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On the Complexity of the
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Abstract

The planar slope number of a planar graph G is defined as the min-
imum number of slopes that is required for a crossing-free straight-line
drawing of G. We show that determining the planar slope number is hard
in the existential theory of the reals. We discuss consequences for drawings
that minimize the planar slope number.
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1 Introduction

The slope number of a non-degenerate straight-line drawing D of a graph G is
defined to be the number of distinct slopes that is used to draw the edges of
G in D. The minimum slope number of all straight-line drawings of G is the
slope number of G. Similarly, the planar slope number of a planar graph G is
the minimum slope number over all planar straight-line drawings of G.

In this paper, we consider the computational complexity of computing the
planar slope number. In Section 2, we show that computing the planar slope
number of a graph is hard in the existential theory of the reals, i.e., as hard
as deciding the solvability of a polynomial inequality system over the reals.
Furthermore, it is complete in the existential theory of the rationals (and thus
possibly undecidable) to decide whether a planar graph has a drawing on the
grid that minimizes the planar slope number. However, for each fixed k, deciding
whether the (planar) slope number is at most k is in NP. A consequence of this
result is that deciding if the planar slope number of a bounded degree graph
is at most k is in NP. Afterwards, in Section 3, we point out consequences
for drawings that minimize the slope number: There are planar graphs such
that each drawing that minimizes the planar slope number requires irrational
coordinates for the vertices and slopes of the edges. In Section 4 we point out
open problems in connection to the slope number.

1.1 Background

The slope number of a graph has mainly been studied for the relation between
the maximum degree of a graph and the slope number: A simple lower bound for
the slope number of a graph G is d∆(G)/2e, where ∆(G) denotes the maximum
degree of G, since at most two edges of the same slope are incident to one vertex.
The main work in this area deals with the question, whether the slope number
of a graph is also bounded from above by a function in the maximum degree.
This was answered negatively [1, 21, 6] by examples of families of graphs of
maximum degree 5 with arbitrarily large slope number. In contrast, Keszegh,
Pach, and Pálvölgyi have shown that the planar slope number is bounded by an
exponential function in the maximum degree [13]. For partial planar 3-trees [12]
this bound has been improved to a polynomial upper bound of O(∆5) and for
outerplanar graphs [14] and partial 2-trees [16] to a linear upper bound. For
planar graphs of maximum degree three the planar slope number is known to
be at most four [5].

From the computational point of view, it is known to be NP-complete to
decide whether a graph has slope number 2 [7], and it is NP-complete to decide
whether a planar graph has planar slope number 2 [8]. Thus both problems,
computing the slope number and the planar slope number, are NP-hard. We
characterize the planar slope number problem as hard in the existential theory
of the reals.

The existential theory of the reals (∃R) is a complexity class defined by
the following complete problem: Given a quantifier-free formula F (x1, . . . , xn)
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that contains logic connections of polynomial equalities and inequalities in the
variables x1, . . . , xn with integer coefficients, is there an assignment of real values
to the variables such that the formula is satisfied? This problem can be reduced
to deciding the solvability of a polynomial inequality system over the reals.
Starting with Mnëv’s universality theorem [20] many geometric problems have
been shown to be hard in ∃R. Mnëv’s universality theorem states that for each
semialgebraic set V there exists an order type (or by duality, a line arrangement)
whose realization space is stably equivalent to V . From a computational point
of view it is important that the realization space is empty if and only if V is
empty.

Some ∃R-complete problems include pseudoline stretchability [20, 24], recog-
nition of segment intersection graphs [15], realizability of planar graphs and
linkages [23], realizing abstract 4-polytopes [22], point visibility graph recogni-
tion [4], and many more, see [3] for an overview.

The existential theory of the rationals (∃Q) is defined similarly to ∃R, but
restricted to rational solutions. When asking for geometric representations on
the integer grid for ∃R-hard problems it turns out that ∃Q is the right complexity
class because of scaling arguments. It is an open problem if ∃Q is decidable.
The class ∃R is decidable in PSPACE [2], while the existential theory of the
integers is undecidable by the negative answer to Hilbert’s tenth problem due to
Matiyasevich [18].

We want to point out that the problem of deciding if the (planar) slope
number is at most k is contained in ∃R. This can be easily shown by encoding
the coordinates as well as the k allowed slopes in variables. The same holds for
drawings on the grid and ∃Q. In the following we only mention hardness results
because we consider optimization problems and not decision problems.

Our hardness proofs are based on the problem of pseudoline stretchability :
Given a collection of x-monotone curves that extend infinitely in positive and
negative x-direction such that any two curves intersect pairwise exactly once,
is there a homeomorphism of the plane that maps the curves onto lines? Or
in other words, is there a collection of lines with the same intersection pattern
as the collection of curves. We call the collection of curves a pseudoline ar-
rangement ; it is stretchable if the described homeomorphism exists. We call the
stretched collection of curves a line arrangement. A (pseudo)line arrangement is
simple if no three lines/curves intersect in a common point. The stretchability
of simple pseudoline arrangements is also hard in ∃R. For a good overview on
the ∃R-reduction for the stretchability problem we refer to [19]. We point out
that stretchability of non-simple pseudoline arrangements with rational coor-
dinates is complete in ∃Q [25], while simple line arrangements can always be
perturbed onto rational coordinates.

2 Computational complexity

In this section we consider the computational complexity of computing the pla-
nar slope number problem. In Subsection 2.1, we show that deciding if a planar
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graph has planar slope number ∆/2 is complete in the existential theory of the
reals. We complement this result in Subsection 2.2, where we show that deciding
the if the planar slope number can be achieved by a drawing of the vertices on
the grid is complete in ∃Q. In contrast, if the maximum degree ∆ is bounded
by a constant, we show that the planar slope number problem is in NP.

2.1 ∃R-hardness
In this subsection, we show that computing the planar slope number is ∃R-hard.
The general idea is to construct an (almost) 3-connected planar graph GL that
contains the edges and vertices of a pseudoline arrangement L. Consequently,
the pseudoline arrangement L can be found in each planar drawing of GL by
drawing the pseudolines on the corresponding edges. The degree of each vertex
of the arrangement in GL is equal to the even maximum degree ∆. Any two
consecutive edges of one pseudoline are opposite edges at some vertex of the
arrangement. By the following proposition, the existence a drawing of GL with
slope number ∆/2 implies that L is stretchable.

Proposition 1 Let G be a planar graph with even maximum degree ∆, and let
D be a planar straight-line drawing of G with slope number ∆/2. Each pair of
opposite edges of a vertex of degree ∆ in D has the same slope.

Figure 1: Opposite edges of a degree 8 vertex in drawing of slope number 4
have the same slope.

Proof: Let v be a vertex of degree ∆. Each slope of the drawing D appears
exactly twice among the edges that are incident to v. The edges with the same
slope are opposite in D. �

For the proof of the following theorem we proceed to construct such a graph GL

from a pseudoline arrangement L that has a drawing D with ∆/2 slopes if and
only if L is stretchable.

Theorem 1 Deciding if the planar slope number of a planar graph with even
maximum degree ∆ is ∆/2 is complete in ∃R.

Proof: We prove the theorem by reducing the stretchability of a pseudoline
arrangement to the problem of deciding whether the planar slope number of a
graph is ∆/2. Therefore, let L be an arrangement of n pseudolines.
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Figure 2: Adding a star (brown) on each vertex of the black arrangement.

We note that we can determine the order of slopes of the lines in a stretched
realization of L from the pseudoline arrangement, namely as the order in which
the lines appear while traversing the adjacent unbounded faces. We use this
observation to speak about the slope of a pseudoline and apply it in the following
construction (see Figure 2): In the pseudoline arrangement L we draw a star
of pseudolines on each vertex of the arrangement, i.e., for each pseudoline `
that is not incident to a vertex v of the arrangement we draw a pseudosegment
that indicates which faces around v a pseudoline of the slope of ` through v
intersects.

Now, we cut the pseudolines in the unbounded faces and define a planar
graph by placing a vertex on each endpoint of a pseudosegment. We can al-
ready observe that the embedding we constructed can be drawn straight-line
with n slopes if and only if the arrangement is stretchable. We modify this con-
struction to obtain a 3-connected graph as shown in Figure 3: In addition to the
pseudosegment of each slope of a pseudoline of L we add a star of intermediate
slopes, one slope between each two consecutive slopes of pseudolines. We con-
nect the leaf vertices of the stars in each face (including the one unbounded face)
such that they form a cycle. We pick one edge per face cycle that connects two
leaves of different stars and subdivide these edges. We call this planar graph
GL. After contracting the subdivision vertices the graph GL is 3-connected.
Thus Proposition 1 implies that the opposite edges, which originate from one
pseudoline lie on one line, and thus a drawing with n slopes gives a realization
of the line arrangement by drawing the lines along the edges.

So it remains to show that there exists a drawing D with slope number n if L
is stretchable. Therefore, we consider a realization R of L as a line arrangement.
We draw the vertices and edges of GL on the corresponding edges and vertices
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Figure 3: Constructing the graph GL from the stars, including the grey inter-
mediate slopes and the red subdivision vertices.

Figure 4: A drawing with slope number 8 of GL of the arrangement L in Figure 2.

of R. We choose the intermediate slopes and place a star containing all the
2n slopes on each vertex of the arrangement. The cycle in an inner face f is
realized by drawing a polygon with sides parallel to the boundary of f such that
on each corner of a polygon lies a vertex of the cycle. This can be done in the
following way. We draw the polygon in the face clockwise, starting from one
point close to the boundary on the counterclockwise first ray of one vertex v1.
We draw the first edges of the cycle following parallel to the boundary of the
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face in clockwise order and place a vertex of the cycle on the intersection point of
the segments of the star and the polygon. When we reach the counterclockwise
last ray of the vertex v2 we continue with a line parallel to the second boundary
edge. We follow this procedure until we reach the counterclockwise last ray of
the last vertex. To close the last edge of the polygon we have drawn in the face
we use the subdivision vertex as shown in Figure 5. The cycle surrounding the

Figure 5: Using the subdivision vertex (red) to close the face cycle with few
slopes.

outer face can be drawn with the same method as indicated in Figure 4. This
concludes the proof that there exists a drawing of GL with n slopes if and only
if L is stretchable. �

2.2 Drawings on the grid.

Lemma 1 The graph GL constructed in the proof of Theorem 1 has a drawing
with slope number ∆/2 with rational coordinates if and only if L has a realization
with rational coordinates.

Proof: In the proof of Theorem 1 we have shown that we can realize L on a
subset of vertices and edges of a slope minimizing drawing. Thus L has a rational
realization if and only if there is a drawing of GL with slope number ∆/2, where
the vertices and edges of the arrangement graph lie on rational coordinates.
Thus, to conclude this proof, we only have to show that we can draw the cycles
in the inner faces on rational coordinates. This is simply done by choosing
rational intermediate slopes and a rational coordinate for the first vertex we
draw in the polygon. Then all vertices of the cycle lie on the intersection points
of rational lines, and thus have rational coordinate. �

From the lemma above and the fact that deciding the realizability of a non-
simple line arrangement is complete in ∃Q [25] we obtain the following theorem.

Theorem 2 Deciding whether a planar graph G with even maximum degree ∆
has a drawing on the grid with slope number ∆/2 is complete in ∃Q.

2.3 Bounded slope number and bounded degree.

In contrast to the previous results, we show that we can decide for a fixed k
in non-deterministic polynomial time whether a graph can be drawn with at
most k slopes. Note that this is also true for the (non-planar) slope number and
non-planar graphs.
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Theorem 3 For each fixed k the decision problem whether a graph G has planar
slope number or slope number at most k is in NP.

Proof: We give a proof based on the NP membership of the problem of recog-
nizing segment intersection graphs that can be represented by at most k slopes
for the segments [15][Theorem 1.1.ii.c] by Kratochv́ıl and Matoušek. They show
that deciding the realizability of an arrangement of segments using at most k
slopes can be decided in polynomial time.

To show that deciding whether the planar slope number is at most k is in
NP we non-deterministically guess the embedding of the graph and which of
the edges use the same slope. With this information we can use the result of
Kratochv́ıl and Matoušek to decide in polynomial time whether the arrangement
of edges can be realized using at most k slopes.

For the non-planar slope number we guess the complete arrangement of edges
and the partition of the edges into common slopes. �

Let G∆ be the set of planar graphs with maximum degree at most ∆. We use
the theorem above to show that deciding if a graph in G∆ has slope number at
most k is in NP.

Theorem 4 Deciding whether a planar graph G ∈ G∆ has planar slope number
at most k is in NP.

Proof: By [13] there exists a function f(∆), such that each graph in G∆ has
planar slope number at most f(∆). To decide whether the graph G has planar
slope number k we return true if k ≥ f(∆). Otherwise, if k < f(∆), we can
decide if the planar slope number is at most k by Theorem 3, since k is bounded
by the constant f(∆). �

3 Consequences of the hardness

In this section we point out consequences of ∃R-hardness of computing the
planar slope number and ∃Q-hardness of deciding whether there is a drawing
on the grid that achieves this slope number.

The fact that there are non-simple line arrangements that are known to
have irrational coordinates in each representation [10] directly translates into
the following result.

Corollary 1 There are planar graphs such that each planar drawing that min-
imizes the planar slope number has at least one vertex with an irrational coor-
dinate.

Even if a line arrangement is stretchable with rational coordinates, there are
arrangements that require a doubly exponential representation size [9]. By
the observation that the graph GL has |L|3 vertices, we obtain the following
corollary.
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Corollary 2 For each n ∈ N, there is a planar graph Gn on n vertices such that
each planar drawing of Gn on a grid that minimizes the slope number requires

a grid of size 22Ω( 3
√

|V (G)|)
.

We want to point out that giving a reasonable (a.k.a. computable) upper bound
on the grid size in the corollary above, is strongly connected with the decidability
of ∃Q.

Theorem 5 Assume ∃Q is undecidable. Then there is no computable function
f such that every graph G, that has a slope number minimizing drawing on the
grid, can be drawn with this slope number on a grid of size f(|V (G)|)×f(|V (G)|).

Proof: Assume the function f exists. Then compute f(|V (G)|) and try each
combination of coordinates of vertices of G on a grid of size f(|V (G)|)×f(|V (G)|)
and check whether a straight-line drawing with those vertex coordinates gives
a drawing of the given slope number. This procedure finds a drawing on the
grid that minimizes the planar slope number by the assumption that f gives an
upper bound on the grid size of such a drawing. Thus we have just given an
algorithm that finds such a drawing of minimum planar slope number on the
grid if it exists, which is contradiction to the assumed undecidability of ∃Q by
Theorem 2. �

4 Conclusion and open problems.

We have settled the computational complexity of determining the planar slope
number. It is an open problem whether the (non-planar) slope number is also
∃R-hard. A further open problem is to give a better bound on the function
f(∆) that bounds the planar slope number of graphs of degree ∆. The bound
on f(∆) in [13] is exponential in ∆ and uses the non-constructive proof for a
touching disc representation, where the radii of touching discs are bounded by
a constant factor by [17]. They give the idea of a non-deterministic algorithm
to obtain a planar drawing using f(∆) slopes. It is open whether the bound
can be improved and can be turned in a polynomial algorithm.
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