
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 589–630 (2017)
DOI: 10.7155/jgaa.00431

Topological Decomposition of Directed Graphs

Ala Abuthawabeh Dirk Zeckzer 1

1Leipzig University, Germany

Abstract

The analysis of directed graphs is important in application areas like
software engineering, bioinformatics, or project management. Distin-
guishing between topological structures such as cyclic and hierarchical
subgraphs provides the analyst with important information. However,
until now, graph drawing algorithms draw the complete directed graph
either hierarchically or cyclic. Therefore, we introduced new algorithms
for decomposing the input graph into cyclic subgraphs, directed acyclic
subgraphs, and tree subgraphs. For all of these subgraphs, optimized lay-
out algorithms exist. We developed and presented a new algorithm for
drawing the complete graph based on the decomposition using and com-
bining these layouts. In this paper, we focus on the algorithms for the
topological decomposition. We describe them on an intermediate level
complementing the previous descriptions on the high and the low level.
Besides the motivation, illustrative examples of all cases that need to be
considered by the algorithm, standard as well as more complex ones, are
given. We complement this description by a complexity analysis of all
algorithms.

Submitted:
December 2016

Reviewed:
January 2017

Revised:
February 2017

Accepted:
April 2017

Final:
April 2017

Published:
April 2017

Article type:
Regular paper

Communicated by:
G. Liotta

E-mail addresses:

zeckzer@informatik.uni-leipzig.de (Dirk Zeckzer)

http://dx.doi.org/10.7155/jgaa.00431
mailto:zeckzer@informatik.uni-leipzig.de

590 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

1 Introduction

Directed graphs are used for displaying relations between entities where the
direction of the relation is important. An example from software engineering
are call graphs. If method or function A calls method or function B, then the
reverse relation—B calls A—does not necessarily hold. Besides software engi-
neering there are several other application areas and applications where directed
graphs are regularly used, like metabolic networks in biology and bioinformat-
ics, or PERT charts for project management [8]. In the handbook of graph
drawing [8], directed graphs are discussed in Chapter 13, “Hierarchical Drawing
Algorithms”.

Frequently, the Sugiyama algorithm [7] is used for drawing directed graphs,
even though its main purpose is the drawing of directed acyclic graphs. Only
recently, Bachmaier et al. [3, 4] proposed a cyclic layout to draw directed graphs
containing cycles. These publications address the complete layout and the co-
ordinate assignment phase and use the leveling phase described before [5]. The
disadvantages of both layouts become obvious, when analyzing directed graphs.
In a Sugiyama layout, cycles are difficult to detect, while in the cyclic layout,
non-cyclic parts are not obvious. On the other hand, distinguishing between
cyclic and non-cyclic sub-graphs of a directed graph are important in the appli-
cations areas. For example, cyclic dependencies of classes in an object-oriented
model may reduce modularity.

Decomposing directed graphs into cyclic and non-cyclic sub-graphs as well as
drawing these subgraphs such that the respective structure is easily recognizable
enables a more efficient and effective analysis of the relations represented by the
graphs. Hence, Abuthawabeh and Zeckzer [1, 2] presented their topological
layout approach for directed graphs. First, the graph is decomposed into non-
trivial cyclic subgraphs, trees, and DAGs. Then, each of the components is
drawn using the most adequate layout: Bachmaier’s algorithm for non-trivial
cyclic subgraphs [3, 4] the Sugiyama layout for DAGs [7], and the tree layout
proposed by Walker [9] and improved by Buchheim et al. [6].

Previously, the topological approach was described on a high level [2] and
on a low level [1]. In this paper, it will be described on an intermediate level
focusing on the topological decomposition only. For the topological decomposi-
tion much more details and examples are provided compared to the high level
description [2], while the implementation details of the low level description [1]
were omitted for clarity.

2 Motivation and Definitions

Let G = (V,E) be a directed graph where V denotes a set of vertices and E
denotes a set of directed edges. Until recently [8], the standard way of drawing
such a graph was using the Sugiyama algorithm [7]. However, this algorithm
was intended to be applied to acyclic directed graphs only [7]. Nevertheless,
it was also used for cyclic directed graphs by first reversing enough edges to

JGAA, 21(4) 589–630 (2017) 591

make the graph acyclic, second layouting the acyclic graph, and finally, putting
the original edges instead of the reversed ones thus obtaining the final drawing.
While this keeps the layered part of the graphs, cycles are difficult to spot. We
call this the hierarchical approach.

Recently, Bachmaier et al. [3, 4] proposed a cyclic layout for directed graphs.
In this case, all cycles are clearly depicted and can readily be analyzed. However,
also all layered, acyclic parts are drawn in a cyclic way, making it difficult to
spot them. We call this the cyclic approach.

Therefore, Abuthawabeh and Zeckzer [1, 2] presented their topological lay-
out approach for directed graph that decomposes the graph into non-trivial
cyclic subgraphs (ntCS), directed acyclic graphs (DAGs), and trees. Then, each
of the components is drawn using the best currently available algorithm: Bach-
maier’s algorithm for non-trivial cyclic subgraphs [3, 4], Sugiyama’s algorithm
for DAGs [7], and the improved Walker’s algorithm for trees [6]. We call this
the topological approach, because each subgraph type has a certain topology.

The goal of this paper is to give more details on the decomposition of directed
graphs than in our previous publication [2]. One of the most important concepts
of our approach is the distinction between trivial cycle and non-trivial cycle. In
Figure 1(a), two strongly-connected components G1 and G2 are shown. In G1,
there are two cycles between two nodes, each. G1 does not really need to be
drawn in a cyclic way, as the two-node cycle will be clear in both approaches,
hierarchical and cyclic. G2, however, contains as well two-node cycles as three-
node cycles. In this case, the cycle can be detected best if the graph is drawn
using the cyclic approach. This leads to the following definitions.

Definition 2.1 (Trivial Cycle) A trivial cycle is a set of edges {(a, b), (b, a)},
a, b ∈ V and (a, b), (b, a) ∈ E that form a cycle of two nodes. We say, the trivial
cycle contains the nodes a, b.

Definition 2.2 (Back Edge) Let {(a, b), (b, a)} be a trivial cycle. Then, (b, a)
is the back edge of (a, b) and vice versa.

Definition 2.3 (Double Edge) The set of edges {(a, b), (b, a)}, a, b ∈ V and
(a, b), (b, a) ∈ E is called double edge.

Corollary 2.4 Each double edge gives rise to a trivial cycle.

Definition 2.5 (Non-Trivial Cycle) A non-trivial cycle is a cycle that is not
trivial.

Corollary 2.6 A non-trivial cycle consists of at least three edges and contains
at least three nodes.

With these definitions, we can now define non-trivial cyclic subgraphs (ntCS).
Starting from G1 and G2, we can extract all subgraphs that do not contain
trivial cycles. This can be achieved by removing one of the edges of each trivial
cycle. In all these cases, we consider the removed edge to be the back edge.

592 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

1

2 3

G2

1

2

3

G1

(a) Two strongly-connected
components G1 and G2

1

2

3

1

2

3

1

2

3

1

2

3

ororor

(b) Weakly-connected components re-
sulting from removing back edges from
G1

1

2 3

1

2 3
or

(c) Strongly-connected components resulting from remov-
ing back edges from G2

1

2 3

1

2 3
or

1

2 3

1

2 3
or

1

2 3

1

2 3
ororor

(d) Weakly-connected components resulting from removing back edges from G2

Figure 1: Two strongly connected components G1 and G2 and the resulting
graphs when removing back edges from them.

Doing so, we find that for G1 this results in weakly-connected components only.
Figure 1(b) shows all extractable subgraphs of G1.

Doing so for G2, however, results in either strongly-connected components
(Figure 1(c)) or weakly-connected components (Figure 1(d)). By construction,
none of the subgraphs of G2 contains trivial cycles. This motivates the following
definition.

Definition 2.7 (Non-Trivial Cyclic Subgraph) A non-trivial cyclic sub-
graph (ntCS) is a strongly-connected component G = (V,E) that contains at
least one strongly-connected component G′ = (V ′, E′), V ′ = V , and E′ ⊆ E
without trivial cycles.

Remark 2.8 In Definition 2.7, the strongly connected component G might con-
tain several different strongly-connected components without trivial cycles.

Remark 2.9 In Definition 2.7, E′ does not contain back edges.

JGAA, 21(4) 589–630 (2017) 593

In the remainder of this paper, we will show how to decompose a directed
graph into ntCSs, DAGs, and trees by removing back edges and thereby trivial
cycles. For this, we extend the conventional definitions of tree and DAG.

Definition 2.10 (Trivial Down-Tree) A trivial down-tree is a tree that does
not contain trivial cycles and whose root node has in-degree zero.

Definition 2.11 (Trivial Up-Tree) A trivial up-tree is a tree that does not
contain trivial cycles and whose root node has out-degree zero.

Definition 2.12 (Trivial DAG) A trivial DAG is a DAG that does not con-
tain trivial cycles.

Definition 2.13 (Non-Trivial Down-Tree) A non-trivial down-tree is a
wCC that contains trivial cycles and that can be transformed into a trivial down-
tree by removing one edge of each double edge.

Definition 2.14 (Non-Trivial Up-Tree) A non-trivial up-tree is a wCC that
contains trivial cycles and that can be transformed into a trivial up-tree by re-
moving one edge of each double edge.

Definition 2.15 (Non-Trivial DAG) A non-trivial DAG is a wCC that con-
tains trivial cycles and that can be transformed into a DAG by removing one
edge of each double edge.

Definition 2.16 (Down-Tree) A down-tree is either a trivial or a non-trivial
down-tree.

Definition 2.17 (Up-Tree) An up-tree is either a trivial or a non-trivial up-
tree.

Definition 2.18 (DAG) A DAG is either a trivial or a non-trivial DAG.

Remark 2.19 Each (trivial, non-trivial) tree is a (trivial, non-trivial) DAG.

Remark 2.20 A wCC without ntCS that contains trivial cycles might be a non-
trivial DAG, a non-trivial down-tree, and a non-trivial up-tree at the same time,
depending on which back-edges are removed.

3 Decomposing Directed Graphs

In our approach, directed graphs are decomposed as follows. Given a directed
graph G, first all its weakly connected components (wCCs) are extracted. Each
of these wCCs is then decomposed into ntCSs, DAGs, and trees. Figure 2 shows
an overview of this decomposition [1]. It starts by detecting ntCSs in each wCC
(Section 4). After removing the edges of all ntCSs found in the wCCs, it splits
the remaining wCCs at the ntCSs into smaller wCCs (Section 5). Finally, the

594 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Detect
ntCSs

Split
Detect Trees

and DAGs
ntCSs

wCCs
after Split

Trees &
DAGs

Figure 2: Decomposition Process of a wCC into ntCS, DAGs, and trees [1, 2].

resulting wCCs are classified as down-trees, up-trees, and DAGs (Section 6).
Please notice, that these trees and DAGs might contain trivial cycles [1, 2].

In this paper, we focus on the special cases that need to be considered.
Compared to our previous paper [2], much more detail is provided. On the
other hand, the implementation details are described by Abuthawabeh in his
PhD thesis [1].

4 Detecting Non-Trivial Cyclic Subgraphs

4.1 Overview

The first step of the topological decomposition process of a directed graph is
detecting all non-trivial cyclic subgraphs (ntCSs). The detection of all ntCSs
follows all edges. No edge will be revisited twice during this search.

This step can logically be decomposed into two sub-steps. First, a wCC
component is randomly selected. The first sub-step recursively constructs
paths through this wCC starting at a node and applying depth first search
(Section 4.2). The second sub-step is responsible for checking if a part of this
path is a (partial) ntCS (Section 4.3). If a ntCS is found, it is added to the set
of ntCSs. If necessary, ntCSs are merged. After handling all nodes and edges
of the current wCC, the next untreated wCC is randomly selected and the two
sub-steps are repeated. After all wCCs have been checked for ntCSs, this step
is finished.

Figures 3–9 show examples illustrating in detail all potential situations that
might occur during ntCSs detection. They will be described in the respective
parts of the ntCS detection algorithm. All relevant algorithms are listed in
Appendix A, Algorithms 1–5.

4.2 Constructing Paths and Handling Back Edges

To find all ntCSs of a wCC (Find ntCS in wCC, Algorithm 1), a node is
randomly selected from the wCC and a path (pathNodes) through the wCC
is created following outgoing edges only using depth first search (Find ntCS,
Algorithm 2 and Find ntCS Rec, Algorithm 3). While creating the path, it is
checked if a part of the path forms a ntCS. All ntCS found during path creation
are stored in a list (ntCSs). All nodes and edges found during path creation
are marked. If there are unvisited nodes and edges of the wCC after the path
creation for the current starting node (backtracking), a new path is created
starting at a randomly selected unmarked node and the search is repeated.

JGAA, 21(4) 589–630 (2017) 595

The ntCS detection algorithm Find ntCS (Algorithm 2) performs the fol-
lowing steps:

1. Increment the incomingEdgeCounter of the last node of the path stored
in pathNodes (line 1)

2. If the last node of the path was already visited, check if this creates a
ntCS (lines 2–3).

3. Otherwise, mark the last node of the path as visited (line 4–5).

4. Follow all outgoing edges of the last node of the path (line 7–30).

While following all outgoing edges, Find ntCS Rec is called. It takes care
of the recursive call of Find ntCS (line 4) storing the outgoing edge in the
edges path (line 3) and the target node of the outgoing edge in the nodes path
(line 2). Both will be deleted from their respective paths directly after invoking
Find ntCS (backtracking, lines 5–6). Moreover, the outgoing edge is marked as
being visited (line 1). This flag will not be removed. As this code is needed two
times by Find ntCS (lines 16 and 26), calling Find ntCS Rec instead avoids
duplicated code.

The first step of Find ntCS, incrementing the counter of incoming edges, is
needed by its fourth step and explained there. For the first node of the path,
this step is not needed. However, this case is not checked as it has no influence
on the algorithm.

Marking the last node of the path (lastNode, step 3) is needed for two
reasons. First of all, an already marked node will be checked for finding ntCSs
(step 2). Second, already marked nodes will not be considered as starting points
for further paths by Find ntCS.

In the following, steps 2 and 4 of the algorithm will be explained by describing
two cases: (1) wCCs without trivial cycles (Figure 3) and (2) wCCs with trivial
cycles (Figure 4). Only relevant steps will be described.

The example in Figure 3 shows the standard case of detecting a single ntCS
in a wCC without trivial cycles (no back edges). Starting at node 0, a path of
nodes containing node 0 and an empty path of edges are created. Find ntCS
marks node 0 as visited (line 5), traverses the outgoing edge 0 → 1 (lines 8,
9, 14–16), adds node 1 and edge 0 → 1 to the corresponding data structures
(Find ntCS Rec), and marks the edge as visited (Find ntCS Rec). Then, it
marks node 1 as being visited, follows edge 1 → 2, marks node 2 as being
visited, and follows edge 2→ 0, updating the respective data structures. Now,
the nodes path is (0, 1, 2, 0), the edges path contains the edges {e1, e2, e3}, and
lastNode = 0. Further, all nodes are marked as being visited. The next call to
Find ntCS finds that lastNode is marked visited (line 2) and therefore (line 3)
calls Check ntCS (Algorithm 4, Section 4.3). Check ntCS detects the ntCS
C1 having nodes (0, 1, 2) and adds C1 to ntCSs, and Find ntCS ends as no
more unvisited outgoing edges are available.

If the wCC contains trivial cycles (back edges), the situation becomes more
complex. Considering the wCC in Figure 4(a), there are two possibilities of

596 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

0

1 2

e3e1

e2

Nodes path = {0, 1, 2, 0}
Edges path = {e1, e2, e3}
C1 = {0, 1, 2}

Figure 3: Single ntCS

1

2 4

3

(a) Graph having
double edges

1

2 4

3

e3
e4

e2
e1

e5 e6

Nodes path = (1, 2, 3, 4, 1)

Edges path = (e1, e5, e6, e4)

Back edge = {e2}

C1 = {1, 2, 3, 4}

(b) First possibility when traversing the
graph starting from node 1

1

2 4

3

e3
e4

e2
e1

e5 e6

Nodes path = (1, 2, 3, 4)

Edges path = (e1, e5, e6)

(c) Second possibility when traversing the
graph starting from node 1

1

2 4

3

e3
e4

e2
e1

e5 e6

Nodes path = (2, 3, 4, 1, 2)

Edges path = (e5, e6,e4, e2)

Back edge = {e2, e4}

C1 = {1, 2, 3, 4}

(d) Traversing the graph starting from node
2 as implemented

Figure 4: ntCSs that are only reliably detected by handling back edges sepa-
rately

traversing the wCC when starting from node 1 if back edges are not handled
separately. The first possibility of traversing the wCC is shown in Figure 4(b).
The algorithm starts by following the unvisited outgoing edge 1 → 2. Then, it
continues by following the unvisited outgoing edges 2 → 3, 3 → 4, and 4 → 1
yielding the path (1, 2, 3, 4, 1). Because node 1 was visited previously by the
current path, the ntCS C1 is detected having nodes {1, 2, 3, 4}. The second pos-
sibility of traversing the wCC is shown in Figure 4(c). As before, the algorithm
starts by following the unvisited outgoing edge 1→ 2. However, now, it contin-
ues by following the unvisited outgoing edges 2→ 1 (back edge of 1→ 2), 1→ 4,
and 4 → 1 (back edge of 1 → 4) yielding the path (1, 2, 1, 4, 1). The algorithm
will stop when visiting node 1 again because there are no unvisited edges left.
No ntCS was detected (the final path contains only cycles with back edges). Af-
ter backtracking, the path is (1, 2) and the unvisited outgoing edges 2→ 3 and
3→ 4 are followed resulting in the final path (1, 2, 3, 4). Because edge 4→ 1 was
already visited, the algorithm will not follow it and stops because there are no

JGAA, 21(4) 589–630 (2017) 597

unvisited outgoing edges. Again, no ntCS was found during path construction.
Overall, the algorithm could not construct a ntCS without back edges in this
case and the wCC was not classified as ntCS even though, a subgraph containing
a ntCS without back edges can be constructed. To avoid this situation, back
edges are not followed immediately by the algorithm. Instead, they are stored
(lines 10–13) and all stored back edges are followed (lines 20—30), if there are
no more unvisited incoming edges (line 20) and no other outgoing edges of the
last node of the path (handled before, lines 8–19). Thus, after following edge
1 → 2, the implemented algorithm will always follow edge 2 → 3 and always
store edge 2 → 1 when starting at node 1, regardless, which edge is handled
first in the for loop. Only after all incoming edges of this node are marked, the
stored back edges are followed. Instead of checking all incoming edges for being
marked, a counter of incoming edges is used for efficiency reasons (lines 1, 20).
All incoming edges being marked is equivalent to the counter of incoming edges
being larger than or equal to the number of incoming edges as each incoming
edge is exactly used once (all edges are visited by the algorithm).

The back edges need to be followed to find all ntCSs as the next example
shows. Considering the same wCC as before, let the algorithm start at node 2
(Figure 4(d)). Further, let it follow the edges 2 → 1 and 1 → 4 and storing
the edges 4 → 1 and 1 → 2 as back edges (both nodes 1 and 4 have unvisited
incoming edges). After backtracking to node 2, it follows edges 2 → 3 and
3 → 4. As there are no more unvisited outgoing edges and no more unvisited
incoming edges of node 4, it retrieves and follows the stored back edge 4→ 1 at
node 4. The same situation occurs at node 1, and back edge 1→ 2 is retrieved
and followed at node 1 yielding the path (2, 3, 4, 1, 2). ntCS C1 is detected as
node 2 was visited before by the current path.

All other possible cases for this wCC are similar to those explained above.
Therefore, the wCC will always be classified as ntCS.

4.3 Checking a Path for being a (Partial) ntCS

If Find ntCS finds a node that was already marked, it calls Check ntCS.
Check ntCS (Algorithm 4) examines if a sequence of nodes in this path can
form (a part of) a ntCS. First, some variables are initialized: the size of the
path (line 1), the last node of the path (line 2), and the last and the second to
last position of the last node in the path (lines 3–4). Second, it is checked if the
last node and the second to last node belong to the same ntCS (lines 5–9). If
so, no new ntCS has been found and the algorithms terminates returning ”no
ntCS found”.

To identify the sequence of nodes potentially forming a new ntCS, the algo-
rithm starts searching over all nodes in the path starting from the last node (the
already traversed node) in reverse order and stopping when it finds the same
node again (lines 10–15). Starting at the end and in reverse order is necessary,
because due to the construction of the path, the last node could be multiple
times in the path. This is a consequence of the handling of back edges and the
potential existence of trivial cycles in the path.

598 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Now, four cases might occur: (1) a trivial cycle was found (lines 16–18), (2)
a ntCS was found (lines 19–27), (3) a partial ntCS was found (lines 28–29), or
(4) no ntCS was found (line 31). A trivial cycle occurs when an edge is directly
followed by its back edge, e.g., if a node is connected to the current node only by
these two edges (Case 1). This case is handled by lines 16–18 of the algorithm
and the algorithm terminates with ”no ntCS found”.

Next, it is checked if the last node occurs a second time in the path (line 19,
Case 2). If yes, then the algorithm invokes ComputeReducedPath (Algorithm 5)
to exclude double edges that are only parts of trivial cycles (line 20). If the
reduced path is not empty (line 21), the algorithm constructs a new ntCS based
on the nodes in the reduced path (lines 22–23, Section 4.3.1). If the ntCS found
is not a part of a previously found ntCS, it is added to the list of all ntCSs
(line 24, SubCycle [1]). Finally, all ntCSs found until now are combined, if
they have shared nodes or edges (line 25, MergeCycles [1]) and the algorithm
returns ”ntCS found”. Two examples illustrating this part of the algorithm will
be given below (Section 4.3.2).

If the last node in the path occurs only once in the path, it is checked
whether the last node already belongs to a ntCS (line 28, Case 3). If it does,
the algorithm checks if the sequence of nodes in the path is part of a larger
ntCS that can be constructed reusing the nodes of an existing ntCS (line 29,
PartialCycle [1]). Two examples illustrating this situation are given below
(Section 4.3.3).

Otherwise, no (part of a) ntCS could be found and the algorithm returns
”no ntCS found” (line 31, Case 4).

4.3.1 Computing the Reduced Path

The algorithm ComputeReducedPath (Algorithm 5) determines a reduced path
that could be part of a ntCS. Therefore, it removes connections between sub-
graphs that consist of double edges only from the input path. An example is
shown in Figure 5 where two ntCSs are connected by the double edge (e3, e8).
First (lines 1–5), a copy of the input path is created. If the double edge is
formed by the first and the last edge of the reduced path, then an empty path
is returned (lines 6–7). In the case, that another part of the input path already
forms a ntCS, this ntCS will be detected by the Algorithms 2–4. Otherwise, all
edges of the reduced path starting from the first are used to construct test edges,
which are potential back edges (lines 8–21). If a back edge is found, all nodes
between these two edges are removed from the path (lines 15–17). Moreover,
the second occurrence of the start node of the edge is removed from the path
(lines 18–20).

In the example shown in Figure 5, the input path is (2, 1, 0, 4, 5, 6, 7, 4, 0,
3, 2). Edge e3 (0→ 4) leads to the creation of test edge (4→ 0). As this edge
is a back edge, namely e8, nodes 4, 5, 6, 7 are removed from the reduced path
resulting in (2, 1, 0, 0, 3, 2). Now, the second occurrence of node 0 is removed,
too, and the resulting reduced path is (2, 1, 0, 3, 2) yielding ntCS C2.

JGAA, 21(4) 589–630 (2017) 599

2

1 3

0

e10e1

e2 e9

4

5 7

6

e7e4

e5 e6

e3 e8

Nodes path = (2, 1, 0, 4, 5, 6, 7, 4, 0, 3, 2)
Edges path = (e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)
Reduced path = (2, 1, 0, 3, 2)
C1 = {4, 5, 6, 7}
C2 = {2, 1, 0, 3}

Figure 5: Two ntCSs that are connected by one double edge (trivial cycle) are
considered to be two separated ntCSs.

4.3.2 Examples of Combining ntCSs

Two examples of combining ntCSs sharing one node and sharing one edge,
respectively, will be presented next (Figures 6 and 7).

Shared Nodes An example for ntCSs sharing nodes is depicted in Figure 6.
After constructing the path (0, 1, 2, 3, 0), an already visited node is found (Fig-
ure 6(a)). After extracting the sub-path and reducing it (line 20), it is found
that the reducedPath is (0, 1, 2, 3, 0) and thus not empty (line 21). Therefore,
ntCS C1 is created (line 22–23). No sub ntCSs (line 24) are found and no
merging (line 25) is necessary, as no other ntCSs exist until now. As no un-
visited outgoing edges from node 0 exist, backtracking is performed until the
current path reaches the state (0, 1, 2). Now, the edge 2→ 4 is followed, and the
path (0, 1, 2, 4, 5, 6, 2) is constructed (Figure 6(b)). At this point, Check ntCS is
called again. The extracted and reduced path is (2, 4, 5, 6, 2). As it is not empty,
a ntCS C2 is created. Again, no sub ntCSs are found. However, MergeCycles
will merge C2 into C1 due to the shared node 2.

If edge 2 → 4 is followed before edge 2 → 3, the situation depicted in
Figure 6(c) is reached. As described before, a ntCS is constructed: C3 = {2,
4, 5, 6}. It contains no sub ntCSs and no other ntCSs exist. The algorithm
continues, constructing the path (0, 1, 2, 4, 5, 6, 2, 3, 0) (Figure 6(d)). Then, the
extracted and reduced path is (0, 1, 2, 4, 5, 6, 2, 3, 0) and ntCS C4 = {0, 1, 2, 3,
4, 5, 6} is created. ntCS C4 is merged into ntCS C3 yielding the same result as
before when edge 2→ 3 is followed first at node 2.

600 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

0

1 3

2

e4e1

e2 e3

4 6

5

Nodes path = (0, 1, 2, 3, 0)
Edges path = (e1, e2, e3, e4)
C1 = {0, 1, 2, 3}

(a)

0

1 3

2

e4e1

e2 e3

4 6

5

Nodes path = (0, 1, 2, 4, 5, 6, 2)
Edges path = (e1, e2, e5, e6, e7, e8)
C1 = {0, 1, 2, 3} Two combined cycles
C2 = {2, 4, 5, 6} C1 = {0, 1, 2, 3, 4, 5, 6}

e8e5

e6 e7

}
(b)

0

1 3

2

e4e1

e2 e3

4 6

5

Nodes path = (0, 1, 2, 4, 5, 6, 2)
Edges path = (e1, e2, e5, e6, e7, e8)
C3 = {2, 4, 5, 6}

e8e5

e6 e7

(c)

0

1 3

2

e4e1

e2 e3

4 6

5

Nodes path = (0, 1, 2, 4, 5, 6, 2, 3, 0)
Edges path = (e1, e2, e5, e6, e7, e8, e3, e4)
C3 = {0, 1, 2, 3, 4, 5, 6}

e8e5

e6 e7

(d)

Figure 6: Two combined ntCSs sharing one node

Shared Edges An example for ntCSs sharing edges is shown in Figure 7.
C1 is detected (Figure 7(a)) when visiting node 0 for the second time resulting
in the current constructed path being (0, 1, 2, 3, 0). The extracted and reduced
path is (0, 1, 2, 3, 0). Therefore, ntCS C1 is created. No sub ntCSs are found and
no merging is necessary, as no other ntCSs exist. As no unvisited outgoing edges
from node 0 exist, backtracking is performed until the current path reaches the
state (0, 1, 2, 3). Now, the edge 3→ 4 is followed, and the path (0, 1, 2, 3, 4, 5, 2)
is constructed (Figure 7(b)). Here, Check ntCS is called again. The extracted
and reduced path is (2, 3, 4, 5, 2). As it is complete, a ntCS C2 is created. Again,
no sub ntCSs are found. However, MergeCycles will merge C2 into C1 due to
the shared edge 2→ 3.

JGAA, 21(4) 589–630 (2017) 601

0

1 3

2

e4e1

e2 e3
4

5

Nodes path = (0, 1, 2, 3, 0)
Edges path = (e1, e2, e3, e4)
C1 = {0, 1, 2, 3}

(a)

0

1 3

2

e4e1

e2 e3
4

5

Nodes path = (0, 1, 2, 3, 4, 5, 2)
Edges path = (e1, e2, e3, e5, e6, e7)
C1 = {0, 1, 2, 3} Two combined cycles
C2 = {2, 3, 4, 5} C1 = {0, 1, 2, 3, 4, 5}

e5

e7 e6

}
(b)

0

1 3

2

e4e1

e2 e3
4

5

Nodes path = (0, 1, 2, 3, 4, 5, 2)
Edges path = (e1, e2, e3, e5, e6, e7)
C3 = {2, 3, 4, 5}

e5

e7 e6

(c)

0

1 3

2

e4e1

e2 e3
4

5

Nodes path = (0, 1, 2, 3, 0)
Edges path = (e1, e2, e3, e4)
C3 = {2, 3, 4, 5} Two combined cycles
C4 = {0, 1, 2, 3} C3 = {0, 1, 2, 3, 4, 5}

e5

e7 e6

}
(d)

Figure 7: Two combined ntCSs sharing one edge

If edge 3 → 4 is followed before edge 3 → 0, the situation displayed in
Figure 7(c) is obtained. As described before, a ntCS is constructed: C3 = {2,
3, 4, 5}. It contains no sub ntCSs and no other ntCSs exist. As no remaining
unvisited outgoing edges from node 2 exist, backtracking is performed until the
current path attains the state (0, 1, 2, 3). Now, the edge 3→ 0 is followed, and
the path (0, 1, 2, 3, 0) is constructed (Figure 7(d)). Then, Check ntCS is called
again. The extracted and reduced path is (0, 1, 2, 3, 0). As it is not empty, a
ntCS C4 is created. Again, no sub ntCSs are found. However, MergeCycles
will merge C3 into C4 due to the shared edge 2→ 3.

4.3.3 Examples of Handling Partial ntCSs

This example deals with handling partial ntCSs (ParticalCycle [1]). Let us
assume that C1 is detected as shown in Figure 8(a) similar to the case in Fig-
ure 7(a). After, backtracking and following edge 2→ 4, the path (0, 1, 2, 4, 5, 3)

602 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

0

1 3

2

e4e1

e2 e3
5

4

Nodes path = (0, 1, 2, 3, 0)
Edges path = (e1, e2, e3, e4)
C1 = {0, 1, 2, 3}

(a)

0

1 3

2

e4e1

e2 e3
5

4

Nodes path = (0, 1, 2, 4, 5, 3)
Edges path = (e1, e2, e5, e6, e7)
C1 = {0, 1, 2, 3} Combined cycle
Partial cycle = {2, 4, 5, 3} C1 = {0, 1, 2, 3, 4, 5}}

e7

e5 e6

(b)

0

1 3

2

e4e1

e2 e3
5

4

Nodes path = (0, 1, 2, 4, 5, 3, 0)
Edges path = (e1, e2, e5, e6, e7, e4)
C3 = {0, 1, 2, 3, 4, 5}

e7

e5 e6

(c)

0

1 3

2

e4e1

e2 e3
5

4

Nodes path = (0, 1, 2, 3)
Edges path = (e1, e2, e3)
Two sequence nodes (2, 3)
in the same cycle C3

e7

e5 e6

(d)

Figure 8: Partial ntCS

is constructed (Figure 8(b)). Now, node 3 belongs already to ntCS C1. There-
fore, for each node in the current path—from the last to the first—it is checked,
if the node belongs to C1, too. In the example, this holds for node 2. Thus, the
partial ntCS C’ = {2, 4, 5, 3} is created and merged into C1.

If edge 2 → 4 is followed before edge 2 → 3, then the ntCS C3 = {0, 1,
2, 3, 4, 5} is detected (Figure 8(c)). After, backtracking and following edge
2 → 3, the path (0, 1, 2, 3) is constructed (Figure 8(d)). As nodes 2 and 3 are
the last two nodes of the current path and as they belong to the same ntCS C3
(lines 16–18), no new ntCS is found and the algorithm returns ”no ntCS found”.

JGAA, 21(4) 589–630 (2017) 603

3 1

6

2

e4

e1e2

e3

54

Nodes path = (1, 2, 5, 4, 3, 2)
Edges path = (e1, e6, e7, e4, e5)
C1 = {2, 5, 4, 3}

e7

e5

e6

e10

e8

e9

(a)

3 1

6

2

e4

e1e2

e3

54

Nodes path = (1, 2, 1, 6, 5)
Edges path = (e1, e8, e9, e10)
C1 = {2, 5, 4, 3} Combined cycle
Partical cycle = {2, 1, 6, 5} C1 = {2, 5, 4, 3, 1, 6}

e7

e5

e6

e10

e8

e9

}
(b)

Figure 9: Example for deriving ntCS.

4.3.4 Complex Example

Using a combination of all four algorithms allows to resolve the situation shown
in Figure 9. In the detection sequence shown here, first (Figure 9(a)), ntCS C1
= {2, 5, 4, 3} is extracted from path (1, 2, 5, 4, 3, 2). Then (Figure 9(b)), after
backtracking, the partial ntCS C2 = {2, 1, 6, 5} is found and merged into C1.

All previously shown cases are the basic ones that can occur while decom-
posing a weakly connected component. All other weakly connected components
contain these basic cases (or reduced versions thereof).

4.4 Complexity Analysis

Let n = |V | denote the number of nodes, e = |E| the number of edges, and c the
number of ntCSs of a directed graph G. Tables 1–4 show the complexity of the
ntCS detection algorithms providing additional information compared to [1].

The overall time and space complexity of ntCS detection is O(c3 ·n2 ·(n+e)).
They are dominated by calling Find ntCS (Algorithm 2, line 6) for each not
visited node, whose time and space complexity equals O(c3 ·n·(n+e)) (Table 1).

The time and space complexity of Find ntCS are dominated by the time
and space complexity of Check ntCS (Algorithm 4, line 3).

Performing constant operations, Find ntCS Rec (Algorithm 3) has time and
space complexity equal O(1) (Table 2). Please note, that the time and space
complexity of calling Find ntCS Rec from Find ntCS (Algorithm 1) in line 16
and line 26 are constant because Find ntCS Rec can be considered being an
inline block or part of Find ntCS which is introduced to avoid duplicated code.

Check ntCS (Algorithm 4) has time and space complexity being equal to
O(c3 ·n·(n+e)) (Table 3). They are dominated by the time and space complexity
of PartialCycle (line 29, [1]).

ComputeReducedPath has time and space complexity equal to O(n) (Ta-
ble 4). Both are dominated by list iteration at lines 3–5 and lines 11–21.

604 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Table 1: Complexity analysis of Find ntCS (Algorithm 2)
Line Time complexity Space complexity Comments

3 O(c3 · n · (n + e)) O(c3 · n · (n + e)) Algorithm 4
7 O(1) Hashtable get
8 O(e) O(e) Hashtable iterator
10 O(1)
11 O(1) O(1) HashSet create
12 O(1) O(1) HashSet add
13 O(1) O(1) Hashtable add
16 O(1) Algorithm 3
8–19 O(e) O(e) Hashtable iterator
22 O(e) Hashtable iterator
26 O(1) Algorithm 3
22–28 O(e) Hashtable iterator

Overall O(c3 · n · (n + e)) O(c3 · n · (n + e))

Table 2: Complexity analysis of Find ntCS Rec (Algorithm 3)
Line Time complexity Space complexity Comments

2 O(1) O(1) ArrayList add
3 O(1) O(1) Hashtable add
4 O(1) Algorithm 1
5 O(1) ArrayList remove
6 O(1) Hashtable remove

Overall O(1) O(1)

Table 3: Complexity analysis of Check ntCS (Algorithm 4)
Line Time complexity Space complexity Comments

5 O(1) Hashmap get
6 O(1) Hashmap get
10–15 O(n) ArrayList iterate
20 O(n) O(n) Algorithm 5
23 O(n + e) O(n + e) HashSet add nodes

and edges of one ntCS
24 O(n) O(1) SubCycle [1]
25 O(c3 · (n + e)) O(c3 · (n + e)) MergeCycles [1]
29 O(c3 · n · (n + e)) O(c3 · n · (n + e)) PartialCycle [1]

Overall O(c3 · n · (n + e)) O(c3 · n · (n + e))

JGAA, 21(4) 589–630 (2017) 605

Table 4: Complexity analysis of ComputeReducedPath (Algorithm 5)
Line Time complexity Space complexity Comments

2 O(1) O(1) ArrayList create
3 O(n) O(n) ArrayList iterate
4 O(1) O(1) ArrayList add
3–5 O(n) O(n) ArrayList iterate, add
9 O(1) O(1) LinkedHashSet create
11 O(n) O(n) ArrayList iterate
12 O(1) ArrayList get using index
13 O(1) O(1) ArrayList add
14 O(1) Hashtable get
11–21 O(n) O(n) ArrayList iterate, get, add
23 O(n) O(n) ArrayList create initializ-

ed by LinkedHashSet

Overall O(n) O(n)

5 Splitting wCCs

5.1 Motivation

Figure 10(a) shows the situation of a wCC after detecting ntCSs. In this case,
the ntCSs C1, C2, and C3 were detected. If all edges of these ntCSs are tem-
porarily removed from this wCC, two types of wCCs remain (Figure 10(b)).
The resulting isolated nodes forming one wCC each are ignored, as they be-
long to a single ntCS, only. The remaining two wCCs, however, contain edges
and require further analysis before the categorization step (Section 6). A closer
analysis of the different configurations that might occur shows that these wCCs
could be further decomposed by splitting them at nodes of the ntCSs found
(Figure 10(c)):

• The green, the orange, and the red wCCs are only attached to C1 at
nodes 1, 3, and 1, respectively.

• The brown wCC connects C1 (node 1) and C2 (node 14).

• The blue wCC connects C1 (node 3) and C3 (node 21).

Thus, we can distinguish between those parts of the wCC that are only
connected to one ntCS and those that connect two or more ntCSs. This is an
important fact that can later be used for an improved layout of the graph [1, 2].

5.2 Algorithms

After removing the edges of the ntCSs, each node of each ntCS is taken as
starting point of the split algorithm if it still has incoming or outgoing edges.
These nodes are the potential split points examined by the algorithm; isolated

606 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

10

11 9

12

7

8 6

5 0

1
3

2

14

15 16

17

1918

21
20

25

24

27

26
28

13

2322

4

C1

C3C2

(a) One wCC after detecting ntCSs (marked using
blue circles).

10

11 9

12

7

8 6

5 0

1
3

2

14

15 16

17

1918

21
20

25

24

27

26
28

13

2322

4

(b) The graph obtained after deleting the edges of the
ntCSs found.

10

11 9

12

7

8 6

5 0

1
3

2

14

15 16

17

1918

21
20

25

24

27

26
28

13

2322

4

(c) Splitting the two wCCs with edges at the ntCSs
nodes results in five wCCs in the final decomposition.

Figure 10: Removing the edges of the ntCSs detected and splitting the remain-
ing wCCs with edges at the ntCSs nodes.

JGAA, 21(4) 589–630 (2017) 607

nodes are ignored. All edges of the wCC are treated as being undirected. For
each node, all unvisited edges are followed. From the end node of each of the
edges, a depth first search is started. A traversed edge will not be considered
again. The depth first search backtracks, if the end node of an edge has no
unchecked edges or if it belongs to a ntCS. Finally, each wCC found is added
to the list of all wCCs.

The split is mainly performed by two functions: Split wCC at Node (Al-
gorithm 6) and Split wCC (Algorithm 7). For each ntCS node, Split wCC at
Node follows all unvisited edges of the node (lines 5–6), creating a set to add
all nodes in the sub-wCC (line 7), and adding the ntCS node to this set (line 8).
Then, Split wCC at Node calls Split wCC to start the depth first search from
the end node of the current edge considering the edges as being undirected
(line 9). Finally, the wCC is formed from the set of nodes (line 10) and is added
to the list of all wCCs (line 12), if it is not empty.

The Split wCC algorithm (Algorithm 7) performs a depth first search. First,
the current edge is marked as visited (line 1) as well as its reverse edge if it exists
(lines 2–5) as edges are treated ignoring their direction and therefore edge and
reverse edge are considered being the same. Then, the next node in the depth
first search is determined (lines 6–10). If this node is a ntCS node of the initial
wCC (line 11), no further edges are followed, and the node is added to the set
of all ntCS nodes of this wCC (line 12) and to the set of all nodes (line 13).
It might have been visited before as it is a split point being shared by more
than one sub-component. Therefore, it is added to each of the sub-components.
Moreover, the node might have unvisited edges that will be handled later by
the split algorithm. Otherwise (lines 14–22), the node is not a ntCS node. If it
was not visited before (line 14), it is marked as visited (line 15) and added to
the set of all nodes (line 16). All unvisited edges of the node are then followed
calling Split wCC recursively (lines 17–22). If the node is marked and not a
ntCS node, then either all edges were already followed or will be followed. Thus,
this case is already handled implicitly.

Considering the example in Figure 10(c), Split wCC at Node is called for
the ntCS nodes 1 and 3. Starting at node 1, it will traverse the edges 1 → 5
(red), 1 ↔ 9 (green), and 13 → 1 (brown), one after the other. Thereby, the
order is not important. Starting with edge 1→ 5, the edge is marked as visited,
an empty set is created, node 1 is added to the set, and Split wCC is called
to start the depth first search at node 5. After completing the search, the set
of nodes contains the nodes {1, 5, 6, 7, 8} forming a new wCC (red) which will
be added to the list of all wCCs. The same holds for edges 1 ↔ 9 and 13 → 1
resulting in the sets of nodes {1, 9, 10, 11, 12} (green) and {1, 13, 14, 17} (brown)
forming two additional new wCCs. Handling edges 3→ 24 and 3↔ 18 of node 3
will produce the sets {3, 24, 25, 26, 27, 28} (orange) and {3, 18, 19, 20, 21} (blue)
forming two new ntCSs, respectively.

In the cases 1 (red), 2 (green), and 4 (orange), only the else statement
(lines 14–22) is executed. In the cases 3 (brown) and 5 (blue), however, the
code in lines 11–13 is executed. For the last case (number 5, blue), this means
that reaching node 21 for the first time, no other incoming edge is followed. The

608 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Table 5: Complexity analysis of Split wCC at Node (Algorithm 6)
Line Time complexity Space complexity Comments

1 O(1) O(1) HashSet Create
2 O(1) O(1) HashSet Create
3 O(1) O(1) HashSet Add
4 O(ei) O(ei) HashSet Add multiple
5 HashSet Iterator
7 O(1) O(1) HashSet Create
8 O(1) O(1) HashSet Add
9 Algorithm 7
10 O(ei) O(ei) create Graph [1]
12 O(1) O(1) ArrayList Add

Overall O(ei) O(ei)

Table 6: Complexity analysis of Split wCC (Algorithm 7)
Line Time complexity Space complexity Comments

2 O(1) Hashtable get
11 O(1) HashSet containsKey

(get)
12 O(1) O(1) HashSet Add
13 O(1) O(1) HashSet Add
16 O(1) O(1) HashSet Add
17 O(ei) O(ei) HashSet Add multiple
18 HashSet iterator
20 Algorithm 7

Overall O(ei) O(ei)

node is added to both sets and backtracking is performed. The same holds the
second time, node 21 is reached. As node 21 is already contained in both sets,
it is not added. The same holds the third and last time node 21 is reached.

5.3 Complexity Analysis

Let S = {wCCi} the set of all wCCs remaining after the ntCS edges were
removed from the wCC being the input graph. Let wCCi = (Ni, Ei) be a
weakly connected component with Ni being the set of nodes and Ei being the
set of edges. Let ni = |Ni| be the number of nodes and ei = |Ei| be the
number of edges of wCCi. Then, the total time and space complexity of the
split algorithm is O(ei) for wCCi.

This can be seen as follows. All HashSet operations have amortized time and
space complexity O(1) (Tables 5 and 6). The call to algorithm Split wCC is
only performed for each edge at most once (Algorithm 6, line 9 and Algorithm 7,
line 20), as afterwards the edge is marked as visited (Algorithm 7, line 1). ntCS

JGAA, 21(4) 589–630 (2017) 609

Table 7: Conditions used for detecting down-trees, up-trees, and DAGs [1, 2].
Examples are shown in Figure 12.

Case Condition Result
I ni ≥ 2 and no ≥ 2 DAG
II ni < 2 and no ≥ 2 down-tree or DAG
III ni ≥ 2 and no < 2 up-tree or DAG
IV ni < 2 and no < 2 down-tree, up-tree, or DAG

nodes might be visited several times, but their edges are only followed once when
calling Algorithm 6. Thus, all ntCS nodes belonging to wCCi are reached by at
most ei edges. All non-ntCS nodes are handled only once and are then marked
(Algorithm 7, lines 14 and 15). Therefore, also their edges are handled only
once, i.e., at most ei edges are followed (Algorithm 6, lines 4–5 and Algorithm 7,
lines 17–18). Finally, the algorithm create Graph [1] is called with ei edges in
sum over all split parts of wCCi.

6 Detecting Trees and DAGs

6.1 Motivation

The wCCs that result from the previous splitting step will finally be classified
as down-trees, up-trees, and DAGs. Distinguishing between trees and DAGs is
important, as for trees optimal drawing algorithms exist [6, 9] while all algo-
rithms for DAGs are based on heuristics [8]. The distinction between down- and
up-trees is made for choosing the adapted drawing algorithms, as in the first
case outgoing edges will be handled while in the second case incoming edges will
be handled.

The wCC of G1 shown in Figure 1(a) (Section 2) can only be classified as
down-tree or up-tree (Figure 1(b), Section 2). However, the larger wCC shown
in Figure 11(a) is a minimal example of a wCC that could be classified as down-
tree (Figure 11(b)), up-tree (Figure 11(c)), and DAG (Figure 11(d)), depending
of which back-edges are removed.

Our algorithm was designed such that a wCC is classified as down-tree, if
possible, as up-tree, if it can be classified as up-tree but not as down-tree, and as
DAG, if no other classification is possible. The reason for preferring trees over
DAGs was explained before: trees allow for improved algorithms. The choice of
preferring down-trees over up-trees is arbitrary.

6.2 Algorithms

6.2.1 Detecting Trees and DAGs

To classify the wCCs, the four cases listed in Table 7 are distinguished. They
take the number of source nodes ni (in-degree zero) and sink nodes no (out-
degree zero) of the respective wCC into account. In case I, ni ≥ 2 and no ≥ 2.

610 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

4

3

0

12

(a) The original wCC, a star with 5
nodes and 4 double edges.

4

3

0

12

(b) Removing back-edges to obtain a
down-tree.

4

3

0

12

(c) Removing back-edges to obtain an
up-tree.

4

3

0

12

(d) Removing back-edges to obtain a
DAG.

Figure 11: A “star” wCC with five nodes is the minimal example of a wCC
that can be transformed into a down-tree, an up-tree, and a DAG by removing
the respective back-edges.

Thus, the wCC has to be a DAG and is classified as one. The other cases
allow for tree or DAG classification. Cases II and III restrict the possible tree
classification, while in the last case both tree classifications are possible. The
cases II and III are handled using depth first search.

This decision table is implemented in algorithm DetectDAGsTrees (Algo-
rithm 8). First, additional information about the wCC is computed (lines 1–
15). All nodes having in-degree zero and all nodes having out-degree zero are
counted (lines 3 and 6, respectively). Further, they are added to the lists
inDegreeZeroNodes (line 4) and outDegreeZeroNodes (line 7), respectively.

JGAA, 21(4) 589–630 (2017) 611

4 5

1

32

76

(a) Trivial DAG

3 5

1

2

4

(b) Non-trivial
DAG

3 4

1

2

6

5

(c) Trivial down-tree

3 4

1

2

5 7 8

6

9

(d) Non-trivial down-tree

3 4

1

2

65

(e) Trivial up-tree

3 6

1

2

8

7

54

(f) Non-trivial up-tree

Figure 12: Examples of trees and DAGs.

612 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Three more lists hold the nodes having only double edges (lines 8–9), only
double and outgoing edges (lines 10–11), and only double and incoming edges
(lines 12–13).

Then, the two counts are used for implementing the decision table presented
before. In case I, the classification is DAG (lines 16–17) and a DAG is created
(lines 25–27). The graph in Figure 12(a) shows an example of this case. The
graph has two nodes with in-degree zero {1, 2} and three nodes with out-degree
zero {5, 6, 7}.

In case II (III), the results can be either a down-tree (an up-tree) or a
DAG (lines 18–19, respectively 20–21, Section 6.2.2). If it is a tree, the tree
is created during the decision process by checkForDownTree, Algorithm 9
(checkForUpTree, Algorithm 11). If the construction of the down-tree (up-
tree) fails, the wCC is a DAG and a DAG is created. The graphs shown in
Figures 12(c) and 12(d) are examples of case II. The graph in Figure 12(c) has
one node with in-degree zero {1}, three nodes with out-degree zero {4, 5, 6}, and
no double edges. Thus, it is a trivial down-tree. The wCC in Figure 12(d) has
no nodes with in-degree zero and five nodes with out-degree zero {4, 5, 7, 8, 9}.
In this case, a non-trivial down-tree can be constructed (see also Section 6.2.2).
The graphs shown in Figures 12(e) and 12(f) are examples of case III. The wCC
in Figure 12(e) has three nodes with in-degree zero {4, 5, 6} one node with out-
degree zero {1}, and no double edges. Thus, it is a trivial up-tree. The wCC
in Figure 12(f) has three nodes with in-degree zero {4, 5, 8} and no nodes with
out-degree zero. In this case, a non-trivial up-tree can be constructed (see also
Section 6.2.2).

In case IV, the classification is performed by calling classify wCC (lines 22–
23, Algorithm 13). As before, if the wCC is classified as a down-tree or an up-
tree, it is created during the classification process. Otherwise, a DAG is detected
and will be created at the end (Algorithm 8, lines 25–27). In fact, this algorithm
tries first to construct a down-tree (line 1). If this fails, it tries to construct an
up-tree (lines 2–4). Finally, the result is returned (line 5). The wCC shown in
Figure 12(b) is an example of case IV where the wCC has no nodes with in-
degree zero, one node with out-degree zero {4}, and one node having only double
edges {1}. Starting at node 4, the construction of an up-tree fails as node 2 has
three outgoing edges. Starting at node 1, the construction of a down-tree fails
as node 4 has three incoming edges. Thus, the final classification is DAG.

6.2.2 Down-Trees and Up-Trees

The algorithm checkForDownTree (Algorithm 9) tries to construct a down-tree
using the edges of the wCC. If the wCC does not contain double edges, then the
unique trivial down-tree will be constructed. If the wCC contains double edges,
it might be possible to construct one down-tree or several different down-trees.
In the first case, the unique down-tree will be constructed. In the second case,
one of the down-trees will be constructed. In all these cases, the wCC will be
classified as down-tree. Otherwise, no down-tree can be constructed and the
wCC will be classified as DAG.

JGAA, 21(4) 589–630 (2017) 613

The algorithm starts by incrementing the global path counter (line 1) which
is used to check, if a node is reached twice (checkForDownTreeDFS: line 1).
Further, a list of path nodes is created (line 2). Now, two cases are distinguished.
If there is exactly one node with in-degree zero (line 3), only this node can be
the root of the tree and is used as starting node for finding a down-tree (lines 4–
16). Otherwise (lines 17–34), all potential root nodes will be used as starting
nodes for finding a down-tree. In both cases, it is possible that no down-tree can
be constructed. As both cases perform essentially the same steps with one and
several starting nodes, respectively, the second case will be described. Pairs of
line numbers are given in the form (second case, first case). If the line numbers
for the first case are missing, the respective step is not needed for this case.

The detection starts by adding all starting nodes to a list in the order of
nodes containing (1) only outgoing edges (line 18), (2) only outgoing and double
edges (line 19), and (3) only double edges (line 20). Then, in case 2, all these
nodes are considered one after the other (line 21). In case 1, the first (and
only) node with in-degree zero is used as starting node (line 7). Now, all nodes
are marked as unvisited (lines 22–24, 4–6) and the path nodes list is emptied
(line 25). The current node is used as root node (line 26, 8), added to the current
path (line 27, 9), and the depth first search of a down-tree is started calling
checkForDownTreeDFS (line 28, 10). If a down-tree could be constructed,
it is created and the algorithm stops returning the classification “down-tree”
(lines 29–32, 11–13). Otherwise, in case 2, the next potential starting node is
considered. If no down-tree could be created using any of the potential starting
nodes, the algorithm stops returning the classification “DAG” (line 34, 14–15).

The algorithm checkForDownTreeDFS (Algorithm 10) first checks, if the
current node was visited before (line 1). In this case, the wCC is a DAG and
this classification is returned (line 2). Otherwise, if the path contains more than
one node, it is checked whether the current node has incoming edges without
back edges ignoring the edge from the parent node to the current node (line 4).
If yes, then a DAG is detected and this classification is returned (line 5). Oth-
erwise, the current node is marked (line 7) and the result is set to down-tree
(line 8). Now, all outgoing edges of the current node are followed one after the
other (line 9). First, the target node of the current outgoing edge is added to
the path (lines 10–11). Then, it is checked, if the last edge was a back edge
of the previous edge (lines 12–14). In this case, the last node of the path is
removed and the next outgoing edge will be considered (lines 15–16). Other-
wise, checkForDownTreeDFS is called recursively (line 18). Afterwards, the
path is restored and the result is checked (lines 19–22). If the result was DAG,
then this result is returned. Only if none of the edges followed results in a
DAG classification, the construction of the down-tree was successful and this
classification is returned (line 24).

The wCC shown in Figure 12(c) is a trivial down-tree with root node 1. The
wCC shown in Figure 12(d) has the potential root node 1. This node has one
outgoing and one double edge. A non-trivial down-tree can be constructed in
this case.

The attempt to construct up-trees is performed analogously to the down-

614 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Table 8: Complexity analysis of DetectDAGsTrees (Algorithm 8)
Line Time complexity Space complexity Comments

1 O(n) O(n) ArrayList Iterator
4 O(1) O(1) ArrayList add
7 O(1) O(1) ArrayList add
8 O(e) O(e) ArrayList Iterator
9 O(1) O(1) ArrayList add
10 O(e) O(e) ArrayList Iterator
11 O(1) O(1) ArrayList add
12 O(e) O(e) ArrayList Iterator
13 O(1) O(1) ArrayList add
1–15 O(n + e) O(n + e)
19 O(n2 ·md + e) O(n2 ·md + e) Algorithm 9
21 O(n2 ·md + e) O(n2 ·md + e) Algorithm 11
23 O(n2 ·md + e) O(n2 ·md + e) Algorithm 13
26 O(n + e) O(n + e) create DAG [1]

Overall O(n2 ·md + e) O(n2 ·md + e)

tree construction (Algorithms 11 and 12). Instead of outgoing edges, incoming
edges are followed.

The wCC shown in Figure 12(e) is a trivial up-tree with root node 1. The
wCC shown in Figure 12(f) has the potential root nodes 1, 2, and 6. Nodes 1
and 6 have one double edge and node 2 has three double edges and one incoming
edge. In all cases, a non-trivial up-tree can be constructed. The first non-trivial
up-tree found is created as the result.

6.3 Complexity Analysis

Let n be the number of nodes, e be the number of edges, and md be the maximal
degree of a node of the wCC to be classified. Then, the total time and space com-
plexity of detecting trees and DAGs is O(n2·md+e) (Table 8). It is dominated by
the tree detection algorithms checkForDownTree and checkForUpTree (Ta-
ble 9). Both have time and space complexity O(n2 ·md + e). Therefore, also
algorithm classify wCC has the same time and space complexity (Table 11).
Creating the lists of potential root nodes and computing the two counters can
be done in O(n + e) as each edge is checked at most twice: once for the source
and once for the target node. Creating the DAG can also be done in O(n + e)
time and space.

Algorithm checkForDownTree (checkForUpTree) has time and space com-
plexity O(n2 ·md + e). The e comes from the down-tree (up-tree) construction
(lines 12 and 30); at most one down-tree (up-tree) is constructed. The factor
n ·md of the first summand comes from the recursive construction of the down-
tree using checkForDownTreeDFS (up-tree, checkForUpTreeDFS). The
factor n of the first summand comes from the worst case example.

JGAA, 21(4) 589–630 (2017) 615

Table 9: Complexity analysis of checkForDownTree (Algorithm 9). The
complexity analysis for checkForUpTree (Algorithm 11) is identical (given in
brackets).

Line Time complexity Space complexity Comments

2 O(1) O(1) ArrayList Create
4 O(n) ArrayList Iterator
7 O(1) ArrayList get
9 O(1) O(1) ArrayList add
10 O(n ·md) O(n ·md) Algorithm 10

(Algorithm 12)
12 O(n + e) O(n + e) create down-tree (up-tree)

[1]
18 O(n) O(n) ArrayList addAll
19 O(n) O(n) ArrayList addAll
20 O(n) O(n) ArrayList addAll
21 O(n) O(n) ArrayList Iterator
22 O(n) ArrayList Iterator
25 O(n) ArrayList clear
27 O(1) O(1) ArrayList add
28 O(n ·md) O(n ·md) Algorithm 10

(Algorithm 12)
30 O(n + e) O(n + e) create down-tree (up-tree)

[1]
21-33 O(n2 · md + e) O(n2 · md + e) O(n · (n + 1 + n ·md)

+(n + e))

Overall O(n2 ·md + e) O(n2 ·md + e)

Table 10: Complexity analysis of checkForDownTreeDFS (Algorithm 10).
The complexity analysis for checkForUpTreeDFS (Algorithm 12) is identical
(given in brackets).

Line Time complexity Space complexity Comments

4 O(md) O(md) [1]
9 O(md) O(md) HashSet Iterator
11 O(1) O(1) ArrayList Add
12 O(n) ArrayList indexOf
13 O(n) ArrayList lastIndexOf
15 O(1) ArrayList remove last
18 O(n) O(n) Algorithm 10
19 O(1) ArrayList remove last
9-23 O(n · md) O(n · md)

Overall O(n ·md) O(n ·md)

616 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Table 11: Complexity analysis of classify wCC (Algorithm 13)
Line Time complexity Space complexity Comments

1 O(n2 ·md + e) O(n2 ·md + e) Algorithm 9
3 O(n2 ·md + e) O(n2 ·md + e) Algorithm 11

Overall O(n2 ·md + e) O(n2 ·md + e)

The time and space complexity of the down-tree (up-tree) construction
checkForDownTreeDFS (checkForUpTreeDFS) is O(n ·md). For each out-
going edge of a node (limited by the maximal node degree md) two indices are
computed and a recursive call is performed. The recursive call is limited by
the number of nodes n, as at most one node is visited twice before the final
classification.

Finally, algorithm classify wCC has time and space complexity O(n·md+e)
as it essentially calls the algorithms checkForDownTree and checkForUpTree
(Algorithms 9 and 11) whose time and space complexity are O(n ·md + e).

7 Conclusion

To create a topological visualization of directed graphs, a new methodology was
previously introduced [1, 2]. Here, an intermediate level description of the de-
composition process introduced there is provided as complementary description
to the previous high [2] and low [1] level descriptions. The focus in this paper is
on the motivation of the process and of each of the steps as well as on illustrative
examples of all cases that need to be considered by the algorithm, standard as
well as more complex ones. All other situations include those described here.

All algorithms are complemented by their complexity analysis. It shows, that
the detection of non-trivial cyclic subgraphs has O(c3 ·n2 ·(n+e)) as overall time
and space complexity, where n designates the number of nodes, e the number of
edges, and c the number of cycles found; splitting weakly connected components
resulting from removing the edges of the non-trivial cyclic subgraphs can be
performed in O(ei) as total time and space complexity where ei is the number of
edges of each of the weakly connected components, respectively; and classifying
the resulting weakly connected components as trees and DAGs can be performed
in O(n2 ·md+e) total time and space complexity, where n designates the number
of nodes, e the number of edges, and md is the maximum degree of a node of
the weakly connected component.

JGAA, 21(4) 589–630 (2017) 617

References

[1] A. Abuthawabeh. Multi-Edge Graph Visualizations for Fostering Software
Comprehension. PhD thesis, Technische Universität Kaiserslautern, Kaiser-
slautern, Germany, 2016.

[2] A. Abuthawabeh and D. Zeckzer. An Improved Decomposition and Drawing
Process for Optimal Topological Visualization of Directed Graphs. In Pro-
ceedings of the 31th Spring Conference on Computer Graphics, SCCG’15,
pages 111–118. ACM, 2015. doi:10.1145/2788539.2788551.

[3] C. Bachmaier, F. Brandenburg, W. Brunner, and R. Fülöp. Coordinate
assignment for cyclic level graphs. In Computing and combinatorics, pages
66–75. Springer, 2009. doi:10.1007/978-3-642-02882-3_8.

[4] C. Bachmaier, F. Brandenburg, W. Brunner, and R. Fülöp. Drawing
Recurrent Hierarchies. J. Graph Algorithms Appl., 16(2):151–198, 2012.
doi:10.7155/jgaa.00254.

[5] C. Bachmaier, F. Brandenburg, W. Brunner, and G. Lovász. Cyclic Leveling
of Directed Graphs. In Graph Drawing, volume 5417 of Lecture Notes in
Computer Science, pages 348–359. Springer Berlin Heidelberg, 2009. doi:

10.1007/978-3-642-00219-9_34.

[6] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s Algorithm to
Run in Linear Time. In M. T. Goodrich and S. G. Kobourov, editors, Graph
Drawing, volume 2528 of Lecture Notes in Computer Science, pages 344–353.
Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-36151-0_32.

[7] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding
of Hierarchical System Structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, Feb 1981. doi:10.1109/TSMC.1981.4308636.

[8] R. Tamassia, editor. Handbook of Graph Drawing and Visualization. Discrete
Mathematics and Its Applications. Chapman & Hall/CRC, 2007.

[9] J. Q. Walker. A node-positioning algorithm for general trees. Software: Prac-
tice and Experience, 20(7):685–705, 1990. doi:10.1002/spe.4380200705.

http://dx.doi.org/10.1145/2788539.2788551
http://dx.doi.org/10.1007/978-3-642-02882-3_8
http://dx.doi.org/10.7155/jgaa.00254
http://dx.doi.org/10.1007/978-3-642-00219-9_34
http://dx.doi.org/10.1007/978-3-642-00219-9_34
http://dx.doi.org/10.1007/3-540-36151-0_32
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1002/spe.4380200705

618 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

A Algorithms for Detecting Non-Trivial Cyclic
Subgraphs

Algorithm 1 Find ntCS in wCC

Description: Find all ntCSs of a wCC
Input: wCC
Output: ntCSs

1: for all node ∈ wCC do
2: if node is not marked then
3: Create a path of nodes: pathNodes
4: Add node to pathNodes
5: Create a path of edges: pathEdges
6: Call Find ntCS(ntCSs, pathNodes, pathEdges, node) (Algorithm 2)
7: end if
8: end for

JGAA, 21(4) 589–630 (2017) 619

Algorithm 2 Find ntCS

Description: Find all disjoint ntCSs in the graph using Depth First
Search
Input: ntCSs, pathNodes, pathEdges, lastNode
Output: ntCSs

1: Increment lastNode.iEdgeCounter by one
2: if lastNode is marked with value = counterPath then
3: Check ntCS(ntCSs, pathNodes, pathEdges) (Algorithm 4)
4: else
5: Mark lastNode with counterPath
6: end if
7: lastNodeBackEdges← backEdges.get(lastNode)
8: for all outgoingEdge ∈ {outgoing edges of lastNode} do
9: if outgoingEdge is marked as not VISITED then

10: if isBackEdge(pathEdges, outgoingEdge) then
11: If lastNodeBackEdges was not created before, create new one
12: Add outgoingEdge into lastNodeBackEdges
13: Put (lastNode, lastNodeBackEdges) in backEdges hashtable
14: else
15: targetNode← target node of outgoingEdge
16: Call Find ntCS Rec(ntCSs, pathNodes, pathEdges, targetNode,

outgoingEdge, position(lastNode)) (Algorithm 3)
17: end if
18: end if
19: end for
20: if lastNode.iEdgeCounter >= lastNode number of incoming edges then
21: if lastNodeBackEdges 6= null then
22: for all backEdge ∈ lastNodeBackEdges do
23: if backEdge edge is marked as not VISITED then
24: outgoingEdge← backEdge
25: targetNode← target node of backEdge
26: Call Find ntCS Rec(ntCSs, pathNodes, pathEdges, target-

Node, outgoingEdge, position(lastNode)) (Algorithm 3)
27: end if
28: end for
29: end if
30: end if

620 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 3 Find ntCS Rec

Description: Recursively call Find Cycle
Input: ntCSs, pathNodes, pathEdges, targetNode, outgoingEdge,
nodePosition
Output: ntCSs

1: Mark outgoingEdge as VISITED
2: Add targetNode to pathNodes
3: Put (outgoingEdge, nodePosition) as value in pathEdges
4: Call Find ntCS(ntCSs, pathNodes, pathEdges, targetNode) (Algo-

rithm 2)
5: Remove last occurrence of targetNode from pathNodes
6: Remove the outgoingEdge from pathEdges

JGAA, 21(4) 589–630 (2017) 621

Algorithm 4 Check ntCS

Description: Check, if a part of the path is (a part of) a ntCS
Input: ntCSs, pathNodes, pathEdges
Output: true iff (part of) ntCS was found

1: pathSize← size of pathNodes
2: lastNode← last node in pathNodes
3: lastPosition← pathSize− 1
4: secondToLastPosition← pathSize− 1
5: cycleLastNode← the ntCS containing lastNode
6: cycleSecondToLastNode← ntCS containing node having index pathSize−

2
7: if cycleSecondToLastNode 6= null ∧ cycleLastNode 6= null ∧

cycleSecondToLastNode = cycleLastNode then
8: Return false
9: end if

10: for nodeIndex← pathSize− 2 down to 0 do
11: if pathNodes[nodeIndex] = lastNode then
12: secondToLastPosition← nodeIndex
13: Break
14: end if
15: end for
16: if lastPosition− secondToLastPosition = 2 then
17: Return false
18: end if
19: if secondToLastPosition < pathSize− 1 then
20: reducedPath ← call ComputeReducedPath(pathNodes, pathEdges,

secondToLastPosition) (Algorithm 5)
21: if reducedPath 6= null then
22: Create new ntCS ntCS
23: Add into ntCS all nodes and edges of reducedPath
24: Call SubCycle(ntCSs of wCC, ntCS) [1]
25: Call MergeCycles(ntCSs of wCC) [1]
26: Return true
27: end if
28: else if cycleLastNode 6= null then
29: Return PartialCycle(ntCSs of wCC, pathNodes, lastNode) [1]
30: end if
31: Return false

622 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 5 ComputeReducedPath

Description: Remove a part of the potential ntCS path through
searching over edges in the edges path
Input: pathNodes, pathEdges, startPosition
Output: reducedPath

1: pathSize← size of pathNodes
2: Create workingPath
3: for nodePosition← startPosition to pathSize− 1 do
4: Add the node pathNodes[nodePosition] to workingPath
5: end for
6: if workingPath[1] = pathNodes[pathSize − 2] ∧ workingPath[0] =

pathNodes[pathSize− 1] then
{Start and end edge are reverse to each other.}
{No ntCS, reduced path is empty}

7: Return null
8: else
9: Create reducedPath

10: workingPathSize← size of workingPath
11: for nodePosition← 0 to workingPathSize− 1 do
12: testEdge ← linking ids of workingPath[nodePosition + 1] and

workingPath[nodePosition], respectively
13: Add node workingPath[nodePosition] to reducedPath
14: endPosition ← the position of the target node of testEdge from

pathEdges
15: if endPosition 6= null then
16: endPosition← endPosition− startPosition
17: end if
18: if endPosition 6= null ∧ endPosition > nodePosition then
19: nodePosition← endPosition
20: end if
21: end for
22: end if
23: Return reducedPath

JGAA, 21(4) 589–630 (2017) 623

B Algorithms for Splitting wCCs

Algorithm 6 Split wCC at Node

Description: Split a wCC at a ntCS node
Input: ntCS Node
Output: allWCCs

1: Create ntCS Nodes set
2: Create allEdges set
3: Add ntCS Node to ntCS Nodes set
4: Add all edges of ntCS Node to allEdges set
5: for all edge ∈ allEdges do
6: if edge is marked as not visited then
7: Create allNodes set
8: Add ntCS Node to allNodes
9: Call Split wCC(ntCS Node, edge, allNodes, ntCS Nodes) (Algo-

rithm 7)
10: wcc← create Graph(ntCS Nodes, allNodes) [1]
11: if # nodes of wcc > 0 then
12: Add wcc to allWCCs list of all subgraphs
13: end if
14: end if
15: end for

624 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 7 Split wCC

Description: Go over all nodes reachable by unvisited edges starting
at srcNode
Input: srcNode, edge, allNodes, ntCS Nodes
Output: allNodes, ntCS Nodes

1: Mark edge as visited
2: reverseEdge← get reverse edge of edge from graph edges
3: if reverseEdge 6= null then
4: Mark reverseEdge as visited
5: end if
6: if end node of edge 6= srcNode then
7: node2← end node of edge
8: else
9: node2← start node of edge

10: end if
11: if node2 ∈ cyclesNodes then
12: Add node2 to ntCS Nodes set
13: Add node2 to allNodes set
14: else if node2 is not marked then
15: Mark node2
16: Add node2 to allNodes set
17: Add all edges of node2 to allEdges set
18: for all edge2 ∈ allEdges do
19: if edge2 is marked as not visited then
20: Call Split wCC(node2, edge2, allNodes, ntCS Nodes) (Algo-

rithm 7)
21: end if
22: end for
23: end if

JGAA, 21(4) 589–630 (2017) 625

C Algorithms for Detecting Trees and DAGs

Algorithm 8 DetectDAGsTrees

Description: Classify wCC (up-tree, down-tree, DAG)
Input: wCC
Output: return wCC classification (up-tree, down-tree, DAG)

1: for all node ∈ {all nodes of wCC} do
2: if node has in-degree 0 then
3: countInDegreeZero← countInDegreeZero + 1
4: Add node to inDegreeZeroNodes ArrayList
5: else if node has out-degree 0 then
6: countOutDegreeZero← countOutDegreeZero + 1
7: Add node to outDegreeZeroNodes ArrayList
8: else if node has only double edges then
9: Add node to potentialDoubleRoots ArrayList

10: else if node has only double and outgoing edges then
11: Add node to potentialDownRoots ArrayList
12: else if node has only double and incoming edges then
13: Add node to potentialUpRoots ArrayList
14: end if
15: end for
16: if countInDegreeZero >= 2 ∧ countOutDegreeZero >= 2 then
17: Mark result as DAG
18: else if countInDegreeZero < 2 ∧ countOutDegreeZero >= 2 then
19: result ← checkForDownTree(wCC, inDegreeZeroNodes, potential-

DownRoots, potentialDoubleRoots) (Algorithm 9)
20: else if countInDegreeZero >= 2 ∧ countOutDegreeZero < 2 then
21: result ← checkForUpTree(wCC, outDegreeZeroNodes, potentialUp-

Roots, potentialDoubleRoots) (Algorithm 11)
22: else if countInDegreeZero < 2 ∧ countOutDegreeZero < 2 then
23: result ← classify wCC(wCC, inDegreeZeroNodes, potentialDown-

Roots, outDegreeZeroNodes, potentialUpRoots, potentialDoubleRoots)
(Algorithm 13)

24: end if
25: if result = DAG then
26: Call createDAG(wCC) [1]
27: end if

626 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 9 checkForDownTree

Description: Check, if a down-tree can be constructed
Input: wCC, inDegreeZeroNodes, potentialDownRoots, potentialDouble-
Roots
Output: return wCC classification (up-tree, down-tree, DAG)

1: counterPath← counterPath + 1
2: Create pathNodes list
3: if countInDegreeZero == 1 then
4: for all node ∈ wCC do
5: Mark node as not visited with value −1
6: end for
7: node← first node of inDegreeZeroNodes
8: root← node
9: Add root to pathNodes

10: result ← checkForDownTreeDFS(pathNodes, counterPath, NULL,
root) (Algorithm 10)

11: if result then
12: Call createDownTree(root, nodes) [1]
13: return DOWN TREE
14: else
15: return DAG
16: end if
17: else
18: add inDegreeZeroNodes at end of potentialOrderedRootsNodes
19: add potentialDownRoots at end of potentialOrderedRootsNodes
20: add potentialDoubleRoots at end of potentialOrderedRootsNodes
21: for all node ∈ potentialOrderedRootsNodes do
22: for all node ∈ wCC do
23: Mark node as not visited with value −1
24: end for
25: Clear pathNodes
26: root← node
27: Add root to pathNodes
28: result ← checkForDownTreeDFS(pathNodes, counterPath, NULL,

root) (Algorithm 10)
29: if result then
30: Call createDownTree(root, nodes) [1]
31: return DOWN TREE
32: end if
33: end for
34: return DAG
35: end if

JGAA, 21(4) 589–630 (2017) 627

Algorithm 10 checkForDownTreeDFS

Description: Check, if a down-tree can be constructed
Input: pathNodes, counterPath, parentNode, node
Output: return wCC classification (up-tree, down-tree, DAG)

1: if node is marked with counterPath then
2: return DAG
3: end if
4: if size of pathNodes > 1 ∧ countOneDirectionIncomingEdges(node,

parentNode) > 0 [1] then
5: return DAG
6: end if
7: Mark node with counterPath
8: result← DOWN TREE
9: for all outgoingEdge ∈ {outgoing edges of node} do

10: targetNode← target node of outgoingEdge
11: Add targetNode to pathNodes
12: first← the first occurrence position (index) for last node in the path
13: last← the last occurrence position (index) for last node in the path
14: if first > −1 ∧ last > −1 ∧ last− first = 2 then

{Ignore double edge}
15: Remove the last node from pathNodes
16: continue
17: end if
18: result ← checkForDownTreeDFS(pathNodes, counterPath, node,

targetNode) (Algorithm 10)
19: Remove the last node from pathNodes
20: if result = DAG then
21: return DAG
22: end if
23: end for
24: return DOWN TREE

628 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 11 checkForUpTree

Description: Check, if an up-tree can be constructed
Input: wCC, outDegreeZeroNodes, potentialUpRoots, potentialDouble-
Roots
Output: return wCC classification (up-tree, down-tree, DAG)

1: counterPath← counterPath + 1
2: Create pathNodes
3: if countOutDegreeZero == 1 then
4: for all node ∈ wCC do
5: Mark node as not visited with value −1
6: end for
7: node← first node of outDegreeZeroNodes
8: root← node
9: Add root to pathNodes

10: result← checkForUpTreeDFS(pathNodes, counterPath, NULL, root)
(Algorithm 12)

11: if result then
12: Call createUpTree(root, nodes) [1]
13: return UP TREE
14: else
15: return DAG
16: end if
17: else
18: add outDegreeZeroNodes at end of potentialOrderedRootsNodes
19: add potentialUpRoots at end of potentialOrderedRootsNodes
20: add potentialDoubleRoots at end of potentialOrderedRootsNodes
21: for all node ∈ potentialOrderedRootsNodes do
22: for all node ∈ wCC do
23: Mark node as not visited with value −1
24: end for
25: Clear pathNodes
26: root← node
27: Add root to pathNodes
28: result ← checkForUpTreeDFS(pathNodes, counterPath, NULL,

root) (Algorithm 12)
29: if result then
30: Call createUpTree(root, nodes) [1]
31: return UP TREE
32: end if
33: end for
34: return DAG
35: end if

JGAA, 21(4) 589–630 (2017) 629

Algorithm 12 checkForUpTreeDFS

Description: Check, if an up-tree can be constructed
Input: pathNodes, counterPath, parentNode, node
Output: return wCC classification (up-tree, down-tree, DAG)

1: if node is marked with counterPath then
2: return DAG
3: end if
4: if size of pathNodes > 1 ∧ countOneDirectionOutgoingEdges(node,

parentNode) > 0 [1] then
5: return DAG
6: end if
7: Mark node with counterPath
8: result← UP TREE
9: for all incomingEdge ∈ {incoming edges of node} do

10: sourceNode← source node of incomingEdge
11: Add sourceNode to pathNodes
12: first← the first occurrence position (index) for last node in the path
13: last← the last occurrence position (index) for last node in the path
14: if first > −1 ∧ last > −1 ∧ last− first = 2 then

{Ignore double edge}
15: Remove the last node from pathNodes
16: continue
17: end if
18: result ← checkForUpTreeDFS(pathNodes, counterPath, node,

sourceNode) (Algorithm 12)
19: Remove the last node from pathNodes
20: if result = DAG then
21: return DAG
22: end if
23: end for
24: return UP TREE

630 Abuthawabeh & Zeckzer Topological Decomposition of Directed Graphs

Algorithm 13 classify wCC

Description: Classify wCC (up-tree, down-tree, DAG)
Input: wCC inDegreeZeroNodes, potentialDownRoots, outDegreeZero-
Nodes, potentialUpRoots, potentialDoubleRoots
Output: return wCC classification (up-tree, down-tree, DAG)

1: result ← checkForDownTree(wCC, inDegreeZeroNodes, potential-
DownRoots, potentialDoubleRoots) (Algorithm 9)

2: if result = DAG then
3: result ← checkForUpTree(wCC, outDegreeZeroNodes, potentialUp-

Roots, potentialDoubleRoots) (Algorithm 11)
4: end if
5: return result

	Introduction
	Motivation and Definitions
	Decomposing Directed Graphs
	Detecting Non-Trivial Cyclic Subgraphs
	Overview
	Constructing Paths and Handling Back Edges
	Checking a Path for being a (Partial) ntCS
	Computing the Reduced Path
	Examples of Combining ntCSs
	Examples of Handling Partial ntCSs
	Complex Example

	Complexity Analysis

	Splitting wCCs
	Motivation
	Algorithms
	Complexity Analysis

	Detecting Trees and DAGs
	Motivation
	Algorithms
	Detecting Trees and DAGs
	Down-Trees and Up-Trees

	Complexity Analysis

	Conclusion
	Algorithms for Detecting Non-Trivial Cyclic Subgraphs
	Algorithms for Splitting wCCs
	Algorithms for Detecting Trees and DAGs

