be the
set of |V ′| points that V ′ is mapped to in the drawings D1, . . . , Dp−1. Thus

|V ′| ∈ Ω(n1/4
(p−2)

) by induction. We may assume that no pair of points in
P ′ has the same x-coordinate as otherwise we can just rotate the union of
D1, . . . , Dp−1. By Theorem 2, there exists R ⊆ V ′ that is strongly column

planar in Gp and |R| ≥
√
|V ′|/3. Since the vertices of V ′ are bijectively mapped

to P ′, that mapping defines a bijective mapping from R to a subset PR of P ′.
Consider the total order µ of R (the total order from the definition of strongly
column planar sets) and the total order φ of R as defined by the x-coordinates
of PR. By the Erdős–Szekeres theorem [23, 33], there exists a subset R′ of R
of at least

√
|R| ≥ (|V ′|/3)1/4 vertices such that the order of R′ in µ is the

same or reverse as the order of R′ in φ. In the second case the union of all the
drawings of D1, . . . , Dp can be mirrored such that the order of R′ in µ is the
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same as the order of R′ in φ. Since the vertices of R are bijectively mapped to
PR, this defines a bijective mapping from R′ to a subset P ′R of PR. Since R′ is
strongly column planar in Gp, we conclude that Gp has a straight-line crossing-
free drawing Dp that respects the mapping from R′ to P ′R and thus each vertex
v ∈ R′ is represented by the same point in all drawings Di, i ∈ {1, . . . , p}. Since

|V ′| ∈ Ω(n1/4
(p−2)

), and |R′| ≥ (|V ′|/3)1/4, the lower bound holds. �

Note that the definition of k-PSGE, as introduced in Evans et al. [25], has
one additional requirement, as compared with the definition used here. Namely,
the additional requirement states that if v, w ∈ V are mapped to a same point
in Di and Dj , then v = w. However this additional requirement can always be
met by the fact that it is possible to perturb any subset of vertices of a geometric
plane graph without introducing crossings. More precisely, for any geometric
plane graph there exists a value ε > 0 such that each vertex can be moved any
distance of at most ε, and the resulting geometric graph is also crossing-free.2

5 Conclusion

The main purpose of this note is to draw attention to Lemma 1 and Lemma 2
in the current form as they seem to have applications to numerous, some seem-
ingly unrelated, graph drawing problems as evidenced by the results highlighted
in the previous sections. The two lemmas appear in the current form for the
first time here. Their original formulation was tailored towards specific appli-
cation (untangling) and not directly applicable to any of the above mentioned
problems.
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