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Abstract

We reprove the strong Hanani–Tutte theorem on the projective plane.
In contrast to the previous proof by Pelsmajer, Schaefer and Stasi, our
method is constructive and does not rely on the characterization of for-
bidden minors, which gives hope to extend it to other surfaces.
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1 Introduction

A drawing of a graph on a surface is a Hanani–Tutte drawing if no two vertex-
disjoint edges cross an odd number of times.1 We call vertex-disjoint edges
independent.

Pelsmajer, Schaefer and Stasi [18] proved the following theorem via consid-
eration of the forbidden minors for the projective plane.

Theorem 1 (Strong Hanani–Tutte for the projective plane, [18])
A graph G can be embedded into the projective plane if and only if it admits
a Hanani–Tutte drawing on the projective plane.2

Our main result is a constructive proof of Theorem 1. The need for a con-
structive proof is motivated by the question whether the strong Hanani–Tutte
theorem is valid on an arbitrary (closed) surface. Currently, this is known to
be valid only on the sphere (plane) and on the projective plane. The approach
via forbidden minors is relatively simple on the projective plane; however, this
approach does not seem applicable to other surfaces, because there is no rea-
sonable characterization of forbidden minors for them. (Already for the torus
or the Klein bottle the exact list is not known.)

Given a strong Hanani–Tutte drawing of a graph G on the projective plane,
our proof gives an explicit way to transform the drawing into an embedding.
In principle, our proof could be transformed into a (relatively efficient) algo-
rithm for this transformation. On the other hand there already exist linear-
time algorithms for the deciding embeddability of a graph G on the projective
plane [15, 12]. (These algorithms work for any surface but the hidden constant
depends exponentially on the genus.)

On the other hand, our approach reveals a number of difficulties that have to
be overcome in order to obtain a constructive proof. If the answer to the strong
Hanani–Tutte question is affirmative, our approach may serve as a basis for its
proof on a general surface. If it is negative, then our approach may perhaps help
to reveal appropriate structure needed for a construction of a counterexample.

Unfortunately, our approach needs to build an appropriate toolbox for ma-
nipulating with Hanani–Tutte drawings on the projective plane (many tools are
actually applicable to a general surface). This significantly prolongs the paper.
Therefore, we present the main ideas of our approach in the first four sections
of the paper while postponing the technical details to the later sections.

The Hanani–Tutte theorem on the plane and related results. Let
us now briefly describe the history of the problem; for complete history and
relevant results we refer to a nice survey by Schaefer [21]. Following the work
of Hanani [2], Tutte [25] made a remarkable observation now known as the
(strong) Hanani–Tutte theorem: a graph is planar if and only if it admits a
Hanani–Tutte drawing in the plane. The theorem has also a parallel history

1Such a drawing is also called independently even drawing in the literature.
2Of course, the “only if” part is trivial.
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in algebraic topology, where it follows from the ideas of van Kampen, Flores,
Shapiro and Wu [26, 27, 24, 14].

It is a natural question whether the strong Hanani–Tutte theorem can be
extended to graphs on other surfaces; as we already said before, it has been
confirmed only for the projective plane [18] so far. On general surfaces, only
the weak version [1, 20] of the theorem is known to be true: if a graph is drawn
on a surface so that every pair of edges crosses an even number of times3, then
the graph can be embedded into the surface while preserving the cyclic order of
the edges at all vertices.4 Note that in the strong version we require that only
independent edges cross even number of times, while in the weak version this
condition has to hold for all pairs of edges.

We remark that other variants of the Hanani–Tutte theorem generalizing the
notion of embedding in the plane have also been considered. For instance, the
strong Hanani–Tutte theorem was proved for partially embedded graphs [22] and
both weak and strong Hanani–Tutte theorem were proved also for 2-clustered
graphs [7].

The strong Hanani–Tutte theorem is important from the algorithmic point
of view, since it implies the Trémaux crossing theorem, which is used to prove de
Fraysseix-Rosenstiehl’s planarity criterion [4]. This criterion has been used to
justify the linear time planarity algorithms including the Hopcroft-Tarjan [11]
and the Left-Right [3] algorithms. For more details we again refer to [21].

One of the reasons why the strong Hanani–Tutte theorem is so important
is that it turns planarity question into a system of linear equations. For gen-
eral surfaces, the question whether there exists a Hanani–Tutte drawing of G
leads to a system of quadratic equations [14] over Z2. If the strong Hanani–
Tutte theorem is true for the surface, any solution to the system then serves
as a certificate that G is embeddable. Moreover, if the proof of the Hanani–
Tutte theorem is constructive, it gives a recipe how to turn the solution into
an actual embedding. Unfortunately, solving systems of quadratic equations is
NP-complete.

The original proofs of the strong Hanani–Tutte theorem in the plane used
Kuratowski’s theorem [13], and therefore are non-constructive. In 2007, Pelsma-
jer, Schaefer and Štefankovič [19] published a constructive proof. They showed
a sequence of moves that change a Hanani–Tutte drawing into an embedding.

A key step in their proof is their Theorem 2.1. We say that an edge is even
if it crosses every other edge an even number of times (including the adjacent
edges).

Theorem 2 (Theorem 2.1 of [19]) If D is a drawing of a graph G in the
plane, and E0 is the set of even edges in D, then G can be drawn in the plane

3including 0 times
4In fact, the embedding preserves the embedding scheme of the graph, where the notion of

embedding scheme is a generalization of the rotation systems to arbitrary (even non-orientable)
surfaces. For more details on this topic, we refer to [9, Chap. 3.2.3], where embedding schemes
are called rotation systems and our rotation systems are called pure.
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so that no edge in E0 is involved in an intersection and there are no new pairs
of edges that intersect an odd number of times.

Unfortunately, an analogous result is simply not true on other surfaces, as
is shown in [20]. In particular, this is an obstacle for a constructive proof of
Theorem 1.

Our approach—replacement of Theorem 2.1 in [19]. The key step of
our approach is to provide a suitable replacement of Theorem 2.1 in [19] (The-
orem 2); see also Lemma 3 in [8]. For a description of this replacement, let us
focus on the following simplified setting.

Let us consider the case that we have a graphG with a Hanani–Tutte drawing
D on the sphere S2. Let Z be a cycle of G which is simple, that is, drawn without
self-intersections, and such that every edge of Z is even. Theorem 2 then implies
that G can be redrawn so that Z is free of crossings without introducing new
pairs of edges crossing oddly.

Actually, a detailed inspection of the proof in [19] reveals something slightly
stronger in this setting. The drawing of Z splits the plane into two parts that
we call the inside and the outside. This in turn splits G into two parts. The
inside part consists of vertices that are inside Z and of the edges that have
either at least one endpoint inside Z, or they have both endpoints on Z and
they enter the inside of Z next to both endpoints. The outside part is defined
analogously. Because we have started with a Hanani–Tutte drawing, it is easy
to check that every vertex and every edge is on Z or inside or outside. The
proof of Theorem 2 in [19] then implies that the inside and the outside may be
fully separated in the drawing; see Fig. 1. Actually, this can be done even by a
continuous motion—if the drawing is considered on the sphere (instead of the
plane).

Z

S+

S−

Figure 1: Separating the outside (in black) and the inside (in orange) of a cycle
Z (in blue; thick).
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The trouble on RP 2 is that it may not be possible to separate the outside
and the inside (of a separating cycle) by a continuous motion (of each of the
parts separately). This is demonstrated by a projective-planar drawing of K5

in Fig. 2, left. (The symbol ‘⊗’ stands for the crosscap in the picture.)

Figure 2: Projective-planar drawing of K5 where the outside and the inside
cannot be separated by a continuous motion (left) and a solution by duplicating
the crosscap (middle) and removing one of them (right).

We could easily move part of the graph to the outside as desired if we were
allowed to duplicate the crosscap as in Fig. 2, middle. However, the problem
is that we cannot afford raising the genus. On the other hand, if we give up
on a continuous motion, we may observe that the inside vertices and edges in
Fig. 2, middle, may be actually redrawn in a planar way if we remove the ‘inside’
crosscap. This step changes the homotopy/homology type of many cycles in the
drawing.

Our main technical contribution is to show that it is not a coincidence that
this simplification of the drawing in Fig. 2 was possible. We will show that
it is always possible to redraw one of the sides without using the ‘duplicated’
crosscap. The precise statement is given by Theorem 10.

The remainder of the proof. As we mentioned above, Theorem 2 is a key
ingredient in the proof of the strong Hanani–Tutte theorem in the plane. The
rough idea is to find a suitable order on some of the cycles of the graph so
that Theorem 2 can be used repeatedly on these cycles eventually obtaining a
planar drawing. A detailed proof of Pelsmajer, Schaefer and Štefankovič uses
an induction based on this idea.

Similarly, we use Theorem 10 in an inductive proof of Theorem 1. The details
in our setting are more complicated, because we have to take care of two types
of cycles in the graph based on their homological triviality. We also need to
put more effort to set up the induction in a suitable way for using Theorem 10,
because our setting for Theorem 10 is slightly more restrictive than the setting
of Theorem 2.

Organization of the paper. In Sect. 2 we describe Hanani–Tutte drawings
on the projective plane and their properties. There we also set up several tools



944 Colin de Verdière et al. Hanani–Tutte and the Projective Plane

for modifications of the drawings. In particular, we describe how to trans-
form the Hanani–Tutte drawings on RP 2 into drawings on the sphere satisfying
a certain additional condition. This helps significantly in several cases with
manipulating these drawings. In Sect. 3 we describe the precise statement of
Theorem 10. We also provide a proof of this theorem in that section, however,
we postpone the proofs of many auxiliary results to later sections. In Sect. 4
we prove Theorem 1 using Theorem 10 and some of the auxiliary results from
Sect. 3. The remaining sections are devoted to the missing proofs of auxiliary
results.

2 Hanani–Tutte Drawings

In this section, we consider Hanani–Tutte drawings of graphs on the sphere
and on the projective plane. We use the standard notation from graph theory.
Namely, if G is a graph, then V (G) and E(G) denote the set of vertices and the
set of edges of G, respectively. Given a vertex v or an edge e, by G− v or G− e
we denote the graph obtained from G by removing v or e, respectively.

Regarding drawings of graphs, first, let us recall a few standard definitions
considered on an arbitrary surface. We put the standard general position as-
sumptions on the drawings. That is, we consider only drawings of graphs on
a surface such that no edge contains a vertex in its interior and every pair of
edges meets only in a finite number of points, where they cross transversally.
However, we allow three or more edges meeting in a single point (we do not
mind them because we study the pairwise interactions of the edges only). Let
us also mention that, in all this paper, we can assume that in every drawing,
every edge is free of self-crossings. Indeed, we can remove any self-crossing
without changing the image of the edge, except in a small neighborhood of the
self-crossing.

We recall from the introduction that two edges are independent if they do
not share a vertex. Given a surface S and a graph G, a (strong) Hanani—Tutte
drawing of G on S is a drawing of G on S such that every pair of independent
edges crosses an even number of times. (This is also called independently even
drawing in the literature.) We will often abbreviate the term (strong) Hanani–
Tutte drawing to HT-drawing.

Crossing numbers. Let D be a drawing of a graph G on a surface S. Given
two distinct edges e and f of G by cr(e, f) = crD(e, f) we denote the number of
crossings between e and f in D modulo 2. We say that an edge e of G is even if
cr(e, f) = 0 for any f ∈ E(G) distinct from e. We emphasize that we consider
the crossing number as an element of Z2 and all computations throughout the
paper involving it are done in Z2.

HT-drawings on RP 2. It is convenient for us to set up some conventions
for working with the HT-drawings on the (real) projective plane, RP 2. There
are various ways to represent RP 2. Our convention will be the following: we
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consider the sphere S2 and a disk (2-ball) B in it. We remove the interior of
B and identify the opposite points on the boundary ∂B. This way, we ob-
tain a representation of RP 2. Let γ be the curve coming from ∂B after the
identification. We call this curve a crosscap. It is a homologically (homotopi-
cally) non-trivial simple cycle (loop) in RP 2, and conversely, any homologically
(homotopically) nontrivial simple cycle (loop) may serve as a crosscap up to a
self-homeomorphism of RP 2. In drawings, we use the symbol ⊗ for the cross-
cap coming from the removal of the disk ‘inside’ this symbol. We also use this
symbol for ends of proofs.

Given an HT-drawing of a graph on RP 2, it can be slightly shifted so that
it meets the crosscap in a finite number of points and only transversally, still
keeping the property that we have an HT-drawing. Therefore, we may add to
our conventions that this is the case for our HT-drawings on RP 2.

Now, we consider a map λ : E(G) → Z2. For an edge e, we let λ(e) be the
number of crossings of e and the crosscap γ modulo 2. We emphasize that λ
depends on the choice of the crosscap. Afterwards, it will be useful to alter λ
via so-called vertex-crosscap switches, which we will explain a bit later.

Given a (graph-theoretic) cycle Z in G, we can distinguish whether Z is
drawn as a homologically nontrivial cycle by checking the value of λ(Z) :=∑
λ(e) ∈ Z2 where the sum is over all edges of Z. The cycle Z is homologically

nontrivial if and only if λ(Z) = 1. In particular, it follows that λ(Z) does not
depend on the choice of the crosscap.

Projective HT-drawings on S2. Let D be an HT-drawing of a graph G on
RP 2. It is not hard to derive a drawing D′ of the same graph on S2 such that
every pair (e, f) of independent edges satisfies cr(e, f) = λ(e)λ(f). Indeed, it
is sufficient to ‘undo’ the crosscap, glue back the disk B and then let the edges
intersect on B. See the two leftmost pictures in Fig. 3. This motivates the
following definition.

Definition 3 Let D be a drawing of a graph G on S2 and λ : E(G) → Z2 be
a function. Then the pair (D,λ) is a projective HT-drawing of G on S2 if
cr(e, f) = λ(e)λ(f) for any pair of independent edges e and f of G. (If λ is
sufficiently clear from the context, we say that D is a projective HT-drawing of
G on S2.)

It turns out that a projective HT-drawing on S2 can also be transformed to
an HT-drawing on RP 2.

Lemma 4 Let (D,λ) be a projective HT-drawing of a graph G on S2. Then
there is an HT-drawing D⊗ of G on RP 2 such that crD⊗(e, f) = crD(e, f) +
λ(e)λ(f) for any pair of distinct edges of G, possibly adjacent. In addition, if
e and f are arbitrary two edges such that λ(e) = λ(f) = 0 and D(e) and D(f)
are disjoint; then D⊗(e) and D⊗(f) are disjoint as well.

Proof. It is sufficient to consider a small disk B which does not intersect D(G),
replace it with a crosscap and redraw the edges e with λ(e) = 1 appropriately
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RP 2 RP 2S2

Figure 3: Transformations between HT-drawings on RP 2 and projective HT-
drawings on S2.

Figure 4: Redrawing the finger-moves around the crosscap.

as described below. (Follow the two pictures on the right in Fig. 3.) From each
edge e with λ(e) = 1, we pull a thin ‘finger-move’ towards the crosscap which
intersects every other edge in pairs of intersection points. Then we redraw the
edge in a close neighbourhood of the crosscap as indicated in Fig. 4. After
this redrawing, each edge e such that λ(e) = 1 passes over the crosscap once
and each edge e with λ(e) = 0 does not pass over it. This agrees with our
original definition of λ for HT-drawings on RP 2. In addition, we indeed obtain
an HT-drawing on RP 2 with crD⊗(e, f) = crD(e, f) + λ(e)λ(f), because in the
last step we introduce one more crossing among pairs of edges e, f such that
λ(e) = λ(f) = 1. ⊗

In summary, Lemma 4 together with the previous discussion provide us with
two viewpoints on the HT-drawings.

Corollary 5 A graph G admits a projective HT-drawing on S2 (with respect to
some function λ : E(G)→ Z2) if and only if it admits an HT-drawing on RP 2.

The main strength of Corollary 5 lies in the fact that in projective HT-
drawings on S2 we can ignore the actual geometric position of the crosscap and
work in S2 instead, which is simpler. This is especially helpful when we need to
merge two drawings. On the other hand, it turns out that for our approach it
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will be easier to perform certain parity counts in the language of HT-drawings
on RP 2.

In order to distinguish the usual HT-drawings on S2 from the projective HT-
drawings, we will sometimes refer to the former as to the ordinary HT-drawings
on S2.

Nontrivial walks. Let (D,λ) be a projective HT-drawing of a graph G and
ω be a walk in G. We define λ(ω) :=

∑
e∈E(ω) λ(e) where E(ω) is the multiset

of edges appearing in ω. Equivalently, it is sufficient to consider only the edges
appearing an odd number of times in ω, because 2λ(e) = 0 for any edge e. We
say that ω is trivial if λ(ω) = 0 and nontrivial otherwise (that is, λ(ω) = 1).

We often use this terminology in special cases when ω is an edge, a path,
or a cycle. In particular, a cycle Z is trivial if and only if it is drawn as a
homologically trivial cycle in the corresponding drawing D⊗ of G on RP 2 from
Lemma 4.

Given two homologically nontrivial cycles on RP 2 it is well known that they
must cross an odd number of times (assuming they cross at every intersection).
This fact is substantiated by Lemma 30 later on. However, we first present a
weaker version of this statement in the setting of projective HT-drawings, which
we need sooner.

Lemma 6 Let (D,λ) be a projective HT-drawing of a graph G on S2. Then G
does not contain two vertex-disjoint nontrivial cycles.

Proof. For contradiction, let Z1 and Z2 be two vertex-disjoint nontrivial cycles
in G. That is, Z1 as well as Z2 contains an odd number of nontrivial edges.
Therefore, there is an odd number of pairs (e1, e2) of nontrivial edges where
e1 ∈ Z1 and e2 ∈ Z2. According to Definition 3, Z1 and Z2 must have an odd
number of crossings. But this is impossible for two cycles in the plane which
cross at every intersection (in D). ⊗

Vertex-edge and vertex-crosscap switches. LetD be a drawing of a graph
G on S2. Let us consider a vertex v and an edge e of G such that v is not incident
to e. We modify the drawing D into drawing D′ so that we pull a thin finger
from the interior of e towards v and we let this finger pass over v. We say that
D′ is obtained from D by the vertex-edge switch (v, e).5 If we have an edge f
incident to v, then the crossing number cr(e, f) of this pair changes (from 0 to
1 or vice versa), but it does not change for any other pair, because the ‘finger’
intersects the other edges in pairs.

Now, let (D,λ) be a projective HT-drawing of G on S2. It is very useful to
alter λ at the cost of redrawing G. Given a vertex v, we perform the vertex-edge
switches (v, e) for all edges e not incident to v such that λ(e) = 1 obtaining a
drawing D′. We also introduce a new function λ′ : E(G) → Z2 derived from λ

5Another name for the vertex-edge switch is the finger-move common mainly in topological
context in higher dimensions.
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by switching the value of λ on all edges of G incident to v. In this case, we
say that D′ (and λ′) is obtained by the vertex-crosscap switch over v.6 It yields
again a projective HT-drawing.

Lemma 7 Let (D,λ) be a projective HT-drawing of G on S2. Let D′ and λ′ be
obtained from D and λ by a vertex-crosscap switch. Then (D′, λ′) is a projective
HT-drawing of G on S2.

Proof. It is routine to check that crD′(e, f) = λ′(e)λ′(f) for any pair of inde-
pendent edges e and f .

Indeed, let v be the vertex inducing the switch. If neither e nor f is incident
to v, then

crD′(e, f) = crD(e, f) = λ(e)λ(f) = λ′(e)λ′(f).

It remains to consider the case that one of the edges, say e, is incident to v.
Note that λ(e) = 1− λ′(e) and λ(f) = λ′(f) in this case.

If λ(f) = 0, then

crD′(e, f) = crD(e, f) = λ(e)λ(f) = 0 = λ′(e)λ′(f).

Finally, if λ(f) = 1, then

crD′(e, f) = 1− crD(e, f) = 1− λ(e)λ(f) = λ(f)− λ(e)λ(f) = λ′(e)λ′(f).

⊗

We also remark that a vertex-crosscap switch keeps the triviality or nontriv-
iality of cycles. Indeed, let Z be a cycle. If Z avoids v, then λ(Z) = λ′(Z) since
λ(e) = λ(e′) for any edge e of Z. If Z contains v, then λ(Z) = λ′(Z) as well
since λ(e) 6= λ′(e) for exactly two edges of Z.

Planarization. As usual, let (D,λ) be a projective HT-drawing of G on S2.
Now let us consider a subgraph P of G such that every cycle in P is trivial.
Then P essentially behaves as a planar subgraph of G, which we make more
precise by the following lemma.

Lemma 8 Let (D,λ) be a projective HT-drawing of G on S2 and let P be a
subgraph of G such that every cycle in P is trivial. Then there is a set U ⊆ V (P )
with the following property. Let (DU , λU ) be obtained from (D,λ) by the vertex-
crosscap switches over all vertices of U (in any order). Then (DU , λU ) is a
projective HT-drawing of G on S2 and λU (e) = 0 for any edge e of E(P ).

Proof. The drawing (DU , λU ) is a projective HT-drawing by Lemma 7. Let
F be a spanning forest of P , the union of spanning trees of each connected
component of P , rooted arbitrarily. We first make λ(e) = 0 for each edge of F ,

6In the case of drawings on RP 2, a vertex-crosscap switch corresponds to passing the
crosscap over v, which motivates our name. On the other hand, it is beyond our needs to
describe this correspondence exactly.
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as follows: do a breadth-first search on each tree in F ; when an edge e ∈ F
with λ(e) = 1 is encountered, perform a vertex-crosscap switch on the vertex
of e farther from the root of the tree. Let λU be the resulting map, which is
zero on the edges of F . Each edge e in E(P ) \ E(F ) belongs to a cycle Z such
that Z − e ⊆ F . Since λU (Z) = λ(Z) = 0, we have λU (e) = 0 as well. ⊗

3 Separation Theorem

In this section, we state the separation theorem announced in the introduction.
As it was explained in the introduction, a simple cycle Z such that every

edge of Z is even (in a plane drawing) splits the graph into the outside and the
inside. We first introduce a notation for this splitting.

Definition 9 Let G be a graph and D be a drawing of G on S2. Let us assume
that Z is a cycle of G such that every edge of Z is even and it is drawn as a
simple cycle in D. Let S+ and S− be the two components of S2 \D(Z). We call
a vertex v ∈ V (G) \ V (Z) an inside vertex if it belongs to S+ and an outside
vertex otherwise. Given an edge e = uv ∈ E(G)\E(Z), we say that e is an inside
edge if either u is an inside vertex or if u ∈ V (Z) and D(e) points locally to S+

next to D(u). Analogously we define an outside edge.7 We let V + and E+ be
the sets of the inside vertices and the inside edges, respectively. Analogously, we
define V − and E−. We also define the graphs G+0 := (V + ∪V (Z), E+ ∪E(Z))
and G−0 := (V − ∪ V (Z), E− ∪ E(Z)).

Now, we may formulate our main technical tool—the separation theorem for
projective HT-drawings.

Theorem 10 Let (D,λ) be a projective HT-drawing of a 2-connected graph G
on S2 and Z a cycle of G that is simple in D and such that every edge of
Z is even. Moreover, we assume that every edge e of Z is trivial, that is,
λ(e) = 0. Then there is a projective HT-drawing (D′, λ′) of G on S2 satisfying
the following properties.

• The drawings D and D′ coincide on Z;

• the cycle Z is completely free of crossings and all of its edges are trivial
in D′;

• D′(G+0) is contained in S+ ∪D′(Z);

• D′(G−0) is contained in S− ∪D′(Z); and

• either all edges of G+0 or all edges of G−0 are trivial (according to λ′);
that is, at least one of the drawings D′(G+0) or D′(G−0) is an ordinary
HT-drawing on S2.

7It turns out that every edge e ∈ E(G) \ E(Z) is either an outside edge or an inside edge,
because every edge of Z is even.
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Z

Figure 5: An example of a graph with five inside bridges—marked by different
colours. The vertices that belong to several inside bridges are in black.

The assumption that G is 2-connected is not essential for the proof of The-
orem 10, but it will slightly simplify some of the steps. (For our application, it
will be sufficient to prove the 2-connected case.)

In the remainder of this section, we describe the main ingredients of the
proof of Theorem 10 and we also derive this theorem from the ingredients. We
will often encounter the setting when G, (D,λ) and Z satisfy the assumptions
of Theorem 10. Therefore, we say that G, (D,λ) and Z satisfy the separation
assumptions if (1) G is a 2-connected graph; (2) (D,λ) is a projective HT-
drawing of G; (3) Z is a cycle in G drawn as a simple cycle in D; (4) every edge
of Z is even in D and trivial.

Arrow graph. From now on, let us fix G, (D,λ) and Z satisfying the sepa-
ration assumptions. This also fixes the distinction between the outside and the
inside.

Definition 11 A bridge B of G (with respect to Z) is a subgraph of G that
is either an edge not in Z but with both endpoints in Z (and its endpoints also
belong to B), or a connected component of G−V (Z) together with all edges (and
their endpoints in Z) with one endpoint in that component and the other end-
point in Z. (This is a standard definition; see, e.g., Mohar and Thomassen [16,
p. 7].)

We say that B is an inside bridge if it is a subgraph of G+0, and an outside
bridge if it is a subgraph of G−0 (every bridge is thus either an inside bridge or
an outside bridge).

A walk ω in G is a proper walk if no vertex in ω belongs to V (Z), except
possibly its endpoints, and no edge of ω belongs to E(Z). In particular, each
proper walk belongs to a single bridge.

Since we assume that G is 2-connected, every inside bridge contains at least
two vertices of Z. The bridges induce partitions of E(G) \E(Z) and of V (G) \
V (Z). See Fig. 5.

We want to record which pairs of vertices on V (Z) are connected with a
nontrivial and proper walk inside or outside.8

8We recall that nontrivial walks are defined in Sect. 2, a bit below Corollary 5.
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Figure 6: The inside and the outside arrows (right) corresponding to the pro-
jective HT-drawing of K5 (left) derived from its drawing in Fig. 2, left.

For this purpose, we create two new graphs A+ and A−, possibly with loops
but without multiple edges. In order to distinguish these graphs from G, we
draw their edges with double arrows and we call these graphs an inside arrow
graph and an outside arrow graph, respectively. The edges of these graphs are
called the inside/outside arrows. We set V (A+) = V (A−) = V (Z).

Now we describe the arrows, that is, E(A+) and E(A−). Let u and v be
two vertices of V (Z), not necessarily distinct. By W+

uv we denote the set of
all proper nontrivial walks in G+0 with endpoints u and v. We have an inside
arrow connecting u and v in E(A+) if and only if W+

uv is nonempty. In order
to distinguish the edges of G from the arrows, we denote an arrow by uv = vu.
An arrow which is a loop at a vertex v is denoted by vv. (This convention will
allow us to work with arrows uv without a distinction whether u = v or u 6= v.)
Analogously, we define the set W−uv and the outside arrows.

See Fig. 6 for the arrow graph(s) of the projective HT-drawing of K5 corre-
sponding to its drawing on RP 2 depicted in Fig. 2, left.

It follows from the definition of the inside bridges that any walk ω ∈ W+
uv

stays in one inside bridge. Given an inside bridge B, we let W+
uv,B be the set

of all walks ω ∈ W+
uv which belong to B. In particular, W+

uv decomposes into
the disjoint union of the sets W+

uv,B1
, . . . ,W+

uv,Bk
where B1, . . . , Bk are all inside

bridges. Given an inside arrow uv and an inside bridge B, we say that B induces
uv if W+

uv,B is nonempty. (Note that an arrow can be induced by more than one
bridge.) An inside bridge B is nontrivial if it induces at least one arrow. Given
two inside arrows uv and xy we say that uv and xy are induced by different
bridges if there are two different inside bridges B and B′ such that B induces
uv and B′ induces xy. As usual, we define analogous notions for the outside as
well. Note that it may happen that there is an inside bridge inducing both uv
and xy even if uv and xy are induced by different bridges.

Possible configurations of arrows. We plan to utilize the arrow graph in
the following way. On the one hand, we will show that certain configurations
of arrows are not possible; see Fig. 7. On the other hand, we will show that,
since the arrow graph does not contain any of the forbidden configurations,
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(a) (b) (c)

a b

c

a

b

x

y

Figure 7: Forbidden configurations of arrows. The cyclic order in (a) may be
arbitrary whereas it is important in (b) that the arrows there do not interleave.
Different dashing of lines in (b) correspond to arrows induced by different inside
bridges. The arrows of the same colour in (c) are induced by the same bridge.

it must contain one of the configurations in Fig. 8 inside or outside. (These
configurations are precisely defined in Definition 15.) We will also show that
the configurations in Fig. 8 are redrawable, that is, they may be appropriately
redrawn without the crosscap. The precise statement for redrawings is given by
Proposition 17 below.

More concretely, we prove the following three lemmas forbidding the configu-
rations of arrows from Fig. 7. We emphasize that in all three lemmas we assume
that the notions used there correspond to a fixed G, (D,λ) and Z satisfying the
separation assumptions.

Lemma 12 Every inside arrow shares a vertex with every outside arrow.

Lemma 13 Let ab and xy be two arrows induced by different inside bridges
of G+0. If the two arrows do not share an endpoint, their endpoints have to
interleave along Z.

Lemma 14 There are no three vertices a, b, c on Z, an inside bridge B+, and
an outside bridge B− such that B+ induces the arrows ab and ac (and no other
arrows) and B− induces the arrows ab and bc (and no other arrows).

We prove these three lemmas in Sect. 6. By symmetry, Lemmas 13 and 14
are also valid if we swap the inside and the outside (Lemma 12 as well, but here
already the statement of the lemma is symmetric).

Now we describe the redrawable configurations.

Definition 15 We say that G forms

(a) an inside fan if there is a vertex common to all inside arrows. (The arrows
may come from various inside bridges.)

(b) an inside square if it contains four vertices a, b, c and d ordered in this
cyclic order along Z and the inside arrows are precisely ab, bc, cd and ad.
In addition, we require that the inside graph G+0 has only one nontrivial
inside bridge.
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(a) (b)
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(c)

a
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y1 yk

x

y1 yk

y2 y2

Figure 8: Schematic drawings of the redrawable configurations of arrows from
Definition 15. Different dashing of lines correspond to different inside bridges.
The loop in the right drawing (a) is an inside loop (drawn outside due to lack
of space). The drawing (c) is only one instance of an inside split triangle.

(c) an inside split triangle if there exist three vertices a, b, and c such that the
inside arrows of G are ab, ac and bc. In addition, we require that every
nontrivial inside bridge induces either the two arrows ab and ac, or just a
single arrow.

See Fig. 8. We have analogous definitions for an outside fan, outside square
and outside split triangle.

More precisely the notions in Definition 15 depend on G, (D,λ) and Z
satisfying the separation assumptions.

A relatively direct case analysis, using Lemmas 12, 13 and 14, reveals the
following fact.

Proposition 16 Let (D,λ) be a projective HT-drawing on S2 of a graph G and
let Z be a cycle in G satisfying the separation assumptions. Then G forms an
(inside or outside) fan, square, or split triangle.

On the other hand, any configuration from Definition 15 can be redrawn
without using the crosscap:

Proposition 17 Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z
be a cycle satisfying the separation assumptions. Moreover, let us assume that
D(G+0)∩S− = ∅ (that is, G+0 is fully drawn on S+∪D(Z)). Let us also assume
that G+0 forms an inside fan, an inside square or an inside split triangle. Then
there is an ordinary HT-drawing D′ of G+0 on S2 such that D coincides with
D′ on Z and D′(G+0) ∩ S− = ∅.

Proposition 16 is proved in Sect. 5 (assuming there the validity of Lem-
mas 12, 13 and 14). Proposition 17 is proved in Sect. 7.

Now we are missing only one tool to finish the proof of Theorem 10. This
tool is the “redrawing procedure” of Pelsmajer, Schaefer and Štefankovič [19].
More concretely, we need the following variant of Theorem 2. (Note that the
theorem below is not in the setting of projective HT-drawings. However, the
notions used in the statement are still well defined according to Definition 9.)
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Theorem 18 Let D be a drawing of a graph G on the sphere S2. Let Z be a
cycle in G such that every edge of Z is even and Z is drawn as a simple cycle.
Then there is a drawing D′′ of G such that

• D′′ coincides with D on Z;

• D′′(G+0) belongs to S+ ∪D(Z) and D′′(G−0) belongs to S− ∪D(Z);

• whenever (e, f) is a pair of edges such that both e and f are inside edges
or both e and f are outside edges, then crD′′(e, f) = crD(e, f).

It is easy to check that the proof of Theorem 2 in [19] proves Theorem 18
as well. Additionally, we note that an alternative proof of Theorem 2 in [8,
Lemma 3] can also be extended to yield Theorem 18. Nevertheless, for com-
pleteness, we provide its proof in Sect. 8.

Finally, we prove Theorem 10, assuming the validity of the aforementioned
auxiliary results.

Proof of Theorem 10. Let G be the graph, (D,λ) be the drawing and Z be the
cycle from the statement.

We use Theorem 18 with G and D to obtain a drawing D′′ keeping in mind
that all edges of Z are even. See Fig. 9; follow this picture also in the next steps
of the proof. We get that Z is drawn on D′′ as a simple cycle free of crossings.
We also get that D′′(G+0) is contained in S+∪D′′(Z) and D′′(G−0) is contained
in S− ∪D′′(Z). However, there may be no λ′′ such that (D′′, λ′′) is a projective
HT-drawing; we still may need to modify it to obtain such a drawing.

By Proposition 16 applied to (D,λ), G forms one of the redrawable configu-
rations on one of the sides; that is, an inside/outside fan, square or split triangle.
Without loss of generality, it appears inside. It means that D′′ restricted to G+0

satisfies the assumptions of Proposition 17. Therefore, there is an ordinary HT-
drawing D+ of G+0 satisfying the conclusions of Proposition 17. Finally, we let
D′ be the drawing of G on S2 which coincides with D+ on G+0 and with D′′ on
G−0. Both D′′ and D+ coincide with D on Z; therefore, D′ is well defined. We
set λ′ so that λ′(e) := λ(e) for an edge e ∈ E− and λ′(e) := 0 for any other edge.
Now, we can easily verify that (D′, λ′) is the required projective HT-drawing.

Indeed, let e and f be independent edges. If both e and f are inside edges,
then crD′(e, f) = crD+(e, f) = 0 = λ′(e)λ′(f), since D+ is an ordinary HT-
drawing. If both e and f are outside edges, then crD′(e, f) = crD′′(e, f) =
crD(e, f) = λ(e)λ(f) = λ′(e)λ′(f). Finally, if one of this edges is an inside
edge and the other is an outside edge, then crD′(e, f) = 0 = λ′(e)λ′(f), because
D′(e) and D′(f) are separated by D′(Z). ⊗

4 Proof of the Strong Hanani–Tutte Theorem
on RP 2

In this section, we prove Theorem 1 assuming validity of Theorem 10 as well as
few other auxiliary results from the previous section, which will be proved only
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D D′′ D+ D′

Z

Figure 9: Redrawing a projective HT-drawing of K5 analogously to the drawing
in Fig. 2.

in the later sections.
Given a graph G that admits an HT-drawing on the projective plane, we

need to show that G is actually projective-planar. By Corollary 5, we may
assume that G admits a projective HT -drawing (D,λ) on S2. We aim to use
Theorem 10. For this, we need that G is 2-connected and contains a suitable
trivial cycle Z that may be redrawn so that it satisfies the assumptions of
Theorem 10. Therefore, we start with auxiliary claims that will bring us to this
setting. Many of them are similar to auxiliary steps in [19] (sometimes they are
almost identical, adapted to a new setting).

Before we state the next lemma, we recall the well known fact that any graph
admits a (unique) decomposition into blocks of 2-connectivity [5, Ch. 3]. Here,
we also allow the case that G is disconnected. Each block in this decomposition
is either a vertex (this happens only if it is an isolated vertex of G), an edge or
a 2-connected graph with at least three vertices. The intersection of two blocks
is either empty or it contains a single vertex (which is a cut in the graph). The
blocks of the decomposition cover all vertices and edges (a vertex may occur in
several blocks whereas any edge belongs to a unique block).

Lemma 19 If G admits a projective HT-drawing on S2, then at most one block
of 2-connectivity in G is non-planar. Moreover, if all blocks are planar, G is
planar as well.

We note that in [23] it was proved that a minimal counterexample to the
strong Hanani–Tutte theorem on any surface is vertex 2-connected. However,
for the projective plane the same result can be obtained by much simpler means;
therefore, we include its proof here.

Proof. First, for contradiction, let us assume that G contains two distinct non-
planar blocks B1 and B2. If B1 and B2 are disjoint, then Lemma 6 implies
that at least one of these blocks, say B2, does not contain any non-trivial cycle.
However, it means that B2 admits an ordinary HT-drawing on S2 by Lemma 8.
Therefore, B2 is planar by the strong Hanani–Tutte theorem in the plane [2,
25, 19]. This contradicts our original assumption. It remains to consider the
case when B1 and B2 share a vertex v (it must be a cut vertex). Let us set
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H := B1∪B2. Let P be a spanning tree of H with just two edges e1, e2 incident
to v and such that e1 ∈ B1 and e2 ∈ B2. Note that such a tree always exists,
because B1 and B2 are connected after removing v. By Lemma 8 we may assume
that all the edges of P are trivial (after a possible alteration of λ).

Any nontrivial edge e from E(H) \ E(P ) creates a nontrivial cycle in the
corresponding block. If e is not incident to v, then the cycle avoids v by the
choice of P . Using Lemma 6 again, we see that at least one of the blocks, say B2,
satisfies that all its nontrivial edges are incident with v. This already implies
that B2 is a planar graph, because D is an HT -drawing of B2 on S2 (there are
no pairs of nontrivial independent edges in G). This is again a contradiction.

The last item in the statement of this lemma is a well known property of
planar graphs. It is sufficient to observe that a disjoint union of two planar
graphs is a planar graph, and moreover, that if a graph G contains a cut vertex
v and all the components after cutting (and reattaching v) are planar, then G
is planar as well. ⊗

Observation 20 Let (D,λ) be a drawing of a 2-connected graph. If D does not
contain any trivial cycle, then G is planar.

Proof. As G is 2-connected, it is either a cycle or it contains three disjoint
paths sharing their endpoints. A cycle is a planar graph as we need. In the
latter case, two of the paths are both trivial or both nontrivial. Together, they
induce a trivial cycle, therefore this case cannot occur. ⊗

Lemma 21 Let (D,λ) be a projective HT-drawing on S2 of a graph G and let
Z be a cycle in G. Then G can be redrawn only by local changes next to the
vertices of Z to a projective HT-drawing D′ on S2 so that λ remains unchanged
and crD′(e, f) = λ(e)λ(f) for any pair (e, f) ∈ E(Z) × E(G) of distinct (not
necessarily independent) edges. In particular, if λ(e) = 0 for every edge e of Z,
then every edge of Z becomes even in D′.

Proof. Since we have a projective HT-drawing, crD(e, f) = λ(e)λ(f) for every
pair of independent edges. To prove the claim it remains to show that local
changes allow to change the parity of crD(e, f) whenever e is an edge of Z and
e and f share a vertex.

This can be done in two steps. First we use local move c) from Fig. 10 to
obtain the desired parity of crD(e, f), for all pairs of consecutive edges (e, f)
on Z. This move may change the parity of crossings between edges on Z and
dependent edges not on Z.

Next we use local moves a) and b) from Fig. 10 to obtain the desired parity
of crossings between edges on Z and dependent edges not on Z. If v is the
vertex common to h, e and f , where e and f are edges on Z, move a) is used
when we need to change the parity of crD(e, h) and its symmetric version to
change the parity of crD(f, h). Move b) is used when we need to change the
parity for both crD(e, h) and crD(f, h). Since these moves do not change the
parity of crD(e, h′) or crD(f, h′) for any other edge h′, the claim follows. ⊗
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Figure 10: Local changes to make all edges of Z even. The original drawing of
the edge near v is dotted.
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Figure 11: Almost contracting an edge.

Once we know that the edges of a cycle can be made even we also need to
know that such a cycle can be made simple.

Lemma 22 Let (D,λ) be a projective HT-drawing on S2 of a graph G and let
Z be a cycle in G such that each of its edges is even. Then G can be redrawn so
that Z becomes a simple cycle, its edges remain even and the resulting drawing
is still a projective HT-drawing (with λ unchanged).

Proof. First, we want to get a drawing such that there is only one edge of
Z which may be intersected by other edges. Let us consider three consecutive
vertices u, v and w on Z, with v 6∈ {u,w}. We almost-contract uv so that we
move the vertex v (and the edges incident to v) towards u until we remove all
intersections between uv and other edges. Note that the image of the cycle Z
is not changed; we only slide v towards u along Z. This way, uv is now free of
crossings and these crossings appear on vw. See the two leftmost pictures in
Fig. 11. (The right picture will be used in the proof of Theorem 18.)

Since uv as well as vw were even edges in the initial drawing, vw remains even
after the redrawing. Similarly, the parity of the number of crossings between
the edges incident to v and other edges is not affected. If uv and vw intersected,
then this step introduces self-intersections of vw.

After performing such redrawing repeatedly, we get that there is only one
edge of Z which may be intersected by other edges, as required. We remove pos-
sible self-crossings of this edge and the other edges incident with v, as described
in Sect. 2, and we are done. ⊗

Apart from lemmas tailored to set up the separation assumptions, we also
need one more lemma that will be useful in the inductive proof of Theorem 1.

Lemma 23 Let (D,λ) be a projective HT-drawing of G and let Z be a cycle
satisfying the separation assumptions. Let B be an inside bridge such that any
proper path in B with both endpoints on V (B) ∩ V (Z) is nontrivial. Then
|V (B) ∩ V (Z)| = 2 and B induces a single arrow and no loop.



958 Colin de Verdière et al. Hanani–Tutte and the Projective Plane

Proof. First, we show that there is no nontrivial cycle in B. For contradiction,
there is a nontrivial cycle N in B. By the 2-connectivity of G there exist two
vertex disjoint paths p1 and p2 (possibly of length zero) that connect Z to N .
We consider shortest such paths; thus, each of the paths shares only one vertex
with Z and one vertex with N . Let y1 and y2 be the endpoints of p1 and p2
on N , respectively. Let p3, p4 be the two arcs of N between y1 and y2. We
consider two paths q1 and q2 where q1 is obtained from the concatenation of
p1, p3 and p2, while q2 is obtained from the concatenation of p1, p4 and p2.
Since N is non-trivial, one of these paths is trivial, which provides the required
contradiction.

Next, we observe that B does not induce any loop in the inside arrow graph.
For contradiction, it induces a loop at a vertex x of Z. This means that there
is a proper nontrivial walk κ in B with both endpoints x. We set up κ so that
it is the shortest such walk. We already know that κ cannot be a cycle, thus it
contains a closed nonempty subwalk κ′ and we set up κ′ so that it is the shortest
such subwalk. Therefore, it must be a cycle; by the previous part of this proof,
it is trivial. However, it means that κ can be shortened by leaving out κ′, which
is the required contradiction.

Now, we show that |V (B) ∩ V (Z)| = 2. By the 2-connectedness of G, we
have that |V (B)∩V (Z)| ≥ 2. Thus, for contradiction, let a, b, c be three distinct
vertices of V (B)∩V (Z). Let v be one of the inner vertices of B (there must be
such a vertex since B cannot be a single edge in this case). By the definition of
inside/outside bridges, there exist proper walks pa, pb and pc connecting v to
a, b and c, respectively. By the pigeonhole principle, two of the walks have the
same value of λ; without loss of generality, let them be pa and pb. It follows
that the proper walk obtained from the concatenation of pa and pb is trivial.
Since B does not contain any non-trivial cycle, this walk can be shortened to a
trivial proper path between a and b by an analogous argument as in the previous
paragraph. A contradiction.

Finally, we know that there are two vertices in V (B)∩V (Z). Let x and y be
these two vertices. Since any path connecting x and y is nontrivial, B induces
the arrow xy in A+. No other arrow in A+ induced by B is possible since there
are no loops. ⊗

Proposition 24 below is our main tool for deriving Theorem 1 from The-
orem 10. It is set up in such a way that it can be inductively proved from
Theorem 10. Then it implies Theorem 1, using the auxiliary lemmas from the
beginning of this section, relatively easily.

Proposition 24 Let (D,λ) be a projective HT-drawing of a 2-connected graph
G on S2 and Z a cycle in G that is completely free of crossings in D and
such that each of its edges is trivial in D. Assume that (V +, E+) or (V −, E−)
is empty (recall the notation from Definition 9). Then G can be embedded into
RP 2 so that Z bounds a face of the resulting embedding homeomorphic to a disk.
If, in addition, D is an ordinary HT-drawing on S2, then G can be embedded
into S2 so that Z bounds a face of the resulting embedding (this face is again
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Figure 12: Local changes at u. The original drawing of the edge is dotted, Z is
depicted in blue, f (as a part of γ) in red. The changed edge in green.

homeomorphic to a disk—there is in fact no other option on S2).9

Proof. The proof proceeds by induction on the number of edges of G. The
base case is when G is a cycle.

Without loss of generality, we assume that (V −, E−) is empty. That is,
G = G+0. If (V +, E+) is also empty, G consists only of Z and such a graph can
easily be embedded into the plane or projective plane as required. Therefore,
we assume that (V +, E+) is nonempty.

We find a path γ in (V (G+0), E(G+0) \E(Z)) connecting two points x and
y lying on Z. We may choose x, y so that x 6= y since G is 2-connected.

Case 1: There exists a trivial γ. First we solve the case that at least
one such path γ is trivial. We show that all edges of γ can be made even and
simple in the drawing while preserving simplicity of Z, the fact that Z is free
of crossings and the projective Hanani–Tutte condition on the whole drawing of
G+0.

As the first step, we use Lemma 8 in order to achieve that λ(e) = 0 for any
edge e of Z and γ simultaneously. By inspecting the proof of Lemma 8 we see
that we can achieve this by vertex-crosscap switches only over the inner vertices
of γ (for this, we set up the root in the proof to be one of the endpoints of γ).
In particular we can perform these vertex-crosscap switches inside Z without
affecting Z.

Now, we want to make the edges of γ even, again without affecting Z. First,
for any pair (e, f) of adjacent edges of γ which intersect oddly, we locally perform
the move c) from Fig. 10 similarly as in Lemma 21. Next, we consider any edge
e /∈ E(γ) adjacent to a vertex u ∈ V (γ) \ V (Z). For such an edge we perform
one of the moves a) or b) from Fig. 10 so that we achieve that e intersects
evenly each of the two edges of γ incident with u. Finally, we consider any edge
e /∈ E(γ) ∪ E(Z) adjacent to u ∈ {x, y}, one of the endpoints of γ on Z. Let
f be the edge of γ incident with u. If e and f intersect oddly, we perform the
move from Fig. 12. This is possible since Z is free of crossings. This way we
achieve that every edge of γ is even.

As the last step of the redrawing of γ, we want to make γ simple (again
without affecting Z). This can be done in the same way as in Lemma 22. We

9We need to consider the case of ordinary HT-drawings in this proposition for a well
working induction.
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almost-contract all edges of γ but one so that there is only one edge of γ that
intersects with other edges. Then we remove possible self-intersections.

The rest of the argument is easier to explain if we switch inside and outside
(this is easily doable by a homeomorphism of S2) and treat drawings on S2 as
drawings in the plane.

We may assume that after the homeomorphism Z is drawn in the plane as
a circle with the inner region empty and with x and y antipodal. The vertices
x and y split Z into two paths; we denote by p1 the ‘upper’ one and by p2 the
‘lower’ one. We may also assume that γ is ‘above’ p1 by adapting the initial
choice of the correspondence between S2 and the plane if necessary.

Now we continuously deform the plane so that Z becomes flatter and flatter
until it coincides with the line segment connecting x to y, as depicted in Fig. 13
a). We may further require that no inner vertex of p1 was identified with any
inner vertex of p2.

p1

p2

x
y

x

yp

Z̄

γ

a) b) c)

d) e)

G Ḡ

Ḡ+0

Ḡ−0

Z

Figure 13: The deformation of the plane that changes G into Ḡ, the redrawing
of Ḡ and the resulting embeddings of Ḡ and G.

This way, we get a projective HT-drawing (D̄, λ̄) of a new graph Ḡ: all the
vertices of G remain present in Ḡ, that is, V (G) = V (Ḡ). Also the edges of
G which are not on Z are present in Ḡ. Only some of the edges of Z may
disappear and they are replaced with edges forming a path p between x and
y. Note that we did not introduce any multiple edges, because there is no edge
in G connecting an inner vertex of p1 with an inner vertex of p2 (such an edge
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would have to cross γ oddly). It also turns out that Ḡ has one edge less than
G. Regarding λ̄, we have λ(e) = λ̄(e) if e is an edge of E(G) \ E(Z) and we
have λ̄(e) = 0 if e belongs to p.

Now consider the cycle Z̄ in Ḡ formed by γ and p. It is trivial and simple. In
particular, we distinguish the inside and the outside according to Definition 9.
For example, Ḡ+0 corresponds to the part of G in between γ and p1 before the
flattening; see Fig. 13 a) and b).

Now, we apply Theorem 10 and we get a drawing D′ of Ḡ. When we look
at the two sides of Ḡ separately, we get that the drawing of one of the sides,
say the drawing of Ḡ+0, is a projective HT-drawing, while there is an ordinary
HT-drawing on S2 on the other side. If, in addition, D were already an ordinary
HT-drawing, we get an ordinary HT-drawing on both sides by Theorem 18.

Note also that since G was 2-connected, both parts of Ḡ are 2-connected
as well. Subsequently, we examine each of these two parts separately and use
the inductive hypothesis; we obtain an embedding of Ḡ+0 into RP 2 such that
Z̄ bounds a face homeomorphic to a disk as well as an embedding of Ḡ−0 into
S2 such that Z̄ bounds a face homeomorphic to a disk. If, in addition, D were
already an ordinary HT-drawing, we get also the required embedding of Ḡ+0

into S2. We merge these two embeddings along Z̄ obtaining an embedding of
Ḡ into RP 2 (or S2 if D were an ordinary HT-drawing). See Fig. 13 c) and d).

Finally, we need to undo the identification of p1 and p2 into p. Whenever
we consider a vertex v on p different from x and y, it is uniquely determined
whether it comes from p1 or p2. In addition, if v comes from p1, then any
edge e ∈ E(G) \ E(Z) incident with v must belong to Ḡ+0. Similarly, if v
comes from p1, then any edge e ∈ E(G) \ E(Z) incident with v must belong to
Ḡ−0. Therefore, it is possible to undo the identification and we get the required
embedding of G. See Fig. 13 e).

Case 2: All choices of γ are nontrivial. Now we deal with the situation
when all possible choices of γ are nontrivial. We will first analyse which situ-
ations allow such configuration. Later we will show how to draw each of these
situations.

Let us consider the inside arrow graph A+. Since all choices of γ are non-
trivial, Lemma 23 shows that every inside bridge induces a single inside arrow.
This allows us to redraw inside bridges separately as is provided by the following
claim.

Claim 24.1 For any inside bridge B there exists a planar drawing of Z ∪B in
which Z is the outer face.

Proof. Since we know that B induces only a single arrow, we get that Z ∪ B
forms an inside fan, according to Definition 15. It follows from Proposition 17
that Z ∪ B admits an ordinary HT-drawing such that Z is an outer cycle.
However, the setting of ordinary HT-drawings is already fully resolved in Case 1.
That is, we may already use Proposition 24 for this drawing and we get the
required conclusion. ⊗
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We consider the graph A+0 obtained from A+ by adding the edges of Z to
it, where A+ is the inside arrow graph. (Note that V (A+) = V (Z) according to
our definition of the arrow graph.)

Our main aim will be to find an embedding of A+0 to RP 2 such that Z
bounds a face. As soon as we reach this task, then we can replace an embed-
ding of each arrow by the embedding of inside bridges inducing this arrow via
Claim 24.1 in a close neighbourhood of the arrow. If there are, possibly, more
inside bridges inducing the arrow, then they are embedded in parallel.

Finally, we show that it is possible to embed A+0 in the required way. By
Lemma 13, any two disjoint arrows interleave.

Let us consider two concentric closed disks E1 and E2 such that E1 belongs
to the interior of E2. Let us draw Z on the boundary of E1. Let a be the
number of arrows of A+ and let us consider 2a points on the boundary of E1

making the vertices of regular 2a-gon. These points will be marked by ordered
pairs (x, y) where xy is an inside arrow. We mark the points so that the cyclic
order of the points respect the cyclic order as on Z in the first coordinate (in
particular pairs with the same first coordinate are consecutive). However, for a
fixed x, the pairs (x, y1), . . . (x, yk) corresponding to all arrows emanating from
x are ordered in the reverted order when compared with the order of y1, . . . , yk
on Z. See Fig. 14.

We show that it follows that the points marked (x, y) and (y, x) are directly
opposite on E1 for every inside arrow xy. For contradiction, let us assume that
(x, y) and (y, x) are not directly opposite for some xy. Then there is another
arrow uv such that (x, y) and (y, x) do not interleave with (u, v) and (v, u).
Indeed, such an arrow must exist because the arrows induce a matching on the
points, and (x, y) and (y, x) do not split the points equally. However, if xy and
uv do not share an endpoint, we get a contradiction with the fact that disjoint
arrows interleave. If xy and uv share an endpoint, we get a contradiction that
we have reverted the order on the second coordinate.

Now, we get the required drawing in the following way. For any arrow xy we
connect x with the point (x, y) and y with (y, x). We can do all the connections
simultaneously for all arrows without introducing any crossing since we have
respected the cyclic order on the first coordinate. We remove the interior of
E1 and we identify the pairs of opposite points on the boundary. This way we
introduce a crosscap. Finally, we glue another disk along its boundary to Z and
we get the required drawing on RP 2. ⊗

Finally, we prove Theorem 1.

Proof of Theorem 1. We prove the result by induction in the number of vertices
of G. We can trivially assume that G has at least three vertices.

If G has at least two blocks of 2-connectivity, G can be written as G1 ∪G2,
where G1∩G2 is a minimal cut of G and, therefore, has at most one vertex. By
Lemma 19 we may assume that G1 is planar and G2 non-planar. By induction,
there exists an embedding D2 of G2 into RP 2. So G1 is planar, G2 is embeddable
into RP 2 and G1 ∩G2 has at most one vertex. From these two embeddings, we
easily derive an embedding of G = G1 ∪G2 in RP 2.
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Figure 14: Redrawing the case where every inside bridge induces a single arrow.

We are left with the case when G is 2-connected. By Observation 20, we may
assume that there is at least one trivial cycle Z in (D,λ). We can also make
each of its edges trivial by Lemma 8 and even by Lemma 21. Then we make
Z, in addition, simple using Lemma 22. Hence G, Z and the current projective
HT-drawing satisfy the separation assumptions.

Then we use Z to redraw G as follows. At first, we apply Theorem 10 to
get a projective HT-drawing (D′, λ′) that separates G+0 and G−0. We define
D+ := D′(G+0) and D− := D′(G−0)—without loss of generality, D− is an
ordinary HT-drawing on S2, while D+ is a projective HT-drawing on S2.

Finally, we apply Proposition 24 above to D+ and D− separately. Thus, we
get embeddings of G+0 and G−0—one of them in S2, the other one in RP 2. In
addition, Z bounds a face in both of them; hence, we can easily glue them to
get an embedding of the whole graph G into RP 2. ⊗

5 Labellings of Inside/Outside Bridges and the
Proof of Proposition 16

In this section, given an inside (or outside) bridge B, we first describe what
are possible combinations of arrows induced by B. Then we use the obtained
findings for a proof of Proposition 16, assuming validity of Lemmas 12, 13 and 14
which will be proved in Sect. 6.

Labelling the vertices of the inside/outside bridges. We start with the
first step. As usual, we only describe the ‘inside’ case; the ‘outside’ case will be
analogous. We introduce certain labellings of V (B) ∩ V (Z) which will help us
to determine arrows.

Definition 25 (Labelling of V (B) ∩ V (Z)) A valid labelling L = LB for B
is a mapping L : V (B) ∩ V (Z) → {{0}, {1}, {0, 1}} obtained in the following
way.



964 Colin de Verdière et al. Hanani–Tutte and the Projective Plane

If V (B)\V (Z) 6= ∅ we pick a reference vertex vB ∈ V (B)\V (Z) for L. Then
we fix a labelling parameter αB ∈ Z2 for L. Finally, for any u ∈ V (B) ∩ V (Z)
and for any proper walk ω with endpoints u and vB, the vertex u receives the
label αB + λ(ω) ∈ Z2. Note that u may receive two labels after considering all
such walks. On the other hand, each vertex of V (B)∩V (Z) obtains at least one
label, which follows from the definition of bridges (Definition 11).

If V (B) ⊆ V (Z), then B comprises only of one edge e = uv connecting
two vertices of V (Z). In such case, there are two valid labellings for B. We set
L(u) = {αB} and L(v) = {λ(e)+αB} for a chosen labelling parameter αB ∈ Z2.

If the bridge B is understood from the context we may write just v instead of
vB for the reference vertex and α instead of αB for the labelling parameter. By
alternating the choice of α in the definition we may swap all labels. This means
that there are always at least two valid labellings for a given inside bridge.
On the other hand, a different choice of the reference vertex either does not
influence the resulting labelling, or has the same effect as swapping the value of
the labelling parameter α. In other words, there are always exactly two valid
labellings of the given inside/outside bridge B corresponding to two possible
choices of the labelling parameter α, as is explained below.

To see this, consider a vertex u ∈ V (B) \ V (Z) different from v = vB . By
Definition 11, there is a proper uv-walk γ in B not using any vertex of Z. Now,
for any x ∈ V (B)∩V (Z) and for any proper xv-walk ωxv in B, the concatenation
of the walks ωxv and γ is a proper xu-walk in B of type λ(ωxv) + λ(γ). Also,
for any proper xu-walk ωxu in B, the concatenation of the walks ωxu and γ
is a proper xv-walk in B of type λ(ωxu) + λ(γ). As a result, choosing u as
the reference vertex with α+ λ(γ) as the labelling parameter leads to the same
labelling as the choice of v as the reference vertex with the labelling parameter
α.

The idea presented above can be used to establish the following simple ob-
servation, which we later use several times in the proofs.

Observation 26 Let B be an inside or an outside bridge containing at least
one inside/outside vertex. Moreover, let L be a valid labelling for B and v the
reference vertex for L. Let x, y ∈ V (B) and let ω be a proper xy-walk in B.
Then there is a proper xy-walk ω′ in B containing the reference vertex v such
that λ(ω) = λ(ω′).

Proof. If ω contains inside/outside vertices, we choose one of them and denote
it by u. In a degenerate case, when ω does not contain any such vertex, then
x ∈ V (Z) and x = y, since B cannot consist of just one edge. That is, ω is a
walk with the single vertex x and no edge. In this case we choose u = x.

Now we find a proper uv-walk γ in B and use it as a detour. More precisely,
ω′ starts at x and follows ω to the first occurrence of u in ω. Then it goes
to v and back along γ. Finally, it continues to y along ω. It is clear that
λ(ω) = λ(ω′). By the choice of u, the walk ω′ is also proper. ⊗
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Now, whenever u and w are two vertices from V (B)∩V (Z), there is an arrow
uw arising from B if and only if the vertices u and w were assigned different
labels by LB—this is proved in Proposition 27 below.

Proposition 27 Let B be an inside bridge and L be a valid labelling for B. Let
x, y ∈ V (B)∩ V (Z) (possibly x = y). Then the inside arrow graph A+ contains
an arrow xy arising from B if and only if L(x) ∪ L(y) = {0, 1}.

Proof. It is straightforward to check the claim if B is just an edge e. Indeed,
if x 6= y, then e = xy, and it defines the arrow xy arising from B if and only if
λ(e) = 1, which in turn happens if and only if L(x) ∪ L(y) = {0, 1} according
to Definition 25. If x = y, then xx is not induced by B and |L(x) ∪ L(x)| = 1.

If V (B) \ V (Z) 6= ∅, let v = vB be the reference vertex for L. First, let us
assume that L(x) ∪ L(y) = {0, 1}. Let us consider a proper xv-walk ωxv and
a proper vy-walk ωvy in B such that λ(ωxv) 6= λ(ωvy). Such walks exist by
Definition 25, since L(x) ∪ L(y) = {0, 1}. Then the concatenation of these two
walks is a nontrivial walk which belongs to W+

xy,B ; therefore, xy is induced by
B.

On the other hand, let us assume that there is a nontrivial walk ω in W+
xy,B

defining the arrow xy. We can assume that ω is not just an edge, because it
would mean that B consists only of that edge. By Observation 26, we may
assume that ω contains the reference vertex v. This vertex splits ω into two
proper walks ω1 and ω2 so that each of them has at least one edge. Since
λ(ω) = 1, we have λ(ω1) 6= λ(ω2). Consequently, L(x) ∪ L(y) = {0, 1}. ⊗

The argument from the last two paragraphs of the proof above can also be
used to establish the following lemma.

Lemma 28 Let B be an inside or an outside bridge, let L be a valid labelling
for B, and let x, y ∈ V (B)∩V (Z) be two distinct vertices. Moreover, we assume
that |L(x)| = |L(y)| = 1. Then for any proper xy-walks ω1, ω2 in B we have
λ(ω1) = λ(ω2).

Proof. If B contains just the edge xy, the observation is trivially true. There-
fore, we assume that there is the inside/outside reference vertex v ∈ V (B) for L.
By the assumption, every two proper xv-walks in B have the same λ-value. The
same holds also for proper vy-walks in B. By Observation 26, we can assume
that both ω1 and ω2 contain v. Then the lemma follows. ⊗

We will also need the following description of inside arrows induced by an
inside bridge which does not induce any loop.

Lemma 29 Let B be an inside bridge which does not induce any loop. Then
the inside arrows induced by B form a complete bipartite graph. (One of the
parts is empty if B does not induce any arrow.)
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Proof. Let us consider a valid labelling L for B. By Proposition 27, |L(x)| = 1
for any x ∈ V (B)∩V (Z), since B does not induce any loop. By Proposition 27
again, the inside arrows induced by B form a complete bipartite graph, in which
one part corresponds to the vertices labelled 0 and the second part corresponds
to the vertices labelled 1. ⊗

We conclude this section a by a proof of Proposition 16.

Proof of Proposition 16. We need to distinguish few cases.
First, we consider the case when we have two disjoint inside arrows, but at

least one of them is a loop. In this case, it is easy to see that Lemma 12 implies
that G forms the outside fan and we are done.

Second, let us consider the case that we have two disjoint inside arrows ab
and cd which are not loops. Lemma 12 implies that the only possible outside
arrows are ac, ad, bc, bd. (In particular, there are no loops outside.) If there are
not two disjoint arrows outside, then G forms an outside fan and we are done.
Therefore, we may assume that there are two disjoint arrows outside, without
loss of generality, ac and bd (otherwise we swap a and b). By swapping outside
and inside in the previous argument, we get that only further possible arrows
inside are ad and bc.

Now we distinguish a subcase when there is an inside bridge inducing the
inside arrows ab and cd. In this case, ad and bc must be inside arrows as well
by Lemma 29. By Lemma 12, we know that ac and bd are the only outside
arrows (in particular they are induced by different outside bridges by a variant
of Lemma 29 for outside) and we get that they must alternate by Lemma 13.
That is, up to relabelling of the vertices, we get the right cyclic order for an
inside square. In order to check that G indeed forms an inside square, it remains
to verify that G has only one nontrivial inside bridge. The inside arrows are ab,
bc, cd and ad. If any of these arrows, for example ab, is induced by two bridges,
then we get a contradiction with Lemma 13, in this case on arrows ab and cd.

By swapping inside and outside we solve the subcase when there is an outside
bridge inducing the outside arrows ac and bd; we get that G forms an outside
square.

It remains to consider the subcase when ab and cd arise from different inside
bridges and ac and bd arise from different outside bridges. However, Lemma 13
applied to the inside and then to the outside reveals that these two events cannot
happen simultaneously.

Consequently, we have proved Proposition 16 in case there are two disjoint
inside arrows. Analogously, we resolve the case when we have two disjoint arrows
outside.

Finally, we consider the case when every pair of inside arrows shares a vertex
and every pair of outside arrows shares a vertex. If there is a vertex v common
to all the inside arrows, then we get an inside fan and we are done.

It remains to consider the last subcase when there is no vertex common to
all inside arrows while every pair of inside arrows shares a vertex. This leaves
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the only option that there are three distinct vertices a, b and c on Z and all
three inside arrows ab, ac and bc are present. Then, the only possible outside
arrows are ab, ac and bc as well due to Lemma 12. In addition, all three outside
arrows ab, ac and bc must be present, otherwise we have an outside fan and we
are done.

In the present case, an inside bridge can induce at most two arrows by
Lemma 29. Let us consider the three pairs of arrows {ab, ac}, {ab, bc}, and
{ac, bc}. If at most one of these pairs is induced by an inside bridge, then G
forms an inside split triangle and we are done. Analogously, we are done, if at
most one of these pairs is induced by an outside bridge. Therefore, it remains
to consider the case that at least two such pairs are induced by inside bridges
and at least two such pairs are induced by outside bridges. However, this yields
a contradiction to Lemma 14. ⊗

6 Forbidden Configurations of Arrows

In this section we show that certain combinations of arrows are not possible.
That is, we prove Lemmas 12, 13 and 14. As before, we have a fixed graph G,
its drawing (D,λ) on S2 and a cycle Z in G. Again, we assume that G, (D,λ)
and Z satisfy the separation assumptions.

Homology and intersection forms. We start with a brief explanation of
intersection forms that will help us to prove the required lemmas.

We assume that the reader is familiar with basics of homology theory, oth-
erwise we refer to the introductory books by Hatcher [10] or Munkres [17]. We
always work with homology over Z2 and, unless stated otherwise, we work with
singular homology. Let S be a surface. We will mainly work with the first
homology group and we denote by B1(S), Z1(S) and H1(S) := Z1(S)/B1(S)
the group of 1-boundaries, of 1-cycles and the first homology group, respectively.
Given a 1-cycle z ∈ Z1(S), if there is no risk of confusion, we also consider it
as an element of H1(S), although, formally speaking, we should consider its ho-
mology class [z]. Similarly, if there is no risk of confusion, we do not distinguish
a 1-cycle and its support. Namely, by an intersection of two 1-cycles we actually
mean an intersection of their images. We use the same convention for crossings,
that is, transversal intersections.

Let S be a surface. The intersection form on S is a unique bilinear map
ΩS : H1(S)×H1(S)→ Z2 with the following property. Whenever z1, z2 ∈ Z1(S)
are two 1-cycles intersecting in finite number of points and crossing in every such
point (i. e., intersecting transversally), then ΩS(z1, z2) is the number of crossings
of z1 and z2 modulo 2; we refer to [6, Sect. 8.4] for the existence of ΩS . In
particular, ΩS2 is the trivial map since H1(S2) is trivial. On the other hand,
ΩRP 2 is already nontrivial:

Lemma 30 (Intersection form on RP 2) Let z1 and z2 be two homologically
nontrivial 1-cycles in RP 2. Then ΩRP 2(z1, z2) = 1. In particular, if z1 and z2
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have a finite number of intersections and they cross at every intersection, then
they have to cross an odd number of times.

Proof. Since the intersection form ΩRP 2 depends only on the homology class,
and since H1(RP 2) = Z2, it is sufficient to exhibit any two nontrivial 1-cycles
that intersect an odd number of times on RP 2. This is an easy task. ⊗

From sphere to the projective plane. Although it is overall simpler to do
the proof of Theorem 1 in the setting of projective HT-drawings on S2, it is
easier to prove Lemmas 12, 13 and 14 in the setting of HT-drawings on RP 2. A
small drawback is that we need to check that splitting of S2 to the inside and
outside part works analogously on RP 2 as well.

Lemma 31 Let (D,λ) be a projective HT-drawing of a graph G on S2 and let
Z be a cycle satisfying the separation assumptions. Let D⊗ be the HT-drawing
of G on RP 2 coming from the proof of Lemma 4. Then D⊗(Z) is a simple
cycle such that each of its edges is even, which separates RP 2 into two parts,
(RP 2)+ and (RP 2)−. In addition, every inside edge (with respect to D) which
is incident to a vertex of Z points locally into (RP 2)+ in D⊗ as well as every
outside edge (with respect to D) which is incident to a vertex of Z points locally
into (RP 2)−.

Proof. By statement of Lemma 4 we already know that D⊗(Z) is a simple
cycle and that each of its edges is even. For the rest, we need to inspect the
construction of D⊗ in the proof of Lemma 4. However, we get all the required
conclusions directly from this construction. ⊗

Drawings of walks. We also need to set up a convention regarding drawings
of walks in a graph G. Let D be a drawing of a graph G on a surface S. Let ω
be a walk in G. Then D induces a continuous map D(ω) : [0, 1]→ S; it is given
by the concatenation of drawings of edges of ω. Here we also allow that ω is a
walk of length 0 consisting of a single vertex v. Then D(ω) is a constant map
whose image is D(v). If ω is a closed walk, then we may regard it as an element
of H1(S).

Proofs of the lemmas. Now we have introduced enough tools to prove the
required lemmas. In all three proofs, D⊗ stands for the HT-drawing on RP 2

from Lemma 31. First, we prove Lemma 13 which has a very simple proof.
In fact, we prove slightly stronger statement which we plan to reuse later on.
Lemma 13 follows directly from Lemma 32 below.

Lemma 32 Let a, b, x and y be four distinct vertices of Z such that x and y
are on the same arc of Z when split by a and b. Then any two walks ω+

ab ∈W
+
ab

and ω+
xy ∈W+

xy must share a vertex.
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Figure 15: Walks in Lemma 32.

Proof. For contradiction, ω+
ab ∈ W+

ab and ω+
xy ∈ W+

xy do not share a vertex.

We consider a closed walk κ+ab arising from a concatenation of the walk ω+
ab

and the arc of Z connecting a and b not containing x, y. We also consider
the closed walk κ+xy obtained analogously. See Fig. 15. The homological 1-

cycles corresponding to D⊗(κ+ab) and D⊗(κ+xy) are both non-trivial; therefore,

by Lemma 30, D⊗(κ+ab) and D⊗(κ+xy) must have an odd number of crossings.

(Note that, for example, D⊗(κ+ab) may have self-intersections or self-touchings,
but there is a finite number of intersections betweenD⊗(κ+ab) andD⊗(κ+xy) which

are necessarily crossings.) However, as ω+
ab ∈W

+
ab and ω+

xy ∈W+
xy do not have a

vertex in common, it follows that D⊗(κ+ab) and D⊗(κ+xy) have an even number
of crossings, because D⊗ is an HT-drawing by Lemma 4. A contradiction. ⊗

We have proved Lemma 13 and we continue with the proofs of the next two
lemmas.

Proof of Lemma 12. To the contrary, we assume that we have an inside arrow
xy and an outside arrow uv which do not share any endpoint. However, we
allow x = y or u = v, that is, we allow loops. As before, we consider a closed
walk κ+xy obtained from the concatenation of a walk from ω+

xy ∈ W+
xy and any

of the two arcs of Z connecting x and y. If x = y, then we do not add the arc
from Z. Analogously, we have a closed walk κ−uv coming from a walk in W−uv
and an arc of Z connecting u and v. Both of these walks are nontrivial and we
aim to get a contradiction with Lemma 30.

Unlike the previous proof, this time D⊗(κ+xy) and D⊗(κ−uv) may not cross
at every intersection. Namely, κ+xy and κ−uv may share some subpath of Z, but
apart from this subpath the intersections are crossings. We slightly modify these
drawings in the following way. Let us recall thatD⊗(Z) splits RP 2 into two parts
(RP 2)+ and (RP 2)− according to Lemma 31. We slightly push into (RP 2)+ the
subpath of κ+xy shared with Z (possibly consisting of a single vertex). This way,

we obtain a drawing D+
⊗ of κ+xy. Similarly, we slightly push the subpath of κ−uv

shared with Z into (RP 2)−, obtaining a drawing D−⊗ of κ−uv. See Fig. 16. Now,
D+
⊗(κ+xy) and D−⊗(κ−uv) cross at every intersection and the crossings of D+

⊗(κ+xy)

and D−⊗(κ−uv) correspond to the crossings of D⊗(κ+xy) and D⊗(κ−uv).
We now consider the crossings of D⊗(κ+xy) and D⊗(κ−uv). Whenever e is
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Figure 16: Walks in Lemma 12.

an edge of κ+xy and f is an edge of κ−uv such that e and f are independent,
then D⊗(e) and D⊗(f) have an even number of crossings, because D⊗ is an
HT-drawing. However, if e and f are adjacent, then they still cross evenly since
one of these edges must belong to Z. Here we crucially use that xy and uv
do not share any endpoint. Therefore, D⊗(κ+xy) and D⊗(κ−uv) have an even

number of crossings, and consequently, D+
⊗(κ+xy) and D−⊗(κ−uv) as well. This is

a contradiction to Lemma 30. ⊗

Proof of Lemma 14. For contradiction, there is such a configuration.
Let e+a be any edge of E(B+) incident to a. Analogously, we define edges

e−a , e+b , e−b , e+c and e−c . We observe that there is a walk ω+
ab ∈ W

+
ab which uses

the edges e+a and e+b . Indeed, it is sufficient to consider an arbitrary proper walk
using e+a and e+b in B+. This walk is nontrivial by Lemma 28. (The assumptions
of the lemma are satisfied by Proposition 27 since B+ does not induce any inside
loops.) We also let κ+ab be the closed walk obtained from the concatenation of
ω+
ab and the arc of Z connecting a and b and avoiding c. Analogously, we define
ω+
ac, ω

−
ab, ω

−
bc and closed walks κ+ac, κ

−
ab and κ−bc. When defining the closed walks,

we always use the arc of Z which avoids the third point among a, b and c. All
these eight walks are nontrivial.

Now, we aim to show that e+a and e−a cross oddly in the drawing D⊗. We
consider the closed walks κ−ab and κ+ac and their drawings D⊗(κ−ab) and D⊗(κ+ac).
The walks κ−ab and κ+ac share only the point a; therefore, D⊗(κ−ab) and D⊗(κ+ac)
cross at every intersection possibly except D⊗(a). By Lemma 31 we know that
e+a and e−a point to different sides of Z (in D⊗); thus, D⊗(κ−ab) and D⊗(κ+ac)
actually touch in D⊗(a). This touching can be removed by a slight perturbation
of these cycles, analogously as in the proof of Lemma 12, without affecting other
intersections. By Lemma 30 we therefore get that D⊗(κ−ab) and D⊗(κ+ac) have an
odd number of crossings. However, if we consider any pair of edges (e, f) where
e is an edge of κ−ab and f is an edge of κ+ac different from (e−a , e

+
a ), we get that e

and f cross an even number of times. Indeed, if we have such (e, f) 6= (e−a , e
+
a ),

then either e or f belongs to Z, or they are independent. Consequently, the odd
number of crossings of D⊗(κ−ab) and D⊗(κ+ac) has to be realized on e+a and e−a .

Analogously, we show that e+b and e−b must cross oddly by considering the
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walks κ+ab and κ−bc.
Now let us consider the closed walk κ+ab and a closed walk µ−ab obtained from

the concatenation of ω−ab and the arc of Z connecting a and b which contains
c. By analogous ideas as before, we get that D⊗(κ+ab) and D⊗(µ−ab) touch in
D⊗(a) and D⊗(b); if they intersect anywhere else, they cross there. Using a
small perturbation as before, they must have an odd number of crossings by
Lemma 30. On the other hand, the pairs of edges (e+a , e

−
a ) and (e+b , e

−
b ) cross

oddly, as we have already observed. Any other pair (e, f) of edges where e
is an edge of κ+ab and f is an edge of µ−ab must cross evenly since they are
either independent or one of them belongs to Z. This means that D⊗(κ+ab) and
D⊗(µ−ab) intersect evenly, which is a contradiction. ⊗

Intersection of trivial interleaving walks. We conclude this section by a
proof of a lemma similar in spirit to Lemma 32. We will need this Lemma in
Sect. 7, but we keep the lemma here due to its similarity to previous statements.

Lemma 33 Let a, b, x and y be four distinct vertices of Z such that x and y
are on different arcs of Z when split by a and b. Let ω+

ab and ω+
xy be a proper ab-

walk and a proper xy-walk in G+0, respectively, such that λ(ω+
ab) = λ(ω+

xy) = 0.

Then ω+
ab and ω+

xy must share a vertex.

Proof. We proceed by contradiction. As usual, we consider closed walks κ+ab
and κ+xy defined as follows. The walks κ+ab consists of ω+

ab and an arc of Z
connecting a and b, while the walk κ+xy is formed by ω+

xy and an arc of Z

connecting x and y. This time, ω+
ab and ω+

xy are trivial.

We push D⊗(κ+ab) a bit inside and D⊗(κ+xy) a bit outside of Z, similarly as
in the proof of Lemma 12. This time, however, we introduce one more crossing,
because both κ+ab and κ+xy are walks in G+0. Since the intersection form of

trivial cycles corresponding to the drawings of κ+ab and κ+xy is trivial, we get
that these drawings have to cross an even number of times. This in turn means
that the drawings of ω+

ab and ω+
xy cross an odd number of times. Since D⊗ is an

HT-drawing, this yields a contradiction to the assumption that ω+
ab and ω+

xy do
not share a vertex. ⊗

7 Redrawings

We will prove Proposition 17 in this section separately for each case. That is,
we show that if G+0 forms any of the configurations depicted in Fig. 8, then
G+0 admits an ordinary HT-drawing on S2. However, we start with a general
redrawing result that we will use in all cases.

Lemma 34 Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z a cycle
satisfying the separation assumptions. Let us also assume that that D(G+0) ∩
S− = ∅. Let B be one of the inside bridges different from an edge and let
L be a valid labelling of B. Let us assume that there is at least one vertex
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x ∈ V (B) ∩ V (Z) such that |L(x)| = 1. Then there is a projective HT-drawing
(D′, λ′) of G+0 on S2 such that

(a) D coincides with D′ on Z and D′(G+0) ∩ S− = ∅;

(b) every edge e ∈ E(G+0) \ E(B) satisfies λ(e) = λ′(e);

(c) every edge e ∈ E(B) that is not incident to Z satisfies λ′(e) = 0; and

(d) for every edge uv = e ∈ E(B) such that u ∈ V (Z), we have λ′(e) ∈ L(u).

Note that the condition (b) allows that the edges in inside bridges other
than B may be redrawn, but only under the condition, that their trivial-
ity/nontriviality is not affected.

Proof. Let B+ be the subgraph of B induced by the vertices of V (B) \ V (Z).
By the definition of the inside bridge, the graph B+ is connected; it is also
nonempty since we assume that B is not an edge.

Every cycle of the graph B+ must be trivial. Indeed, if B+ contained a
nontrivial cycle, then this cycle could be used to obtain a nontrivial proper walk
from x to x. This would contradict the fact that |L(x)| = 1 via Proposition 27.
That is, B+ satisfies the assumptions of Lemma 8. Let U ⊆ V (B+) be the set
of vertices obtained from Lemma 8. That is, if we perform the vertex-crosscap
switches on U , we obtain a projective HT-drawing (DU , λU ) such that λU (e) = 0
for any edge e ∈ E(B+).

Let us recall that every vertex-crosscap switch over a vertex y is obtained
from vertex-edge switches of nontrivial edges over y and then from swapping
the value of λ on all edges incident to y. The vertex-edge switches do not affect
the value of λ. Overall, we get that DU coincides with D on Z. We also require
that all vertex-edge switches are performed in S+; therefore, DU does not reach
S−. Altogether, DU and λU satisfy (a), (b) and (c), but we do not know yet
whether (d) is satisfied.

In fact, (d) may not be satisfied and we still may need to modify DU and
λU . Let e0 be any edge incident with x. If L(x) = {λU (e0)}, we set D′ := DU

and λ′ := λU . If L(x) 6= {λU (e0)}, we further perform vertex-crosscap switches
over all vertices in V (B+), obtaining D′ and λ′. We want to check (a) to (d)
for D′ and λ′.

It is sufficient to check (a), (b) and (c) only in the latter case. Regarding
(a), we again change the drawing only by vertex-edge switches over edges e
with λU (e) = 1 inside S+. Validity of (b) is obvious from the fact that λU
may be changed only on edges incident with V (B+). Regarding (c), for any
edge e ∈ E(B+) we perform the vertex-crosscap switch for both endpoints of e.
Therefore, λ′(e) = λU (e) = 0. It remains to check (d).

First, we realize that we have set up D′ and λ′ in such a way that L(x) =
{λ′(e0)}. Indeed, if L(x) 6= {λU (e0)}, then we have made a vertex-crosscap
switch over exactly one endpoint of e0. In particular, we have just checked (d)
if e = e0.
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Now, let e = uv 6= e0 be an edge from (d). We need to check that λ′(e) ⊆
L(u). If L(u) = {0, 1}, then we are done; therefore, we may assume that
|L(u)| = 1. Let ω be any proper xu-walk in B containing e0 and e. Such a
walk exists from the definition of an inside bridge (see Definition 11). We have
λ(ω) = λ′(ω) because the vertex-crosscap switches over the inner vertices of ω
do not affect the triviality of ω. But we also have λ′(ω) = λ′(e0)+λ′(e) because
λ′(f) = 0 for any edge f ∈ E(B+). Since L(x) = {λ′(e0)} and |L(u)| = 1, it
follows that L(u) = {λ′(e)} by Proposition 27 and Lemma 28 applied to x and
u. ⊗

Inside fan. Now we may prove Proposition 17 for inside fans, which is the
simplest case.

Proof of Proposition 17 for inside fans. We assume that G+0 forms an inside
fan; see Fig. 8. Let x ∈ V (Z) be the endpoint common to all inside arrows. Let
us consider any inside bridge B, possibly trivial. Let L = LB be a valid labelling
of B. It follows from Proposition 27 that |L(u)| = 1 for any u ∈ V (B) ∩ V (Z)
different from x. (Actually, there is at least one such u, because we assume that
G is 2-connected; this is contained in the separation assumptions.) In addition,
all u ∈ V (B)∩V (Z) different from x have to have the same labels, because there
are no arrows among them. Since we may switch all labels in a valid labelling by
changing the value of the labelling parameter, we may assume that L(u) = {0}
for any such u.

Now, we consider all inside bridges B1, . . . , B` (possibly trivial) and the
corresponding labellings LB1

, . . . LB`
as above. We apply Lemma 34 to each of

these bridges which is not an edge one by one. This way we get a projective
HT-drawing (D1, λ1) which satisfies:

(i) D coincides with D1 on Z and D1(G+0) ∩ S− = ∅;

(ii) every edge e ∈ E(G+0) which is not incident with Z satisfies λ1(e) = 0;

(iii) every edge e ∈ E(G+0) such that λ1(e) = 1 is incident with x.

Indeed, property (i) follows from the iterative application of property (a) of
Lemma 34. Property (ii) follows from the iterative application of properties (b)
and (c) of Lemma 34. Finally, property (iii) follows from (ii), from the iterative
application of properties (b) and (d) of Lemma 34 and from the fact that any
nontrivial inside bridge which is a single edge must contain x.

Finally, we set D′ := D1 and let λ′ : E(G+0) → {0, 1} be the constantly
zero function. We observe that from (ii) and (iii), it follows that λ′(e)λ′(f) =
λ1(e)λ1(f) for any pair of independent edges of G+0. Therefore (D′, λ′) is a
projective HT-drawing as well. But, since λ′ is identically zero function, D′ is
also just an ordinary HT-drawing on S2. ⊗

Inside square. Now we prove Proposition 17 for an inside square. Let B be
the inside bridge inducing the inside square and let a, b, c and d be the vertices
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of V (B) ∩ V (Z) labelled according to Definition 15. The main ingredient for
our proof of Proposition 17 is the following lemma, which shows that B must
have a suitable cut vertex.

Lemma 35 The inside bridge B, inducing the inside square, contains a vertex
v such that the graph B− v is disconnected and the vertices a, b, c and d belong
to four different components of B − v.

We first show how Proposition 17 for inside squares follows from Lemma 35.
The proof is analogous to the previous proof.

Proof of Proposition 17 for inside squares. We assume that B is the unique in-
side bridge inducing the inside square and a, b, c and d are vertices of V (B) ∩
V (Z) as above. In addition, let v be the vertex from Lemma 35.

First we consider valid labellings of trivial inside bridges. After possibly
switching the value of the labelling parameter, we may achieve that all labels
of a trivial inside bridge are 0. We apply Lemma 34 to all trivial inside bridges
(which are not an edge) and we get a projective HT -drawing (D1, λ1) such that
λ1(e) = 0 for any edge of G+0 which does not belong to the nontrivial bridge
B. Also, we did not affect λ on edges of B, D1 coincides with D on Z and we
still have D1(G+0) ∩ S− = ∅.

Now, we consider a valid labelling L of B. By Proposition 27, every vertex
in V (B) ∩ V (Z) has just one label. It is easy to check that, up to switching all
labels, we have L(a) = L(c) = {1} and L(b) = L(d) = {0}. We apply Lemma 34
to B according to this labelling and we get a projective HT-drawing (D2, λ2)
such that the only edges e of G+0 with λ2(e) = 1 are edges of B incident to a
or c.

Next, let Ca and Cc be the components of B − v which contains a and c,
respectively. We perform vertex-crosscap switches over all vertices of Ca and
Cc except a, c and v. We perform the switches inside S+ as usual. This way we
get a projective HT-drawing (D3, λ3) such that only edges e of G+0 such that
λ3(e) = 1 are the edges of B incident to v.

Finally, we let D′ = D3 and we set λ′(e) = 0 for any edge e of G+0. Anal-
ogously as in the previous proof, λ3(e)λ3(f) = λ′(e)λ′(f) for any pair of inde-
pendent edges of G+0. Therefore, (D′, λ′) is a projective HT-drawing on S2 and
D′ is also an ordinary HT-drawing on S2, as required. ⊗

It remains to prove Lemma 35 to conclude the case of inside squares.
We start with a certain separation lemma in a general graph and then we

conclude the proof by verification that the assumptions of this lemma are sat-
isfied.

Lemma 36 Let G′ be an arbitrary connected graph and A = {a1, . . . , a4} ⊆
V (G′) be a set of four distinct vertices. Let us assume that any aiaj-path has a
common point in V (G′)\A with any aka`-path whenever {i, j, k, `} = {1, 2, 3, 4}.
Then there is a cut vertex v of G′ such that a1, . . . , a4 are in four distinct
components of G′ − v.
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Proof. Let us consider an auxiliary graph G′′ which is obtained from G′ by
adding two new vertices x, y and attaching x to a1, a2 and y to a3, a4. By the
assumptions, G′′ is connected and moreover, there are no two vertex-disjoint
paths connecting x and y. By Menger’s theorem (see, e.g., [5, Corollary 3.3.5]),
there is a cut-vertex v ∈ V (G′′) \ {x, y} = V (G′) disconnecting x and y. Let C1

be the connected component of G′′ − v containing x and C2 be the component
containing y. Let C ′i, for i = 1, 2, be the subgraph of G′ induced by v and
the vertices of Ci ∩ G′. Note that, since G′ is connected, both C ′1 and C ′2 are
connected. We show that v is the desired cut vertex.

Let p1 be an a1a2-path in C ′1 and p2 an a3a4-path in C ′2. Since C ′1 and C ′2
are connected, such paths p1 and p2 exist. Moreover, p1 and p2 may intersect
only in v; however, according to the assumptions, they have to intersect in a
vertex outside A. Therefore, they must intersect in v and v /∈ A. Overall, we
have verified that any aiaj-path passes through v, for 1 ≤ i < j ≤ 4, which
shows that v is the desired cut vertex. ⊗

Proof of Lemma 35. We apply Lemma 36 to B and to A = {a, b, c, d}. Let us
consider a valid labelling L of B. Up to swapping the labels, we may assume that
L(a) = L(c) = {1} and L(b) = L(d) = {0}. Then Proposition 27 together with
Lemma 28 imply that any proper ab, bc, cd, or ad-walk is nontrivial, whereas
any proper ac or bd-walk is trivial. Then, the assumptions of Lemma 36 are
satisfied due to Lemmas 32 and 33. ⊗

Inside split triangle. Finally, we prove Proposition 17 for an inside split
triangle.

Proof of Proposition 17 for an inside split triangle. Let a, b, c be the three ver-
tices of Z from the definition of the inside split triangle; see Definition 15 or
Fig. 8.

First, similarly as in the proof for inside squares, we take care of trivial
inside bridges via suitable labellings and Lemma 34. We reach a projective
HT-drawing (D1, λ1) still satisfying the assumptions of Proposition 17, which
in addition satisfies λ1(e) = 0 for any edge e of G+0 that does not belong to a
nontrivial bridge.

Now, let us consider nontrivial inside bridges. By the assumptions, each such
bridge is either an a-bridge, that is, a nontrivial inside bridge which contains
a (and b or c or both), or a bc-bridge which contains b and c, but not a. We
consider valid labellings of these bridges. By Proposition 27, as before, a valid
labelling assigns only one label to each vertex of these bridges lying on Z. As
usual, we may swap all labels in a valid labelling when needed. This way, it
is easy to check that every a-bridge B admits a valid labelling LB such that
LB(a) = {1}, whereas all other labels are 0. Similarly, each bc-bridge B admits a
valid labelling LB such that LB(b) = {1} and LB(c) = {0}. We apply Lemma 34
and we reach a projective HT-drawing (D2, λ2) still satisfying the assumptions
of Proposition 17, which in addition satisfies the following property. The edges
e of G+0 with λ2(e) = 1 are exactly the edges of an a-bridge which are incident
to a or edges of a bc-bridge incident to b.
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a

b

c

a

b

c

a

b

c

D2 D3 D′

Figure 17: An example of redrawing an inside split triangle with one a-bridge
and one bc-bridge. The edges participating in independent pairs crossing oddly
are thick. For simplicity of the picture, the drawings D3 and D′ are actually
simplified. For example, the vertex-edge switches used to obtain D3 from D2

introduce many pairs of independent edges crossing evenly and some pairs of
adjacent edges crossing oddly. These intersections are removed in the picture
as they do not play any role in the argument. (In particular, the drawing D′ is,
in fact, typically not a plane drawing.)

If we do not have any bc-bridge, then all nontrivial edges are incident to
a and we finish the proof by setting D′ = D2 and letting λ′ be identically 0,
similarly as in the cases of an inside fan or an inside square. However, if we
have bc-bridge(s), we need to be more careful.

Let Ex
a and Ex

bc be the sets of edges incident to a vertex x in an a-bridge
and the set of edges incident to x in a bc-bridge, respectively. Because D2 is a
projective HT-drawing, we have λ2(e)λ2(f) = crD2

(e, f) for any pair of inde-
pendent edges e and f . In particular, crD2

(e, f) = 1 for a pair of independent
edges if and only if one of the edges belongs to Ea

a and the second one to Eb
bc.

Now, for every edge e ∈ Eb
bc, we perform the vertex-edge switch over each

vertex different from a, b, c of each a-bridge obtaining a drawing D3. We
perform the switches inside S+. This way, we change the crossing number of
such e with edges from Ea

a , Eb
a and Ec

a. In particular, after this redrawing, we
get crD3(e, f) = 1 for a pair of independent edges if and only if one of the edges
belongs to Ec

a and the second one to Eb
bc. See Fig. 17.

Finally, for every edge e ∈ Ec
a, we perform the vertex-edge switch over each

vertex different from b and c of each bc-bridge obtaining the final drawing D′.
Again, we perform the switches inside S+. This way, we change the cross-
ing number of such e with edges from Eb

bc and Ec
bc. However, it means that

crD′(e, f) = 0 for any pair of independent edges. That is, D′ is the required
ordinary HT-drawing on S2. See Fig. 17. ⊗
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8 Redrawing by Pelsmajer, Schaefer and
Štefankovič

It remains to prove Theorem 18. As mentioned above, our proof is almost
identical to the proof of Theorem 2.1 in [19]. The only notable difference is that
we avoid contractions.10 As noted before, the proof of Lemma 3 in [8] can also
be extended to yield the desired result.

Proof. First, we want to get a drawing such that there is only one edge of Z
which may be intersected by other edges. Here, part of the argument is almost
the same as the analogous argument in the proof of Lemma 22.

Let us consider an edge e = uv ∈ E(Z) intersected by some other edges and
let f = vw ∈ E(Z) be a neighbouring edge of e. We again almost-contract e so
that we move the vertex v towards u until we remove all intersection of e with
other edges. This way, e is now free of crossings and these crossings appear on f .
Since both e and f were even edges in the initial drawing, f remains even after
the redrawing as well. Also we do not affect parity of the other intersections,
and we remove possible self-intersections of the edges incident with v similarly
as in the proof of Lemma 22. Finally, since we want to keep the position of
Z, we consider a self-homeomorphism of S2 which sends v back to its original
position. See Fig. 11.

u0 v0

D(p)

γ

u0 v0

D(p)

h(γ)

Figure 18: An illustration of the self-homeomorphism h, which maps B to S+,
applied to the drawing of G+0 − e0 (where e0 = u0v0).

By such redrawings, it can be achieved that only one edge e0 = u0v0 of Z
may be intersected by other edges while keeping Z fixed and e0 even. Without

10Our reason why we avoid contractions is mainly for readability issues. Contractions yield
multigraphs and, formally speaking, we would have to redo several notions for multigraphs.
Introducing multigraphs in the previous sections would be disturbing and it is not convenient
to repeat all the definitions in such setting now.
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loss of generality, we may assume that the original drawing D satisfies these
assumptions.

Let p be the path in Z connecting u0 and v0 avoiding e0. Let us also consider
an arc γ connecting u0 and v0 outside (that is in S−) close to D(p) such that
it does not cross any inside edge. The closed arc obtained from γ and D(p)
bounds two disks (2-balls). Let B be the open disk which contains S+. Finally,
we consider a self-homeomorphism h of S2 that keeps D(p) fixed and maps B
to S+. Considering the drawing h ◦D on G+0 − e0, it turns out that G+0 − e0
is now drawn in S+, up to p, which stays fixed. For the edge e0, we also keep
its original position, that is, we do not apply h to this edge. See Fig. 18.

Since the redrawing is done by a self-homeomorphism, we do not change the
number of crossings among pairs of edges in G+0. Analogously, we map G−0 to
S− and we get the required drawing. ⊗
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