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Abstract
We demonstrate that for every positive integer ∆, every K4-minor-

free graph with maximum degree ∆ admits an equitable coloring with k
colors where k > ∆+3

2 . This bound is tight and confirms a conjecture by
Zhang and Wu. We do not use the discharging method but rather exploit
decomposition trees of K4-minor-free graphs.
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1 Introduction
Equitable coloring is an ubiquitous notion. From a combinatorial point of view,
it corresponds to a natural variation of usual graph coloring where the color
classes are required to all have the same size, plus/minus one vertex. Practically,
this is one way to prevent color classes from being very large, which can be useful
when using graph coloring for scheduling purposes for instance. Theoretically,
equitable colorings were used successfully in a priori unrelated topics, such as
probability. Indeed, one of the seminal results regarding equitable colorings is
the following theorem, which was established by Hajnal and Szemerédi [3] (the
statement was first conjectured by Erdős).

Theorem 1 (Hajnal–Szemerédi, 1970) Every graph with maximum degree
at most ∆ admits an equitable coloring using ∆ + 1 colors.

Theorem 1 allowed for a simplified demonstration of the Blow-up lemma —
found by Rödl and Ruciński [11]. In addition, this theorem was also used to
derive deviation bounds for sums of random variables with some degree of depen-
dence — this was done by Alon and Füredi [1] and by Janson and Ruciński [4].
Let us point out that in 2010, that is, forty years after Theorem 1 was proved, a
much simpler demonstration was finally found, building on several other related
results. More precisely, Kierstead, Kostochka, Mydlarz and Szemerédi [6] man-
aged to find a two-page proof of Theorem 1, which also has the advantage to
lead to a polynomial-time algorithm that efficiently finds a relevant coloring —
contrary to the original argument (see also the independent article by Kierstead
and Kostochka [5]).

As it turns out, the notion of equitable colorings behaves pretty differently
from usual colorings, and it is a challenging task to better comprehend its rela-
tion to well-known graph classes. Starting from graphs with bounded maximum
degree, it is natural to consider next d-degenerate graphs. The following theo-
rem was established by Kostochka and Nakprasit [8], in a more general form.

Theorem 2 (Kostochka–Nakprasit, 2003) Fix an integer ∆ greater than
or equal to 54. If G is a 2-degenerate graph with maximum degree at most ∆,
then G is equitably k-colorable whenever k > ∆+3

2 .

Theorem 2 partially confirms a conjecture 1 by Zhang andWu [12, Conjecture 9],
(also see [10, Conjecture 6, p. 1209]) that if ∆ > 3, then every series-parallel
graph with maximum degree ∆ admits an equitable k-coloring whenever k >
∆+3

2 . Indeed, series-parallel graphs are known to be 2-degenerate, so Theorem 2
yields that the conjecture is true if ∆ > 54. The purpose of our work is to
establish the conjecture for all the remaining cases, that is, ∆ ∈ {3, . . . , 53}.
(Although, in our proofs we do not use the upper bound on ∆, and simply
prove the statement for all K4-minor-free graphs.)

The statement conjectured by Zhang and Wu is actually a strengthening of
a result of theirs [12], which establishes that every series-parallel graph with

1There is a small misprint in the printed versions of the conjecture: the printed bound
is ∆

2 , which is trivially false as we shall see later; the authors definitely meant ∆+3
2 .
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maximum degree ∆ > 3 admits an equitable k-coloring if k > ∆. The con-
jecture can also be seen as a generalisation of a theorem of Kostochka [7] that
every outerplanar with maximum degree ∆ > 3 admits an equitable k-coloring
whenever k > ∆+3

2 .
It is worth mentioning that Kostochka, Nakprasit and Pemmaraju [9] estab-

lished (a generalisation of) the following interesting statement.

Theorem 3 (Kostochka, Nakprasit & Pemmaraju, 2005) If k is an in-
teger greater than 123 and G is a 2-degenerate graph with maximum degree at
most 1

2 |V (G)|+ 1, then G admits an equitable k-coloring.

Theorem 3, however, does not bring us any new information regarding the prob-
lem at hands. Indeed, we need to consider graphs with maximum degree ∆ 6 53,
while the number of colors needs to be at least 124. Hence for our question the
information provided by Theorem 3 is already contained in the aforementioned
result of Zhang and Wu [12].

As reported earlier we establish the following, which confirms Zhang and
Wu’s conjecture because a series-parallel graph has no K4-minor [2].

Theorem 4 If G is a K4-minor-free graph with maximum degree ∆, then G
admits an equitable k-coloring whenever k > ∆+3

2 .

We point out that the lower bound given in Theorem 4 is tight, as shown by
the following example. Fix a positive integer ∆ and let C(∆ − 1) be obtained
from the complete graph K2 on two vertices u and v by adding ∆− 1 paths of
length two between u and v (see Figure 1 for a representation of C(6)). The
graph C(∆ − 1) is series-parallel, and hence K4-minor-free. In any equitable
coloring c of C(∆ − 1), the colors c(u) and c(v) are different and used on no
other vertices of G. Therefore, the number of colors used by c is at least

⌈∆+3
2
⌉
.

Contrary to the proof of some of the results mentioned above, we do not rely
on discharging, but rather on the structural links between K4-minor-free graphs
and two-terminal series-parallel graphs: in particular, our proof heavily relies on
a so-called SP-tree. Before proceeding with the proof, we review some folklore
properties of K4-minor-free graphs and two-terminal series-parallel graphs and
introduce a bit of terminology.

It would be interesting to know whether Theorem 4 can be extended to
the class of 2-degenerate graphs. A generalisation of this has actually been
conjectured in 2003 by Kostochka and Napkrasit [8].

Conjecture 5 Fix an integer ∆. If d ∈ {2, . . . ,∆} and G is a d-degenerate
graph with maximum degree at most ∆, then G admits an equitable k-coloring
whenever k > ∆+d+1

2 .

2 The structure of K4-minor-free Graphs
As it turns out, graphs with no K4-minor are strongly related to two-terminal
series-parallel graphs. A two-terminal graph is a graph with two distinguished
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vertices called poles. We consider two basic operations on such graphs: the
serial join and the parallel join. For i ∈ {1, 2}, let Gi be a two-terminal graph
with poles ui and vi. The graph S(G1, G2) obtained by identifying the ver-
tices v1 and u2 is also a two-terminal graph and its two poles are the vertices u1
and v2. The graph S(G1, G2) obtained in this way is called the serial join of G1
and G2. The parallel join of G1 and G2 is the graph P (G1, G2) obtained by
identifying the pairs of vertices (u1, u2) and (v1, v2); the poles of P (G1, G2) be-
ing the identified vertices. If G1, . . . , Gm are two-terminal graphs where m > 3,
we inductively define P (G1, . . . , Gm) := P (P (G1, . . . , Gm−1), Gm). In other
words, P (G1, P (G2, . . . P (Gm−1, Gm) . . . )). Two-terminal series-parallel graphs
are two-terminal graphs that can be obtained by the following recursive con-
struction2. The basic two-terminal series-parallel graph is an edge uv with the
two poles being its end-vertices. Two-terminal series-parallel graphs are pre-
cisely those that can be obtained from edges by a sequence of serial and parallel
joins. A two-terminal series-parallel graph usually admits several different con-
structions.

It is also well known that every 2-edge-connected K4-minor-free graph is a
two-terminal series-parallel graph [2, Theorem 2]. Consequently, the set of K4-
minor-free graphs can also be seen as the closure of two-terminal series-parallel
graphs by the spanning subgraph relation.
Lemma 1 A graph G has no K4-minor if and only if G is the spanning subgraph
of a two-terminal series-parallel graphs.
To see Lemma 1, note that spanning subgraphs of two-terminal series-parallel
graphs have no K4-minor. For the reverse direction, it suffices to notice that
a K4-minor-free graph in which adding any new edge creates a K4-minor is
2-edge-connected.

As a consequence, K4-minor-free graphs are precisely those for which we can
choose two poles such that the two-terminal graph obtained can be constructed
from the complete graph K2 on two vertices and its complement K2. The
construction of a particular K4-minor-free graph G can thus be encoded by
a rooted tree, which is called the SP-decomposition tree of G. Each node of
the tree corresponds to a subgraph of G obtained at a step of the recursive
construction of G. The leaves correspond to graphs with only two poles (and no
other vertex) that may or may not be connected by an edge. Each inner node
of the tree corresponds to either a serial join or to a parallel join. Based on
this, there are two types of inner nodes: S-nodes and P-nodes. The inner nodes
have at least two children: the subgraphs corresponding to their children are
joined together by a sequence of serial or parallel joins depending on the type of
the node. Since the result of a sequence of serial joins depends on the order in
which the serial joins are applied, the children of each inner node are ordered.
Without loss of generality, we can assume that the children of a P-node are
S-nodes and leaves only, and the children of an S-node are P-nodes and leaves
only.

2We point out that in the literature, such graphs are sometimes called simply ’series-parallel
graphs’, while this term can also be used to refer to K4-minor-free graphs.
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The diamond D(6) The graph D′(6)

The crystal C(6) The graph C′(6)

Figure 1: Illustrations of specific two-terminal K4-minor-free graphs, the filled
vertices being the two poles of each graph.

If A is a two-terminal graph, the vertices of A distinct from its poles are
said to be its inner vertices. The set of inner vertices of A is Inner(A). We
define width(A), the width of A, to be the number of inner vertices of A, that is,
width(A) = |Inner(A)| (note that width(A) = |V (A)| − 2). We introduce some
terminology for particular two-terminal K4-minor-free graphs (see Figure 1 for
illustrations). A two-terminal graph obtained by a parallel join of several two-
edge paths is a diamond. A two-terminal graph obtained by a parallel join of
several two-edge paths and an edge is a crystal. Observe that an edge may be
seen as a crystal of width 0. If i is a positive integer, we define D(i) to be the
diamond with width i and C(i) to be the crystal with width i. Let D′(1) be the
graph K1,3 with two vertices of degree 1 as poles. For i > 2, we define D′(i) to
be the graph obtained by a parallel join of D′(1) with i − 1 paths of length 2.
Let C ′(i) be obtained from D′(i) by adding an edge between the poles. We
let Pi be the path with i vertices. If G is a graph and U a subset of the vertices
of G, we let G− U be the subgraph of G induced by the vertices of G that do
not belong to U . For a positive integer k, we take the representatives of Zk
to be {1, . . . , k}, rather than the more common {0, . . . , k − 1}. An equitable
k-coloring of a graph G is a mapping α : V (G) → Zk such that

∣∣α−1({i})
∣∣

and
∣∣α−1({j})

∣∣ differ by at most one for every (i, j) ∈ Z2
k.

The next lemma is a simple but useful remark about common neighbors of
the poles of a K4-minor-free graph.
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Lemma 2 If H is a K4-minor-free two-terminal graph with poles a and b given
by an SP-decomposition tree, then every two distinct vertices in NH(a)∩NH(b)
belong to different components of H \ {a, b}. In particular, NH(a) ∩ NH(b) is
an independent set of H.

Proof: Using induction on the number of vertices of the SP-decomposition
tree of H, we prove that no two vertices in NH(a) ∩ NH(b) belong to a same
component of H \ {a, b}.

• The statement is trivial if the SP-tree has only one node, that is if H has
two vertices.

• If H is the series join of H1 and H2, then the only possible common
neighbor of a and b is the common pole of H1 and H2. The statement is
therefore true in this case also.

• If H is the parallel join of H1 and H2, then let x and y be two common
neighbors of a and b. Either x and y belong to Hi for some i ∈ {1, 2}, in
which case the result follows from the induction hypothesis applied on Hi;
or x and y are in different components of H \ {a, b}.

�

Let T be an SP-decomposition tree (of a K4-minor-free graph), and n be
a node of T representing the subgraph H with poles a and b. Assume that
H − {a, b} has m components C1, . . . , Cm. The node n is in normal form if
m 6 1 (i.e. H − {a, b} either is connected or has no vertex at all), or if n is a
parallel node with children H1, . . . ,Hm plus the edge ab if ab ∈ E(H), where Hi

is the subgraph of H induced by Ci ∪ {a, b} from which we remove the edge ab
if it is present. The tree T is in normal form if every node of T is in normal
form.

Lemma 3 If G is a K4-minor-free graph, then G admits a construction tree in
normal form.

Proof: As a K4-minor-free graph, G has two vertices a and b and an SP-
decomposition tree T that represents the two-terminal graph G with poles a
and b. Note that we may assume that T is a binary tree (where P-nodes and
S-nodes may not alternate).

To prove the lemma, we describe an inductive procedure that transforms the
(binary) SP-decomposition tree T into an SP-decomposition tree T ′ in normal
form that represents the same graph G. Assume that this procedure exists
for trees with fewer nodes than T . If n is a leaf, then G has two vertices and
further V (G)−{a, b} is empty, so n is in normal form indeed. So we now suppose
that n has two children representing the graphs G1 and G2, respectively. By
induction, for each i ∈ {1, 2} there is a tree Ti in normal form that represents Gi.
We distinguish two cases depending on the type of the root n of T .
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• Suppose that n is a P-node, so G = P (G1, G2). Let C1
i , . . . , C

mi
i be

the components of Gi − {a, b}, and note that mi is a positive integer.
If mi = 1, then we set H1

i := Gi. If mi > 2, then according to the
definition of normal forms the graph Gi is encoded in Ti by the parallel
join of H1

i , . . . ,H
mi
i , plus possibly the edge ab. (We recall that it means

that each graphHj
i is the subgraph of Gi induced by Cji ∪{a, b} from which

the edge ab is deleted if it is present.) The sought SP-decomposition tree T ′
is then obtained by making a new P-node n the parent node of each of
the SP-decomposition trees representing H1

1 , . . . ,H
m1
1 , H1

2 , . . . ,H
m2
2 (each

of them in normal form), and, possibly, of a leaf representing an edge if
ab ∈ E(G).

• Suppose that n is an S-node, soG = S(G1, G2). First note that ab /∈ E(G).
Let c be the common pole of G1 and G2. Let C1

1 , . . . , C
k1
1 be the compo-

nents of G1 − {a, c} that contain a neighbor of c and let Ck1+1
1 , . . . , Cm1

1
be the other components of G1 − {a, c}. We define analogously the com-
ponents C1

2 , . . . , C
m2
2 and the index k2 with respect to G2 − {b, c}. For

each j ∈ {1, . . . ,m1}, we define Hj
1 to be the subgraph of G correspond-

ing to the component Cj1 of G1 − {a, c} as in the definition of normal
forms. The graphs H1

2 , . . . ,H
m2
2 are defined analogously with respect

to G2 − {b, c}.

According to the definition of normal forms, either H1
i = Gi or, in Ti,

the graph Gi is represented by P (H1
i , . . . ,H

mi
i ). Note that the com-

ponents of G − {a, b} are exactly Ck1+1
1 , . . . , Cm1

1 , Ck2+1
2 , . . . , Cm2

2 and
{c} ∪ (

⋃k1
j=1 C

j
1) ∪ (

⋃k2
j=1 C

j
2). Based on this, the sought tree T ′ is eas-

ily, albeit tediously, obtained. For i ∈ {1, 2}, we set

Fi :=


P (H1

i , . . . ,H
ki
i ) if ki > 2,

H1
i if ki = 1,

K2 if ki = 0.

If k1 = m1 and k2 = m2, then G = S(F1, F2) and hence the sought
tree T ′ is obtained from an SP-decomposition tree T1 of F1 and an SP-
decomposition tree T2 of F2, each in normal form, by adding an S-node
with children T1 and T2. The tree T ′ is in normal form because G−{a, b}
is connected and T1 and T2 are in normal form.

Otherwise, the sought tree T ′ is the tree with a P-node as a root, whose
children are the SP-decomposition trees representing Hk1+1

1 , . . . ,Hm1
1 ,

Hk2+1
2 , . . . ,Hm2

2 and S(F1, F2), each of them in normal form. It follows
from the construction that the node n is in normal form, hence so is the
tree T ′. This concludes the proof.

�
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3 Reductions
We note that the statement of Theorem 4 is true if k 6 2, since then ∆ ∈ {0, 1}.
So from now on we assume that k > 3. We fix a minimal counter-example (G, k),
where k > d∆(G)+3

2 e, along with an SP tree-decomposition T of G with every
node in normal form (Lemma 3 ensures that this is possible). It follows that
k < |V (G)|, as any graph H admits an equitable t-coloring if t > |V (H)|. If G is
the disjoint union of two graphs G1 and G2 each of which admit an equitable k-
coloring, then one can deduce an equitable k-coloring ofG as follows. There is an
equitable k-coloring of G1 where each of the colors 1, . . . ,m1 is used once more
than each color of m1 + 1, . . . , k for some integer m1 ∈ {1, . . . , k+ 1}. Similarly,
there is an equitable k-coloring of G2 such that the colors 1, . . . ,m2 are all used
once less that the colors m2 + 1, . . . , k for some integer m2 ∈ {0, . . . , k}. The
union of these two colorings is an equitable k-coloring of G. As a consequence,
we may assume that G is connected. It also follows that every component of a
subgraph of G with poles a and b that is represented by a subtree of T contains a
or b. A subtree T ′ of T is a construction subtree if T ′ is rooted at a node r of T
and T ′ − {r} consists of at least two subtrees of T − {r} containing children
of r such that if r is an S-node, then all these children are consecutive around r
in T . To ease the reading, let us summarize our assumptions and deductions
on G and k:

1. 3 6 k < |V (G)|;

2. G is connected; and

3. every component of a subgraph of G with poles a and b that is represented
by a subtree of T contains a or b.

Throughout this section, each time a coloring c is obtained by induction (or,
equivalently, by a minimality argument), we assume the colors to be ordered
increasingly, that is, such that

∣∣α−1({i})
∣∣ 6 ∣∣α−1({j})

∣∣ for every two colors i
and j with i < j. (This condition implies that if we consider a k-coloring α of
an n′-vertex graph with n′ < k, then the colors used by c are precisely k, k −
1, . . . , k − n′, each being used exactly once.)

Lemma 4 The graph G has no construction subtree representing a subgraph
isomorphic to C(k − 1) or to D(k − 1).

Proof: Suppose, on the contrary, that H is such a subgraph of G. Let a
and b be the poles and v1, . . . , vk−1 the inner vertices of H. Let F be the
graph constructed from G by contracting V (H) to a vertex c, removing parallel
edges and loops when they occur. Note that F has no K4-minor. In addition,
dF (c) 6 dG(a) + dG(b)− 2(k− 1) 6 2k− 4. By the minimality of G, there is an
equitable k-coloring α of F . Define α′(v) := α(v) for v ∈ V \ V (H). Note that
α′ is a partial proper coloring of G, that is, a proper coloring defined on a subset
of V (G). To finish the proof, it suffices to extend α′ to a proper coloring of G
such that the multisets {α′(a), α′(b), α′(v1), . . . , α′(vk−1)} and {α(c), 1, . . . , k}
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are equal. (Note that in this latter multiset one color has multiplicity two —
namely α(c) — and k−1 colors have multiplicity one.) We now distinguish two
cases.
• If ab /∈ E, then we set α′(a) := α′(b) := α(c) and we color v1, . . . , vk−1

using all the elements of the set {1, . . . , k} \ {α(c)}.

• If ab ∈ E, then a has at most ∆ − k 6 k − 3 colored neighbors. So a
can be properly colored with a color α′(a) different from α(c). Similarly,
b has at most k − 2 colored neighbors (including a), so b can be properly
colored with a color α′(b) different from α(c) (and from α′(a)). Now,
we color v1, . . . , vk−1 using the elements of the multiset {α(c), 1, . . . , k} \
{α′(a), α′(b)}, with the corresponding multiplicities.

�

Corollary 6 For every integer t > k − 1, the graph G has no construction
subtree representing a subgraph C(t) or D(t).

Proof: Assume otherwise that H is such a subgraph of G. Let a and b be the
poles of H. Let n be the root of the construction subtree that represents H.
Since n is in normal form and H − {a, b} is an independent set of size t, the
node n is a parallel node with at least t children representing a path P3 with end
vertices a and b (the node n may have other children as well). Choosing n as a
root along with k−1 of the children of n representing a P3 yields a construction
subtree of T that represents D(k − 1), which contradicts Lemma 4. �

Lemma 5 If a construction subtree of T represents a graph H such that 1 6
width(H) 6 k, then Inner(H) is dominated by a pole of H unless width(H) > 2
and H ∈ {C ′(t), D′(t)}, where t = width(H)− 1.

Proof: Assume that each of the poles a and b of H has a non-neighbor
in Inner(H), which we name a′ and b′, respectively. Note that it is possible
to ensure that a′ 6= b′ unless Inner(H) \N(a) = Inner(H) \N(b) = {a′}. In this
latter case, since each component of H contains a or b by (3), we deduce that H
is connected. Since H has no K4-minor, it then follows from Lemma 2 that H
is isomorphic to either C ′(t) or D′(t), with t = width(H)− 1 > 1.

We now assume that a′ 6= b′, which yields to a contradiction. Indeed, let F be
the graph G− Inner(H) to which we add the edge ab if it is not already present.
Note that the addition of the edge ab cannot create a K4-minor, because G is
K4-minor-free and contains a path of length two between a and b that does not
belong to F . By the minimality of G there is an equitable k-coloring α of F .
To obtain a contradiction, it suffices to extend α to a proper coloring of G such
that {α(v) | v ∈ Inner(H)} equals {1, . . . ,width(H)}. (We recall that the colors
are increasingly ordered.)

To do so, we define α(a′) := α(a) if α(a) 6 width(H) and α(b′) := α(b)
if α(b) 6 width(H) and we arbitrarily assign the colors of {1, . . . ,width(H)} \
{α(a), α(b)} to the non-colored vertices, each color being assigned once. �

Our next statement is a direct consequence of Lemma 5.
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Corollary 7 If a construction subtree of T represents a graph H of width at
most k, then the subgraph induced by Inner(H) is a forest.

Proof: The statement is clear if H ∈ {C ′(t), D′(t)} for some integer t, so by
Lemma 5 we can assume that Inner(H) is dominated by a pole a of H. Then
Inner(H) induces an acyclic graph, as otherwise Inner(H)∪{a} would induce a
subgraph of G containing a subdivision of K4. �

Lemma 6 Let H be a graph with poles a and b represented by a construction
subtree of T and assume that width(H) = k− 1. Then dH(a) + dH(b) 6 2k− 4.

Proof: Assume on the contrary that dH(a) + dH(b) > 2k − 3. Let F be the
graph obtained from G by contracting H into one vertex c, again removing
parallel edges and loops when they occur. In other words, we set V (F ) :=
(V (G) \ V (H))∪ {c} and NF (v) := NG(v) for v ∈ V (G) \ V (H) while NF (c) :=
(NG(a)∪NG(b))∩V (F ). By our assumption, dG(c) 6 dG(a)− dH(a) + dG(b)−
dH(b) 6 2∆ − (2k − 3) 6 ∆. Consequently, F is a K4-minor-free graph with
maximum degree at most ∆. By the minimality of G there is an equitable k-
coloring α of F . To obtain an equitable colouring of G, it suffices to extend α
to V (G) in such a way that the multisets {α(v) | v ∈ V (H)} and {α(c), 1, . . . , k}
are equal. We note that Corollary 7 yields that Inner(H) induces an acyclic
graph. We distinguish three cases.

• If ab /∈ E(G) then we define α(a) := α(b) := α(c) and we arbitrarily
distribute all the colors in {1, . . . , k} \ {α(c)} to the vertices in Inner(H).

• If ab ∈ E(G) and a has a non-neighbor a′ ∈ Inner(H), then by Lemma 5, it
follows that either b dominates Inner(H) or H = C ′(k−2). In both cases,
we know that b has at least k− 2 neighbors in Inner(H). It follows that b
has at most ∆−(k−2) 6 k−1 neighbors outside of Inner(H), including a.
We define α(a) := α(a′) := α(c). By the preceding remark it is possible to
properly color b with a color α(b) (so in particular α(a) 6= α(b)). To finish
the coloring, we assign arbitrarily all the colors in {1, . . . , k}\{α(a), α(b)}
to the vertices in Inner(H) \ {a′}.

• If both a and b dominate Inner(H), then by Lemma 2 we know that
H = C(k − 1), which does not occur by Lemma 4.

�

Lemma 7 If H is a graph represented by a construction subtree of G, then
width(H) 6= k − 1.

Proof: Assume otherwise that there is such a graph H with width k − 1. By
Lemma 5, we may assume that a pole a of H has at least k − 2 neighbors
in Inner(H). Let b be the other pole of H. By Lemma 6, we have dH(b) 6
2k − 4 − dH(a) 6 k − 2. It follows that b has a non-neighbor b′ in Inner(H).
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By the minimality of G, the graph F := G− (Inner(H) ∪ {a}) has an equitable
k-coloring α. To finish the proof, it suffices to extend α to V (G) in such a way
that {α(v) | v ∈ Inner(H) ∪ {a}} equals {1, . . . , k}. Since a has at most k − 1
colored neighbors, it is possible to properly color a with a color α(a). We
set α(b′) := α(b) unless α(a) = α(b). Then we arbitrarily color the (k−1 or k−2)
non-colored vertices using all the (k−1 or k−2) colors in {1, . . . , k}\{α(a), α(b)}.

�

Corollary 8 If H is a graph represented by a construction subtree of G, then
H /∈ {C ′(k − 1), D′(k − 1)}.

Proof: Assume otherwise that H is such a graph, with poles a and b, and
represented by a construction subtree of G with root n. Since n is in normal
form and H−{a, b} is disconnected, the node n is a parallel node with a children
representing a star K1,3 and (at least) k−2 children each representing a path P3
with end-vertices a and b (the node n may have further children). It follows
that T has a construction subtree of G rooted on n representing D′(k−2), which
has width k − 1. This contradicts Lemma 7. �

Lemma 8 If H is a graph represented by a construction subtree of G, then
width(H) 6= k.

Proof: Suppose, on the contrary, that H is such a graph with width k. Let a
and b be the poles of H. By Lemmas 6 and 8, we know that H /∈ {C(k), C ′(k−
1), D(k), D′(k− 1)}. It now follows from Lemma 5, that a dominates Inner(H).
Then b has a non-neighbor b′ ∈ Inner(H), for otherwise b also would domi-
nate Inner(H), so Lemma 2 would imply that H ∈ {C(k), D(k)}.

Let F be the graph G − Inner(H) to which we add the edge ab if it is not
already present. By the minimality of F there is an equitable k-coloring α of F .
To finish the proof, it suffices to deduce a proper coloring α′ of G that equals α
on V (G) \ (Inner(H) ∪ {a}) and such that the multisets {1, . . . , k} ∪ {α(a)}
and {α′(u) |u ∈ Inner(H) ∪ {a}} are equal. We distinguish two cases depending
on the value of k.
• Case 1: k > 4. Since a has k neighbors in Inner(H), the vertex a has
at most ∆ − k 6 k − 3 colored neighbors, so we can properly recolor a
with a color α′(a) different from both α(a) and α(b). By Corollary 7,
Inner(H) is a forest and we know that |Inner(H) \ {b′}| = k − 1 > 3, so
there is an independent set A ⊂ Inner(H) \ {b′} of size 2. To complete
the coloring, we assign α(b) to b′ and α(a) to the vertices in A and we
distribute arbitrarily the colors in {1, . . . , k} \ {α′(a), α(a), α(b)} to the
non-colored vertices.

• Case 2: k = 3. Since a dominates a set of size k, it holds that k 6 ∆ 6 2k−
3, so k = 3 = ∆. Moreover, it also follows that ab /∈ E. As a consequence
of Corollary 7, the set Inner(H) contains two non-adjacent vertices v1
and v2. Let u be the third vertex in Inner(H), so Inner(H) = {v1, v2, u}.
We define α′(a) := α(b), we set α′(vi) := α(a) for i ∈ {1, 2} and we
attribute to u the third color, that is the one in {1, 2, 3} \ {α(a), α(b)}.
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In both cases, we obtain an equitable k-coloring of G, a contradiction. �

Our last two lemmas rely on the following observation.

Observation 9 Let m be a positive integer and let λ1, . . . , λm ∈ {1, 2}. If A1
and A2 are two subsets of the vertices of a graph G that has no edge between A1
and A2, then the vertices in A1 ∪ A2 can be properly colored using the colors
1, . . . ,m with respective multiplicities λ1, . . . , λm whenever

∑m
j=1 λj = |A1| +

|A2| and |Ai| 6 m for i ∈ {1, 2}.

Proof: For s ∈ {1, 2}, set ms := {i ∈ {1, . . . ,m} |λi = s}. We know that
|A1| + |A2| = m1 + 2m2 = m + m2. We deduce that A1 6 m2 and A2 6 m2.
This ensures that the following greedy procedure is valid. For every color i
with λi = 2, we color one vertex in A1 and one vertex in A2 with i. After
that, it remains to assign arbitrarily the m1 colors of multiplicity 1 to the m1
non-colored vertices. �

Lemma 9 Let H := P (H1, H2) be a graph represented by a construction subtree
of T . Assume that width(Hi) 6 k − 2 for i ∈ {1, 2}. Then width(H) 6 k − 2.

Proof: We proceed by contradiction. Let H be a minimal counter-example. By
Lemmas 7 and 8, we know that width(H) = k + µ for some positive integer µ.

Let a and b be the poles of H. We first prove that every component U
of H − {a, b} has at least µ + 2 vertices. Indeed, since the root n of the con-
struction subtree representing H is in normal form, the node n is a parallel node
and the subgraph induced by U∪{a, b}, from which we remove the edge ab if it is
present, is represented by a children of n, soH ′ := H−U is represented by a con-
struction subtree of T . If moreover |U | 6 µ+1, then H ′ has width at least k−1,
thereby contradicting the minimality of H. In particular, width(Hi) > µ+2 > 3
for i ∈ {1, 2}, so k > 5.

Assume for the time being that neither a nor b dominates Inner(H). Because
every component of H−{a, b} has at least three vertices, Lemma 5 implies that
each of Inner(H1) and Inner(H2) is dominated by either a or b. Consequently,
we may assume that a dominates Inner(H1) but not Inner(H2) and b domi-
nates Inner(H2) but not Inner(H1). Let u1 ∈ Inner(H1) and u2 ∈ Inner(H2) be
non-neighbors of b and a, respectively. We distinguish two cases depending on
the value of µ.

First case: µ 6 2. Let F be the graph G − Inner(H) to which we add
a crystal C(µ) with poles a and b (keeping exactly one edge between a and b
should G already contain one). Note that F isK4-minor-free, becauseH already
contains a path between a and b and the vertices of F that do not belong to G
have degree 0 in F − {a, b}. Let v1, . . . , vµ be the inner vertices of this new
crystal. Note that |V (G)| − |V (F )| = k. Since dH(a) > width (H1) > µ+ 2 and
similarly dH(b) > µ+ 2, the graph F has maximum degree at most ∆.

By the minimality of G there is an equitable k-coloring α of F . Note that
the restriction of α to V (G) \ Inner(H) is also a proper partial coloring of G.
To equitably color G, it suffices to extend this partial coloring to a proper
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coloring β of G such that the multiset {β(v) | v ∈ Inner(H)} equals the multi-
set C := {1, . . . , k} ∪ {α(vi) | 1 6 i 6 µ}.

The colors α(a) and α(b) both have multiplicity exactly 1 in C and the
maximal multiplicity in C is at most µ+ 1. We set β(u1) := α(b) and β(u2) :=
α(a).

If the maximal multiplicity in C is 2, then Observation 9 ensures that we
can properly assign the k − 2 remaining colors since each of H1 and H2 has at
most k− 3 non-colored vertices. This yields an equitable k-coloring of G, which
is a contradiction.

If the maximal multiplicity in C is 3, then µ = 2, so width(H1) > µ+ 2 > 4.
It follows then that Inner(H1) \ {u1} contains an independent set {v1, v2} of
size 2. Indeed, otherwise Inner(H1) \ {u1} would be a clique of size at least 3,
which with a would induce a copy of K4 in G. Since width(H2) > µ + 2 > 4,
there exists a vertex v3 in Inner(H2) \ {u2}. We color v1, v2 and v3 with the
(unique) color of multiplicity 3 in C. Again, observation 9 ensures that we
can properly assign the k − 3 remaining colors since each of H1 and H2 has at
most k − 4 non-colored vertices.

Second case: µ > 3. Let F be the graph G − Inner(H) to which we add
the edge ab if it is not already present. By the minimality of G there is an
equitable k-coloring α of F . To equitably color G, it suffices to extend α to
a proper coloring of G such that the multiset {α(v) | v ∈ Inner(H)} equals the
multiset C := {1, . . . , k, 1, . . . , µ}.

As µ > 3, every component of H − {a, b} has at least µ + 2 > 5 vertices.
Consequently, a has two non-adjacent non-neighbors w2 and w′2 in Inner(H2).
To see this, consider a component U of Inner(H2). By Lemma 2, the set U
contains at most one neighbor of a. It follows that |U \N(a)| > 3, which gives
the announced property since by Corollary 7 the set U induces a tree in G.
One proves similarly that b has two non-adjacent non-neighbors w1 and w′1
in Inner(H1). We set α(w2) := α(a), α(w1) := α(b). If α(a) has multiplicity two
in C, that is, if 1 6 α(a) 6 µ, then we additionnally set α(w′2) := α(a). Similarly,
if α(b) has multiplicity two in C, then we additionnally set α(w′1) := α(b). After
this, each ofH1 andH2 has at most k−3 non-colored vertices. By Observation 9,
we can extend this coloring using the k − 2 remaining colors in C.

From now on, we assume that a dominates Inner(H). Set F := G −
(Inner(H) ∪ {a}). By the minimality of G there is an equitable k-coloring α
of F . To equitably color G, it suffices to extend α to a proper coloring of G
such that the multiset {α(v) | v ∈ Inner(H) ∪ {a}} equals the multiset C :=
{1, . . . , k+µ+ 1}, where integers are reduced modulo k. Note that k+µ+ 1 6
width(H1) + width(H2) + 1 < 2k so every color has multiplicity either 1 or 2
in C.

The vertex a has at most k − 3− µ colored neighbors. There are k − 1− µ
colors with multiplicity one in C. Consequently, it is possible to color a with a
color of multiplicity one that is different from α(b).

We now place the color α(b). We know that width(H) > k + µ > 6. By
Lemma 2, and since each component of H \{a, b} has size at least µ+2 > 3, the
vertex b has at least one non-neighbor in each of H1 and H2. We color a number
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of these non-neighbors equal to the multiplicity of α(b) in C (which is either 1
or 2) using the color α(b). Observation 9 then ensures that we can obtain an
equitable coloring with the k − 2 remaining colors. �

Lemma 10 Let H := S(H1, H2) be a graph represented by a construction sub-
tree of T . Assume that width (Hi) 6 k−2 for i ∈ {1, 2}. Then width (H) 6 k−2.

Proof: Suppose, on the contrary, that H contradicts the statement. Subject
to this, we choose H to have as few vertices as possible. We may assume that
width (H) > k+1 by Lemmas 7 and 8. Let b be the common pole of H1 and H2
and let a and c be the other poles of H1 and H2, respectively.

Case 1: For each i ∈ {1, 2}, the subgraph of G induced by Inner(Hi)
contains an independent set {u1

i , u
2
i } of size 2. Let F be the graph G −

Inner(H) to which we add the edge ac if it is not already present. By the
minimality of G there is an equitable k-coloring α of F , which we aim to extend
to G such that the multiset {α(v) | v ∈ Inner(H)} equals the multiset C :=
{1, . . . ,width (H)}, where each integer is reduced modulo k.

We know that width (H) 6 width (H1) + width (H2) + 1 6 2k− 3. It follows
that there is a color γ ∈ {1, . . . , k} \ {α(a), α(c)} of multiplicity one in C. We
set α(b) := γ, α(u1

1) := α(c) and α(u1
2) := α(a), and possibly α(u2

1) := α(c) if
α(c) has multiplicity two in C and α(u2

2) := α(a) if α(a) has multiplicity two
in C. For each i ∈ {1, 2}, the subgraph Hi has at most k−3 non-colored vertices
left, so by Observation 9 it is possible to extend the coloring using the k − 3
remaining colors with the corresponding multiplicities.

Case 2: Inner(H1) induces a clique. We know that

width(H1) > width(H)− width(H2)− 1 > k + 1− (k − 2)− 1 > 2.

By Corollary 7, Inner(H1) is a forest, so width(H1) = 2. It forces moreover
width(H2) to be k − 2. This in particular implies that k > 4. Observe that
the minimality of H ensures that each of the poles a and c has at least two
neighbors in H.

Let d and e be the inner vertices of H1. We define F to be the graph G −
(Inner(H1)∪ Inner(H2)) to which we add the edges ab, bc and ac if not already
present. Note that the graph thus obtained still has maximum degree at most ∆.
By the minimality of G there is an equitable k-coloring α of F .

It remains to deduce an equitable k-coloring of G. To do so, we recolor b
with a color γ different from α(a), from α(b) and from α(c), which is possible as
k > 4. Next we color d with α(b) and e with α(c). It now suffices to distribute
arbitrarily the colors in {1, . . . , k} \ {γ, α(c)} to the vertices in Inner(H2). �

We are now ready to conclude.

Proof of Theorem 4: A direct induction on the tree T using Lemmas 9 and 10
shows that G has at most k− 2 inner vertices. This contradicts our assumption
that |V (G)| > k, thereby finishing the proof of Theorem 4. �
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