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Abstract

The Shoshan-Zwick algorithm solves the all-pairs shortest paths problem in
undirected graphs with integer edge costs in the range {1,2, . . . ,M}. It runs in
Õ(M · nω ) time, where n is the number of vertices, M is the largest integer edge
cost, and ω < 2.3727 is the exponent of matrix multiplication. It is the fastest
known algorithm for this problem. This paper points out and corrects an error in
the Shoshan-Zwick algorithm.
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1 Introduction
In this paper, we revise the Shoshan-Zwick algorithm [2] to correct an error. Recall
that the Shoshan-Zwick algorithm solves the all-pairs shortest paths (APSP) problem
in undirected graphs, where the edge costs are integers in the range {1,2, . . . ,M}. This
is accomplished by computing O(log(M ·n)) distance products of n×n matrices with
elements in the range {1,2, . . . ,M}. The algorithm runs in Õ(M · nω) time, where
ω < 2.3727 is the exponent for the fastest known matrix multiplication algorithm [3].
This paper identifies and resolves an error with the algorithm. Additional details in-
cluding a description of the algorithm, a counter-example that identifies the error in the
algorithm, and a discussion concerning the efficacy of the algorithm can be found in
[1].

2 The Errors in the Algorithm
In this section, we describe what causes the erroneous behavior of the Shoshan-Zwick
algorithm. Recall that ∆ is the matrix that contains the costs of the shortest paths be-
tween all pairs of vertices after the algorithm terminates. Moreover, let δ (i, j) denote
the cost of the shortest path between nodes i and j. After the termination of the algo-
rithm, we must have ∆i j = δ (i, j) for any i, j ∈ {1, . . . ,n}. However, it may be the case
that ∆i j 6= δ (i, j) for some i, j at termination. The exact errors of the algorithm are as
follows:

1. R is not computed correctly.

2. B0 is not computed correctly.

3. ∆ is not computed correctly, since M ·B0 +R is part of the sum producing it.

In the rest of this section, we illustrate what causes these errors. When we compute
∆ = M ·B0+R, observe that the matrices Bk (for 0≤ k≤ l) represent the dlog2 nemost
significant bits of each distance. That is,

(Bk)i j =

{
1 if 2k ·M must be added to ∆i j so that ∆i j = δ (i, j)
0 otherwise

,

while R represents the remainder of each distance modulo M. This is also illus-
trated in [2, Lemma 3.6], where for every 0 ≤ k ≤ l, (Bk)i j = 1 if and only if δ (i, j)
mod 2k+m+1 ≥ 2k+m, while Ri j = δ (i, j) mod M. Hence, for every i, j, we must have

(M ·B0 +R)i j = δ (i, j) mod 2m+1. (1)

The first error of the algorithm arises immediately from the key observation that
P0 can have entries with negative values. This means that Ri j = (P0)i j mod M is not
correctly calculating Ri j = δ (i, j) mod M, since δ (i, j)≥ 0 by definition, while (P0)i j
can be negative.

A closer examination of how P0 obtains its negative values reveals another error
of the algorithm. The following definitions are given in [2, Section 3]. Consider a set
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Y ⊆ [0,M · n]. Note that [0,M · n] includes any value that δ (i, j) can take, since n is
the number of nodes, and M is the maximum edge cost. Let Y = ∪p

r=1[ar,br], where
ar ≤ br, for 1≤ r ≤ p and br < ar+1, for 1≤ r < p. Let Y be an n×n matrix, whose
elements are in the range {−M, . . . ,M}∪ {+∞}, such that for every 1 ≤ i, j ≤ n, we
have

( Y )i j =


−M if ar ≤ δ (i, j)≤ br−M for some 1≤ r ≤ p,
δ (i, j)−br if br−M < δ (i, j)≤ br +M for some 1≤ r ≤ p,
+∞ otherwise.

(2)

By [2, Lemma 3.5], P0 = Y0 , where Y0 = {x|(x mod 2m+1) = 0}. Recall that
2m = M. Note that by definition of Y0, when calculating P0 = Y0 , it can only be the
case that ar = br. Moreover, br = 2m+1 · (r− 1) for 1 ≤ r ≤ p, where p is such that
2m+1 · (p−1)≤M ·n < 2m+1 · p. But then:(

∪p
r=1[br−M,br +M]

)
⊃ [0,M ·n]

That is, (∪p
r=1[br−M,br +M]) covers all possible values that δ (i, j) may take for any

i, j. Hence,

(P0)i j =

{
δ (i, j) for r = 1 (i.e., if δ (i, j)≤ 2m),
δ (i, j)−br for 2≤ r ≤ p, such that br−2m < δ (i, j)≤ br +2m.

(3)

Let us examine the values that (P0)i j takes by equation (3):

◦ For 0≤ δ (i, j)≤ 2m, we have (P0)i j = δ (i, j) mod 2m+1.

◦ For 2m < δ (i, j)< 2m +2m, we have (P0)i j = (δ (i, j) mod 2m+1)−2m+1.

◦ For 2m+1 ≤ δ (i, j)≤ 2m+1 +2m, we have (P0)i j = δ (i, j) mod 2m+1.

◦ For 2m+1 + 2m < δ (i, j) < 2m+2 + 2m, we have (P0)i j = (δ (i, j) mod 2m+1)−
2m+1.

◦ And so forth...

More formally, equation (3) can be rewritten as follows:

(P0)i j =

{
δ (i, j) mod 2m+1 if δ (i, j) mod 2m+1 ≤ 2m,
(δ (i, j) mod 2m+1)−2m+1 if δ (i, j) mod 2m+1 > 2m.

(4)

Moreover, equation (4) implies that

for i, j such that δ (i, j) mod 2m+1 ≤ 2m, we have 0≤ (P0)i j ≤M, (5)

while

for i, j such that δ (i, j) mod 2m+1 > 2m, we have −M < (P0)i j < 0. (6)

Recall now that we must have (B0)i j = 1 if and only if δ (i, j) mod 2m+1 ≥ 2m. How-
ever, from equations (5) and (6), this does not hold (as claimed in the proof of [2,
Lemma 3.6]) for B0 = (0 ≤ P0 < M). Therefore, the algorithm does not compute B0
correctly.

It is clear that in the presence of these two identified errors (in calculating R and
B0), the algorithm is not computing ∆ correctly.
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3 The Revised Algorithm
In this section, we present a new version of the Shoshan-Zwick algorithm that resolves
the problems illustrated in Section 2. The first three steps from [2, Figure 2] remain
unchanged. We make the following changes in Step 4:

1. We replace B0 with B̂0 and set B̂0 to (−M < P0 < 0).

2. In the line R = P0 mod M, we replace R with R̂ and set R̂ to P0.

3. We set ∆ to M ·
l

∑
k=1

2k ·Bk +2 ·M · B̂0 + R̂.

Note that we have replaced B0 and R with B̂0 and R̂, respectively. The purpose of
the change in notation is to show that these matrices no longer represent the incorrect
versions from the original (erroneous) algorithm. Step 4 of the revised algorithm is
illustrated in Algorithm 3.1.

for (k← 1 to l) do
Bk = (Ck ≥ 0)

end for
B̂0← (−M < P0 < 0)
R̂← P0

∆←M ·
l

∑
k=1

2k ·Bk +2 ·M · B̂0 + R̂

return ∆

Algorithm 3.1: The revised Step 4 of the Shoshan-Zwick algorithm

We now prove that the revised version of the Shoshan-Zwick algorithm is correct.

Theorem 1 The revised Shoshan-Zwick algorithm calculates all the shortest path costs
in an undirected graph with integer edge costs in the range {1, . . . ,M}.

Proof: It suffices to show that 2 ·M · B̂0 + R̂ represents what the original algorithm
intended to represent with M ·B0 +R. That is, by equation (1), it suffices to show that
(2 ·M · B̂0 + R̂)i j = δ (i, j) mod 2m+1, for every 1≤ i, j ≤ n.

First, we consider the case where δ (i, j) mod 2m+1 ≤ 2m. Equation (5) indicates
that 0 ≤ (P0)i j ≤ M. Hence, (B̂0)i j = 0 (by B̂0 ← (−M < P0 < 0) in the revised
algorithm). Moreover, since R̂i j = (P0)i j (by R̂← P0 in the revised algorithm), we
have that R̂i j = δ (i, j) mod 2m+1 by equation (4). Thus, (2 ·M · B̂0 + R̂)i j = δ (i, j)
mod 2m+1.

We next consider the case where δ (i, j) mod 2m+1 > 2m. Equation (6) indicates
that −M < (P0)i j < 0. Hence, (B̂0)i j = 1 (by B̂0 ← (−M < P0 < 0) in the revised
algorithm). Further, R̂i j = (δ (i, j) mod 2m+1)− 2m+1 by equation (4). Therefore,
(2 ·M · B̂0 + R̂)i j = 2 ·2m ·1+(δ (i, j) mod 2m+1)−2m+1 = δ (i, j) mod 2m+1, which
completes the proof. 2
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